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Abstract
Filled pauses are pervasive in conversational speech and have
been shown to serve several psychological and structural pur-
poses. Despite this, they are seldom modelled overtly by state-
of-the-art speech synthesis systems. This paper seeks to mo-
tivate the incorporation of filled pauses into speech synthesis
systems by exploring their use in conversational speech, and
by comparing the performance of several automatic systems in-
serting filled pauses into fluent text. Two initial experiments are
described which seek to determine whether people’s predicted
insertion points are consistent with actual practice and/or with
each other. The experiments also investigate whether there are
‘right’ and ‘wrong’ places to insert filled pauses. The results
show good consistency between people’s predictions of usage
and their actual practice, as well as a perceptual preference for
the ‘right’ placement. The third experiment contrasts the perfor-
mance of several automatic systems that insert filled pauses into
fluent sentences. The best performance (determined by F-score)
was achieved through the by-word interpolation of probabilities
predicted by Recurrent Neural Network and 4gram Language
Models. The results offer insights into the use and perception
of filled pauses by humans, and how automatic systems can be
used to predict their locations.
Index Terms: filled pause, HMM TTS, SVM, RNN

1. Introduction
Currently, filled pauses (FPs) are rarely modelled in speech syn-
thesis systems. This is usually due to the absence of FPs in the
kinds of (formal) texts such systems take as input. However,
FPs are common in conversational speech [1], and in the psy-
cholinguistic literature they have been shown to provide vari-
ous benefits such as better word recall [2], faster reaction times
[3, 4], faster word integration [5] and more accurate object iden-
tification [6]. They are often subclassified into distinct sub-
types - some (e.g., UH) indicate a minor delay, while others
(e.g., UM) indicate a major delay - and they are often associ-
ated with planning problems, discouraging of interruptions, and
highlighting of discourse structure [7, 1, 8, 9, 10, 11]. Conse-
quently, there has been extensive research into the identification
of FPs in the context of speech recognition, sometimes with a
view to removing them from the output text [12, 13, 14, 15].
Given their prevalence and psychological importance in con-
versational speech, it is desirable for them to be incorporated
into any synthesis system that seeks to produce ‘natural’ spon-
taneous speech. We therefore focus on the task of automatically
predicting when to insert FPs into sentences. To date, there
have been only a few attempts at modelling and inserting FPs in

speech synthesis systems. Adell and colleagues [16, 17, 18] in-
cluded FPs in concatenative speech synthesis using the underly-
ing fluent sentence [18]. Another approach [19, 20], which uses
Hidden Markov Model (HMM) synthesis, treats FPs as normal
word tokens in the speech stream when building models based
on spontaneous speech. Both approaches achieve naturalness
scores comparable to state-of-the-art non-disfluent systems and
Andersson et al. [20] also showed improvements in perceived
conversationality, while Adell et al. [18] showed that users pre-
fer systems which include FPs. Predicting when to use FPs,
Adell et al. [16] used a combination of ngrams and decision
trees to predict FPs based on a 317,000 word corpus. They ob-
tain a high F-score, however the possible insertion points (IPs)
were limited to those occurring after the 20 words most com-
monly followed by an FP. These kinds of distribution patterns
are well-modelled by ngram language models (LMs). Anderson
et al. [21] combined ngrams and the Viterbi algorithm to find
the best possible IPs of fillers and discourse markers using a
limited training set of 2120 sentences, these were the transcrip-
tions of the data used for training the actual synthesis system.
The method is geared toward picking examples which exist in
the limited training data, something which is especially impor-
tant in concatenative synthesis, but which limits the domain.

In this paper, we present our initial attempts at utilising
very large corpora of spontaneous speech (see Section 4) for
FP prediction. We focus on the two most common FPs, UH and
UM, and present three experiments. The first experiment deter-
mines whether such corpora can act as a gold standard of FPs
and whether people’s predictions about FPs are consistent with
reality and with each other. Secondly, we test the claim that
there are ‘right’ and ‘wrong’ places to insert FPs. We compared
synthetic sentences with either an FP inserted at the most fre-
quently used IP from the first experiment, an FP inserted at an
unused position or no FP at all. This also allowed us to deter-
mine whether a state-of-the-art HMM-synthesis system could
produce convincing FPs. Finally we present results for initial at-
tempts at FP insertion prediction using ngram LMs, a recurrent
neural network (RRN) LM, support vector machines (SVMs)
and decision trees (DT).

2. Experiment 1: Filled pause insertion
While corpus studies suggest certain regularities in the use of
FPs [22, 23, 1], such as their appearance around phrase bound-
aries and before multi-syllabic words, it is uncertain whether
naturally occurring FPs can represent a gold standard for auto-
matic methods to predict. By asking participants to insert FPs in
sentences we set out to investigate (i) if humans agree on where
to insert FPs, (ii) whether different types of data (i.e., sponta-
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Source Example Sentence
WSJ It is important for actors to reinvent themselves.
AMI I think it’s a multiple chip design and it’s maybe

printed on to the circuit board.

Table 1: Example sentences from the WSJ and AMI isolated
sentences, AMI sentences were presented without FPs.

Cond Pos Used Ins Top Top 3
WSJ 12.77 80.68% 1.40 28.07% 59.14%
AMI 16.48 75.73% 1.67 24.86% 54.19%
Isolated 14.59 77.54% 1.51 26.78% 58.17%
Paragraph 14.60 78.31% 1.55 25.98% 54.91%
All 14.59 77.93% 1.53 26.35% 56.49%
Chance 14.59 97.23% 1.53 9.54% 28.61%

Table 2: Mean values over all sentences for Possible IPs (Pos),
Used IPs (Used), Inserted FPs (Ins), most (Top) and three most
(Top 3) used IP agreements.

neous speech and written news texts) yield different agreements
and (iii) if people’s judgements coincide with the IPs actually
encountered in the data. If (iii) can be substantiated, then it
is possible to use data extracted from transcribed corpora as a
gold standard, and, as multiple IPs may be valid in any given
sentence, if (i) holds, then this would allow us to gather gold
standard data from informants which would provide multiple
potential IPs for the automatic methods to predict.

2.1. Materials (Exp. 1)

Sentences were selected from two different corpora: the WSJ
corpus [24] and the AMI corpus [25]. The WSJ data comprises
news texts, the AMI data is spontaneous speech from meet-
ings. The two data types were chosen to allow us to investigate
whether subjects behave differently for spontaneous speech vs
written news texts. For both AMI and WSJ sentences, a set
of 15 isolated sentences and 15 paragraphs was selected, a sen-
tence in the middle of each paragraph was identified as the target
sentence for people to insert FPs into. This allows us to investi-
gate if context affects people’s choice of IP. The use of the AMI
data allowed us to choose sentences already containing FPs and
compare the predicted IPs to actual use. Sentences contained
at least one and maximally five FPs (mean = 2.9) and were re-
quired to be well-formed sentences containing no other types
of disfluencies. In total, we had 60 distinct sentences. Table 1
show a few examples.

2.2. Method (Exp. 1)

72 paid native English University of Edinburgh students were
recruited. The 60 sentences were divided into two sets with
equal amounts of each text and sentence type. Each participant
rated one of the two sets with sentences presented in a random
order. The participants were instructed to imagine they were
saying the sentence in a conversation, and then determine where
they would be most likely to insert an FP. They were told to in-
sert at least one FP, but were free to insert several if they thought
it was natural. The possible IPs were at any point between the
words in the sentence, including the beginning or end.

2.3. Results and discussion (Exp. 1)

Due to experimenter error one AMI sentence contained an FP
when presented to subjects and was excluded from the analysis.
For comparison, a chance category was created. Using the over-
all statistics of potential IPs and mean number of inserted FPs,

a simulation of the experiment was run 10,000 times to find the
Chance values presented in Table 2, which gives statistics of the
data and shows subjects’ agreement results.

Subjects insert FPs in a similar way regardless of the type of
data they are faced with: paragraph or isolated sentences, news
or spontaneous text (hypothesis (ii)). The AMI and WSJ dif-
ferences are the largest, but still insignificant, which is possibly
due to the lower number of potential IPs in the WSJ sentences
which result in slight agreement increases. Focusing then on the
overall results; subjects are quite consistent with each other, as
the top used IP represents 26.35% of all insertions and the top
three IPs represent 56.49%, which is way above chance levels
at 9.54% and 28.61%. We also see that 22.07% of IPs are never
used compared to 2.77% by chance. Comparing the actual IPs
from the AMI data to the manually chosen IPs, we find that for
40.3% of the sentences there was a match between an IP in the
original data and the most frequently chosen IP in the test data,
this is compared to a lower internal consistency in the manu-
ally chosen IPs of 24.86%. Almost all (96.6%) of the original
AMI sentences had an FP in one of the three most likely chosen
IPs, compared to a 54.19% internal consistency, and only four
(4.82%) of the original IPs were not predicted at any time in the
AMI test data. This demonstrates a very good consistency be-
tween subjects’ predicted usage and their actual usage (iii), and
a good consistency in subjects’ predictions (i). We can there-
fore use these values as a guide to compare automatic methods
against when using transcribed spontaneous speech as a gold
standard.

3. Experiment 2: Perception experiment
While humans are consistent in where they use, and predict,
FPs, this does not demonstrate that the IP makes a perceptual
difference to listeners. In speech synthesis it is generally ac-
cepted that incorrect pausing is detrimental to the processing of
speech synthesis (e.g., [26], p.142), however, there is, to our
knowledge, only one paper that has investigated this. Scharpff
and van Heuven [27] measured the effect pausing has on intelli-
gibility of low quality speech synthesis. They conclude that the
intelligibility of low quality speech improves when pauses are
inserted at prosodic boundaries, but deteriorates when other lo-
cations are chosen. It is likely that an FP may behave similarly,
that there are ‘right’ and ‘wrong’ places for FPs, however this
has not been tested (e.g., [21] assumed this to be true). While
it has been found [20] that a TTS system based on spontaneous
speech does not decrease the naturalness of FP-containing sen-
tences, such a system cannot be considered ‘standard’, and as
such we wanted to see how well-placed FPs in a state-of-the-
art TTS system based on read speech compare to no FP at all.
The objective of this second experiment is therefore to analyse
whether there are IPs where one should not insert an FP and if
well-placed FPs are preferred over no FP insertion.

3.1. Materials (Exp. 2)

Twenty of the thirty AMI sentences from Experiment 1 were
used in the perception experiment. FPs (in this case UH) were
inserted either at the most likely place (according to the judge-
ments from Experiment 1) or randomly in one of the unused
IPs (i.e., an IP that wasn’t chosen by any of the participants in
Experiment 1). The sentences were synthesised using a female
voice based on HTS 2 [28] and about 8 hours of read speech,
in a system that was newer than, but broadly similar to, that in
[29], which is representative of state-of-the-art HMM-synthesis.
During synthesis, the filled pauses were treated as regular word
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Figure 1: Results from the preference test comparing the most
used position (Top) to unused positions or no FP.

tokens in the input stream, as argued for in [9, 30]. However,
it has been shown [20] that producing spontaneous speech ele-
ments using a voice based on read speech results in less natural
sounding synthesis than if it was based on spontaneous speech.
To circumvent the worst quality problems with the synthetic
UHs, we selected a good example of a synthetic UH and spliced
it into the synthesised sentences at the appropriate locations.1

3.2. Method (Exp. 2)

The listening test was conducted through Amazon Mechanical
Turk. Two conditions were created each consisting of 20 sen-
tence pairs. Pairs were presented in a random order, and the
comparisons within a condition were either: FP in top position
versus FP in an unused position or FP in top position versus
no FP. The task for the Turkers was to listen to the two sen-
tences and choose which version they preferred, if any. The
instructions were: ”You will be listening to pairs of sentences.
Please choose which one you think sounds most natural”. The
options were: “Sample 1”, “Sample 2” or “No preference”. We
requested that only native speakers of English carried out the
work. Quality control is an issue with AMT, to overcome this
we offered the work only to Turkers with master worker sta-
tus. Master status indicates a worker has completed work to
a high level of satisfaction. This criterion was to ensure that
we got workers who would carry out the task diligently as they
would not want to risk their master worker status. In addition,
we included three control questions in which the Turker was
instructed, in the sound file (synthetic speech), to select a cer-
tain option. Turkers that failed to respond correctly were ex-
cluded. 44 Turkers completed the work, four were excluded as
they failed the control questions. In total, responses from 20
workers per condition were considered.

3.3. Results and discussion (Exp. 2)

Figure 1 shows the results of the listening test. Listeners have a
clear preference for FPs inserted in the top IP (61%) compared
to FPs inserted at a random unused position (29%). However,
when given the choice between a sentence containing a top FP
versus a synthetic sentence without an FP listeners overwhelm-
ingly choose the fluent sentence as the more natural. This is not
surprising since FPs are often considered disfluencies, and these
are generally judged to be undesirable if naturalness is equated
with formal correctness [31]. However, as mentioned above,
FPs are, in practice, very ‘natural’ since they are prevalent in
spontaneous speech.

1Samples available at the conference repository as
[top/unused/none].wav

Our results seem to be the opposite of Adell et al. [16]
where listeners found sentences with FPs more natural than sen-
tences without. A large difference between the current experi-
ment and [16] is the way the question was framed. Listeners
in [16] heard pairs of sentences with and without FPs and were
asked whether the FP increased the naturalness of a voice for
a dialogue system. Their focus was drawn to the FPs explic-
itly and the question was further framed by specifying the style
of speech. In the current study, we purposefully did not spec-
ify that the sentences contained FPs and were from conversa-
tional speech, as we felt that might prime the participants to-
wards choosing FPs. It has been shown that how listeners are
asked to focus [31] and how questions are framed [32] strongly
influences the resulting judgements.

Another possible reason for the difference is that Adell et
al. [16] used a concatenative system in which they hand-picked
samples of actual FP recordings based on their earlier work
[33]. By contrast, our system used a voice trained on read
speech containing no FPs. The FPs in [16] most likely sound
more natural than ours, despite our splicing, and our results may
partly reflect poor synthetic FP quality. As mentioned above,
[20] found that a voice trained on spontaneous speech contain-
ing FPs did not degrade naturalness compared to a read voice.
This is in line with recent findings that listeners prefer sponta-
neous speech over read speech when considering naturally pro-
duced utterances [32]. This leads us to conclude that while there
are ‘right’ and ‘wrong’ places to insert an FP, and these places
conform to human usage, it is not enough to simply insert FPs
in the right places, they also have to sound right.

4. Experiment 3: Automatic FP Prediction
Experiment 1 indicates regularities we can predict, and exper-
iment 2 that both quality and position of the FP is important.
Focusing on the position (see Section 5 for a short quality dis-
cussion), we explored various techniques for automatic FP in-
sertion. A training data set (1,164,938 sentences; 19,467,756
words) was defined using data from AMI [25], Fisher [34],
Switchboard [35] and an unreleased corpus of British conver-
sational telephone speech. The two most common kinds of FPs
(UH and UM) were mapped to a single type, UH, since we were
primarily concerned with finding the most likely IP irrespective
of FP subtype. Sentences containing fewer than two words were
removed as backchannels were not of interest. Development
(dev) and test sets were defined using the same corpora. They
each contained 2000 sentences, half with FPs and half with-
out, consisting of 35,131 and 35,100 words respectively. The
FP-containing sentences were designed to be similar to the sen-
tences used in Experiment 1: word length was restricted in a
similar way, and they contained exactly three FPs. We chose
three FPs because this is similar to the average number of FPs
in the real sentences used earlier (2.9), and because it allows us
to make comparisons similar to the top three used IPs from Ex-
periment 1. Using the training data, six automatic FP insertion
systems were built:

1. Random: Randomly inserts a single UH into a sentence
2. Ngram LM: A standard 4gram LM was built using the

SRILM toolkit [36] and the training data (68K wordlist, KN
discounting).

3. RNN LM: A Recurrent Neural Network LM was built using
the RNNLM Toolkit [37] and the training data. The RNN
was 500 neurons wide and, for speed reasons, was trained
using 250 classes.

4. Interpolated RNN and ngram LM: The Ngram and RNN
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System Precision Recall All F UH F
Random

dev 0.13 0.16 0.14 0.16
test 0.14 0.17 0.15 0.18

4-gram
dev 0.49 0.15 0.23 0.26
test 0.48 0.16 0.24 0.27

RNN
dev 0.31 0.51 0.39 0.51
test 0.32 0.52 0.40 0.53

RNN/4-gram
dev 0.53 0.51 0.52 0.57
test 0.50 0.47 0.48 0.54

SVM All
dev 0.24 0.17 0.20 0.20
test 0.26 0.16 0.20 0.19

SVM Best
dev 0.27 0.22 0.24 0.27
test 0.29 0.23 0.25 0.27

DT All (Best)
dev 0.25 0.16 0.19 0.19
test 0.25 0.17 0.20 0.21

Table 3: Overview of the 1-best output, the best system scores
are bold-face. ‘All F’ is the F-score when considering the full
dev/test set. ‘UH F’ is when only considering sentences con-
taining FPs. ‘All’ refers to the system using all features. ‘Best’
refers to the best performing feature combination.

LMs were linearly interpolated on a by-word basis to re-rank
the potential sentences.

5. SVM-based: A vector of features was extracted for each IP
in each given sentence in the training data:

(a) syllable count of word following IP
(b) phrase boundary associated with IP
(c) clause boundary associated with IP
(d) 4g log prob for sentence with UH in IP
(e) Part-of-Speech associated with word following IP

(a) was obtained using tsylb;2 (b), (c), and (e) were obtained
using the Stanford Parser,3 while (d) was obtained using the
4gram LM. All features were scaled and normalised so they
could be expressed as floating point integers between log(0)
and log(1). SVM models were built for all possible feature
combinations using SVM-Perf.4

6. Decision Tree-based: A CART-style Decision Tree was built
using R5 and the same features as for the SVM above. The
tree was pruned by selecting the complexity parameter asso-
ciated with the smallest cross-validated error.

Outputs were produced for all systems, and they were
scored using precision, recall and F-score. All systems predict
maximally one FP, however, the FP containing sentences con-
tains three FPs. A ‘correct’ prediction therefore occurs when the
system predicts no FP when there is none or correctly predicts
one of the three IPs in a given dev/test sentence. This is similar
to the situation in Experiment 1 for the 3-best consistence, and
we can thus make a (cautious) comparison.

4.1. Results and discussion (Exp. 3)

From Table 3 we can see that the best performing system is the
RNN/4-gram interpolation. It is clear that the RNN and Ngram

2ftp://jaguar.ncsl.nist.gov/pub/tsylb2-1.1.tar.Z
3http://nlp.stanford.edu/software/lex-parser.shtml
4http://www.cs.cornell.edu/people/tj/svm light/svm perf.html
5http://www.r-project.org

LMs complement each other. Although the Ngram is conserva-
tive in its prediction of FPs (only 359), it is much more exact
(42% of predicted correct) than the other systems, which yields
the high overall precision. By comparison, the RNN massively
over predicts FPs (1877) and therefore is not very precise over-
all, but it has a much better recall. By interpolating the two,
we predict a number of FPs much closer to the actual 1000,
namely 1217, and obtain the best precision and second best re-
call, yielding the highest F-score. It is likely that the reason
for this difference lies in the way the two LMs work, where
the 4-gram will only output an FP when there is sufficient lo-
cal evidence, the RNN is capable of considering longer-range
dependencies. This is important since, e.g., sentence length has
an impact on the likelihood of an FP being used. Both the SVM
and DT perform disappointingly, with the simple 4gram LM
performing as well as the best SVM and also being the SVM’s
most useful feature. Whereas the DT achieves the best results
with all features, features (a)-(c) and (e) only confuse the SVM,
presumably because they are not context-dependent. This is in
stark contrast to the DT performance in [16] which was much
better than ours. The difference is likely due to [16] limiting the
number of IPs to those 20 words most often followed by an FP,
which simplifies the task significantly for an ngram model.

The performance of the RNN/4gram system is encouraging
as it shows we can quite reliably predict where to insert FPs in
text, and the performance rivals that of the human top-3 perfor-
mance (56.49%). If we allow the system to produce a 3-best
list the precision (85%) and recall (81%) improves even further
(F=0.83), demonstrating that reasonable IPs are being identi-
fied.

5. Conclusions
This paper has focused on the task of identifying IPs for FPs
in different kinds of data (e.g., conversational speech and writ-
ten news text). The results of experiments 1 and 2 demonstrate
that the type of data does not affect results, that there is good
consistency between human subjects’ predictions of FP usage
and their actual usage, and also a good consistency between
predictions from different people. This confirms that FP in-
sertion is not merely random, and therefore it can be modelled
in speech synthesis systems. As an initial step towards this,
the performance of various automatic systems was compared
and contrasted, and it was shown that an interpolated Ngram
and RNN LM produced the best output. The superior perfor-
mance of this system suggests that the accurate modelling of
local and long-range lexical and syntactic contexts is central to
this task, and the systems described here could be improved
by the inclusion of additional features or complementary mod-
elling methods (e.g., dependency grammars). There remains, of
course, the problem of handling inserted FPs convincingly in
speech synthesis systems (e.g., imposing a plausible intonation
contour and generating phonetically-plausible FPs), here using
spontaneous conversational training data may be key. It is also
possible to extend the methods summarised here to the task of
inserting other kinds of spontaneous speech phenomena such as
repetitions, restarts and discourse markers.
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