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Abstract
How well do humans detect spoofing attacks directed at au-
tomatic speaker verification systems? This paper investigates
the performance of humans at detecting spoofing attacks from
speech synthesis and voice conversion systems. Two speaker
verification tasks, in which the speakers were either humans or
machines, were also conducted. The three tasks were carried
out with two types of data: wideband (16kHz) and narrowband
(8kHz) telephone line simulated data. Spoofing detection by
humans was compared to automatic spoofing detection (ASD)
algorithms. Listening tests were carefully constructed to en-
sure the human and automatic tasks were as similar as possi-
ble taking into consideration listener’s constraints (e.g., fatigue
and memory limitations). Results for human trials show the
error rates on narrowband data double compared to on wide-
band data. The second verification task, which included only
artificial speech, showed equal overall acceptance rates for both
8kHz and 16kHz. In the spoofing detection task, there was a
drop in performance on most of the artificial trials as well as on
human trials. At 8kHz, 20% of human trials were incorrectly
classified as artificial, compared to 12% at 16kHz. The ASD al-
gorithms also showed a drop in performance on 8kHz data, but
outperformed human listeners across the board.

Index Terms: spoofing, human performance, automatic spoof-
ing detection

1. Introduction
Due to the development of channel and noise compensa-
tion techniques the accuracy of automatic speaker verification
(ASV) systems has advanced significantly in recent years to the
point of mass-market adoption [1]. However, a major challenge
in the deployment of ASV systems is dealing with spoofing at-
tacks. A spoofing attack is when an attacker attempts to manip-
ulate a verification result by mimicking a client speaker in per-
son or by using some advanced technologies, such voice con-
version or speech synthesis.

As identified in [2], there are at least four types of spoof-
ing attacks: impersonation [3, 4], replay [5], speech synthe-
sis [6, 7] and voice conversion [8, 9, 10, 11]. Recently, due to
the development of speech synthesis and voice conversion tech-
nologies, a number of off-the-shelf open-source toolkits have
become available. Hence, speech synthesis (SS) and voice con-
version (VC) have become two of the most easily accessible
and effective techniques to carry out spoofing attacks [12, 2],
and constitute a serious risk to ASV systems.

The main aim of the Automatic Speaker Verification Spoof-
ing and Countermeasures (ASVspoof) Challenge at Interspeech
2015 is to test how vulnerable (or robust) ASV systems are to
speech synthesis or voice conversion spoofing attacks. This pa-

per addresses human performance on this task. The question ad-
dressed here is how well humans perform at identifying human
impostors and artificial impostors and how well they are able
to detect spoofing attacks. The database, SAS [13], used in the
ASVspoof Challenge includes 16kHz data for text-independent
speaker verification. The 16kHz sampling rate was for the ben-
efit of the synthetic and voice conversion techniques used in the
spoofing attacks. However, a more realistic scenario in the ASV
world is of speech that is transmitted through a telephone line,
i.e., narrowband data. Therefore, in this study we include 8kHz
data and we investigate how the human performance changes
when the data is narrowband telephone style speech instead of
wideband speech at 16kHz sample rate. Human performance is
compared to the performance of automatic spoofing detection
(ASD) algorithms on the spoofing detection task at both 8 and
16 kHz.

Various studies over the years have shown that the per-
formance of machines is becoming equal to or even surpass-
ing humans on certain speaker verification tasks. In [14] the
speaker verification performance of human listeners was com-
pared to that of ASV systems on the NIST 1998 Speaker Evalu-
ation Data. The results showed ASV systems performed really
well, but under degraded conditions human performance was
more robust. Similarly, Wenndt and Michell [15] compared
human recognition vs machine recognition for changing envi-
ronments, e.g., short sentences, frequency selective noise and
time-reversed speech and for most conditions they found that
humans were more robust. More recently studies have shown
that ASV systems are performing as well as listeners even under
degraded conditions. Hautamäki and colleagues [16] showed on
NIST SRE 2008 data that their joint factor analysis (JFA) [17]
ASV system outperformed human listeners on an easy dataset
in which there was minimal channel mismatch. On the hard
dataset, which included severely mismatched channel condi-
tions, the JFA system was found to perform as well as humans.
However, it should be noted that their listeners were all non-
native, who underperform on many listening tasks compared to
native listeners [18, 19, 20].

How well humans perform at detecting spoofing attacks has
not been studied extensively, only a handful of papers [21, 22]
have addressed the detection of human imitators by both ma-
chines and humans. Hautamäki et al. [21] found that automatic
systems make less errors than humans when evaluating a per-
son who is intentionally modifying their voice and Zetterholm
et al. [22] concluded from their study that ASV systems and
humans evaluate imitations differently. To our knowledge, no
studies address human performance on SS and VC spoofing at-
tacks. The lack of insight regarding the performance of humans
on the task of spoofing detection motivates the current paper.

The next section sets out how the human evaluation was
carried out and describes the automatic spoofing detection. This



is followed by results of the human and automatic performance
as well as a short discussion of these results.

2. Method
The experimental design we adopted in this study and how ele-
ments of the design were motivated by a pilot test are described
below. This is followed by details of the three human listen-
ing tasks. Next, the automatic spoofing detection system, the
spoofing data materials and the spoofing systems are described.

2.1. Pilot experiment

Our listening experiments were set up keeping the constraints
of machine and human in mind. As described in [14] many
of the rules, for example, of the NIST evaluation could not be
applied equally to people and machines. Things like listener fa-
tigue, boredom and memory limitations play a role for humans
but not machines, whereas humans have the advantage of hav-
ing heard speech from the day they were born or even before
then, in utero. Consequently –in our pilot test– we assumed that
because humans hear huge amounts of speech on a daily basis
their performance, when detecting synthetic or voice converted
speech, would quickly reach ceiling levels. However, our pilot
test (20 listeners) revealed that this detection task was more dif-
ficult for human listeners than we had thought, in first instance.

The pilot experiment showed no obvious ceiling effect. The
experiment consisted of 260 stimuli: 130 artificial samples (13
systems with 10 samples each) and 130 human samples, all
at 16kHz and randomly selected. Listeners were instructed to
judge –for each sample– whether the sample was from a human
or a machine. The overall error rate for the systems came to an
average of 31.6% of artificial samples classified as human (min
15.5% and max 72%) and 10.6% of natural samples classified
as artificial. These error rates were much higher than we ex-
pected. We hypothesised this was due to a mismatch between a
listener’s mental representation of speech and the type of speech
they were hearing in the experiment. For instance, the samples
are very short (2-3 sec) and the recording conditions are such
that some samples may result in being classified as a distorted
human voice rather than synthetic speech. On the basis of this
pilot, we refined the listening test to include training material,
i.e., by letting a subject hear examples of the recordings we ex-
pect their mental representation to become more attuned to the
task, thus enabling the subject to judge the samples more accu-
rately. Additionally, we extended the instructions and included
a role playing element to encourage listeners to perform the task
to the best of their ability.

2.2. Human listening tests

We conducted three human listening tests: two verification
tasks and one detection task for two different types of con-
ditions: 16kHz data and narrowband telephone line simulated
data, 8kHz. The first verification task contained only human
samples, the second verification task contained human train-
ing samples but all test samples were artificial (SS or VC). The
third task –the detection task– contained both human and artifi-
cial samples and the goal for the listener was to correctly detect
whether the sample was produced by a human or a machine.

2.2.1. Listeners

Experiments were carried out using a web interface. In total,
100 native English listeners took part in the 16kHz experiment

and 30 in the 8kHz experiment. The results presented in this
paper include only the first 30 listeners of the 16kHz data ex-
periment as they are directly comparable to the 30 listeners in
the 8kHz experiment. Listeners were seated in a sound isolated
booth and listened to all samples using Beyerdynamic DT 770
PRO headphones. Each listener did all three tasks. On aver-
age it took about an hour to complete the experiment. Listeners
were remunerated for their time and effort.

2.2.2. Task 1: Speaker verification (human)

In the human speaker verification task the listeners were asked
to imagine they were responsible for giving people access to
their bank accounts. They were informed that they would only
have a short recording of a person’s voice to base their judge-
ment on. It was stressed that it was important to not give access
to “impostors” but equally important that access was given to
the “bank account holder”.

The listeners were given five sentences from each target
speaker to familiarise themselves with the voice. After listen-
ing to the training samples they were given 21 trials to judge as
SAME or DIFFERENT. The trials were pairs of samples; a ref-
erence sample and the test sample. This was repeated for three
different target speakers.

In total, 46 target speakers (20 Male, 26 Female) were rated.
Each target speaker was judged by two listeners. The number
of target vs non-target varied per speaker to keep listeners from
keeping count for individual speakers. On average there were
10 targets and 11 non-targets per speaker. Genders were not
mixed within a trial.

2.2.3. Task 2: Speaker verification (artificial)

In the second task, listeners were asked to decide whether an ar-
tificial voice1 sounded like the original speaker’s voice. The lis-
teners were informed that the artificial voice would sometimes
sound quite degraded but were asked to ignore the degradations
as much as possible. Additionally, they were told that there
would be artificial voices that were supposed to sound like the
intended speaker as well as artificial voices that were not sup-
posed to match the original speaker. The challenge was framed
as “your challenge is to decide which of the artificial voices are
based on the “bank account holder’s voice” and which are based
on an “impostor’s voice”.”

As in the first task, the listeners were given five natural
speech samples from the intended speaker to familiarise them-
selves with the voice. After listening to the training samples,
subjects were presented with pairs of reference and test sam-
ples to judge as SAME or DIFFERENT. It was made clear to
the listeners that the test sample would be of an artificial voice.
The reference sample was always natural speech.

This second task covered 46 target speakers in total. Each
target speaker was judged by two listeners. For each target
speaker there were 65 trials (13 systems, each presented 5
times). On average there were 39 targets and 26 non-targets
per speaker. Once again gender was not mixed within any of
the trials.

2.2.4. Task 3: Detection

In the final task, listeners were asked to judge whether a speech
sample was a recording of a human voice, or a sample of an
artificial voice. The challenge to the listeners was formulated

1Artificial was explained to the listeners as being “produced by a
machine, computer-generated, for example a synthetic voice”.



as: “Imagine an impostor trying to gain access to a bank account
by mimicking a person’s voice using speech technology. You
must not let this happen. Your challenge in this final section is
to correctly tell whether or not the sample is of a HUMAN or
of a MACHINE.”

For this final task, the listeners were also given some train-
ing samples. They listened to five samples of human speech
recordings from one speaker (not present in the detection task)
and five examples of artificial speech generated using five dif-
ferent methods (again the “speakers” were not in the test but
the methods were). Finally, the listeners were informed that the
training samples did not cover all the types of artificial speech.

In Task 3, there were 130 samples (65 human, 65 artificial
(13 x 5)), and those samples were randomly selected from the
evaluation set for each listener.

2.3. Automatic Spoofing Detection (ASD) system

One fused ASD system was used to compare automatic and hu-
man spoofing detection results. The fused system is a com-
bination of Mel-frequency cepstral coefficients (MFCCs) and
cosine-normalised phase (cos-phase) feature based detectors.
Both MFCCs and cos-phase features include 18 dimensional
static features, their deltas and delta deltas. The reason for
choosing these two feature sets is that they are easy to extract
without tuning hyper-parameters like, e.g., modified group de-
lay features [10]. More details on the cos-phase features can be
found in [23]. As for the classifier, we used a simple Gaussian
mixture model with universal background model (GMM-UBM)
based classifier with 1024 Gaussian components. Fusion was
implemented using the BOSARIS Toolkit2 at the score level.

2.4. Materials

The materials for the listening test were selected from Part-E of
the spoofing database SAS [13, 24]. SAS contains speech data
from 45 male and 61 female speakers selected from the Voice
Cloning Toolkit (VCTK) database. The data in SAS is divided
into five parts:
• Part-A: 24 parallel utterances (i.e., same across all speakers)

per speaker: training data for spoofing algorithms.
• Part-B: 20 non-parallel utterances per speaker: additional

training for spoofing algorithms.
• Part-C: 50 non-parallel utterances per speaker: enrolment

data for client model training in speaker verification, or train-
ing data for speaker-independent countermeasures.

• Part-D: 100 non-parallel per speaker: development set for
speaker verification and countermeasures.

• Part-E: Around 200 non-parallel utterances per speaker:
evaluation set for speaker verification and countermeasures.

2.4.1. Telephone channel

The 16kHz data was downsampled to 8kHz and then filtered
with the G.712 frequency characteristic as defined by ITU for
telephone equipment. We used the FaNT simulation tool [25]
to filter the speech.

2.5. Spoofing systems

Five speech synthesis (SS) and eight voice conversion (VC) sys-
tems were developed for spoofing attacks. Most of the systems
have been described in more detail in [13]. Here it suffices to

2https://sites.google.com/site/bosaristoolkit/

mention the most salient details of the systems.
SS-LARGE-16: HMM-based TTS system [26]. The average
voice is trained on the voice bank corpus [27] which includes
hundreds of English speakers. This average voice is adapted
using the target speaker’s 16kHz data from Part-A and Part-B.
SS-LARGE-48: Same as SS-LARGE-16, except for adapted
using 48 kHz data.
SS-SMALL-16: Same as SS-LARGE-16, except for using only
Part-A adaptation data.
SS-SMALL-48: Same as SS-SMALL-16, except for adapted
using 48 kHz data.
SS-MARY: Unit-selection system implemented by the MARY
text-to-speech system (MaryTTS)3 based on 16 kHz data from
Part-A and Part-B.
VC-C1: Voice conversion with modified spectral slope. First
coefficient of the source speaker’s Mel-Cepstral coefficients
(MCCs) was shifted.
VC-EVC: A many-to-many eigenvoice conversion (EVC) sys-
tem [28]. Training data was taken from Japanese databases
(ATR and JNAS). Conversion function only applied to MCCs.
VC-FEST: GMM-based voice conversion using Festvox.
VC-FS: Frame selection voice conversion system, simplified
version of exemplar-based unit selection [29]. Only MCCs were
converted.
VC-GMM: An enhanced version of VC-FEST GMM-based
voice conversion.
VC-KPLS: Voice conversion using kernel partial least square
(KPLS) regression [30].
VC-TVC: Tensor-based arbitrary voice conversion (TVC) [31].
The same Japanese dataset as in VC-EVC was used.
VC-LSP: GMM-based voice conversion with line spectral pairs
and delta coefficients as the spectral features.

3. Results
3.1. Task 1: Speaker verification (human)

Table 1 presents the verification error rates for task 1 –the hu-
man speaker verification task– at 8 and 16kHz. On the 16kHz
evaluation data, listeners identified impostors as genuine tar-
gets 6.26% of the time (FAR) while 1.18% of genuine trials
were misclassified as impostors (FRR). For the telephone chan-
nel simulation at 8kHz the rate at which impostors are identified
as genuine targets increases to 13.33% and the misclassification
of impostors increases to 3.94%.

8kHz 16kHz
Genuine (FAR): 13.33 6.26
Impostor (FRR): 3.94 1.18

Table 1: Task 1 – Speaker verification (human) – human listen-
ers’ error rates in percentages.

3.2. Task 2: Speaker verification (artificial)

Table 2 shows the acceptance rate of synthetic speaker verifica-
tion. In this case, a genuine trial is a trial which was synthe-
sised using the target speaker’s voice while an impostor trial is
a trial that was synthesised using a non-target speaker’s voice.
A higher acceptance rate indicates that the artificial system (SS
or VC) is recognised more as the target speaker, i.e., it gives an
indication of how well the artificial system imitates the target,
or in other words, how similar the SS or VC system is to the
target.

3http://mary.dfki.de/



Overall the SS systems achieve higher acceptance rates
than the VC systems. SS-MARY (unit-selection system) results
in the highest acceptance rate, while VC-C1 (modified spec-
tral slope) achieves the lowest acceptance rate. There is not a
great deal of difference between the results on 8kHz and 16kHz
data with some systems leading to increases in acceptance rate,
whereas others result in decreases, e.g., two out of five SS sys-
tems and five out of eight VC systems show a reduction in the
acceptance rate when going from 16kHz to 8kHz data.

8kHz 16kHz
SS-SMALL-16 32.22 31.94
SS-SMALL-48 34.81 28.70
SS-LARGE-16 34.81 38.89
SS-LARGE-48 35.19 32.87
SS-MARY 68.15 74.54
VC-GMM 27.78 32.87
VC-KPLS 23.33 31.48
VC-TVC 25.19 19.91
VC-EVC 21.85 23.15
VC-FS 40.37 38.43
VC-C1 10.00 6.94
VC-FEST 28.15 29.17
VC-LSP 21.48 25.93

Table 2: Task 2 –Speaker verification (artificial) – human lis-
teners’ acceptance rate in percentages.

3.3. Task 3: Detection

The spoofing detection results are presented in Table 3. Hu-
man listeners and the ASD algorithm judged samples and la-
belled them as either HUMAN or MACHINE. The percentages
in Table 3 denote error rates which show the amount of times
a human sample is misclassified as artificial or vice versa an
artificial sample misclassified as human.

For human subjects, there is an increase in detection error
rate when going from 16kHz to 8kHz data. On human trials, the
error rate increases from around 12% to 20%, i.e. at 8kHz a fifth
of the human trials are misclassified as artificial. On artificial
trials, the overall error rate for spoofing detection goes from 8%
to 12%. The system most successful at fooling human listeners
is VC-C1 and the least successful spoof is VC-FS. This can be
explained by the fact that VC-C1 only changes the slope of the
spectral envelope and hence preserves naturalness whereas VC-
FS generates target speech by selecting frames, and introduces
significant artefacts due to the discontinuity across frames.

In general, the ASD system achieves much lower error rates
than the humans except for on SS-MARY, a unit-selection sys-
tem which directly uses waveforms to generate the spoofed
speech. Interestingly, in the narrowband condition, ASD per-
forms considerably better on SS-MARY than in the wideband
condition.

4. Discussion
Human verification error rates double on the verification task
which includes only human samples when reducing the sam-
pling rate from 16 to 8kHz. This is unsurprising and probably
in line with what one would expect. It can be compared to, for
instance, the difficulty sometimes encountered when trying to
tell apart siblings on the phone by their voice, or alternatively
mother-daughter or father-son pairs.

8kHz 16kHz 8kHz 16kHz
human human ASD ASD

Human 19.64 12.48 1.03 0.30
All spoof 12.46 8.43 6.08 7.82
SS-SMALL-16 2.67 8.89 0.00 0.00
SS-SMALL-48 14.00 2.96 0.00 0.00
SS-LARGE-16 8.00 3.70 0.00 0.00
SS-LARGE-48 8.67 8.15 0.00 0.00
SS-MARY 6.00 8.15 48.14 98.08
VC-GMM 20.00 17.04 13.16 1.36
VC-KPLS 12.67 4.44 0.18 0.00
VC-TVC 14.67 5.19 0.04 0.03
VC-EVC 7.33 8.15 0.01 0.06
VC-FS 6.00 2.96 0.09 0.00
VC-C1 40.67 27.41 4.76 1.18
VC-FEST 10.67 5.19 12.59 0.73
VC-LSP 10.67 7.41 0.04 0.24

Table 3: Task 3 –Spoofing detection– human and ASD detection
error rate.

On the second verification task, which consisted only of ar-
tificial samples, we don’t see the same increase in verification
error rate when going from 16kHz down to 8kHz. This task can
be seen as a measure of the similarity of a SS or VC voice to
the original target voice. Seen in this light, the SS systems out-
perform VC systems in almost all cases, i.e., they achieve better
similarity to target speakers. In future work, we will further
investigate the correlation between human subjects’ scores and
ASV scores on this task. If there is a correlation, ASV may be
used as a tool to automatically measure speaker similarity for
speech synthesis and voice conversion.

Compared to the pilot test results, the spoofing detection
of artificial samples was much better in the current study. This
indicates that the training was beneficial. However, the results
on human samples is slightly worse here than in the pilot. Pos-
sibly, the listeners were erring too much on the side of cau-
tion as a result of the instructions. The ASD algorithm clearly
outperforms human listeners on all systems except for the unit-
selection voice SS-MARY. We can conclude that ASD systems
and humans detect spoofing differently, in a similar vain to what
[22] found for imitations.

With SS and VC techniques available off-the-shelf, creat-
ing artificial voices to spoof ASV systems is increasingly easy
and constitutes a real threat. The ASVspoof challenge was set
up to test how vulnerable (or robust) ASV systems are to SS
or VC spoofing attacks. This paper investigated how well hu-
mans perform at identifying human and artificial impostors and
how well they are able to detect spoofing attacks on 8kHz and
16kHz data. We found that error rates increase when rating hu-
man impostors at 8kHz rather than 16kHz.The acceptance rate
of artificial samples did not vary much due to sampling rate. On
the whole, SS systems scored higher, i.e., more similar to the
targets than VC systems. Regarding spoofing detection rates,
there is a drop in performance when going from 16kHz to 8kHz
and the ASD algorithm outperforms humans on all systems, ex-
cept for on SS-MARY.

All research data associated with this paper can be
found at Edinburgh DataShare (http://hdl.handle.
net/10283/790) [32].
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