
1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2583425, IEEE
Transactions on Knowledge and Data Engineering

1

PRIGUARD: A Semantic Approach to Detect
Privacy Violations in Online Social Networks

Nadin Kökciyan and Pınar Yolum

Abstract—Social network users expect the social networks that they use to preserve their privacy. Traditionally, privacy breaches have
been understood as malfunctioning of a given system. However, in online social networks, privacy breaches are not necessarily a
malfunctioning of a system but a byproduct of its workings. The users are allowed to create and share content about themselves and
others. When multiple entities start distributing content without a control, information can reach unintended individuals and inference
can reveal more information about the user. Accordingly, this paper first categorizes the privacy violations that take place in online
social networks. Our categorization yields that the privacy violations in online social networks stem from intricate interactions and
detecting these violations requires semantic understanding of events. Our proposed approach is based on agent-based representation
of a social network, where the agents manage users’ privacy requirements by creating commitments with the system. The privacy
context, including the relations among users or content types are captured using description logic. The proposed detection algorithm
performs reasoning using the description logic and commitments on a varying depths of social networks. We implement the proposed
model and evaluate our approach using real-life social networks.

Index Terms—privacy, social networks, ontology, formal model
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1 INTRODUCTION

Online social systems have become an important part of everyday
life. While initial examples were used to share personal content
with friends (e.g., Facebook.com), more and more online social
systems are also used to do business (e.g., Yammer.com). Gener-
ally, these systems serve a large number of users; however each
user shares content with only a small subset of these users. This
subset may even change based on the type of the content or the
current context of the user. For example, a user might share contact
information with all of her acquaintances, while a picture might
be shared with friends only. If say, the picture shows the person
sick, the user might not even want all her friends to see it. That
is, privacy constraints vary based on person, content, and context.
This requires systems to employ a customizable privacy agreement
with their users. However, when that happens, it is difficult to
enforce users’ privacy requirements.

Typical examples of privacy violations on social networks
resemble violations of access control. In typical access control
scenarios, there is a single authority (i.e., system administrator)
that can grant accesses as required. However, in social networks,
there are multiple sources of control. That is, each user can
contribute to the sharing of content by putting up posts about
herself as well as others. Further, the audience of a post can reshare
the content, making it accessible for others. These interactions lead
to privacy violations, some of which are difficult to detect by users
and are beyond access control [1]. This calls for semantic methods
to deal with privacy violations [2].

Our aim is to identify when the privacy of an individual
will be breached based on a content that is shared in the online
social network. The content that might be shared by the user
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herself or by others; the content may vary, including a picture,
a text message, a check-in information or even a declaration of
personal information. Whenever such a content is shared, it is
meant to be seen by certain individuals; sometimes, a set of friends
or sometimes, the entire social network. Whenever this content
reveals information to an unintended audience, the user’s privacy
is breached.

It is important that if a user’s privacy will be breached, then
either the system takes an appropriate action to avoid this or
if it is unavoidable at least let the user know so that she can
address the violation. In current online social networks, users are
expected to monitor how their content circulates in the system
and manually find out if their privacy has been breached. This
is clearly impractical, if not impossible. To ameliorate this, we
propose an agent-based representation of social networks, where
each user is represented by a software agent. Each agent keeps
track of its user’s privacy requirements, either by acquiring them
explicitly from the user or learning them over time. The agent is
then responsible for checking if these privacy requirements are
being met by the online social network. To do this, the agent
need to formally represent the expectations from the system. Since
privacy requirements differ per person, the agent is responsible for
creating on-demand privacy agreements with the system. Formal-
ization of users’ privacy requirements is important since privacy
violations result because of the variance in expectation of the
users’ in sharing. What one person considers a privacy violation
may not necessarily be a privacy violation for a second user. By
individually representing these for each user, one can check for the
violations per situation. Once the agent forms the agreements then
it can query the system for privacy violations at particular states
of the system. Since privacy violations happen based on various
reasons, checking for these violations is not always trivial and may
require semantic understanding of situations.

Checking for privacy violation can be useful in two ways.
First is to find out whether the current system currently violates
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a privacy constraint of a user. That is, to decide if the actions
of others or the user have already created a violation. Second
is to find out whether taking a particular action will lead to a
violation (e.g., becoming friends with a new person). That is, to
decide if a future state will cause a violation. If so, the system can
act to prevent the violation, for example by disallowing a certain
friendship or removing some contextual information from a post.
Ideally, it is best to opt for the second usage so that violations
are caught before they occur. However, generally checking for
violations is costly, hence it might be preferred to check for
violation less frequently and deal with the violations, if there are
any.

There are three main contributions of this paper: (i) We
develop a meta-model for agent-based online social networks.
This meta-model can serve as a common language to represent
models of social networks. Using the meta-model, we formally
define agent-based social networks, privacy requirements, and
privacy violations in online social networks. (ii) We develop a
semantic approach called PRIGUARD for representing a model
that conforms to the meta-model. This semantic approach uses
description logic [3] to represent information about the social
network and multiagent commitments [4] to represent user’s
privacy requirements from the network. The core of the approach
is an algorithm that checks if commitments are violated, leading
to a privacy violation. We show that our proposed algorithm is
sound and complete. (iii) We build an open-source software tool,
PRIGUARDTOOL that implements the approach using ontologies.
The use of ontologies enable correct computation of inferences on
the social network. Evaluation of our approach through this tool
shows that different types of privacy violations can be detected.
Finally, we demonstrate the performance of our approach on larger
social network data that are available in the literature.

The rest of this paper is organized as follows: Section 2
describes and categorizes privacy violations that take place in
online social networks. Section 3 gives a comparative overview of
the work done in the literature. Section 4 develops a meta-model to
formally represent agent-based social networks. Section 5 uses the
meta-model to model a real-life social network and constructs an
approach to detect privacy violations on it. Section 6 develops an
algorithm to detect privacy violations and shows the soundness
and completeness of this algorithm. Section 7 shows how our
approach handles various examples and provides performance
results. Section 8 concludes with pointers for future work.

2 CATEGORIZATION OF PRIVACY VIOLATIONS

We are interested in privacy in online social networks (OSNs),
where privacy is understood as the freedom from unwanted
exposure [5], [6]. We are particularly concerned with how these
unwanted exposures take place so that we can categorize them
and detect them. Our review of privacy violations reported in
the literature [5], [7] reveal two important axis for understanding
privacy violations. The first axis is the main contributor to the
situation. This could be the user herself putting up a content that
reveals unwanted information (endogenous) or it could be other
people sharing content that reveals information about the user
(exogenous). The second axis is how the unwanted information
is exposed. The information can explicitly be shared (direct) or
that the shared information can lead to new information being
revealed; i.e., through inferences (indirect).

TABLE 1
Categorization of Privacy Violations

Direct Indirect
Endogenous (i) User wrongly config-

ures privacy constraints.
(iii) User’s location is
identified from a geotag in
a picture.

Exogenous (ii) Friend tags the user
and makes the picture
public where the user did
not want to be seen.

(iv) User shares a picture
with a friend; the friend
shares her location in a
second post, which reveals
location of the user.

Table 1 summarizes different ways privacy violations can
take place. We explain each case with an example from a social
network where Alice, Bob, Charlie, Dennis and Eve are users.
Figure 1 depicts the users, the relationships among users and the
privacy constraints of the users. Notice that users vary in their
privacy expectations and sharing behavior. For example, Alice
wants to be the only person who can see her pictures, while Charlie
is fine with sharing his pictures with everyone.

Bob
Friendship: only me: can see

Alice
Picture: only me: can see

Charlie
Picture: everyone: can see

Dennis
Picture: friends: can see
Location: friends: cannot see

Eve
Tagged: family: can see

Fig. 1. Users, Relationships and Privacy Constraints

The first case is an example of traditional privacy violations
that could take place in any system, not just a social network. A
user misconfigures her privacy settings and shares some content
with a system. As a result the system shows the content with
people that it was not supposed to.

Example 1. Alice does not want other users to see her pictures.
However, she shares a picture with her friends.

The second case is an example of violation that happens
on social networks. An information about a user is shared by
another person. For example, a user’s friend tags the user in
a picture so the people that access the picture can identify the
user. In typical systems, where access control is correctly set and
interaction among users are not possible, such violations do not
take place. For example, in a banking system, a user’s friend
cannot disclose information about a user since the system would
keep each individual’s transactions separate. However, in social
networks, information about a user can easily propagate in the
system, without a user’s consent.

Example 2. Charlie shares a concert picture with everyone and
tags Alice in it. However, Alice does not want other users to know
that she has been to a concert.

The third and fourth cases resemble the first two but the
privacy violations are more subtle because the information that
leads to a privacy violation becomes known indirectly. In the third
case, a user puts up a content (e.g., a picture) on the social network
without specifying the location of the picture. However, the picture
itself, either through its geotag (metadata adding geographical
identification) or the landmark in the background, gives away the
location, which the user thinks is a big disgrace. The user herself
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might not have realized that more information can be inferred from
her post, either. Yet, through inferences, another user can find out
her location.

Example 3. Dennis wants his friends to see his pictures but not
his location. He posts a picture without declaring his location.
However, it turns out that his picture is geotagged.

In the fourth case, another user’s action leads to a privacy
leakage but again the leakage can only be understood with some
inferences in place. A user can infer some information as a result
of seeing multiple posts. In another words, a single post might not
disclose private information but might violate one’s privacy when
combined with other posts.

Example 4. Dennis shares a picture and tags Charlie in it.
Meanwhile, Charlie shares a post where he discloses his location.
Eve gets to know Dennis’ location however Dennis did not want
to reveal his location information.

Each example above corresponds to a privacy violation cate-
gory, respectively. To understand how often online social network
users face privacy violations similar to these, we have conducted
a privacy survey targeting Facebook users in Turkey. We chose
Facebook since Turkey is one of the top countries with most
Facebook users in 2014. In the survey, in addition to general
questions such as gender, age, Facebook usage habit, we presented
each participant eight privacy scenarios (two scenarios per each
type above). We asked each participant if she has encountered a
situation similar to the one depicted in the scenario. We shared
the survey on Facebook, and we reached 330 users. 89% of the
users are under the age of 45. The majority of the users are female
(78%). 90% of the users use Facebook at least once a day. Most of
the users prefer sharing posts about their personal life and hobbies
(76%). According to this study, 47% of the users share a content
with incorrect privacy settings (type i). 77% of the users were in
a situation where they were tagged in a content shared by another
user, which would reveal private information about the user itself
(type ii). 99% of the users are able to infer new information by
looking at a post shared by another user (type iii). 96% of the users
are able to infer location information of the user if they know the
location of a friend depicted in the user’s picture (type iv). These
results show that the examples depicted above often frequently
and accurately represent the privacy violations users face.

3 RELATED WORK

Privacy in social networks has been studied in various stances.
The first set of approaches study to find out the private personal
information that can be discovered for a user. Zhou et al. [8]
show that by processing public information about social network
users, one can identify various personal traits such as whether
the person is introvert or not. Golbeck and Hanson [9] show how
one can detect political preferences of users on a social network
users, again based on what they have exposed so far. Heatherly
et al. [10] use inference attacks using social networking data to
predict private information and propose sanitization techniques to
prevent inference attacks. This direction of work aims to discover
personal information about users when that information was not
explicitly declared by the user herself. Our proposed approach here
is on capturing privacy requirements and detecting their violations
automatically. While these approaches do not attempt that, they
successfully show the power of capturing inferences. Our work

currently is based on defined inference rules but could very well
benefit from data-driven inferences done in these works.

The second set of approaches aim to identify potentially risky
users who are likely to breach privacy. Akcora, Carminati and
Ferrari [11] develop a graph-based approach and a risk model to
learn risk labels of strangers with the intuition that risky strangers
are more likely to violate privacy constraints. While this is useful
information, when previous information is not available, this
would not be an applicable direction to pursue. Liu and Terzi [12]
propose a model to compute a privacy score of a user. The privacy
score increases based on how sensitive and visible a profile item
is and can be used to adjust the privacy settings of friends. These
approaches identify risky users in general, rather than considering
individual privacy requirements of users as we have done in this
work. Hence, they are not targeted to detecting individual privacy
violations but to form a general opinion of the network.

The third set of approaches learn the privacy concerns of the
user so that the system can (semi-) automatically suggest policies.
Fang and LeFevre propose a privacy wizard that automatically
configures the user’s privacy settings based on an active learning
paradigm [13]. The user provides privacy labels for some of her
friends and the proposed privacy wizard automatically assigns
privacy labels to the remaining set of friends. Squicciarini et al.
propose an Adaptive Privacy Policy Prediction (A3P) system that
guides users to compose privacy settings for their images [14].
They use content features and social features of the users in the
system. They first classify an image into a category based on
content and metadata. Then, they find privacy policies that are
related to this category and recommend the most promising one
according to their policy prediction algorithm. These approaches
are complementary to our approach. In developing our detection
approach, we assume that the users have their policies in place.
However, it would be useful to have a method that can recommend
users privacy policies.

The last set of approaches detect privacy violations in a given
system. Privacy IQ is a Facebook extension where users can see
the privacy reach of their posts and the effect of their past privacy
settings [15]. PRIGUARD shares a similar intuition by comparing
the user’s privacy expectations with the actual state of the system.
Our contribution is on detecting privacy breaches that take place
because of interactions among users and inferences on content.

Kafali et al. develop PROTOSS [16], where the users’ privacy
agreements are checked against an OSN using model checking.
The number of states that are generated even in a small network is
huge and may not be applicable in large networks. In PRIGUARD,
privacy violations in OSNs of a significantly larger size can be
detected much more quickly. Another approach that uses model
checking is Fong’s Relationship-based Access Control (ReBAC)
model, where access control policies are specified in terms of
the relationships between the resource owner and the resource
accessor in the social network [17]. Similar to this work, in
PRIGUARD, the user can specify her privacy concerns in terms of
relationships with other users (e.g., friends of the user). However,
Fong does not provide any means to check violations that result
from semantic inferences (such as the violation types iii and iv)
and does not provide results on the performance of his approach.
Another work that is based on multiparty access control is that
of Hu et al.’s [18]. In this work, they introduce a social network
model, a multiparty policy specification scheme and a mechanism
to enforce policies to resolve multiparty privacy conflicts. They
adopt Answer Set Programming (ASP) to represent their proposed
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model. Our model shares similar intuitions. Our proposed seman-
tic architecture uses SPARQL queries to detect privacy violations,
rather than an ASP solver. In their work, each user manually
specifies a policy per resource, which is time-consuming for a user.
Moreover, privacy concerns of the users are not formally defined
and the user is expected to formulate queries to check who can or
cannot see a single resource. In PRIGUARD, we advocate policies
to represent privacy concerns of the users and the detection of
privacy violations can be done automatically. Carminati et al.
study a semantic web based framework to manage access control
in OSNs by generating semantic policies [19]. The social network
operates according to agreed system-level policies. Our work is
inspired by the work of Carminati et al. [19] and improves it
in various ways. First, we provide a rich ontology hence we are
able to represent privacy policies in a fine-grained way. Second,
the ontological reasoning task in our work is decidable since
we use Description Logics (DL) rules in our implementation in
contrast to Semantic Web Rule Language (SWRL) rules. Third,
it is known that access control policies are subject to change
often. If a SWRL rule is modified to reflect this change then
the ontology may become inconsistent, which may lead to make
incorrect inferences. In our work, we keep privacy concerns of
the users as commitments, which are widely-used constructs for
modeling interactions between agents [20]. Hence, our model can
deal with changes in privacy concerns of the users.

4 A META-MODEL FOR PRIVACY-AWARE ABSNS

To understand and study privacy violations in online social
networks, we need a meta-model to describe them. A meta-
model provides a language to describe models for various social
networks. We envision users of an online social network to be
represented by social agents. Agents can take actions on behalf
of their users and manage their user’s privacy. In the following
definitions, we use the subscript i to denote a specific instance.

Definition 1 (Agent). An agent is a software entity that can share
posts (Definition 3) on behalf of a user and can see posts of other
agents. A is the set of agents in the system.

Different social networks can serve to share different types of
content (such as a picture, text, and so on). Identifying the content
type is important as various actions in the system can be associated
with content types.

Definition 2 (Content). C is a set of contents that can be posted
in a social network, where C = {cti | t ∈ Ctype}. Ctype is the
set of content types.

Each agent can share posts. We define a post as containing a
number of content. The agent that shares the post is as important
as the set of agents for whom the post is meant to be shared.
Definition 3 captures this.

Definition 3 (Post). pa,i = 〈C, x,D〉 denotes a post that is
shared by an agent a, where a ∈ A. A post includes a set of
contents C. A post may have a context x. Each post is meant to
be seen by a set of agents called its audience D, where D ⊂ 2A.
P is the set of posts and Pa is the set of posts shared by agent a.

Agents are connected to each other with various relations.
In some networks, there is a single possible relation, such as
following another person, whereas in some other networks the
possible relations among agents are vast. Again, the type of

relations (such as friend, colleague and so on) is important for
expressing privacy constraints and hence captured in Definition 4.

Definition 4 (Relationship). rtkm denotes a relationship of type
t between two agents k and m, where k, m ∈ A, t ∈ Rtype.
Rtype is the set of relation types, R is the set of relationships in
the system and Rk is the set of relationships of the agent k.

Essentially, in every social network, in addition to the set of
possible relation types and the set of possible contents that can
be posted in a social network, there is a set of norms [21] that
the system should abide. These norms are there to ensure that the
system works as expected, especially in terms of who is allowed
to see the post or not. We use canSeePost(x, p) as a shorthand
below to denote that agent x has been allowed to view post p.
Allowed relations, contents, and norms define a network template.
By creating this template, a modeler can decide what relations will
be allowed in the system as what will be allowed to be shared,
without knowing the actual agents or posts. Moreover, a modeler
can specify a set of norms that regulate the rules in the social
network. These rules can be about how the posts are shared; e.g.,
agents can see their own posts. Definition 5 defines this template.

Definition 5 (OSN Template). tei = 〈Rtype, Ctype,N〉 denotes
an OSN template with tei ∈ TE. TE is the set of OSN templates.

Thus, every agent-based social network is created to adhere to
a template. Further, it will have a set of agents that operate on it,
a set of actual relation instances among those agents, and a set of
post instances that are shared by the agents.

Definition 6 (Agent-Based Social Network). ABSN is a three tuple
〈A,R,P〉tei , where tei ∈ TE; ∀rt1 ∈ R, t1 ∈ tei.R

type;
∀ct2 ∈ P.C, t2 ∈ tei.C

type. ABSN is initialized with respect to
an OSN template. We assume that ABSN is connected, there is a
path between every pair of agents.

Privacy requirements are subjective for an agent and capture
how the agent expects its information to be shared in the system.
A user may describe with whom the post should be shared with as
well as with whom it should not be shared with. Definition 7
represents both as a privacy requirement labeling the first as
positive and the second as negative.

Definition 7 (Privacy Requirement). PRt
a,i = 〈P ′a, I〉 denotes a

privacy requirement of the agent a, which is about the set of posts
P ′a and affects the set of individuals I , where P ′a ⊂ Pa, I ⊂ 2A

and t ∈ {+,−}. ` is a label function that maps the privacy
requirement type t to {allow, deny}, where `(+) = allow and
`(−) = deny.

Whenever a privacy requirement of a user is not honored by
the system, this creates a privacy violation. As a result, unintended
users might access content or intended users may not.

Definition 8 (Privacy Violation). In a given ABSN, if a privacy
requirement PRt

a,i is violated (isViolated(PRt
a,i,ABSN)), then

the following holds: ∃p ∈ PRt
a,i.P

′
a,∃a′ ∈ PRt

a,i.I and
either t = + and not(canSeePost(a′, p)); or t = − and
canSeePost(a′, p).

5 PRIGUARD: A COMMITMENT-BASED MODEL
FOR PRIVACY-AWARE ABSNS

The meta-model described above can be used to model real-life
online social networks. The main motivation for creating such
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TABLE 2
A Subset of TBox Axioms: Concept Inclusions and Concept Equivalences

Agent, Post, Audience, Context, Content v > Leisure, Meeting, Work v Context
Beach, EatAndDrink, Party, Sightseeing v Leisure Bar, Cafe, College, Museum, University v Location
Picture, Video v Medium Medium, Text, Location v Content
Post u ∃sharesPost−.Agent ≡ ∃R sharedPost.Self LocationPost ≡ ∃R locationPost.Self
LocationPost ≡ Post u ∃hasLocation.Location MediumPost ≡ Post u ∃hasMedium.Medium
TaggedPost ≡ Post u ∃isAbout.Agent TextPost ≡ Post u ∃hasText.Text

a model is to be able to formalize the model of a network and
analyze its privacy breaches. Below, we model a representative
subset of Facebook using the meta-model. We show how the
various aspects of the meta-model can be made concrete using
description logics. An important aspect of this model is in its
representation of privacy requirements of the agents. It relies on
a well-known construct of commitments [20]. We develop an
algorithm that makes use of commitment violations as a step to
detect privacy breaches in ABSNs.

5.1 Domain Representation in Description Logics

We describe entities and their relationships in the ABSN by
the use of Description Logics (DL) [3]. In DL, there are three
types of entities: concepts, roles and individual names. Concepts
are the sets of individuals, roles are the relationships between
individuals, which are represented by unique individual names.
In the following, we denote each concept, role and individual with
text in mono-spaced format. Each individual name starts with a
colon. For example, in the ABSN model, Agent might be a
concept representing a set of agents, isFriendOf might be a
role connecting two agents, :alice might be an individual name
representing the individual Alice.

A DL model is a set of axioms (i.e., statements). Asser-
tional (ABox) axioms are used to give information about indi-
viduals. The type information of an individual is given through
a concept assertion (e.g., Agent(:alice)). The relation be-
tween two individuals is described by a role assertion (e.g.,
isFriendOf(:alice,:bob)). TBox axioms can express rela-
tionships between concepts whereas RBox axioms describe re-
lationships between roles. We describe a subset of terminological
(TBox) axioms and relational (RBox) axioms in Tables 2 and 3, re-
spectively1. Our model is in the description logic ALCRIQ(D),
which is a fragment of SROIQ(D). ALC only supports TBox
axioms with the following concept constructors: u, t, ¬, ∃ and ∀.
Our model extends ALC with role inclusions (R), inverse roles
(I), qualified number restrictions (Q) and concrete roles (D).

TBox axioms described in Table 2 use concept inclusion
and concept equivalence properties. > is the top concept that
includes all individuals whereas ⊥ is the bottom concept with
no individuals. A complex concept is a concept that includes
a boolean concept constructor: u, t and ¬. Concept inclusion
asserts that a concept is a subconcept of another one. For ex-
ample, Picture instances are also Medium instances. Concept
equivalence asserts that two concepts share the same instances.
For example, an instance of MediumPost is also an instance of
Post u ∃hasMedium.Medium (posts that have at least one
medium), which is a complex concept. Two concepts are disjoint

1. The complete set of axioms as well as the PRIGUARD ontology and
evaluation datasets are available online on the project page http://mas.cmpe.
boun.edu.tr/priguard/

if their intersection is empty. For example, a picture cannot be a
video at the same time hence Picture u Video v ⊥.

RBox axioms described in Table 3 use role inclusion and role
restriction properties. Ua is the universal abstract role that relates
all pairs of individuals. A role can be described as a subrole
of another role (role inclusion). For example, isFriendOf
is a subrole of isConnectedTo. Concepts and roles can be
combined to form a statement through existential (∃) and universal
(∀) restrictions (role restriction). For example, the domain and
the range of the role hasAudience are restricted to Post and
Audience individuals, respectively. Moreover, at-most restric-
tion (≥) ensures that hasAudience has at most one audience
individual. In another words, hasAudience is a functional role.
A role is symmetric if it is equivalent to its own inverse such as
isConnectedTo. A set of individuals can be related to them-
selves via a role, this is called local reflexivity. For example, posts
that are shared is described by the concept R sharedPost.Self.

5.2 OSN Template

An ABSN model should conform to an OSN template as described
in Definition 5. Here, we present an ABSN model that conforms
to the following OSN template:

teFB = 〈v isConnectedTo,v Content,N〉
PRIGUARD= 〈A,R,P〉teFB

teFB is an OSN template that represents a subset of Face-
book. In this template, teFB .Rtype is the set of subroles of
isConnectedTo and teFB .Ctype is the set of subconcepts of
Content as described in Tables 2 and 3. PRIGUARD is an ABSN
model that conforms to teFB template. Agents (A) are individuals
of Agent concept.

Relationships (R): In a social network, agents are connected to
each other via various relationships. Each agent labels his social
network using a set of relationships. We use isConnectedTo
to describe relations between agents. This property only states
that an agent is connected to another one. The subroles of
isConnectedTo are defined to specify relations in a fine-
grained way. For example, isColleagueOf, isFriendOf
and isPartOfFamilyOf are used to specify agents who are
colleagues, friends and family, respectively.

Posts (P): A social network consists of agents who inter-
act with each other by sharing posts (sharesPost) and
seeing posts (canSeePost). Each post is created by an
agent (hasCreator) and includes information about agents
(isAbout). A Post can contain various Content types:
textual information Text, visual content (Medium consist-
ing of Picture and Video instances), location informa-
tion Location (e.g., Bar). A medium may a have a geo-
tag information (hasGeotag). hasText, hasMedium and
hasLocation roles connect the corresponding concepts to

http://mas.cmpe.boun.edu.tr/priguard/
http://mas.cmpe.boun.edu.tr/priguard/
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TABLE 3
A Subset of RBox Axioms: Role Inclusions and Role Restrictions. Ua is Universal Abstract Role.

Role Inclusions Role Restrictions
canSeePost v Ua ∃canSeePost.> v Agent, > v ∀canSeePost.Post
hasAudience v Ua ∃hasAudience.> v Post, > v ∀hasAudience.Audience, > v ≤ 1hasAudience.>
hasCreator v Ua ∃hasCreator.> v Post, > v ∀hasCreator.Agent, > v ≤ 1hasCreator.>
hasGeotag v Ua ∃hasGeotag.> v Medium, > v ∀hasGeotag.Location, > v ≤ 1hasGeotag.>
hasLocation v Ua ∃hasLocation.> v Post, > v ∀hasLocation.Location, > v ≤ 1hasLocation.>
hasMedium v Ua ∃hasMedium.> v Post, > v ∀hasMedium.Medium
hasMember v Ua ∃hasMember.> v Audience, > v ∀hasMember.Agent
hasText v Ua ∃hasText.> v Post, > v ∀hasText.Text, > v ≤ 1hasText.>
isAbout v Ua ∃isAbout.> v Post, > v ∀isAbout.Agent
isConnectedTo v Ua ∃isConnectedTo.> v Agent, > v ∀isConnectedTo.Agent, isConnectedTo ≡ isConnectedTo−

isFriendOf v isConnectedTo ∃isFriendOf.> v Agent, > v ∀isFriendOf.Agent, isFriendOf ≡ isFriendOf−

isInContext v Ua ∃isInContext.> v Agent t Post, > v ∀isInContext.Context
mentionedPerson v Ua ∃mentionedPerson.> v Text, > v ∀mentionedPerson.Agent
taggedPerson v Ua ∃taggedPerson.> v Medium, > v ∀taggedPerson.Agent
withPerson v Ua ∃withPerson.> v Location, > v ∀withPerson.Agent
R sharedPost v Ua

R locationPost v Ua

sharesPost v Ua ∃sharesPost.> v Agent, > v ∀sharesPost.Post

Post. Agents can be tagged in a post in various ways. A text
can mention a person (mentionedPerson), a person can be
tagged in a picture (taggedPerson) or at a specific location
(withPerson). A Post can include Context information
(e.g., Work) using isInContext as the role. A Post is intended
to be seen by a target Audience (hasAudience) and that has
a set of agents as members (hasMember).

Norms (N ): Each norm is represented as a Datalog rule [22].
Datalog is a sublanguage of first-order logic and may only contain
conjunctions, constant symbols, predicate symbols and universally
quantified variables. A Datalog rule consists of a rule body and
a rule head. For example, in N4 in Table 4, hasLocation,
withPerson and isAbout are predicate symbols of arity two;
P, L and X are universally quantified variables. The conjunction of
the first two atoms constitutes the rule body while the third atom
is the rule head, which is true if rule body is true.

An example set of norms N together with their descriptions
are shown in Table 4. All the variables are shown as capital letters.
N1 states that if an agent X shares a post P, then X can see this
post. Moreover, a post can be seen by an agent that is in the
audience of that post (N2). If a post is created by an agent, then
this post is about that agent (N3). Similarly, a post is about an
agent if it is tagged at a specific location (N4), in a medium (N5)
or mentioned in a text (N6). In N7, if a post includes a geotagged
medium, then this post reveals the location information; thus this
post becomes a LocationPost instance. N8 states that if a user
in a picture declares her location in a different post, the location
of other users tagged in the picture is revealed as well.

5.3 Privacy Requirements as Commitments

So far, our model could have been represented with DL constructs,
except for the privacy requirements. Privacy requirements are
special in the sense that they represent not only a particular
static state of affairs, but a dynamic engagement from others.
For example, an agent’s privacy requirement can state that, if
the agent has colleagues then the colleagues should not see her
location. If the system decides to honor this privacy requirement,
then it is indeed making a promise to the agent into the future that
colleagues will not be shown pictures.

Various works propose access control frameworks where au-
thors propose a specification language to define access control
policies [18], [19]. An access control policy consists of rules,
which apply to users for accessing a single resource (e.g., :pic1)
in the social network. In this work, we focus on privacy policies
rather then access control policies. Privacy policies apply to a
group of resources (e.g., medium posts) instead of individual
resources. Hence, a user can have a privacy policy even if she
does not have any content being shared at the moment.

To represent a privacy requirement of an agent, we make
use of commitments. A commitment is made between two par-
ties [4]. A commitment is denoted as a four-place relation:
C(debtor;creditor;antecedent;consequent). The debtor is commit-
ted to the creditor to bring about the consequent if the creditor
brings about the antecedent [20]. In another words, the antecedent
is a declaration done by the creditor agent, whereas the privacy
constraint captured by the consequent is realized by the debtor
agent. Each place in a commitment gives a description about a
privacy requirement. We represent the contents of a commitment
semantically using our DL-based model (Section 5.1).

TABLE 5
Mapping Between a Privacy Requirement and a Commitment C

PRt
a,i C Mapping Value

debtor Agent(X)
a creditor Agent(X)

PRt
a,i.P

′
a antecedent isAbout(P,a) ∧ Post(P)

PRt
a,i.I ∪{Agent(Z)} or role(a,X)∧...∧role(Y,T)

t consequent canSeePost(X,P), where t = +
not(canSeePost)(X,P), where t = −

The mapping between a privacy requirement and a commit-
ment is shown in Table 5. Four types of descriptions are as follows:
• Agent description: The debtor and the creditor of a commitment

are agents in the ABSN.
• Post description: A privacy requirement is about a set of posts,

which are described in the antecedent of the commitment.
• Individuals description: A privacy requirement affects some

individuals that are also specified in the antecedent. Individuals
can be described as a set of agents or in terms of roles
between the creditor and other users (denoted as X) that can
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TABLE 4
Example Norms for Semantic Operations and Their Descriptions

N1: sharesPost(X, P)→ canSeePost(X, P) [Agent can see the posts that it shares.]
N2: sharesPost(X, P) ∧ hasAudience(P, A) ∧ hasMember(A, M)→ canSeePost(M, P) [Audience of a post can see the post.]
N3: hasCreator(P, X)→ isAbout(P, X) [Post is about the agent that creates it.]
N4: hasLocation(P, L) ∧ withPerson(L, X)→ isAbout(P, X) [Post is about agents tagged at a location.]
N5: hasMedium(P, M) ∧ taggedPerson(M, X)→ isAbout(P, X) [Post is about agents tagged in a medium.]
N6: hasText(P, T) ∧ mentionedPerson(T, X)→ isAbout(P, X) [Post is about agents mentioned in a text.]
N7: Post(P) ∧ hasMedium(P, M) ∧ hasGeotag(M, T)→ LocationPost(P) [Post with a geotagged medium gives away the location.]
N8: sharesPost(X, P1) ∧ LocationPost(P1) ∧ sharesPost(Y, P2) ∧

hasMedium(P2, M) ∧ taggedPerson(M, X)→ isAbout(P1, Y) [Two agents tagged in a picture are at the same location.]

be described by the subroles of isConnectedTo. Note that
role composition is also supported by conjuncting multiple roles
(e.g.; friends of friends of the user).

• Type description: A privacy requirement may allow or deny
individuals to see a set of posts. This information is described
in the consequent of the commitment, which is canSeePost
or not(canSeePost) according to the sign symbol of the
privacy requirement. If the privacy requirement is positive
(Definition 7), then the consequent becomes canSeePost;
otherwise, it becomes not(canSeePost).

In Figure 1, one of Dennis’ privacy requirements is that he
would like his pictures to be seen by his friends: PR+

d,1 =

〈Pd, F 〉, where ∀p ∈ Pd, p.C ⊂ CPic and F = {x | x ∈ A
and rFr

dx ∈ R}. If the OSN (:osn) promises the agent of Dennis
(:dennis) to satisfy PR+

d,1, then this privacy requirement can
be represented as the commitment C3 as shown in Table 6. In
C3, the debtor :osn promises to the creditor :dennis for
revealing :dennis’ medium posts to X if :dennis declares
X to be a friend and there are medium posts that are about him.
In the antecedent, the post description (PR+

d,1.P ′d) is the set of
medium posts about :dennis while the individuals description
(PR+

d,1.I) is agents (X) that are friends of :dennis. The type
description (t) is the consequent canSeePost.

Example Commitments: We refer to the examples described
in Section 2 and all the corresponding commitments are shown
in Table 6. In Example 1, :alice is the only one who can
see her medium posts hence two commitments are generated C1

and C2. C1 is the commitment where :osn promises :alice
to show her medium posts to :alice. Whereas in C2, :osn
promises :alice to not reveal her medium posts to other users.
In Example 3, :dennis wants his friends to see his medium posts
but not his location posts hence two commitments are generated
C3 and C4. According to C3, :osn should reveal the medium
posts of :dennis to his friends to fulfill its commitment. In C4,
:osn should not show location information of :dennis’ posts
to his friends. :osn should take care of both cases. In Example 4,
we again refer to Dennis’ commitments C3 and C4.

Commitment-Based Violation Detection: A commitment is a
dynamic representation of a privacy requirement since it evolves
over time according to the state of the ABSN. Initially, when
the commitment is created, the commitment is in a conditional
state. If the antecedent is achieved, the commitment moves to
an active state. If the consequent of the commitment is satisfied,
the state of the commitment becomes fulfilled. On the other
hand, if the debtor fails to provide the consequent of an active
commitment then this commitment is violated. Our intuition here
is that every clause in a privacy requirement is a commitment
between agents, where the debtor agent promises to guarantee

certain privacy conditions, such as who can see the post. By
capturing these constraints formally, a system representing this
model can later detect if they were met or violated in a view of the
ABSN. In C3, if :dennis declares :charlie to be a friend
and if there are medium posts (P) about him then C3 becomes
an active commitment as the antecedent holds. Furthermore, if
:osn fails to bring about canSeePost(:charlie, P) (i.e.,
:charlie cannot see :dennis’ medium posts), C3 is violated.
The only difference we adopt here is related to the fulfillment
of commitments when the antecedent does not hold. Typically,
if the consequent of a commitment holds even if the antecedent
does not, the commitment is considered fulfilled [20]. However,
privacy domain makes that operationalization unreasonable. For
example, in C3, if the OSN shares :dennis’ medium posts with
:charlie without :dennis declaring him as a friend in the
first place, it would be a violation. To disallow such cases, we
require both the antecedent and the consequent to hold for the
commitment to be fulfilled.

Violation Statements: A violation occurs when the debtor fails
to bring about the consequent of a commitment, even though
the creditor has brought about the antecedent. For detecting
violations, violation statements have to be identified according
to the commitments. In a commitment, the consequent is true
if the antecedent is true that can be represented as the rule:
antecedent → consequent. The violation statement of a com-
mitment is the logical negation of this rule hence a violation
statement is the conjunction of the antecedent and logical nega-
tion of the consequent. For example, the violation statement
of C3 would be: isFriendOf(:dennis, X), isAbout(P,
:dennis), MediumPost(P), not(canSeePost(X, P)). A com-
mitment is violated if the corresponding privacy requirement is not
satisfied in the ABSN. Lemma 1 captures this.

Lemma 1. Given that PRt
a,i = 〈P ′a, I〉 is correctly represented

as commitment Ci, the violation statement is vi, where vi =
Ci.antecedent, not(Ci.consequent). The violation of Ci implies
isViolated(PRt

a,i, ABSN).

Proof: Follows from Table 5 and Definition 8.

5.4 Detection of Privacy Violations

For detection, PRIGUARD uses the domain information, norms,
the view information and the violation statements as depicted in
Figure 2. A violation statement is identified for each commitment.
PRIGUARD checks the violation statements in the system. If
a violation statement holds, the corresponding commitment Ci

is violated; otherwise, Ci is fulfilled. A commitment violation
means that :osn failed to bring about the consequent of the
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TABLE 6
Commitments for Examples Introduced in Section 2

Ci <Debtor; Creditor; Antecedent; Consequent>
C1: <:osn; :alice; X==:alice, isAbout(P, :alice), MediumPost(P); canSeePost(X, P)>
C2: <:osn; :alice; Agent(X), not(X==:alice), isAbout(P, :alice), MediumPost(P); not(canSeePost(X, P))>
C3: <:osn; :dennis; isFriendOf(:dennis, X), isAbout(P, :dennis), MediumPost(P); canSeePost(X, P)>
C4: <:osn; :dennis; isFriendOf(:dennis, X), isAbout(P, :dennis), LocationPost(P); not(canSeePost(X, P))>

commitment. The creditor agent should be notified about its
commitment violations to take an action accordingly.

Views: Since the definition of ABSN captures the agents in the
network, their relationships, and posts, any changes there will
yield a new ABSN. Hence, the definition inherently captures a
dynamic snapshot. However, even for a single snapshot, one can
be interested in different views of it. A view consists of three sets:
a set of agents, a set of relationships and a set of posts. This is
captured in Definition 9.

Definition 9 (View). Given an ABSN = 〈A,R,P〉, a view Sa =
〈A′,R′,P ′〉 is a three tuple, where a is the view owner with
a ∈ A. The view is defined with:
• A′ = {x | rlax ∈ Ra and a, x ∈ A and l ∈ Rtype};
• R′ = {rlxy | x, y ∈ A′ and rlxy ∈ Rx and l ∈ Rtype};
• P ′ = ∪x∈A′Px.

Algorithm 1: DEPTHLIMITEDDETECTION (C, m=MAX)
Input: C, the commitment to be checked
Input: m, the maximum number of iterations
Output: V , the set of privacy violations
Data: KB, the knowledge base (domain + norms)

1 S ← initView(C.creditor);
2 V ← {}, iterno← 0;
3 vstatement← C.antecedent, not(C.consequent);
4 while iterno < m do
5 KB ← updateKB(KB,S);
6 V ← V ∪ checkViolations(KB, vstatement);
7 iterno← iterno+ 1;
8 if V = {} then
9 S ← extendView(S);

10 else
11 return V ;

12 return V ;

If A′ = {a}, the view becomes the base view, which describes
the agent itself and the posts shared by this agent. If A′ = A
then we call this the global view, which includes the views of all
agents in the system. This would correspond to the state of the
system. An ABSN can be studied at different granularities based
on adjustment of the view. For example, while the base view gives
a myopic view of the ABSN, the global view gives a fully-detailed
view. At times, it might be enough to study a base view but if
the information there is not enough, it is useful to broaden the
view to take into account more agents. This broadening basically
takes a view description and enhances it by including information
about the existing agents’ neighbors, their relations and posts.
Informally, this can be thought as first looking at the agent’s social
network, then including its’ friends, then including its’ friends
of friends, and so on. This broadening is captured as follows
broadenView(Sx) = ∪x′∈Sx.A′ Sx′

Lemma 2. Each view Sa = 〈A′,R′,P ′〉 of an ABSN is contained
by the ABSN = 〈A,R,P〉, such that A′ ⊂ A, R′ ⊂ R, and
P ′ ⊂ P .

Proof: Follows from Definitions 6 and 9.
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Fig. 2. Detection of Privacy Violations in PRIGUARD

The idea of starting from a small view and then broadening the
view to search for privacy violations is analogous to the idea of
iterative deepening depth-first search where rather than going deep
quickly, one would check if the item being looked for is already
available at earlier stages of the search tree and expanding if not.
Algorithm 1 exploits this idea by first checking for violation close
to the user and then extending its search space at each iteration.
The algorithm takes two inputs: a commitment C to be checked
against violations and m, the maximum number of iterations to run
the algorithm for. m is set to maximum depth of the social network
(MAX) as the default. The output is a set of privacy violations
V . The agent should be aware of the domain and the norms that
form the initial knowledge base KB. The algorithm is meant
to be invoked by the agent who is interested in detecting if its
commitment is being violated; thus a base view is created for the
creditor of the commitment. initView returns the base view with
respect to Definition 9 (line 1). V and iterno are initialized to
an empty set and 0 respectively (line 2). iterno keeps the current
iteration in the algorithm. The violation statement vstatement
is generated regarding the commitment (line 3). While iterno
is less than m, updateKB adds the view information to KB and
new inferences are added to KB as well (line 5). checkViolations
function checks whether vstatement holds in KB and returns a
set of violations, which are appended to V (line 6). The current
iteration number is incremented (line 7). If V is empty, then the
current view S is broadened with extendView function (line 9).
An obvious way to broaden a view is to begin with the agent’s
information and then move to its connections’ information, and so
on. We give an example algorithm for extendView in Section 6.4.
Lines 4-11 are repeated until the maximum number of iterations
has been reached or a violation has been found. The algorithm
returns the empty set V if no violation has been found (line
12). Note that in certain cases, it might be desired to find all the
violations, rather than returning after finding violations in a certain
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view. If that is the case, it is enough to replace the if-else clause
(lines 8-11) with the statement in line 8, so that the algorithm
keeps extending the view until the maximum number of iterations
is reached.

6 PRIGUARDTOOL

We develop a tool called PRIGUARDTOOL in Java, which imple-
ments the PRIGUARD model described in Section 5. Recall that
each user is represented by an agent. The execution is as follows:
(i) The user’s agent takes the privacy constraints of its user. (ii)
Then the agent processes these constraints to generate correspond-
ing commitments. (iii) The agent sends this set of commitments to
PRIGUARDTOOL, which generates the statements wherein these
commitments would be violated. (iv) Finally, PRIGUARDTOOL

checks whether these statements hold in an ABSN view, which
would mean a violation of privacy and notifies the requesting agent
about the results. Recall Figure 2. We now explain how the details
of these steps are realized in our running implementation.

6.1 Social Network Information

There are three aspects of social networks that PRIGUARD needs
to function: domain information, view information, and norms of
the system. PRIGUARDTOOL implements these as follows.

Domain (A): An ontology is a conceptualization of a domain.
We represent the details of the social network domain using
PRIGUARD ontology specified in OWL 2 Web Ontology Lan-
guage [23] because a DL model can be completely mapped to an
OWL 2 ontology. Hence, OWL 2 is a natural match to implement
the DL axioms and the DL model developed in Section 5.

ABSN View (B): We propose to check privacy violations at
particular views of the ABSN. To do this, we need to capture
the view of the ABSN. The set of users, relationships between
users and the content being shared constitute the global view. An
exact view representation would capture all of these at a given
time for all the users. However, sometimes this view can be large
and difficult to process. Hence, PRIGUARDTOOL can decide which
users, which relations and which posts to consider when building
a view; thus narrowing the view content (see Section 5.4).

In the ontology, a view is captured by the class and object prop-
erty assertions (ABox assertions). The view of Example 2 is spec-
ified in functional-style syntax in Table 7. At this particular view,
:charlie creates and shares a post (:pc1) including a medium
(:pictureConcert), an :audience with :alice, :bob,
:dennis, :eve as members and a person tag of :alice. The
remaining assertions include the class assertions for each instance
and the object property assertions to describe relations between
agents as depicted in Figure 1.

TABLE 8
Example Norms as Description Logic (DL) Rules

n1: sharesPost v canSeePost
n2: hasMember− ◦ hasAudience− ◦ R sharedPost v canSeePost
n3: hasCreator v isAbout
n4: hasLocation ◦ withPerson v isAbout
n5: hasMedium ◦ taggedPerson v isAbout
n6: hasText ◦ mentionedPerson v isAbout
n7: Post u ∃hasMedium . ∃hasGeotag . Location v LocationPost

n8: R locationPost ◦ sharesPost− ◦ taggedPerson−
◦ hasMedium− ◦ sharesPost− v isAbout

DL Rules (C): Remember that PRIGUARD requires norms to be
represented as Datalog rules. Hence, here we need to implement
the Datalog rules using an appropriate implementation language.
In principle, all Datalog rules can be represented with Semantic
Web Rule Language (SWRL) rules. However, there are two
drawbacks: First, SWRL is not a standard for representing rules.
Second, the decidability is only preserved if DL-safe SWRL rules
are used. For these reasons, we represent Datalog rules as DL
rules, which is part of OWL 2. A Datalog rule can be transformed
into a DL rule if the following conditions hold [24]. (i) The rule
contains only unary and binary predicates. (ii) In the rule body,
two variables can be related to each other with at most one path.
Notice that with a domain represented with DL axioms the first
constraint holds trivially because each predicate will either be a
class (unary) or a relation (binary). For the second constraint, the
body of the rule needs to be tree-based, however it is allowed to
have a predicate in the form R(x,x) since it can be represented
as the DL axiom ∃R.Self. For many of the norms, this will be
the case, since the aim of the rule body is to identify posts and
individuals with certain properties. For example, all the example
norms in Table 4 adhere to these constraints.

Table 8 gives the norms as DL rules. Each Datalog rule is
transformed into a DL rule using the rolling-up method. Shortly,
all the variables that do not appear in rule head of the rule are
eliminated. If the rule head is a binary atom, then that rule is
expressed as a role inclusion axiom. For example, in N4, the
variable L is eliminated as it does not appear in the rule head.
A role composition axiom is used to rewrite N4 as n4. If the
rule head is a unary atom, then the rule is expressed as a concept
inclusion axiom. For example, in N7, the variables M and T are
eliminated. N7 is rewritten as the concept inclusion axiom n7.

6.2 Generation of Commitments (D)
We provide users with a simple graphical user interface to input
their privacy constraints. A user can specify her privacy constraints
in terms of post types. To this extent, PRIGUARDTOOL supports
fine-grained specification of privacy constraints.

For managing the privacy settings of a post type, the user
sets two different groups of users: a group who can see that post
type (canSeeGroup) and a group who cannot (cannotSeeGroup).
Once the user provides her privacy constraints, the user agent
generates a set of commitments in the following way: (i) A user
specifies neither canSeeGroup nor cannotSeeGroup for any post
type. In this case, there is no commitment to generate. (ii) A
user specifies one of canSeeGroup and cannotSeeGroup for a post
type. In such a case, only one commitment is generated. (iii) A
user specifies both canSeeGroup and cannotSeeGroup for a post
type. In this case, two commitments are generated. For example,
according to Alice’s privacy constraints (canSeeGroup=Alice,
cannotSeeGroup=everyone except Alice), her agent generates two
commitments C1 and C2. However, the generation of commit-
ments is not always straightforward. A user may unknowingly
specify conflicting privacy constraints. For example, a user may
want friends to see her medium posts but not her colleagues. If a
person is both a friend and a colleague, her privacy constraints will
be in conflict. To minimize privacy violations to occur, we adopt
a conservative approach and we move users who are specified
in both groups to cannotSeeGroup. The approach is customizable
such that if the user prefers, the conflict can be resolved by moving
the individuals to canSeeGroup.
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TABLE 7
ABSN View of Example 2. :charlie Shares a Post :pc1

ClassAssertion(Agent :alice) ClassAssertion(Agent :bob)
ClassAssertion(Agent :charlie) ClassAssertion(Agent :dennis)
ClassAssertion(Agent :eve) ClassAssertion(Audience :audience)
ClassAssertion(Post :pc1) ClassAssertion(Picture :pictureConcert)
ObjectPropertyAssertion(isFriendOf :alice :bob) ObjectPropertyAssertion(isFriendOf :alice :charlie)
ObjectPropertyAssertion(isFriendOf :bob :charlie) ObjectPropertyAssertion(isFriendOf :charlie :dennis)
ObjectPropertyAssertion(isFriendOf :dennis :eve) ObjectPropertyAssertion(hasCreator :pc1 :charlie)
ObjectPropertyAssertion(sharesPost :charlie :pc1) ObjectPropertyAssertion(hasAudience :pc1 :audience)
ObjectPropertyAssertion(hasMedium :pc1 :pictureConcert) ObjectPropertyAssertion(taggedPerson :pictureConcert :alice)
ObjectPropertyAssertion(hasMember :audience :alice) ObjectPropertyAssertion(hasMember :audience :dennis)
ObjectPropertyAssertion(hasMember :audience :eve) ObjectPropertyAssertion(hasMember :audience :bob)

6.3 Generation of Violation Statements (E)

Ontologies operate under open world assumption and can be
queried with conjunctive queries (e.g., DL queries), which are
similar to the body of a Datalog rule. However, for our purposes,
closed-world assumption is better suited, because the social net-
work information captures who has access to certain posts but
not the other way round. For example, the network records who
has shared a post but not who has not shared a post. Hence,
after all the semantic inferences are made, querying the social
network requires a language that supports close-world assumption.
To realize this, we use SPARQL [25], which introduces query
variables to retrieve desired results. We use SELECT queries that
use filter expressions to restrict the set of matching results in a
query. NOT EXISTS is used to test for the absence of a pattern in
the knowledge base.

TABLE 9
The Violation Statement of C3 as a SPARQL Query

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX osn: <http://mas.cmpe.boun.edu.tr/ontologies/osn#>
SELECT ?x ?p WHERE { ?x osn:isFriendOf osn:dennis .

?p osn:isAbout osn:dennis .
?p rdf:type osn:MediumPost .

FILTER NOT EXISTS {?x osn:canSeePost ?p} }

We cast a violation statement into a SPARQL query. In Table 9,
the violation statement of C3 is represented as a SPARQL query.
The keyword PREFIX declares a namespace prefix. osn prefix
refers to PRIGUARD ontology namespace. The keyword SELECT
shows the general result format. The statements after SELECT
declare the query variables (?x and ?p) to be retrieved. The core
part of the query is defined in the WHERE block. In our case, it
consists of four triples (one is used in a filter expression).

6.4 Detection in PRIGUARDTOOL

PRIGUARDTOOL implements DEPTHLIMITEDDETECTION such
that it represents (i) the domain with PRIGUARD ontology, (ii)
norms with DL rules and (iii) a view with an ontology. Hence,
the knowledge base is a set of ontological axioms collected from
(i), (ii), (iii) and the inferred axioms as a result of ontological
reasoning. checkViolations takes two inputs: this knowledge base
and a violation statement as a SPARQL query. It runs the SPARQL
query and retrieves the solutions that match all the mappings
for variables in this query. If the result set is empty, then the
commitment is not violated. Otherwise, the query retrieves all
the pairs of ?x and ?p values that match the pattern described in

WHERE block of the query. Once DEPTHLIMITEDDETECTION

returns the query results, PRIGUARDTOOL reports these query
results to the agent requesting the violation check.

Algorithm 2: extendView (S)
Input: S, the view ontology
Output: S′, the extended view ontology

1 S′ ← {}, A← getAgents(S), R← {}, P ← {};
2 A← extendAgents(A);
3 foreach a in A do
4 S′ ← S′ ∪ ClassAssertion(Agent, a);
5 R← R ∪ a.getRelationships(A);
6 P ← P ∪ a.getSharedPosts();

7 foreach r in R do
8 S′ ← S′ ∪ OPropAssertion(r.type, r.a1, r.a2);

9 foreach p in P do
10 S′ ← S′ ∪ ClassAssertion(Post, p);
11 S′ ← S′ ∪ OPropAssertion(sharesPost, p.a, p);
12 S′ ← S′ ∪ PostAssertions(p);

13 S′ ← S ∪ S′;
14 return S′;

PRIGUARDTOOL implements the auxiliary function
extendView in DEPTHLIMITEDDETECTION as shown in
Algorithm 2. extendView takes a view S and returns an extended
view S′ by implementing the broadenView in Definition 9. S′,
the set of relationships R and the set of posts P are set to an
empty set. A is initialized with the set of agents that is part of
the current view S (line 1). extendAgents takes an agent set as
an input, the connections of each agent in this set are added to
A (line 2). For each agent a in A, an agent instance is added as
a class assertion to S′ (line 4). getRelationships takes A as an
input and returns a set of relationships between a and any agent
in A, which is added to R (line 5). getSharedPosts returns the
set of posts shared by a, which is added to P (line 6). For each
relationship r in R, an object property assertion describing the
relationship of type r.type between agents r.a1 and r.a2 is added
to S′ (line 8). For each post p in P , a post instance is added to
S′ as a class assertion (line 10). Each post is shared by an agent.
This is captured with an object property assertion, which is added
to S′ (line 11) and the details of this post (e.g., post containing a
medium) are added to S′ as well (line 12). S′ is created such that
it includes information about the agents in A, the relationships
between agents in A and their shared posts. The union of S
and S′ becomes the new view S′ and extendView returns this
extended view (lines 13-14). extendView could be implemented
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differently. For example, the view can be extended by adding the
user’s family first, friends later, and colleagues last to have more
fine-grained views.

Theorem 1 (Soundness). Given an ABSN that is correctly repre-
sented with a KB, and a commitment C that represents a privacy
requirement PRt

a,i, if DEPTHLIMITEDDETECTION returns a
violation, then isViolated(PRt

a,i,ABSN) holds.

Proof: Assume that DEPTHLIMITEDDETECTION detects a
violation, which is not true. This may occur if at least one of the
following reasons is possible: (i) S contains incorrect information:
The base view is computed with initView, which consists of the
agent itself and its own posts. extendView extends a given view
such that it includes all the information of new agents that are
added to this view. By Lemma 2, the new view still reflects a
subset of the ABSN and does not contain external information.
(ii) KB does not contain the necessary information: Initially,
the knowledge base consists of the social network domain and
its norms and it is assumed to be correct. The agent updates its
knowledge base with the view information (line 5 in the algo-
rithm). The ontological inferences made by the agent are correct
since PRIGUARDTOOL uses the Pellet reasoner [26], which is
sound and complete with respect to OWL. Hence, knowledge base
always stores correct information. (iii) vstatement is computed
incorrectly so that it does not reflect a privacy violation: Given
a commitment C in PRIGUARDTOOL, a violation statement is
generated by the agent (line 3 in the algorithm). By Lemma 1,
if this violation statement holds, then there is a privacy violation.
Since none of these is possible, a privacy violation that DEPTH-
LIMITEDDETECTION detects is indeed a violation.

Next, we show that if there is a violation in the ABSN,
then DEPTHLIMITEDDETECTION (working with depth MAX)
will always find it. The algorithm searches for the violation
iteratively whereby at each iteration it searches a larger view. We
first show that if the violation exists in the current view, then
DEPTHLIMITEDDETECTION will find it.

Lemma 3. Given a violation statement of a commitment vi and
a knowledge base KB, if there is a privacy violation in KB,
checkViolations returns it.

Proof: If there is a privacy violation then a commitment
violation should exist (Lemma 1). Since KB is correctly repre-
sented, checkViolations will retrieve the violation query results
(Section 6.4).

Lemma 4. extendView can eventually create the global view.

Proof: At each extension, extendView broadens the previ-
ous view. Since an ABSN is connected; if extendView is called
repeatedly, at the final extension, the agent set in the extended
view will consist of all the agents, their posts and relationships;
thus the global view.

Theorem 2 (Completeness). Given a commitment C, DEPTH-
LIMITEDDETECTION always returns a privacy violation, if one
exists.

Proof: Starting from the base view, at each extended view,
if there is a privacy violation then DEPTHLIMITEDDETECTION

will find it (Lemma 3). By Lemma 4, DEPTHLIMITEDDETEC-
TION will eventually produce the global view. In the worst case,
the privacy violation can be detected by taking the global view.

7 EVALUATION

At any time, an agent can check for possible privacy violations.
For this, it sends the set of commitments to PRIGUARDTOOL,
which in turn runs DEPTHLIMITEDDETECTION to check whether
any privacy violation occurs. When a violation is detected, the
user can take an appropriate action. In principle, the violation
can be undone if any clause in the antecedent can be falsified.
When a privacy violation is detected, PRIGUARDTOOL returns all
the relevant assertions to the affected users. A user can choose
to modify properties of a post, such as untagging individuals or
removing dates, so that some of the assertions do not hold any
more.

7.1 Detection Results

PRIGUARDTOOL can be used in two ways: (1) to check if the
current state of an OSN is yielding a violation (detection) and
(2) to check if the action that is to be performed will yield
a violation (prevention). PRIGUARDTOOL can handle all of the
scenarios reported in Section 2. While the main purpose of the
paper is the developed underlying method, it is also important to
briefly discuss how the results of the algorithm can be used.

Lampinen et al. categorize actions that can be taken as a re-
sponse to privacy violations as “corrective actions” [27]. These ac-
tions can either be taken by the user (individual) whose privacy is
being violated or others that are contributing to this (collaborative).
Individual actions include deleting content (including comments,
location information) or untagging photos. Collaborative actions
include requesting another person to delete content or reporting
the content as inappropriate to the network administration. These
corrective actions can be applied similarly in our system.

Example 1: :alice shares a medium post :pa1 with her
friends. :alice generates C1 and C2. PRIGUARDTOOL gener-
ates the corresponding violation statements as SPARQL queries
and runs its detection algorithm. C2 is violated with the substitu-
tions {?x/:bob,:charlie} and {?p/:pa1}. :alice is the
one putting her friends in the audience. This is a typical case
where the user wrongly configures her privacy settings. When this
is detected, PRIGUARDTOOL will let Alice know the post that is
causing the violation as well as the above substitutions. Alice can
now either change the audience of :pa1 so that Bob and Charlie
can stop seeing the post or can remove the post all together.

Example 2: :charlie shares a post :pc1, which in-
cludes a picture of :alice and :charlie. The audience
is set to {:alice, :bob, :dennis, :eve}. Alice requests
her agent to check for possible privacy violations. :alice
asks PRIGUARDTOOL to check C1 and C2 against privacy
violations. PRIGUARDTOOL runs the corresponding SPARQL
queries and reports that C2 is violated with the substitutions
{?x/{:bob, :charlie, :dennis, :eve} and {?p/:pc1}.
Here, :osn shows a picture of Charlie and Alice to everyone
because Charlie sets the audience of the post to everyone. On
the other hand, Alice does not want to show her pictures to
anyone. Thus, Charlie and Alice have conflicting privacy concerns,
:osn cannot satisfy both concerns at the same time. Here, :osn
violates C2 by showing a picture of Alice to other users. When
PRIGUARDTOOL detects this violation, it first returns the result
to Alice since her commitment is being violated. If Alice could
make any of the assertions false as in the previous example, then
she could do so (e.g., modify the audience). In this example, there
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are no such assertions. Hence, Alice will need to contact Charlie
and request that he either adjusts the audience or that he removes
:pc1 all together.

Example 3: :dennis wants to share a post :pd1, which in-
cludes a geotagged picture. The post audience is set to :charlie
and :eve. Prior to posting, :dennis takes C3 and C4, which
are the commitments representing Dennis’ privacy constraints, and
sends these commitments to PRIGUARDTOOL. The tool generates
the corresponding SPARQL queries and reports that C4 is violated
with the substitutions {?x/:charlie,:eve} and {?p/:pd1}.
Since the location information can be inferred from the post, these
individuals can access the location of the post as well. Even
that the location information is not posted explicitly, it can be
inferred because of a geotag embedded in the picture. This is a
case that resembles various privacy attacks on celebrities [28]. In
principle, this is a different type of violation from the previous
ones, where the violation takes place because of an inference
rule (n7) that contributes into the reasoning process. When this
possible violation is detected, the system can work to prevent it
from happening. More specifically, since PRIGUARDTOOL returns
a list of assertions, users can modify these assertions. Here, the
privacy violation will be caused by violation of C4, which means
Charlie and Eve are friends and that they will see the location of
Dennis. Dennis can remove Charlie and Eve from the audience or
choose not to post the picture at all.

Example 4: :dennis shares a post :pd2, where he tags
:charlie. :charlie wants to share a location post :pc2
with everyone. Before sharing it, PRIGUARDTOOL checks for
violations in the system. It finds out that C4, a commitment of
:dennis, is violated with the substitutions {?x/:eve} and
{?p/:pc2}. This violation occurs because the system infers that
:pc2 reveals location information of :dennis as well (n8).
When PRIGUARDTOOL detects this, it can notify all the users
that contribute to this: Dennis (because his commitment is being
violated) and Charlie (because his post is triggering the violation).
Again, PRIGUARDTOOL will return all the assertions pertaining
to this possible violation. Specifically, Charlie can choose not to
share his location or remove Eve from the audience if it wants to
preserve Dennis’ privacy. If not, Dennis can try to alter assertions
that pertain to him; e.g., by removing his previous post. Any of
these actions will prevent the violation to take place.

The examples so far have looked at one view of the system and
encountered a violation. However, it is possible that the system is
not in a violating view but a later action of a user causes a privacy
violation. In Example 2 assume that initially Charlie does not tag
Alice but only puts up the picture. If PRIGUARDTOOL checks the
system at that point, no violation will be reported since it does
not know that the picture includes Alice. Assume that at a later
time Charlie decides to tag Alice on the existing picture. Now
the system will know that Alice is included in the picture and a
check at this point will reveal a violation. Thus, one can also use
PRIGUARDTOOL checks as periodic in spirit of virus checks where
a user would check her privacy violations as often as she sees fit.

7.2 Comparative Evaluation
The above four examples closely reflect the categorization of
privacy violations as explained in Section 2. As mentioned before,
based on a survey that we have performed, it is clear that huge
percentage of users are facing these privacy violations. Hence,
it is important to address them. In this section, we compare

PRIGUARDTOOL to existing works in terms of detecting various
types of privacy violations. To ensure a diverse set of approaches,
we pick Facebook, the multiparty access control approach of Hu et
al. [18] and semantic Web based approach of Carminati et al. [19].

Violation Hu Carminati Facebook PRIGUARDTOOLet al. [18] et al. [19]
Type i 3 3 3 3
Type ii 3 7 7 3
Type iii 7 3 7 3
Type iv 7 7 7 3

All works can handle the first violation type easily, where the
violation is endogenous and direct. This is, if a user specifies a
privacy constraint that is independent of any other user’s concern,
then this privacy constraint can be enforced.

The second type can be handled by Hu et al. [18] since authors
empower users in specifying policies for shared data. That is,
everyone related to the content can specify constraints on the
data. Carminati et al. [19] cannot deal with second violation type
because users can only specify access control policies for data that
they own. This type cannot be handled by Facebook either. This
is a typical case of commitment conflict. In the latter two works,
if we consider Example 2, Charlie’s requirement of sharing with
everyone is honored but Alice’s requirement of not sharing with
other users is not.

The third and fourth type of privacy violations require infer-
ence making to be in place so that they can be detected. In the
work of Hu et al. [18] and Facebook, no inference techniques are
being used to improve reasoning over policies. Hence, these works
cannot seem to deal with the third and fourth type of violations.
Facebook attempts to deal with various predefined inferences by
removing information. Consider Example 3 where the violation
occurs because geotagged pictures reveal location. Since such in-
ference rules can easily be specified as norms in PRIGUARDTOOL,
we can detect this. Interestingly, Facebook deals with this by
removing geotags all together. However, even when geotags are
removed, location can be inferred either through other metadata
(e.g., time the picture was taken) or features in the picture (e.g.,
Eiffel Tower in the background). Currently, PRIGUARDTOOL is
not equipped with image processing tools but if such information
is available, then it can use this information for inferences and
check further privacy constraints as necessary. Note that Facebook
has a feature to ask individuals for approvals before being tagged.
However, even if a person is not tagged in a picture, she can still
be identified. In Example 2, when Charlie’s friends see the picture,
those who know Alice will still know she was there. Hence, tag
approvals mitigate but do not solve the problem entirely.

Carminati et al. [19] describe a social network access control
model as an ontology and policies as SWRL rules. Since their
model supports inference mechanism to enforce policies, they can
detect third type of privacy violation, where the violation is caused
by the user but only understood through inference. However,
for the fourth type of violation, support for both inference and
sharing by third parties should be in place. PRIGUARDTOOL can
handle this since commitments of all associated users can be
checked against a shared content. However, since Carminati et
al.’s approach is based on checking only user’s own access control
rules, violations that arise because of joint inference from multiple
contents cannot be detected.

The fourth type of privacy violation reflects a fundamental
difference between our approach and various access-control ap-



1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2583425, IEEE
Transactions on Knowledge and Data Engineering

13

proaches. Typical access control approaches define access rules
for a single resource and check if these rules are met. However,
many times information becomes visible as a result of multiple
contents being shared by multiple individuals. In Example 4, all
aforementioned approaches would treat sharing of two pieces of
content separately, thereby not catching that a privacy violation
occurs when both are combined.

7.3 Performance Results

After a qualitative comparison, it would have been ideal to also
compare the performances of the aforementioned approaches.
However, given that the source codes are not open and that there
are no established data sets such a comparison is difficult, if not
impossible. The fact that not all the approaches support detection
of same types of violations adds to this complication.

Hu et al. [18]’s evaluation for detecting privacy violation is
based on representing the privacy policies for a shared data and
using ASP solvers to check user-formulated queries. However,
detection time of policy violations is not reported. Carminati et
al. [19] adopt a partitioning scheme to reason over a small set
of data. They report the time that it takes to perform inference
in various synthetic social networks. Similarly, we consider one
real-life scenario, and we report execution time to detect privacy
violations in various depths of the social network. Our approach
is flexible enough to work on any view of the social network.

We measure the performance of our approach by studying
how much time is required as well as number of axioms needed
to detect violations on OSNs. On these networks, each node
represents a user while each relation denotes a relationship be-
tween users. We replicate Example 2 to evaluate our approach.
To do this, in each ABSN, we designate a user to be Charlie
that shares a picture publicly and tags a friend who does not
want her pictures to be shown publicly (like Alice). Hence,
as soon as the picture is shared the tagged user’s privacy is
breached. We start with a graph representation of an ABSN and
then automatically generate an ontology, which includes all the
network and content information including all relations between
the users. Then, we run PRIGUARDTOOL to check for violations.
As the OSNs, we consider real-life social networks from the
literature. G(x,y) denotes a graph with x users and y relations.
Networks G1(535,5347), G2(1035,27783), G3(4039,88234) are
from ego-Facebook [29], G4(60001,728596) is another Facebook
dataset [30], and G5(65328,1435168) is from Google+ [29].

Detection: As DEPTHLIMITEDDETECTION algorithm runs in a
depth-limited way, for each ABSN, it generates four ABSNs with
the network depth values of zero, one, two, and the entire network.
G is the entire ABSN while the others are sub-ABSNs of G. In
each sub-ABSN, agents are connected to the user with a path of
at most depth-hop(s). Each ABSN also includes the relationships
between agents and their posts as well. In each network Gi, the
tagged user has the commitments C1 and C2 as before. C1 and C2

are checked against privacy violations. C1 is not violated in any of
the networks since the tagged user can see the posts about herself
according to the norms. However, C2 is violated in networks with
depth greater than zero because of :charlie that shares a post
revealing information about the tagged user.

We run PRIGUARDTOOL on these settings and report the
execution time of DEPTHLIMITEDDETECTION algorithm and the
number of inferred axioms. We perform our experiments on Intel

TABLE 10
Execution Time and the Number of Axioms for Various ABSNs with

#Agents and #Relations

ABSN depth=0 depth=1 depth=2 G

G1:
(#A,#R) (1,0) (39,412) (535,5347) (535,5347)
#Axioms 2175 4267 29959 29959
Time 3ms 4.74ms 30.19ms 29.79ms

G2:
(#A,#R) (1,0) (51,579) (1035,27783) (1035,27783)
#Axioms 2175 5079 125703 125703
Time 2.96ms 5.49ms 123.95ms 122.46ms

G3:
(#A,#R) (1,0) (123,4199) (1046,27795) (4039,88234)
#Axioms 2175 20423 125883 403555
Time 3.09ms 18.01ms 121.15ms 530.01ms

G4:
(#A,#R) (1,0) (37,235) (848,8543) (60001,728596)
#Axioms 2175 3535 46463 3636547
Time 3.07ms 4.13ms 47.09ms 18397.26ms

G5:
(#A,#R) (1,0) (157,2669) (2787,74217) (65328,1435168)
#Axioms 2175 14711 332463 6526759
Time 3.11ms 19.03ms 406.91ms 25890.27ms

Xeon E5345 machine with 2.33 GHz and 18 GB of memory run-
ning CentOS 5.5 (64-bit). Table 10 shows our results for networks
with different depth values. When a network grows, especially
when the number of users, relations and axioms increase, the
computation time increases. This is due to the large rise in the
axioms that are inferred in the knowledge base, which need to
be considered when checking for violations. However, we observe
the computation time increase to be in polynomial time.

We can conclude two important points from these results.
(i) For each network, Gi, we compute our values at different
iterations of extendView in Algorithm 1. If Algorithm 1 detects
a violation at an earlier depth, then it does not need to go any
deeper. It is also important to note that the privacy leakages that
were asked to the participants in our survey in Section 2 could all
be detected at depth = 1. This means that many violations that
can be detected at depth = 1 are already very useful. However,
obviously, there will be times when the system will need to go into
more depth to detect the violation. (ii) We observe that when the
network size grows from G1 to G5 and from depth = 0 to the
entire network, the computation time approaches polynomial time
complexity. In another words, the computation time is proportional
to the number of axioms in an ontology. Optimization techniques
can be investigated to decrease the number of axioms prior to the
detection of privacy violations; e.g., the search space can be bound
with temporal constraints. In such a case, the system would only
focus on the particular posts for detecting privacy violations. Note
that the execution time of our detection algorithm also depends
on the violations statements to be checked. For example, the
violation statement of C2 depends on the number of agents in the
system. Or the violation statement of C3 depends on the number
of isFriendOf relations in the ABSN.

8 CONCLUSION

This paper introduced a meta-model to define online social
networks as agent-based social networks to formalize privacy
requirements of users and their violations. In order to understand
privacy violations that happen in real online social networks, we
have conducted a survey with Facebook users and categorized
the violations in terms of their causation. We further propose
PRIGUARD, an approach that adheres to the proposed meta-
model and uses description logic to describe the social network
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domain and commitments to specify the privacy requirements
of the users. Our proposed algorithm in PRIGUARD to detect
privacy violations is both sound and complete. The algorithm
can be used before taking an action to check if it will lead to a
violation, thereby preventing it upfront. Conversely, it can be used
to do sporadic checks on the system to see if any violations have
occurred. In both cases, the system, together with the user, can
work to undo the violations. We have implemented PRIGUARD in
a tool called PRIGUARDTOOL and demonstrated that it can handle
example scenarios from various violation categories successfully.
Its performance results on real-life networks are promising.

Our work opens up interesting lines for future research. One
interesting line is to enable PRIGUARD to proactively violate
its commitments when necessary to provide a context-dependent
privacy management. This will enable the system to behave cor-
rectly without asking the user explicitly about privacy constraints.
Another interesting line is to support commitments between users
in addition to having commitments between the OSN and the user.
This could lead agents to share content by respecting each other’s
privacy to begin with, rather than detecting privacy violations
afterward.
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