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Abstract 

The development of accurate trace-driven simula- 
t ion models has become a key act iv i ty  i n  the design 
of new high-performance computer  sys tems.  Trace- 
driven s imulat ion is fas t )  enabling analysis of the be- 
haviour of large application and benchmark programs 
on a new computer  sys tem.  

W e  describe a trace-driven s imulat ion engine for 
a decoupled processor architecture. W e  report on  
t w o  ways  of generating ef ic ient  execution traces of 
real programs for  this engine: profiler-assisted and 
compiler-assisted, and also on the use of synthet ic  
traces. Results are reported f o r  ezecution on the s im-  
ulation engine of traces f r o m  Linpack and one of 
the Perfect Club benchmarks, as  wel l  as synthesized 
traces. 

1. Introduction 

Any new complex architecture must be modelled 
and performance-tested before implementation. Such 
testing enables flaws to be corrected before the design 
process is far advanced. Performance models used 
in general practice are either analytical or simulation 
based. See [5] for an extensive survey of performance 
models and evaluation methodology. Analytical mod- 
els are elegant and fast, but it is often necessary to 
make some simplifying assumptions to obtain tract- 
able solutions using this technique. Accuracy of an 
analytical model depends mainly on the set of assump- 
tions taken by the model. While analytical models 
have limitations on the number of features that can 
be modelled, simulation models can be built to an al- 
most unlimited level of accuracy. 
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Instruction level simulation studies of a decoupled 
architecture are reported in [7]. While being accur- 
ate, instruction level simulations are tied to a par- 
ticular machine and instruction set. They are also 
time-consuming and thus are not particularly prac- 
tical for large programs. Tracedriven simulations, on 
the other hand, lack the accuracy of instruction level 
simulations, but are less closely tied to a specific archi- 
tecture and at least an order of magnitude faster than 
instruction level simulations. See [6] for an account of 
efficient tracing techniques. 

In this paper, we report the development of a sim- 
ulation engine, driven by execution traces for a de- 
coupled processor [9]. We present ways of generating 
execution traces for the simulation engine and report 
some results obtained by executing both real and syn- 
thetic execution traces. 

The paper is organised as follows: section 2 is a 
description of the architecture. Section 3 describes 
the simulation methodology. It defines the execution 
traces that drive the simulation engine, presents some 
of the forms of synthetic execution traces supported 
and describes some of key performance metrics ex- 
amined during simulations. Section 4 describes some 
ways of generating execution traces from real pro- 
grams and presents two trace generation processes: 
profiler-assisted and compiler-assisted. Section 5 re- 
ports some simulation results. The last section con- 
cludes with a summary. 

2. The architecture 

A decoupled processor [9] consists of an Access Unit 
(AU) and an Execution Unit (XU). See Figure l (a)  
for a functional block diagram. The AU and XU oper- 
ate on concurrent instruction streams from a program. 
The AU instruction stream is for generating addresses 
for the memory operations and for performing other 
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Execution Unit 

integer operations; the XU instruction stream is for 
floating-point operations. The XU is capable of car- 
rying out two pipelined floating-point operations each 
cycle. In general, the AU will be ahead of the XU 
in the program flow. When required, the AU and XU 
communicate and synchronize with each other through 
dedicated queues called synchronization queues. The 
processor interacts with the memory system via an- 
other set of queues. 

Each cycle, the AlJ can initiate two load requests 
and prepare a store, .while the XU can consume two 
loads and issue a store. If the AU is far enough ahead 
of the XU in the program flow, load requests are ser- 
viced by the memory system before the XU requires 
them. At this stage, the units are said to be fully de- 
coupled, therefore the XU need not stall waiting for 
a memory load. Communication and synchronization 
between the AU and XU may result in a loss of de- 
coupling. When decoupling is lost, the XU may see a 
full memory latency for load requests. For a detailed 
discussion of loss of decoupling in scientific programs, 
see [2]. 

The memory system consists of four segments of 
interleaved memory banks and crossbar switches that 
connect the segments to the processor. The memory 
banks operate in parallel; thus memory requests, un- 
less destined to the same bank, may not be serviced 
in the order of processor initiation. Load data queues 
(LDQs) within the processor re-order those memory 
requests that are returned out of order. 

In addition to the LDQs, the processor has a store 
address queue (SAQ), which buffers partial stores to 
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(b) 

Figure I: Functional block diagrams of (a) the processor and (b) a memory segment 
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memory. A partial store is essentially the store address 
prepared by the AU. This address waits in the SAQ 
to be paired with a datum generated by the XU. 

The AU passes the load and store addresses to ap- 
propriate address queues. There are two load address 
queues to buffer the two concurrent memory load re- 
quests. When passing a load address to a load address 
queue (LAQ), a position is reserved in the destination 
LDQ to store the corresponding data item. The ID 
of the destination LDQ and the position within that 
LDQ are tagged to each load address. 

Store addresses are passed to the SAQ. To avoid 
potential read-after-write (RAW) hazards, each load 
address is checked against all the addresses in the SAQ 
before being placed in an LAQ. If a match is detec- 
ted, then the load tags (the LDQ ID and position) are 
tagged to the matching SAQ position. When there is 
no room to add a load tag, the AU is stalled until the 
match is cleared. 

The XU receives load data from the LDQs and 
passes store data to the store data queue (SDQ). A 
store datum from the SDQ is paired with an address 
from the SAQ and sent to memory. If the store has 
been tagged, a copy of the datum is short-circuited 
to the LDQs (as dictated by the load tags specified 
in the tagged store). Tagging of loads onto matching 
SAQ positions improves the system performance in 
two ways: (1) dependent loads no longer cause the AU 
to block, and (2) RAW loads are immediately available 
to the XU. 

The memory banks are organised as segments, with 
each segment consisting of several concurrently access- 



ible banks and a bank input queue. See Figure l(b) 
for a functional block diagram. The segment has a 
single input port and a single output port and can 
service at  most one memory request per cycle. The 
bank input queue uses the lookahead control scheme 
reported in [3]. I t  functions as follows: any memory 
request addressed to  the segment is placed in the in- 
put queue. At every cycle the first item in the queue 
which is intended for a bank that  is free is removed 
and sent to  its bank. The removal of an item i from 
the input queue causes the items that follow i to move 
forward to fill the empty slot created by i. 

The memory segments are connected to the pro- 
cessor by crossbar switches. They ensure that reads 
(writes) issued in cycle c and destined to  bank b are 
not overtaken by writes (reads/writes) issued in cycles 
following c and destined to  the same bank b .  

Operation 
AUXU-Load 
XU-Load 
AUXU-Store 
XU-Store 
AUXU-LoadLoad 
XU-LoadLoad 
AUXU-LoadStore 
XU-LoadStore 
AU-XU-LoadLoadStore 
XU-LoadLoadStore 

3. Simulation methodology 

Explanation 
XU load decoupled 
by AU 
XU store decoupled 
by AU 
XU loads decoupled 
by AU 
XU load and store 
decoupled by AU 
XU loads and store 
decoupled by AU 

The simulation engine is driven by execution traces 
and mimics the architecture described in Section 2. 
An execution trace is a sequence of architectural 
events extractable from programs executing on the ar- 
chitecture. These events are divided into three classes: 
computational, synchronization and memory opera- 
tions. 

Computational operations are carried out in the AU 
and the XU. Within the simulation engine these op- 
erations are denoted AU-Op and XU-Op respectively. 
The exact nature of these operations is left unspecified 
although each carries with it the time it takes to  ex- 
ecute. 

Synchronization operations are carried out on both 
the AU and XU, and must appear as pairs. For in- 
stance, the AU may issue an AU-WaitXU instruction 
that causes it to wait for a result from the XU. The 
XU in turn may issue an XU-SignalAU that passes 
a result to  the AU. The passing of the result takes 
place via a queue, so an empty queue will cause the 
AU to block until the queue becomes non-empty while 
a full queue will cause the XU to block until the queue 
becomes non-full. A synchronization between the AU 
and XU is thus achieved. See Table 1 for a summary 
of the synchronization operations supported by the 
simulation engine. 

Memory operations are always decoupled. The AU 
generates addresses and the XU either generates or 
consumes data. Therefore, memory operations appear 
in pairs. The AU part belongs to  the AU instruction 
stream while the XU part belongs to the XU instruc- 

Operation 
AU-WaitXU 
XU-SignalAU 
XU-Wiit A U  
AU-SignalXU 

Explanation I 

Table 1: Permissible synchronization operations 

Table 2: Permissible memory operations 

3.1. Internal execution traces 

Execution traces are generated either internally or 
externally. Internal traces are synthetic and the sim- 
ulation engine has the provision to synthesize three 
forms of traces: uniformly distributed random, strides 
and saxpy. These synthetic traces are tuned to bring 
to light certain behavioural patterns specific to the 
archit,ecture. 

A uniformly distributed random trace stresses the 
memory system evenly. Executing such traces there- 
fore presents a best-case behaviour of the memory sys- 
tem. This behaviour is expected with real execution 
traces when a suitable address remapping strategy 
is employed to randomize the memory reference pat- 
tern [8]. 

Strides are used for examining the behaviour of the 
interleaved memory system in the presence and ab- 
sence of address remapping. The bandwidth achiev- 
able by a sequentially interleaved memory, in the ab- 
sence of address remapping, is given by: 

n 
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where gcd stands for the greatest common divisor, n 
is the number of banks and s is the stride. Address 
remapping attempts to make the bandwidth stride- 
insensitive so that the full memory bandwidth will be 
achievable. 

Saxpy is a kernel taken from Linpack. It produces 
three streams having unit strides: two load streams 
and a store stream. Thus saxpy examines the beha- 
viour of the system when the memory is stressed to 
the maximum extent. The saxpy kernel consists of 
the following loop: 

DO I = I, U 

EIDDO 
YCI] = A * XCII + YCIl 

The internal synthetic traces are useful for under- 
standing the memory system behaviour under differ- 
ent synthetic loads. The loading factor and the syn- 
chronization frequency of the synthetic traces can be 
tuned to suit experiments. The loading factor refers to 
the rate at which the address references are issued. A 
70% loading means the processor handles, on average, 
14 loads and 7 stores per 10 cycles. The synchron- 
ization frequency refers to the rate at which the AU 
depends on the XU far address generation. 

3.2. Performance nietrics 

The simulation engine produces an extensive stat- 
istics report a t  the end of each simulation. The stat- 
istics include average and maximumlengths of various 
queues within the processor and memory system, util- 
ization of various resources, measurements of various 
bottlenecks (such as queue blockages) within the sys- 
tem and cumulative latencies at the output points of 
each architectural component. The prime perform- 
ance metrics reported by the simulation engine are as 
follows: 

Perceived latency is the latency of a load as seen 
by the XU. I t  is the average number of cycles 
the XU has to  wait for a load item to become 
available. 

Through latency is the full-trip latency of a load 
request measured between the points in time at 
which the AU issued the address and the XU con- 
sumed the data. 

Execution unit efficiency is the number of flops 
performed by the XU per cycle and is expressed 
as a percentage of peak flops achievable. 

Loss of decoupling (LOD) penalty is the average 
number of cycles lost due to an LOD event. 

4. Execution traces from programs 

Any execution trace generated elsewhere can be ex- 
ecuted on the simulation engine as long as it adheres to 
the syntax of the engine trace format. Traces extrac- 
ted from real programs are valuable for determining 
the system performance on specific workloads. This 
section reports on the generation of execution traces 
from programs. We describe two trace generation pro- 
cesses: profiler-assisted and compiler-assisted. 

4.1. Profiler-assisted trace generation 

Profiler-assisted trace generation is based on the ob- 
servation that , in most scientific application programs, 
the majority of execution time is spent in relatively 
small sections of the code. These small sections of 
code are hand-annotated to produce execution traces. 
A profiler-assisted trace generation process uses the 
following steps. 

Profiling. A standard profiler is used to identify 
the sections of the program that are heavily used. 
The profiling is generally done on a machine other 
than the target machine. Thus we make the im- 
portant assumption that critical sections on the 
host machine remain critical on the target ma- 
chine. 

Annotation. Output routines that print out the 
trace information are inserted manually into 
the critical sections. Insertion of these output 
routines does not change the semantics of the pro- 
gram. The annotations inserted assume that all 
possible optimizations have been made. 

Trace generation. The annotated program is run 
to produce its execution trace. 

4.2. Compiler-assisted trace generation 

While annotating sources by hand is practical for 
reasonably short routines, the process of hand annot- 
ating complete programs is both time-consuming and 
prone to errors. For this reason, we decided that an 
annotation tool should be developed that would be 
capable of annotating source code automatically while 
still producing traces of comparable accuracy to those 
produced by hand. 

The annotation tool that was developed, and whose 
use is illustrated in Figure 2, is based on the Sigma 
toolkit [4]. This was originally intended for analysis, 
restructuring and parallelization of Fortran sources, 
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but proved adaptable to our needs. It provides a com- 
plete Fortran 90 parser (known as cfp) that produces 
output in the form of a database representing the parse 
tree for the input program which can be traversed and 
manipulated using the provided library functions. 

The toolkit seemed ideal for our requirements, al- 
lowing rapid development of a source analysis and 
modification tool by distancing the application pro- 
grammer from the source itself and presenting the pro- 
gram under analysis in an easily manipulated abstract 
form. 

There were two principal requirements for the an- 
notation tool: 

That the annotation should be semantically “in- 
visible”. 

That the traces generated were close to those that 
would be generated by good hand annotation or 
by tracing the output of a production level com- 
piler. 

Generating naive traces based purely on a single 
parse tree traversal produces a valid execution trace. 
However, the trace corresponds to that generated by 
tracing the execution of the output of an extremely 
stupid non-optimizing compiler. Production of more 
accurate annotation requires that additional analysis 
of the source be performed, similar to that done by 
an optimizing compiler. This in turn requires that a 
compromise be made between the speed and accuracy 
of annotation. Unfortunately, producing traces that 
closely approximate those produced by an optimizing 
compiler would have required that we actually perform 
many of those optimizations, considerably increasing 
the size, complexity and runtime of the annotator. 
Since the combination of automatic annotation and 
trace-driven simulation was seen as a quick alternative 
to producing a complete compiler and a full instruc- 
tion level simulator, having the annotator spend con- 
siderable amounts of time performing optimizations 
was not seen as desirable. 

In the end, a limited set of optimizations were im- 
plemented. The most important of these is common 
sub-expression elimination. Other optimizations in- 
clude constant folding, address arithmetic simplifica- 
tion and several optional optimizations such as sup- 
port for guarded execution. 

4.2.1. Annotator structure 

The annotator makes four traversals of the parse tree. 
The first two of these restructure the parse tree into a 

more easily annotated yet semantically equivalent nor- 
mal form. The third pass performs a simple form of 
common sub-expression elimination. This could have 
been merged with the fourth pass but was kept sep- 
arate for portability reasons. On the fourth and final 
pass, the annotator builds up an intermediate repres- 
entation of the behaviour of each basic block. The in- 
ternal representation used is straightforward and gen- 
eral and consists of pairs or triples of lists of operation 
tuples (as described in Section 3), with each list cor- 
responding to one of the processing units that makes 
up the decoupled processor architecture. 

This pass of the annotator corresponds approxim- 
ately to the code generator of a compiler and performs 
two functions. First, depending on the required trace 
information, the internal representation of the trace 
for a basic block may be compacted, simplified or oth- 
erwise manipulated. A reasonable analogy here would 
be peephole optimization of an intermediate repres- 
entation to take advantage of features of a specific 
target architecture. Secondly, this pass manipulates 
the Sigma database to add new statements to the 
parse tree that will generate trace information when 
the modified source is regenerated and run. 

This method of annotation has proved to be highly 
flexible and is easily parameterized, allowing one tool 
to produce trace-generating sources comparable in 
quality to those produced by hand annotation for ar- 
chitectures using arbitrary combinations of several ar- 
chitectural features. 

5. Some simulation results 

This section presents some typical results obtained 
from running the simulation engine. During the design 
phase, simulation experiments help to make both ar- 
chitectural and design decisions. The results we show 
in this section arise from the following questions: 

Is there any performance gain if one uses an ad- 
dress remapping scheme for the memory? 

0 What are the optimum sizes of SAQ, LDQ and 
the bank input queue? 

5.1. Effect of address remapping 

Sequential interleaving is a commonly used memory 
addressing mechanism. If a system has m memory seg- 
ments with b banks per segment, the lowest log m bits 
of a memory address A determine the segment ID of A 
and the next lowest log b bits determine the bank ID of 
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Annotated Source File 

I Execution trace I Remapping 

Sigma Database 

No remapping 
0.99 
1.59 

ace Files 

Figure 2: The automatic annotation process 

A .  As has been pointed out in Section 3.1, this mech- 
anism performs poorly when the input address stream 
has certain strides, since with certain stride patterns 
some banks are hit more frequently than others, res- 
ulting in bank conflicts and a large memory latency. 

An address remapping scheme is a transformation 
mechanism that makes an address stream practically 

effect on “good strides”. We believe that without ex- 
tensive tracing of real applications it would be difficult 
to assess conclusively the benefits or otherwise of ad- 
dress remapping. 

5.2. Q~~~~ size determination 

stride-insensitive. For an example, see Rau’s irredu- 
cible polynomial method [8]. We ran execution traces, 
produced using a profler-assisted process, of Linpack 
and BDNA (from the Perfect Club suite [l]), with and 
without Rau’s address remapping scheme. Table 3 
illustrates relative execution times of Linpack and 
BDNA with and without address remapping. When 
there is no address remapping, a normal sequential 
interleaving is used. 

Table 3: Relative execution times with and without 
address remapping 

Table 3 shows tha.t the BDNA benchmark, with 
many strides that are not optimal for a sequential in- 
terleaving, experiences a significant improvement in 
performance when R~LU’S address remapping is used. 
The Linpack benchma.rk, with mainly unit strides that 
are optimal for sequential interleaving, suffers a slight 
loss in performance under the address remapping. 
This leads us to  conclude that the address remapping 
makes “bad strides” perform well, while having little 

Given the generally superior behaviour of Rau’s 
address remapping, we may assume for this exper- 
iment that remapping is performed on all address 
streams. If this is so, the resulting address streams 
closely resemble a uniformly distributed random ad- 
dress stream. We therefore use a uniform execution 
trace to find the optimum sizes of SAQ, LDQ and the 
bank input queue. Figures 3 and 4 show the results. 

We chose a typical high-performance processor 
cycle time of 5 ns and a range of typical DRAM bank 
cycle times (130-165 ns). Across this range of bank 
cycle times, a bank input queue size of 8-16 achieves 
close to 100% performance. We were able to show 
(see Figure 3) that bank input queue size is relatively 
insensitive to bank cycle time. 

Figure 4(a) shows the effect that SAQ and LDQ 
sizes have on the degree of decoupling. The goal of 
decoupling is to achieve a memory system with an ef- 
fective latency of zero cycles. Figure 4(b) shows the 
actual perceived latency of the system as a function 
of queue sizes and bank cycle time. The region of 
the graph where the perceived latency is zero corres- 
ponds to queue sizes which permit full decoupling. 
Figure 4(a) shows how the perceived latency trans- 
lates into XU efficiency. The performance plateau, 
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Figure 3: XU efficiency vs bank input queue size and cycle time 

2.00 

1 .oo 

0.00 

Figure 4: (a) XU efficiency and (b) perceived latency vs SAQ/LDQ size and bank cycle time 
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at around loo%, represents a trade-off space within 
which any combination of queue sizes and bank cycle 
times will yield maximum performance. 

6. Conclusions 

In this paper we have reported the development of a 
simulation engine, driven by execution traces, for a de- 
coupled processor architecture. We have also presen- 
ted two ways of generating execution traces for the 
simulation engine, and shown some results obtained 
by executing both real and synthetic execution traces. 

A number of novel architectural techniques can 
be assessed quantitatively on real applications using 
profiler-assisted and compiler-assisted tracing tech- 
niques. We believe that the behaviour of complex 
nonlinear systems, such as decoupled architectures, 
requires extensive simulations on target application 
classes to expose the performance space. Even if it is 
sometimes difficult to obtain accurate absolute values 
for performance (due mainly to model inaccuracies) 
the insight into the behaviour of the system gained by 
such simulations is normally extremely valuable. 
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