
Trace-driven Simulation of Decoupled Architectures

S. Manoharan*
Advanced Computer Research Institute

1 Boulevard Marius Vivier-Merle
69443 Lyon Cedex 03

France

Abstract

The development of accurate trace-driven simula-
t ion models has become a key act iv i ty i n the design
of new high-performance computer sys tems. Trace-
driven s imulat ion is fas t) enabling analysis of the be-
haviour of large application and benchmark programs
on a new computer sys tem.

W e describe a trace-driven s imulat ion engine for
a decoupled processor architecture. W e report on
t w o ways of generating ef ic ient execution traces of
real programs for this engine: profiler-assisted and
compiler-assisted, and also on the use of synthet ic
traces. Results are reported f o r ezecution on the s im-
ulation engine of traces f r o m Linpack and one of
the Perfect Club benchmarks, as wel l as synthesized
traces.

1. Introduction

Any new complex architecture must be modelled
and performance-tested before implementation. Such
testing enables flaws to be corrected before the design
process is far advanced. Performance models used
in general practice are either analytical or simulation
based. See [5] for an extensive survey of performance
models and evaluation methodology. Analytical mod-
els are elegant and fast, but it is often necessary to
make some simplifying assumptions to obtain tract-
able solutions using this technique. Accuracy of an
analytical model depends mainly on the set of assump-
tions taken by the model. While analytical models
have limitations on the number of features that can
be modelled, simulation models can be built to an al-
most unlimited level of accuracy.

'Research funded by ESPRIT grant P6253.
'Supported by a UK SERC studentship.

1060-3425/94 $3.00 0 1994 IEEE

N. P. Topham* A. W. R. Crawford+
Department Of Computer Science

The University Of Edinburgh
Edinburgh EH9 352

United Kingdom

Instruction level simulation studies of a decoupled
architecture are reported in [7]. While being accur-
ate, instruction level simulations are tied to a par-
ticular machine and instruction set. They are also
time-consuming and thus are not particularly prac-
tical for large programs. Tracedriven simulations, on
the other hand, lack the accuracy of instruction level
simulations, but are less closely tied to a specific archi-
tecture and at least an order of magnitude faster than
instruction level simulations. See [6] for an account of
efficient tracing techniques.

In this paper, we report the development of a sim-
ulation engine, driven by execution traces for a de-
coupled processor [9]. We present ways of generating
execution traces for the simulation engine and report
some results obtained by executing both real and syn-
thetic execution traces.

The paper is organised as follows: section 2 is a
description of the architecture. Section 3 describes
the simulation methodology. It defines the execution
traces that drive the simulation engine, presents some
of the forms of synthetic execution traces supported
and describes some of key performance metrics ex-
amined during simulations. Section 4 describes some
ways of generating execution traces from real pro-
grams and presents two trace generation processes:
profiler-assisted and compiler-assisted. Section 5 re-
ports some simulation results. The last section con-
cludes with a summary.

2. The architecture

A decoupled processor [9] consists of an Access Unit
(AU) and an Execution Unit (XU). See Figure l (a)
for a functional block diagram. The AU and XU oper-
ate on concurrent instruction streams from a program.
The AU instruction stream is for generating addresses
for the memory operations and for performing other

271 Proceedings of the Twenty-Seventh Annual Hawaii
International Conference on System Sciences, 1994

Execution Unit

integer operations; the XU instruction stream is for
floating-point operations. The XU is capable of car-
rying out two pipelined floating-point operations each
cycle. In general, the AU will be ahead of the XU
in the program flow. When required, the AU and XU
communicate and synchronize with each other through
dedicated queues called synchronization queues. The
processor interacts with the memory system via an-
other set of queues.

Each cycle, the AlJ can initiate two load requests
and prepare a store, .while the XU can consume two
loads and issue a store. If the AU is far enough ahead
of the XU in the program flow, load requests are ser-
viced by the memory system before the XU requires
them. At this stage, the units are said to be fully de-
coupled, therefore the XU need not stall waiting for
a memory load. Communication and synchronization
between the AU and XU may result in a loss of de-
coupling. When decoupling is lost, the XU may see a
full memory latency for load requests. For a detailed
discussion of loss of decoupling in scientific programs,
see [2].

The memory system consists of four segments of
interleaved memory banks and crossbar switches that
connect the segments to the processor. The memory
banks operate in parallel; thus memory requests, un-
less destined to the same bank, may not be serviced
in the order of processor initiation. Load data queues
(LDQs) within the processor re-order those memory
requests that are returned out of order.

In addition to the LDQs, the processor has a store
address queue (SAQ), which buffers partial stores to

Memory request stream

h
Bank input queue

Output routing

Data stream

(b)

Figure I: Functional block diagrams of (a) the processor and (b) a memory segment

272

memory. A partial store is essentially the store address
prepared by the AU. This address waits in the SAQ
to be paired with a datum generated by the XU.

The AU passes the load and store addresses to ap-
propriate address queues. There are two load address
queues to buffer the two concurrent memory load re-
quests. When passing a load address to a load address
queue (LAQ), a position is reserved in the destination
LDQ to store the corresponding data item. The ID
of the destination LDQ and the position within that
LDQ are tagged to each load address.

Store addresses are passed to the SAQ. To avoid
potential read-after-write (RAW) hazards, each load
address is checked against all the addresses in the SAQ
before being placed in an LAQ. If a match is detec-
ted, then the load tags (the LDQ ID and position) are
tagged to the matching SAQ position. When there is
no room to add a load tag, the AU is stalled until the
match is cleared.

The XU receives load data from the LDQs and
passes store data to the store data queue (SDQ). A
store datum from the SDQ is paired with an address
from the SAQ and sent to memory. If the store has
been tagged, a copy of the datum is short-circuited
to the LDQs (as dictated by the load tags specified
in the tagged store). Tagging of loads onto matching
SAQ positions improves the system performance in
two ways: (1) dependent loads no longer cause the AU
to block, and (2) RAW loads are immediately available
to the XU.

The memory banks are organised as segments, with
each segment consisting of several concurrently access-

ible banks and a bank input queue. See Figure l(b)
for a functional block diagram. The segment has a
single input port and a single output port and can
service at most one memory request per cycle. The
bank input queue uses the lookahead control scheme
reported in [3]. I t functions as follows: any memory
request addressed to the segment is placed in the in-
put queue. At every cycle the first item in the queue
which is intended for a bank that is free is removed
and sent to its bank. The removal of an item i from
the input queue causes the items that follow i to move
forward to fill the empty slot created by i.

The memory segments are connected to the pro-
cessor by crossbar switches. They ensure that reads
(writes) issued in cycle c and destined to bank b are
not overtaken by writes (reads/writes) issued in cycles
following c and destined to the same bank b .

Operation
AUXU-Load
XU-Load
AUXU-Store
XU-Store
AUXU-LoadLoad
XU-LoadLoad
AUXU-LoadStore
XU-LoadStore
AU-XU-LoadLoadStore
XU-LoadLoadStore

3. Simulation methodology

Explanation
XU load decoupled
by AU
XU store decoupled
by AU
XU loads decoupled
by AU
XU load and store
decoupled by AU
XU loads and store
decoupled by AU

The simulation engine is driven by execution traces
and mimics the architecture described in Section 2.
An execution trace is a sequence of architectural
events extractable from programs executing on the ar-
chitecture. These events are divided into three classes:
computational, synchronization and memory opera-
tions.

Computational operations are carried out in the AU
and the XU. Within the simulation engine these op-
erations are denoted AU-Op and XU-Op respectively.
The exact nature of these operations is left unspecified
although each carries with it the time it takes to ex-
ecute.

Synchronization operations are carried out on both
the AU and XU, and must appear as pairs. For in-
stance, the AU may issue an AU-WaitXU instruction
that causes it to wait for a result from the XU. The
XU in turn may issue an XU-SignalAU that passes
a result to the AU. The passing of the result takes
place via a queue, so an empty queue will cause the
AU to block until the queue becomes non-empty while
a full queue will cause the XU to block until the queue
becomes non-full. A synchronization between the AU
and XU is thus achieved. See Table 1 for a summary
of the synchronization operations supported by the
simulation engine.

Memory operations are always decoupled. The AU
generates addresses and the XU either generates or
consumes data. Therefore, memory operations appear
in pairs. The AU part belongs to the AU instruction
stream while the XU part belongs to the XU instruc-

Operation
AU-WaitXU
XU-SignalAU
XU-Wiit A U
AU-SignalXU

Explanation I

Table 1: Permissible synchronization operations

Table 2: Permissible memory operations

3.1. Internal execution traces

Execution traces are generated either internally or
externally. Internal traces are synthetic and the sim-
ulation engine has the provision to synthesize three
forms of traces: uniformly distributed random, strides
and saxpy. These synthetic traces are tuned to bring
to light certain behavioural patterns specific to the
archit,ecture.

A uniformly distributed random trace stresses the
memory system evenly. Executing such traces there-
fore presents a best-case behaviour of the memory sys-
tem. This behaviour is expected with real execution
traces when a suitable address remapping strategy
is employed to randomize the memory reference pat-
tern [8].

Strides are used for examining the behaviour of the
interleaved memory system in the presence and ab-
sence of address remapping. The bandwidth achiev-
able by a sequentially interleaved memory, in the ab-
sence of address remapping, is given by:

n

273

where gcd stands for the greatest common divisor, n
is the number of banks and s is the stride. Address
remapping attempts to make the bandwidth stride-
insensitive so that the full memory bandwidth will be
achievable.

Saxpy is a kernel taken from Linpack. It produces
three streams having unit strides: two load streams
and a store stream. Thus saxpy examines the beha-
viour of the system when the memory is stressed to
the maximum extent. The saxpy kernel consists of
the following loop:

DO I = I, U

EIDDO
YCI] = A * XCII + YCIl

The internal synthetic traces are useful for under-
standing the memory system behaviour under differ-
ent synthetic loads. The loading factor and the syn-
chronization frequency of the synthetic traces can be
tuned to suit experiments. The loading factor refers to
the rate at which the address references are issued. A
70% loading means the processor handles, on average,
14 loads and 7 stores per 10 cycles. The synchron-
ization frequency refers to the rate at which the AU
depends on the XU far address generation.

3.2. Performance nietrics

The simulation engine produces an extensive stat-
istics report a t the end of each simulation. The stat-
istics include average and maximumlengths of various
queues within the processor and memory system, util-
ization of various resources, measurements of various
bottlenecks (such as queue blockages) within the sys-
tem and cumulative latencies at the output points of
each architectural component. The prime perform-
ance metrics reported by the simulation engine are as
follows:

Perceived latency is the latency of a load as seen
by the XU. I t is the average number of cycles
the XU has to wait for a load item to become
available.

Through latency is the full-trip latency of a load
request measured between the points in time at
which the AU issued the address and the XU con-
sumed the data.

Execution unit efficiency is the number of flops
performed by the XU per cycle and is expressed
as a percentage of peak flops achievable.

Loss of decoupling (LOD) penalty is the average
number of cycles lost due to an LOD event.

4. Execution traces from programs

Any execution trace generated elsewhere can be ex-
ecuted on the simulation engine as long as it adheres to
the syntax of the engine trace format. Traces extrac-
ted from real programs are valuable for determining
the system performance on specific workloads. This
section reports on the generation of execution traces
from programs. We describe two trace generation pro-
cesses: profiler-assisted and compiler-assisted.

4.1. Profiler-assisted trace generation

Profiler-assisted trace generation is based on the ob-
servation that , in most scientific application programs,
the majority of execution time is spent in relatively
small sections of the code. These small sections of
code are hand-annotated to produce execution traces.
A profiler-assisted trace generation process uses the
following steps.

Profiling. A standard profiler is used to identify
the sections of the program that are heavily used.
The profiling is generally done on a machine other
than the target machine. Thus we make the im-
portant assumption that critical sections on the
host machine remain critical on the target ma-
chine.

Annotation. Output routines that print out the
trace information are inserted manually into
the critical sections. Insertion of these output
routines does not change the semantics of the pro-
gram. The annotations inserted assume that all
possible optimizations have been made.

Trace generation. The annotated program is run
to produce its execution trace.

4.2. Compiler-assisted trace generation

While annotating sources by hand is practical for
reasonably short routines, the process of hand annot-
ating complete programs is both time-consuming and
prone to errors. For this reason, we decided that an
annotation tool should be developed that would be
capable of annotating source code automatically while
still producing traces of comparable accuracy to those
produced by hand.

The annotation tool that was developed, and whose
use is illustrated in Figure 2, is based on the Sigma
toolkit [4]. This was originally intended for analysis,
restructuring and parallelization of Fortran sources,

274

but proved adaptable to our needs. It provides a com-
plete Fortran 90 parser (known as cfp) that produces
output in the form of a database representing the parse
tree for the input program which can be traversed and
manipulated using the provided library functions.

The toolkit seemed ideal for our requirements, al-
lowing rapid development of a source analysis and
modification tool by distancing the application pro-
grammer from the source itself and presenting the pro-
gram under analysis in an easily manipulated abstract
form.

There were two principal requirements for the an-
notation tool:

That the annotation should be semantically “in-
visible”.

That the traces generated were close to those that
would be generated by good hand annotation or
by tracing the output of a production level com-
piler.

Generating naive traces based purely on a single
parse tree traversal produces a valid execution trace.
However, the trace corresponds to that generated by
tracing the execution of the output of an extremely
stupid non-optimizing compiler. Production of more
accurate annotation requires that additional analysis
of the source be performed, similar to that done by
an optimizing compiler. This in turn requires that a
compromise be made between the speed and accuracy
of annotation. Unfortunately, producing traces that
closely approximate those produced by an optimizing
compiler would have required that we actually perform
many of those optimizations, considerably increasing
the size, complexity and runtime of the annotator.
Since the combination of automatic annotation and
trace-driven simulation was seen as a quick alternative
to producing a complete compiler and a full instruc-
tion level simulator, having the annotator spend con-
siderable amounts of time performing optimizations
was not seen as desirable.

In the end, a limited set of optimizations were im-
plemented. The most important of these is common
sub-expression elimination. Other optimizations in-
clude constant folding, address arithmetic simplifica-
tion and several optional optimizations such as sup-
port for guarded execution.

4.2.1. Annotator structure

The annotator makes four traversals of the parse tree.
The first two of these restructure the parse tree into a

more easily annotated yet semantically equivalent nor-
mal form. The third pass performs a simple form of
common sub-expression elimination. This could have
been merged with the fourth pass but was kept sep-
arate for portability reasons. On the fourth and final
pass, the annotator builds up an intermediate repres-
entation of the behaviour of each basic block. The in-
ternal representation used is straightforward and gen-
eral and consists of pairs or triples of lists of operation
tuples (as described in Section 3), with each list cor-
responding to one of the processing units that makes
up the decoupled processor architecture.

This pass of the annotator corresponds approxim-
ately to the code generator of a compiler and performs
two functions. First, depending on the required trace
information, the internal representation of the trace
for a basic block may be compacted, simplified or oth-
erwise manipulated. A reasonable analogy here would
be peephole optimization of an intermediate repres-
entation to take advantage of features of a specific
target architecture. Secondly, this pass manipulates
the Sigma database to add new statements to the
parse tree that will generate trace information when
the modified source is regenerated and run.

This method of annotation has proved to be highly
flexible and is easily parameterized, allowing one tool
to produce trace-generating sources comparable in
quality to those produced by hand annotation for ar-
chitectures using arbitrary combinations of several ar-
chitectural features.

5. Some simulation results

This section presents some typical results obtained
from running the simulation engine. During the design
phase, simulation experiments help to make both ar-
chitectural and design decisions. The results we show
in this section arise from the following questions:

Is there any performance gain if one uses an ad-
dress remapping scheme for the memory?

0 What are the optimum sizes of SAQ, LDQ and
the bank input queue?

5.1. Effect of address remapping

Sequential interleaving is a commonly used memory
addressing mechanism. If a system has m memory seg-
ments with b banks per segment, the lowest log m bits
of a memory address A determine the segment ID of A
and the next lowest log b bits determine the bank ID of

275

Annotated Source File

I Execution trace I Remapping

Sigma Database

No remapping
0.99
1.59

ace Files

Figure 2: The automatic annotation process

A . As has been pointed out in Section 3.1, this mech-
anism performs poorly when the input address stream
has certain strides, since with certain stride patterns
some banks are hit more frequently than others, res-
ulting in bank conflicts and a large memory latency.

An address remapping scheme is a transformation
mechanism that makes an address stream practically

effect on “good strides”. We believe that without ex-
tensive tracing of real applications it would be difficult
to assess conclusively the benefits or otherwise of ad-
dress remapping.

5.2. Q~~~~ size determination

stride-insensitive. For an example, see Rau’s irredu-
cible polynomial method [8]. We ran execution traces,
produced using a profler-assisted process, of Linpack
and BDNA (from the Perfect Club suite [l]), with and
without Rau’s address remapping scheme. Table 3
illustrates relative execution times of Linpack and
BDNA with and without address remapping. When
there is no address remapping, a normal sequential
interleaving is used.

Table 3: Relative execution times with and without
address remapping

Table 3 shows tha.t the BDNA benchmark, with
many strides that are not optimal for a sequential in-
terleaving, experiences a significant improvement in
performance when R~LU’S address remapping is used.
The Linpack benchma.rk, with mainly unit strides that
are optimal for sequential interleaving, suffers a slight
loss in performance under the address remapping.
This leads us to conclude that the address remapping
makes “bad strides” perform well, while having little

Given the generally superior behaviour of Rau’s
address remapping, we may assume for this exper-
iment that remapping is performed on all address
streams. If this is so, the resulting address streams
closely resemble a uniformly distributed random ad-
dress stream. We therefore use a uniform execution
trace to find the optimum sizes of SAQ, LDQ and the
bank input queue. Figures 3 and 4 show the results.

We chose a typical high-performance processor
cycle time of 5 ns and a range of typical DRAM bank
cycle times (130-165 ns). Across this range of bank
cycle times, a bank input queue size of 8-16 achieves
close to 100% performance. We were able to show
(see Figure 3) that bank input queue size is relatively
insensitive to bank cycle time.

Figure 4(a) shows the effect that SAQ and LDQ
sizes have on the degree of decoupling. The goal of
decoupling is to achieve a memory system with an ef-
fective latency of zero cycles. Figure 4(b) shows the
actual perceived latency of the system as a function
of queue sizes and bank cycle time. The region of
the graph where the perceived latency is zero corres-
ponds to queue sizes which permit full decoupling.
Figure 4(a) shows how the perceived latency trans-
lates into XU efficiency. The performance plateau,

276

Figure 3: XU efficiency vs bank input queue size and cycle time

2.00

1 .oo

0.00

Figure 4: (a) XU efficiency and (b) perceived latency vs SAQ/LDQ size and bank cycle time

277

at around loo%, represents a trade-off space within
which any combination of queue sizes and bank cycle
times will yield maximum performance.

6. Conclusions

In this paper we have reported the development of a
simulation engine, driven by execution traces, for a de-
coupled processor architecture. We have also presen-
ted two ways of generating execution traces for the
simulation engine, and shown some results obtained
by executing both real and synthetic execution traces.

A number of novel architectural techniques can
be assessed quantitatively on real applications using
profiler-assisted and compiler-assisted tracing tech-
niques. We believe that the behaviour of complex
nonlinear systems, such as decoupled architectures,
requires extensive simulations on target application
classes to expose the performance space. Even if it is
sometimes difficult to obtain accurate absolute values
for performance (due mainly to model inaccuracies)
the insight into the behaviour of the system gained by
such simulations is normally extremely valuable.

References

M. Berry et al., “The Perfect Club benchmarks:
Effective performance evaluation of supercom-
puters,” The International Journal of Supercom-
puter Applzcations, vol. 3, pp. 5-40, 1989.

P. L. Bird, A. Rawsthorne, and N. P. Topham,
“The effectiveness of decoupling,” in Proceedings
of the Y h ACM International Conference on SU-
percomputing, (Tokyo, Japan), 1993.

P. L. Bird, N . P. Topham, and S. Manoharan, “A
comparison of two memory models for high per-
formance computers,” in Proceedings of the P d
Joint International Conference on Vector and Par-
allel Processing: CONPAR 92 - VAPP V (LNCS
6341, (Lyon, France), pp. 399-404, Springer-
Verlag, September 1992.

D. Gannon et al. , “Sigma 11: A toolkit for build-
ing parallelizing compilers and performance ana-
lysis systems,” in Programming Environments for
Parallel Computers (N. P. Topham, R. Ibbett, and
T. Bemmerl, eds.), North Holland, 1992.

P. Heidelberger and S. S. Lavenberg, “Computer
performance evaluation methodology,” IEEE

Dunsuctions on Computers, vol. 33, no. 12,
pp. 1195-1220, December 1984.

J . R. Larus, “Efficient program tracing,” Com-
puters, vol. 26, no. 5, pp. 52-61, May 1993.

W. MangioneSmith, S. G. Abraham, and E. S.
Davidson, “The effects of memory latency and
fine-grain parallelism on Astronautics ZS-1 per-
formance,” in Proceedings of the &fd Annual
Hawaii International Conference on System Sci-
ences, pp. 288-296, 1990.

B. R. Rau, “Pseudo-randomly interleaved
memory,” in The 18th International Symposium on
Computer Architecture, pp. 74-83, May 1991.

J . Smith, “Decoupled access/execute architec-
tures,” ACM Transactions on Computer Systems,
vol. 2, no. 4, pp. 289-308, November 1984.

