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Abstract—Workload characterisation and generation is 

becoming an increasingly important area as hardware and 
application complexities continue to advance. In this paper, we 
introduce a concise methodology for workload generation for fast 
and accurate cache design space exploration. The hybrid model 
we propose uses an adaptation of the Least Recently Used Stack 
Model to capture key spatio-temporal locality features and a 
Markov model is implemented to generate an arbitrary length 
trace with the given workload characteristics through a 
dynamically ordered FIFO scheduler. Simulation of a variety of 
application traces from the SPEC2000 benchmark suite 
demonstrate the cacheability characteristics of the synthetic 
memory reference stream is generally very well preserved and 
similar to its original form. 
 

Index Terms� Cache Simulation, LRUSM, Markov Model, 
Trace Generation. 
 
 

I.  INTRODUCTION 
 
The design space of cache memory is evaluated using 

execution-driven or trace-driven simulation. Execution-driven 
simulation can be performed at various levels of abstraction, 
from the highly abstract algorithmic level to the highly 
detailed bit-accurate and cycle-accurate RTL [1]. Instruction 
Set Architecture (ISA) emulators such as ARMulator [2] and 
SimpleScalar [3] can perform execution-driven cache 
simulation with a high level of behavioural and timing 
accuracy. ISA emulation is becoming increasingly fast in 
generating on-line traces for cache evaluation, but requires 
architectural models, application source-code, and a 
development toolkit. An efficient alternative for memory 
system evaluation is trace-driven simulation. Trace-driven 
simulators such DineroIII [4] accept a chronological stream of 
memory references and evaluate miss statistics based on the 
selected configuration. However, to obtain meaningful results, 
particularly for multi-level cache designs, large trace files of 
hundreds of millions of memory references may be required. 
Furthermore, since each trace is representative of a particular 
application, the net result is often an enormous trace 
repository presenting storage and also portability problems. 
Truncation and/or trace-sampling can be employed to reduce 
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the effective length of a trace, but any truncation procedure 
will need to account for cache warm-up and may still incur a 
sizeable storage penalty, while sampling may trade-off 
accuracy. Trace compression is another option but 
compression and decompression operations can be lengthy. 

Synthetic workload generation can address the problems of 
maintaining large traces by using a stochastic model to 
generate an arbitrary number of memory references on-the-fly; 
the reference stream can then be passed to a trace-driven 
simulator for system evaluation. Since the reference stream is 
governed by a probability distribution, an arbitrary length 
implies fewer references and therefore faster simulation than 
traditional execution-driven or trace-driven simulation. 
Unfortunately, existing synthetic reference models generally 
lack the accuracy necessary for accurate cache design space 
exploration using concise workload characteristics. 

 
 

II.  RELATED WORK 
 
Denning [6] was one of the earliest to propose the 

generation of memory references based on their independent 
probability. From the perspective of cache simulation, a key 
problem with the proposed Independent Reference Model 
(IRM) is its failure to capture the locality of memory 
references inherent in a real trace. Thiebaut [8] looks at the 
generation of synthetic program traces using an extension of 
the basic Distance Model [7]. The idea is to model the 
probability distribution of the jumps between consecutive 
memory references as a hyperbolic relationship and generate 
new references using a random walk through an address space. 
The proposed model requires parameters for the working-set 
size and locality of reference. The working-set size for a cache 
is the storage needed at any one time and contains current and 
recent data. As the working-set changes during the execution 
of a program, determining a parameter to quantify its size 
requires a number of simulation runs. Eeckhout [9] proposes 
an approach of profiling instruction mixes, branches and 
dependencies to establish a pattern in the memory reference 
stream. The approach requires detailed trace information to 
perform the profiling procedures and operand evaluations. The 
Partial Markov Model (PMM) presented in Agarwal [10] is 
based on a two-state Markov chain. The first state produces 
sequential memory references and the second state generates 
random references. Maintaining a state or switching state is 
governed by the data captured from the real trace. A problem 
with the proposed approach is that a single probability 
threshold for state transitioning does not capture sufficient 
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temporal information. Sorenson [11] highlights the need to 
capture both spatial and temporal information from a real trace 
and extends the original work by Grimsrud [14] on three-
dimensional plots called locality surfaces for visualising 
reference locality. Sorenson evaluates some existing synthetic 
trace models and analyses their performance using the locality 
surface. Berg [12] captures trace locality by profiling the reuse 
distance and applies the distribution to a probabilistic cache 
model to estimate the miss ratio of fully-associative caches. 
The reuse distance is the number of intervening memory 
references between identical references. The author uses the 
reuse distance since a memory reference is less likely to 
remain in the cache the longer it has not been accessed – and it 
is this likelihood of eviction that the proposed cache model 
aims to exploit. However, the assumption that the larger the 
reuse distance, the higher the probability of a cache line 
eviction is not necessarily true, at least for synthetic trace 
generation. The intermediate accesses could all be to the same 
memory location and a large reuse distance would not reflect 
this pattern. A better measure of locality is presented by 
Mattson [13] in the form of the Least Recently Used Stack 
Model (LRUSM). The LRUSM is a natural representation of 
least recently used behaviour and is based on the stack 
distance, which is the number of unique intervening memory 
references between identical references and is a very effective 
measure of temporal locality. Grimsrud [14] analyses the 
efficiency of the stack distance model in preserving temporal 
locality using his locality surfaces, while Brehob [15] uses the 
stack distance model for implementing a probabilistic cache 
model to evaluate miss ratio. The works of Mattson, 
Grimsrud, and Brehob do not analyse the efficacy of the 
LRUSM in the generation of synthetic traces for trace-driven 
simulation of cache memory, although Sorenson [11] did 
study the LRUSM and other models and reported poor cache 
performance. In this paper, we implement an algorithm 
adapted from the LRUSM and use it to characterise the spatio-
temporal characteristics of application workloads. The profile 
data is passed to a Markov stochastic model which generates 
memory references through a dynamically ordered FIFO 
scheduler driven by a pseudo-random number generator. 

 
 

III.  TRACE LOCALITY 
 
An important general rule of program execution is the 90/10 

rule [16], [17], which states that 90% of a program’s execution 
time is spent in only 10% of the code. The rule highlights the 
significance of locality in predicting what instructions and 
data a program may use and its potential impact on cache 
performance. Fundamentally, there are two types of locality 
that a cache exploits to achieve favourable hit rates: temporal 
locality, which is apparent when identical memory references 
occur close together in time; and spatial locality, which is 
present when physically proximate references occur close 
together in time. A cache can take advantage of temporal 
locality by keeping recently referenced data as long as 
possible, while spatial locality is exploited by performing 
block transfers (line-fills) on a miss.  

For a synthetic memory reference model to produce good 
cache simulation results, it must seek to preserve the original 
temporal and spatial locality information. We capture spatial 
locality using block-size granularity and map memory 
references to cache line numbers. Any unique references 
mapping to the same cache line are treated as identical 
references. A probability distribution based on the LRUSM is 
used to quantify the temporal locality of line-mapped 
references. Listing 1 describes the pseudo-code of our trace 
profiling algorithm. We use a dynamically growing integer 
stack (S). For each memory reference R we check if it is 
resident in the stack. If R is not found then it is pushed directly 
to the top of the stack and assigned a stack distance (sd) value 
of -1. If R is found in the stack then it is removed from its 
position and then pushed to the top. The depth from which R is 
fetched is the new sd. The stack distances are stored in a stack 
distance string data structure (SDS). New line accesses 
theoretically have a stack distance of �� ���� ��� ���� 	� 
������
value of -1 to enable profiling for our trace generation 
algorithm. We also capture the temporal order of new block 
accesses (L), the size of which we identify as the full working-
set size of the application program code. In addition, a count 
of the total number of references is maintained. A cache line 
size of 32 bytes is assumed. 

SDS is profiled and the resulting probability distribution is 
integrated to generate the cumulative distribution of stack 
distance values, F, where each element is computed as 

 
 
 

F and corresponding stack distance numbers SD are stored as 
numerically ordered probability vectors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Listing 1. Trace profiling algorithm. 

procedure Profile(tracefile) 
declareFIFO(SDS) 
declareFIFO(L) 
declareStack(S) 
B:=32 
SIZE:=0 
LCOUNT:=0 
while forever 
 R:=nextRef(tracefile) 
 if R=null then break  
 else 
  R:=R/B 
  for i:=0 to SIZE 
   if R=S[i] then break 
  end for 
  if i=SIZE then 
   sd=-1 
   pushBottom(SDS, sd) 
   pushBottom(L, R) 
   pushTop(S, R) 
   SIZE:=SIZE+1 
  else 
   sd:=i 
   pushBottom(SDS, sd) 
   temp:=S[sd] 
   remove(S, sd) 
   pushTop(S, temp) 
  end if 
  LCOUNT:=LCOUNT+1 
 end if 
end while 
end procedure 

 

Fi=Pi+Fi-1   for i=[1: ������������0=P0 



 
 

 

 
 

IV.  TRACE GENERATION 
 
The trace generation algorithm is modelled as a Markov 

chain. A Markov chain is a discrete-time stochastic process 
that describes the different states a system can assume at 
successive time intervals. The Markov property stipulates that 
a state transition depends only on the current state of the 
system and not on past or future states. We use a two-state 
Markov chain model with the first state generating new 
memory references and the second state generating memory 
references based on a history of previous references. State 
transitions are governed by the stack distance cumulative 
probability distribution vector F. 

Stack distance values are generated using the Inverse 
Transform Sampling method [18]. A pseudo-random number 
generator (PRNG) issues a uniformly distributed number in 
the interval (0:1) that is mapped to a stack distance using its 
cumulative distribution. The Markov model issues a new 
memory reference for a stack distance value of -1 and any 
other value generates a previous reference. Inter-state and 
intra-state probabilities are treated as stochastically 
independent in line with the Markov property. Figure 1 
illustrates an overview of the model. 

 
 
 
   
 
 
 
 
Figure 1. Markov model for state behaviour. 
 
The key to the algorithm is the maintenance of a FIFO data 

structure that schedules the order of memory references. The 
FIFO is initialised with the full working-set of memory 
references mapped as cache line numbers (L). On every 
request for a new reference (state S1), the element at the back 
of the FIFO is popped off and pushed to the front, before 
being mapped back to a memory reference and passed to the 
output. On every request for an existing reference (state S2), 
the element at the requested stack distance is read from the 
front of the FIFO and passed to the output. The depth at which 
the element is fetched from the FIFO must be less than the 
running total of newly generated references (NEWREF). This 
is achieved by normalising the random number before it is 
mapped to the stack distance cumulative distribution. Stack 
distance values are selected from the stack distance probability 
vector (SD) using its corresponding cumulative probability 
distribution (F). Theoretically, the maximum possible stack 
distance value is the length of the FIFO, but in practice it is 
the value of the last element in SD. Both SD and F are 
numerically ordered vectors as F is a monotonically increasing 
cumulative distribution function. As the trace generation 
progresses, the stored working-set organises itself such that 
the reference element at the front of the queue is the most 
recently used, with frequency gradually reducing up to the 
least recently used reference element at the other end. The 

procedure for arbitrary length trace generation is summarised 
in Listing 2. The algorithm for stack distance generation is 
described in Listing 3.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Listing 2. Reference generation algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Listing 3. Stack distance generation algorithm 
 
The entire approach is briefly captured in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Synthetic reference generator. 

 
 

procedure TraceGen(L, SD, F, LCOUNT)  
declareFIFO(S) 
initialise(S, L) 
SIZE:=getLength(S) 
TLENGTH=arbitrary 
B:=32 
NEWREF:=0 
 for i:=0 to TLENGTH 
  sd:=genStackDistance(SD,F, NEWREF) 
  if sd=-1 then 
   memRef:=S[0] 
   popBack(S) 
   pushFront(S, memRef) 
   memRef:=memRef*B 
   NEWREF:=NEWREF+1 
  else 
   memRef:=S[SIZE-1-sd] 
   memRef:=memRef*B 
   pop(S, SIZE-1-sd) 
   pushFront(S, memRef) 
  end if 
 end for 
end procedure 
 

procedure genStackDistance(SD, F, NEWREF) 
SIZE:=getLength(SD) 
maxSD:=SD[SIZE-1] 
ran:=randomFloat(0,1) 
if NEWREF<=maxSD then 
 k:=0 
 while SD[k]<NEWREF 
  k:=k+1 
 end while 
 ran:=ran*F[k-1] 
end if 
for k:=0 to SIZE 
 if ran<F[k] then 
  sd:=SD[k] 
  return sd 
 end if 
end for 
end procedure 
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V.  EVALUATION 
 
We evaluated the approach using traces of applications from 

the SPEC2000 benchmark suite [19]. The applications were 
simulated on a Pentium III processor with the cache disabled 
and running Windows NT4 OS. Traces were collected using 
the BACH hardware monitoring technique [20]. The traces 
contain a billion memory references and are available from the 
BYU Trace Distribution Center [21]. For reasons of brevity, 
we present results of instruction and data performance for 
crafty, gcc (166), gzip (source), parser, twolf and vortex (two). 

 
 
A.   Trace Characterisation 
We captured the cumulative distribution of stack distance 

for the references traces, as illustrated in the truncated locality 
plots in Figure 3 and 4. The relative smoothness of the data 
reference curves indicates that data memory is generally 
referenced in a progressive manner, unlike instruction 
references that exhibit regular branching to procedure/function 
calls. Table I summarises additional features of the traces not 
observable in the plots: the full working-set is the number of 
new cache blocks observed in the program execution (using a 
32-byte block size); the average SD is the mean number of 
unique cache block accesses between identical accesses and is 
a useful generic measure of locality:  

                                     � ��
i

SDi i
PSD  

The distribution of SD for data references has a much longer 
tail than instruction references, as highlighted by the 
significantly higher average SD.  This implies that the 
instruction traces exhibit a much higher degree of temporal 
locality, as would be expected due to modern performance 
enhancements such as software/hardware instruction 
prefetching. (Note the complete profile data typically 
consumes less than 0.0001% storage space of the original 
trace file.) 

 

 
Figure 3. Locality of instruction references. 

 

 
Figure 4. Locality of data references. 
 
Table I. Instruction and data trace characteristics. 

Instruction Data  
 Full 

Working-
Set  

(blocks) 

Average 
SD 

Full 
Working-

Set  
(blocks) 

Average 
SD 

crafty 54089 211.9 220105 1215.9 
gcc 66083 287.9 399567 2236.9 
gzip 33683 70.1 313519 1851.4 

parser 24312 49.9 379782 2242.8 
twolf 39522 163.9 425619 4946.9 

vortex 36242 179.5 681837 1729.4 
 
 
B. Trace Simulation 
The profile data of each application was passed to the 

Markov state generator and driven by a pseudo-random 
number generator. A trace length cut-off of 10% of the 
original length was selected to allow the cache sufficient time 
to warm-up. Note, reducing trace length, as is possible in our 
stochastic model, highlights the potential speedup attainable in 
cache simulation, and is typically proportional to the level of 
reduction (speedup � trace length). The synthetic reference 
streams output from the FIFO scheduler were evaluated 
against their real counterpart using the DineroIII trace-driven 
cache simulator [4]. DineroIII was configured for Harvard 
cache architecture with a write-allocate write miss policy, a 32 
byte cache line size and least recently used block replacement 
policy. We present results for 4-way and 8-way associative 
caches of size �  {1K:128K} bytes. Figures 5 and 6 illustrate 
the simulation results for the real traces (expected) versus the 
synthetic forms (observed) plotted on a logarithmic y-axis, for 
instruction and data respectively. 

Average SD 
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 Figure 5. Instruction cache simulation results. 
Figure 6. Data cache simulation results. 



 
 

 

We note from the simulation results that the model performs 
very well in generating synthetic memory references with 
cacheability features very similar to the original reference 
stream. The model performs significantly better than existing 
models evaluated in the study by Sorenson [11]. Furthermore, 
the Markov state generator and FIFO scheduler ensure the 
distribution of stack distance for the synthetic stream is 
virtually the same as its real equivalent (in Figure 3 and 4). 
This indicates the reference generation procedure reproduces 
the temporal locality features of the original trace.  

 
 

VI. CONCLUSIONS 
 
We have presented a concise methodology for synthetic 

memory reference generation. An algorithm adapted from the 
LRUSM is used to characterise the spatio-temporal 
characteristics of application workloads. The profile data is 
passed to a Markov model which generates memory 
references through a dynamically ordered FIFO scheduler, and 
is driven by a pseudo-random number generator. Simulation of 
SPEC2000 traces show that the synthetic references preserve 
the cacheability properties of the real trace for caches 
operating over a range of configurations. The storage overhead 
is very low, while an arbitrary-length trace allows for a 
speedup in cache simulation. The model has applications in 
the area of workload generation for cache simulation and bus 
usage, and may also serve as the basis of a self-contained 
traffic generator. 
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