

�
Abstract—Workload characterisation and generation is

becoming an increasingly important area as hardware and
application complexities continue to advance. In this paper, we
introduce a concise methodology for workload generation for fast
and accurate cache design space exploration. The hybrid model
we propose uses an adaptation of the Least Recently Used Stack
Model to capture key spatio-temporal locality features and a
Markov model is implemented to generate an arbitrary length
trace with the given workload characteristics through a
dynamically ordered FIFO scheduler. Simulation of a variety of
application traces from the SPEC2000 benchmark suite
demonstrate the cacheability characteristics of the synthetic
memory reference stream is generally very well preserved and
similar to its original form.

Index Terms� Cache Simulation, LRUSM, Markov Model,
Trace Generation.

I. INTRODUCTION

The design space of cache memory is evaluated using

execution-driven or trace-driven simulation. Execution-driven
simulation can be performed at various levels of abstraction,
from the highly abstract algorithmic level to the highly
detailed bit-accurate and cycle-accurate RTL [1]. Instruction
Set Architecture (ISA) emulators such as ARMulator [2] and
SimpleScalar [3] can perform execution-driven cache
simulation with a high level of behavioural and timing
accuracy. ISA emulation is becoming increasingly fast in
generating on-line traces for cache evaluation, but requires
architectural models, application source-code, and a
development toolkit. An efficient alternative for memory
system evaluation is trace-driven simulation. Trace-driven
simulators such DineroIII [4] accept a chronological stream of
memory references and evaluate miss statistics based on the
selected configuration. However, to obtain meaningful results,
particularly for multi-level cache designs, large trace files of
hundreds of millions of memory references may be required.
Furthermore, since each trace is representative of a particular
application, the net result is often an enormous trace
repository presenting storage and also portability problems.
Truncation and/or trace-sampling can be employed to reduce

Manuscript received January 5, 2007. This work was supported by ARM

Ltd and the Engineering and Physical Sciences Research Council (EPSRC)
under EPSRC CTA Grant GR/T/18448/01.

R. Hassan is with the Institute for System Level Integration, Alba Centre,
Livingston, EH54 7EG, UK. (rhassan@sli-institute.ac.uk).

A. Harris is with ARM Ltd, Sheffield, S1 4EB, UK. (aharris@arm.com)
N. Topham and A. Efthymiou are with the School of Informatics,

University of Edinburgh, EH8 9LE, UK. ({npt, aefthymi}@inf.ed.ac.uk).

the effective length of a trace, but any truncation procedure
will need to account for cache warm-up and may still incur a
sizeable storage penalty, while sampling may trade-off
accuracy. Trace compression is another option but
compression and decompression operations can be lengthy.

Synthetic workload generation can address the problems of
maintaining large traces by using a stochastic model to
generate an arbitrary number of memory references on-the-fly;
the reference stream can then be passed to a trace-driven
simulator for system evaluation. Since the reference stream is
governed by a probability distribution, an arbitrary length
implies fewer references and therefore faster simulation than
traditional execution-driven or trace-driven simulation.
Unfortunately, existing synthetic reference models generally
lack the accuracy necessary for accurate cache design space
exploration using concise workload characteristics.

II. RELATED WORK

Denning [6] was one of the earliest to propose the

generation of memory references based on their independent
probability. From the perspective of cache simulation, a key
problem with the proposed Independent Reference Model
(IRM) is its failure to capture the locality of memory
references inherent in a real trace. Thiebaut [8] looks at the
generation of synthetic program traces using an extension of
the basic Distance Model [7]. The idea is to model the
probability distribution of the jumps between consecutive
memory references as a hyperbolic relationship and generate
new references using a random walk through an address space.
The proposed model requires parameters for the working-set
size and locality of reference. The working-set size for a cache
is the storage needed at any one time and contains current and
recent data. As the working-set changes during the execution
of a program, determining a parameter to quantify its size
requires a number of simulation runs. Eeckhout [9] proposes
an approach of profiling instruction mixes, branches and
dependencies to establish a pattern in the memory reference
stream. The approach requires detailed trace information to
perform the profiling procedures and operand evaluations. The
Partial Markov Model (PMM) presented in Agarwal [10] is
based on a two-state Markov chain. The first state produces
sequential memory references and the second state generates
random references. Maintaining a state or switching state is
governed by the data captured from the real trace. A problem
with the proposed approach is that a single probability
threshold for state transitioning does not capture sufficient

A Hybrid Markov Model for Accurate Memory
Reference Generation

Rahman Hassan, Antony Harris, Nigel Topham, and Aris Efthymiou

temporal information. Sorenson [11] highlights the need to
capture both spatial and temporal information from a real trace
and extends the original work by Grimsrud [14] on three-
dimensional plots called locality surfaces for visualising
reference locality. Sorenson evaluates some existing synthetic
trace models and analyses their performance using the locality
surface. Berg [12] captures trace locality by profiling the reuse
distance and applies the distribution to a probabilistic cache
model to estimate the miss ratio of fully-associative caches.
The reuse distance is the number of intervening memory
references between identical references. The author uses the
reuse distance since a memory reference is less likely to
remain in the cache the longer it has not been accessed – and it
is this likelihood of eviction that the proposed cache model
aims to exploit. However, the assumption that the larger the
reuse distance, the higher the probability of a cache line
eviction is not necessarily true, at least for synthetic trace
generation. The intermediate accesses could all be to the same
memory location and a large reuse distance would not reflect
this pattern. A better measure of locality is presented by
Mattson [13] in the form of the Least Recently Used Stack
Model (LRUSM). The LRUSM is a natural representation of
least recently used behaviour and is based on the stack
distance, which is the number of unique intervening memory
references between identical references and is a very effective
measure of temporal locality. Grimsrud [14] analyses the
efficiency of the stack distance model in preserving temporal
locality using his locality surfaces, while Brehob [15] uses the
stack distance model for implementing a probabilistic cache
model to evaluate miss ratio. The works of Mattson,
Grimsrud, and Brehob do not analyse the efficacy of the
LRUSM in the generation of synthetic traces for trace-driven
simulation of cache memory, although Sorenson [11] did
study the LRUSM and other models and reported poor cache
performance. In this paper, we implement an algorithm
adapted from the LRUSM and use it to characterise the spatio-
temporal characteristics of application workloads. The profile
data is passed to a Markov stochastic model which generates
memory references through a dynamically ordered FIFO
scheduler driven by a pseudo-random number generator.

III. TRACE LOCALITY

An important general rule of program execution is the 90/10

rule [16], [17], which states that 90% of a program’s execution
time is spent in only 10% of the code. The rule highlights the
significance of locality in predicting what instructions and
data a program may use and its potential impact on cache
performance. Fundamentally, there are two types of locality
that a cache exploits to achieve favourable hit rates: temporal
locality, which is apparent when identical memory references
occur close together in time; and spatial locality, which is
present when physically proximate references occur close
together in time. A cache can take advantage of temporal
locality by keeping recently referenced data as long as
possible, while spatial locality is exploited by performing
block transfers (line-fills) on a miss.

For a synthetic memory reference model to produce good
cache simulation results, it must seek to preserve the original
temporal and spatial locality information. We capture spatial
locality using block-size granularity and map memory
references to cache line numbers. Any unique references
mapping to the same cache line are treated as identical
references. A probability distribution based on the LRUSM is
used to quantify the temporal locality of line-mapped
references. Listing 1 describes the pseudo-code of our trace
profiling algorithm. We use a dynamically growing integer
stack (S). For each memory reference R we check if it is
resident in the stack. If R is not found then it is pushed directly
to the top of the stack and assigned a stack distance (sd) value
of -1. If R is found in the stack then it is removed from its
position and then pushed to the top. The depth from which R is
fetched is the new sd. The stack distances are stored in a stack
distance string data structure (SDS). New line accesses
theoretically have a stack distance of �� ���� ��� ���� 	�
������
value of -1 to enable profiling for our trace generation
algorithm. We also capture the temporal order of new block
accesses (L), the size of which we identify as the full working-
set size of the application program code. In addition, a count
of the total number of references is maintained. A cache line
size of 32 bytes is assumed.

SDS is profiled and the resulting probability distribution is
integrated to generate the cumulative distribution of stack
distance values, F, where each element is computed as

F and corresponding stack distance numbers SD are stored as
numerically ordered probability vectors.

Listing 1. Trace profiling algorithm.

procedure Profile(tracefile)
declareFIFO(SDS)
declareFIFO(L)
declareStack(S)
B:=32
SIZE:=0
LCOUNT:=0
while forever
 R:=nextRef(tracefile)
 if R=null then break
 else
 R:=R/B
 for i:=0 to SIZE
 if R=S[i] then break
 end for
 if i=SIZE then
 sd=-1
 pushBottom(SDS, sd)
 pushBottom(L, R)
 pushTop(S, R)
 SIZE:=SIZE+1
 else
 sd:=i
 pushBottom(SDS, sd)
 temp:=S[sd]
 remove(S, sd)
 pushTop(S, temp)
 end if
 LCOUNT:=LCOUNT+1
 end if
end while
end procedure

Fi=Pi+Fi-1 for i=[1: ������������0=P0

IV. TRACE GENERATION

The trace generation algorithm is modelled as a Markov

chain. A Markov chain is a discrete-time stochastic process
that describes the different states a system can assume at
successive time intervals. The Markov property stipulates that
a state transition depends only on the current state of the
system and not on past or future states. We use a two-state
Markov chain model with the first state generating new
memory references and the second state generating memory
references based on a history of previous references. State
transitions are governed by the stack distance cumulative
probability distribution vector F.

Stack distance values are generated using the Inverse
Transform Sampling method [18]. A pseudo-random number
generator (PRNG) issues a uniformly distributed number in
the interval (0:1) that is mapped to a stack distance using its
cumulative distribution. The Markov model issues a new
memory reference for a stack distance value of -1 and any
other value generates a previous reference. Inter-state and
intra-state probabilities are treated as stochastically
independent in line with the Markov property. Figure 1
illustrates an overview of the model.

Figure 1. Markov model for state behaviour.

The key to the algorithm is the maintenance of a FIFO data

structure that schedules the order of memory references. The
FIFO is initialised with the full working-set of memory
references mapped as cache line numbers (L). On every
request for a new reference (state S1), the element at the back
of the FIFO is popped off and pushed to the front, before
being mapped back to a memory reference and passed to the
output. On every request for an existing reference (state S2),
the element at the requested stack distance is read from the
front of the FIFO and passed to the output. The depth at which
the element is fetched from the FIFO must be less than the
running total of newly generated references (NEWREF). This
is achieved by normalising the random number before it is
mapped to the stack distance cumulative distribution. Stack
distance values are selected from the stack distance probability
vector (SD) using its corresponding cumulative probability
distribution (F). Theoretically, the maximum possible stack
distance value is the length of the FIFO, but in practice it is
the value of the last element in SD. Both SD and F are
numerically ordered vectors as F is a monotonically increasing
cumulative distribution function. As the trace generation
progresses, the stored working-set organises itself such that
the reference element at the front of the queue is the most
recently used, with frequency gradually reducing up to the
least recently used reference element at the other end. The

procedure for arbitrary length trace generation is summarised
in Listing 2. The algorithm for stack distance generation is
described in Listing 3.

Listing 2. Reference generation algorithm.

Listing 3. Stack distance generation algorithm

The entire approach is briefly captured in the figure below.

Figure 2. Synthetic reference generator.

procedure TraceGen(L, SD, F, LCOUNT)
declareFIFO(S)
initialise(S, L)
SIZE:=getLength(S)
TLENGTH=arbitrary
B:=32
NEWREF:=0
 for i:=0 to TLENGTH
 sd:=genStackDistance(SD,F, NEWREF)
 if sd=-1 then
 memRef:=S[0]
 popBack(S)
 pushFront(S, memRef)
 memRef:=memRef*B
 NEWREF:=NEWREF+1
 else
 memRef:=S[SIZE-1-sd]
 memRef:=memRef*B
 pop(S, SIZE-1-sd)
 pushFront(S, memRef)
 end if
 end for
end procedure

procedure genStackDistance(SD, F, NEWREF)
SIZE:=getLength(SD)
maxSD:=SD[SIZE-1]
ran:=randomFloat(0,1)
if NEWREF<=maxSD then
 k:=0
 while SD[k]<NEWREF
 k:=k+1
 end while
 ran:=ran*F[k-1]
end if
for k:=0 to SIZE
 if ran<F[k] then
 sd:=SD[k]
 return sd
 end if
end for
end procedure

Locality
Profiler

Markov State
Generator

PRNG

FIFO
Scheduler

Trace file

Synthetic
Trace file

Profile data

 S1

 S2

Fi =0

Fi =0

Fi >0
Fi >0

V. EVALUATION

We evaluated the approach using traces of applications from

the SPEC2000 benchmark suite [19]. The applications were
simulated on a Pentium III processor with the cache disabled
and running Windows NT4 OS. Traces were collected using
the BACH hardware monitoring technique [20]. The traces
contain a billion memory references and are available from the
BYU Trace Distribution Center [21]. For reasons of brevity,
we present results of instruction and data performance for
crafty, gcc (166), gzip (source), parser, twolf and vortex (two).

A. Trace Characterisation
We captured the cumulative distribution of stack distance

for the references traces, as illustrated in the truncated locality
plots in Figure 3 and 4. The relative smoothness of the data
reference curves indicates that data memory is generally
referenced in a progressive manner, unlike instruction
references that exhibit regular branching to procedure/function
calls. Table I summarises additional features of the traces not
observable in the plots: the full working-set is the number of
new cache blocks observed in the program execution (using a
32-byte block size); the average SD is the mean number of
unique cache block accesses between identical accesses and is
a useful generic measure of locality:

 � ��
i

SDi i
PSD

The distribution of SD for data references has a much longer
tail than instruction references, as highlighted by the
significantly higher average SD. This implies that the
instruction traces exhibit a much higher degree of temporal
locality, as would be expected due to modern performance
enhancements such as software/hardware instruction
prefetching. (Note the complete profile data typically
consumes less than 0.0001% storage space of the original
trace file.)

Figure 3. Locality of instruction references.

Figure 4. Locality of data references.

Table I. Instruction and data trace characteristics.

Instruction Data
 Full

Working-
Set

(blocks)

Average
SD

Full
Working-

Set
(blocks)

Average
SD

crafty 54089 211.9 220105 1215.9
gcc 66083 287.9 399567 2236.9
gzip 33683 70.1 313519 1851.4

parser 24312 49.9 379782 2242.8
twolf 39522 163.9 425619 4946.9

vortex 36242 179.5 681837 1729.4

B. Trace Simulation
The profile data of each application was passed to the

Markov state generator and driven by a pseudo-random
number generator. A trace length cut-off of 10% of the
original length was selected to allow the cache sufficient time
to warm-up. Note, reducing trace length, as is possible in our
stochastic model, highlights the potential speedup attainable in
cache simulation, and is typically proportional to the level of
reduction (speedup � trace length). The synthetic reference
streams output from the FIFO scheduler were evaluated
against their real counterpart using the DineroIII trace-driven
cache simulator [4]. DineroIII was configured for Harvard
cache architecture with a write-allocate write miss policy, a 32
byte cache line size and least recently used block replacement
policy. We present results for 4-way and 8-way associative
caches of size � {1K:128K} bytes. Figures 5 and 6 illustrate
the simulation results for the real traces (expected) versus the
synthetic forms (observed) plotted on a logarithmic y-axis, for
instruction and data respectively.

Average SD

crafty

1%

10%

100%
1k

 4
-W

1k
 8
-W

2k
 4
-W

2k
 8
-W

4k
 4
-W

4k
 8
-W

8k
 4
-W

8k
 8
-W

16
k 4

-W

16
k 8

-W

32
k 4

-W

32
k 8

-W

64
k 4

-W

64
k 8

-W

12
8k
 4
-W

12
8k
 8
-W

Cache Configuration

M
is
s
R
at
io

EXP

OBS

gcc

1%

10%

100%
1k

 4
-W

1k
 8
-W

2k
 4
-W

2k
 8
-W

4k
 4
-W

4k
 8
-W

8k
 4
-W

8k
 8
-W

16
k 4

-W

16
k 8

-W

32
k 4

-W

32
k 8

-W

64
k 4

-W

64
k 8

-W

12
8k
 4
-W

12
8k
 8
-W

Cache Configuration

M
is
s
R
a
tio

EXP

OBS

gzip

0%

1%

10%

100%
1k

 4
-W

1k
 8
-W

2k
 4
-W

2k
 8
-W

4k
 4
-W

4k
 8
-W

8k
 4
-W

8k
 8
-W

16
k 4

-W

16
k 8

-W

32
k 4

-W

32
k 8

-W

64
k 4

-W

64
k 8

-W

12
8k
 4
-W

12
8k
 8
-W

Cache Configuration

M
is
s
R
at
io

EXP

OBS

parser

0%

1%

10%

100%
1k

 4
-W

1k
 8
-W

2k
 4
-W

2k
 8
-W

4k
 4
-W

4k
 8
-W

8k
 4
-W

8k
 8
-W

16
k 4

-W

16
k 8

-W

32
k 4

-W

32
k 8

-W

64
k 4

-W

64
k 8

-W

12
8k
 4
-W

12
8k
 8
-W

Cache Configuration

M
is
s
R
a
tio

EXP

OBS

twolf

1%

10%

100%
1k

 4
-W

1k
 8
-W

2k
 4
-W

2k
 8
-W

4k
 4
-W

4k
 8
-W

8k
 4
-W

8k
 8
-W

16
k 4

-W

16
k 8

-W

32
k 4

-W

32
k 8

-W

64
k 4

-W

64
k 8

-W

12
8k
 4
-W

12
8k
 8
-W

Cache Configuration

M
is
s
R
at
io

EXP

OBS

vortex

1%

10%

100%
1k

 4
-W

1k
 8
-W

2k
 4
-W

2k
 8
-W

4k
 4
-W

4k
 8
-W

8k
 4
-W

8k
 8
-W

16
k 4

-W

16
k 8

-W

32
k 4

-W

32
k 8

-W

64
k 4

-W

64
k 8

-W

12
8k
 4
-W

12
8k
 8
-W

Cache Configuration

M
is
s
R
at
io

EXP

OBS

crafty

10%

100%
1k

 4
-W

1k
 8
-W

2k
 4
-W

2k
 8
-W

4k
 4
-W

4k
 8
-W

8k
 4
-W

8k
 8
-W

16
k 4

-W

16
k 8

-W

32
k 4

-W

32
k 8

-W

64
k 4

-W

64
k 8

-W

12
8k

 4
-W

12
8k

 8
-W

Cache Configuration

M
is

s
R

at
io

EXP

OBS

gcc

1%

10%

100%
1k

 4
-W

1k
 8
-W

2k
 4
-W

2k
 8
-W

4k
 4
-W

4k
 8
-W

8k
 4
-W

8k
 8
-W

16
k 4

-W

16
k 8

-W

32
k 4

-W

32
k 8

-W

64
k 4

-W

64
k 8

-W

12
8k

 4
-W

12
8k

 8
-W

Cache Configuration

M
is

s
R

at
io

EXP

OBS

gzip

1%

10%

100%
1k

 4
-W

1k
 8
-W

2k
 4
-W

2k
 8
-W

4k
 4
-W

4k
 8
-W

8k
 4
-W

8k
 8
-W

16
k
4-

W

16
k
8-

W

32
k
4-

W

32
k
8-

W

64
k
4-

W

64
k
8-

W

12
8k

 4
-W

12
8k

 8
-W

Cache Configuration

M
is

s
R

at
io

EXP

OBS

parser

1%

10%

100%
1k

 4
-W

1k
 8
-W

2k
 4
-W

2k
 8
-W

4k
 4
-W

4k
 8
-W

8k
 4
-W

8k
 8
-W

16
k 4

-W

16
k 8

-W

32
k 4

-W

32
k 8

-W

64
k 4

-W

64
k 8

-W

12
8k

 4
-W

12
8k

 8
-W

Cache Configuration

M
is

s
R

at
io

EXP

OBS

twolf

10%

100%
1k

 4
-W

1k
 8
-W

2k
 4
-W

2k
 8
-W

4k
 4
-W

4k
 8
-W

8k
 4
-W

8k
 8
-W

16
k
4-

W

16
k
8-

W

32
k
4-

W

32
k
8-

W

64
k
4-

W

64
k
8-

W

12
8k

 4
-W

12
8k

 8
-W

Cache Configuration

M
is

s
R

at
io

EXP

OBS

vortex

10%

100%
1k

 4
-W

1k
 8
-W

2k
 4
-W

2k
 8
-W

4k
 4
-W

4k
 8
-W

8k
 4
-W

8k
 8
-W

16
k 4

-W

16
k 8

-W

32
k 4

-W

32
k 8

-W

64
k 4

-W

64
k 8

-W

12
8k

 4
-W

12
8k

 8
-W

Cache Configuration

M
is

s
R

at
io

EXP

OBS

 Figure 5. Instruction cache simulation results.
Figure 6. Data cache simulation results.

We note from the simulation results that the model performs
very well in generating synthetic memory references with
cacheability features very similar to the original reference
stream. The model performs significantly better than existing
models evaluated in the study by Sorenson [11]. Furthermore,
the Markov state generator and FIFO scheduler ensure the
distribution of stack distance for the synthetic stream is
virtually the same as its real equivalent (in Figure 3 and 4).
This indicates the reference generation procedure reproduces
the temporal locality features of the original trace.

VI. CONCLUSIONS

We have presented a concise methodology for synthetic

memory reference generation. An algorithm adapted from the
LRUSM is used to characterise the spatio-temporal
characteristics of application workloads. The profile data is
passed to a Markov model which generates memory
references through a dynamically ordered FIFO scheduler, and
is driven by a pseudo-random number generator. Simulation of
SPEC2000 traces show that the synthetic references preserve
the cacheability properties of the real trace for caches
operating over a range of configurations. The storage overhead
is very low, while an arbitrary-length trace allows for a
speedup in cache simulation. The model has applications in
the area of workload generation for cache simulation and bus
usage, and may also serve as the basis of a self-contained
traffic generator.

REFERENCES

[1] J. Connell, ARM System-Level Modeling, ARM Ltd,
2003.

[2] RealView ARMulator ISS, ARM Ltd, 2004.
[3] T. Austin et al, SimpleScalar Tutorial v4, University of

Michigan.
[4] D. M. Hill, DineroIII Cache Simulator, University of

California, Berkeley, 1985.
[5] D. J. Lilja, Measuring Computer Performance: A

Practitioner’s Guide, Cambridge University Press,
2000.

[6] P. Denning and S. Schwartz, Properties of the Working-
Set Model, Communications of the ACM, 1972.

[7] J. Spirn, Program Behavior: Models and
Measurements, Elsevier, 1977.

[8] D. Thiebaut, J. L. Wolf, and H. S. Stone, Synthetic
Traces for Trace-Driven Simulation of Cache
Memories, IEEE Transactions on Computers, 1992.

[9] L. Eeckhout, K. De Bosschere, and H. Neefs,
Performance Analysis Through Synthetic Trace
Generation, International Symposium on Performance
Analysis of Systems and Software, 2000.

[10] A. Agarwal, M. Horowitz, and J. Hennessy, An
Analytical Cache Model, ACM Transactions on
Computer Systems, 1989.

[11] E. Sorenson and J. K. Flanagan, Evaluating Synthetic
Trace Models using Locality Surfaces, International
Workshop on Workload Characterization, 2002.

[12] E. Berg and E. Hagersten, StatCache: A Probabilistic
Approach to Efficient and Accurate Data Locality
Analysis, International Symposium on Performance
Analysis of Systems and Software, 2004.

[13] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger,
Evaluation Techniques for Storage Hierarchies, IBM
System Journal, 1970.

[14] K. Grimsrud, J. Archibald, R. Frost, and B. Nelson, On
The Accuracy of Memory Reference Models, Seventh
International Conference on Modeling Techniques and
Tools for Computer Performance Evaluation, 1994.

[15] M. Brehob and R. Enbody, An Analytical Model of
Locality and Caching, Michigan State University, 1999.

[16] J. L. Hennessy and D. A. Patterson, Computer
Architecture: A Quantitative Approach, Morgan
Kauffman Publishers, 2003.

[17] D. Spinellis, Code Quality: The Open Source
Perspective, Addison Wesley, 2006.

[18] Luc Devroye, Non-Uniform Random Variate
Generation, Springer-Verlag, 1986.

[19] SPEC Benchmark Suite, http://www.spec.org.
[20] J. K. Flanagan, B. Nelson, J. Archibald, and K.

Grimsrud, BACH: BYU Address Collection Hardware,
6th International Conference on Modeling Techniques
and Tools for Computer Performance Evaluation,
September 1992.

[21] BYU Performance Evaluation Laboratory,
http://pel.cs.byu.edu/.

