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Abstract 
 
The widening gap between CPU and memory speed 

has made caches an integral feature of modern high-
performance processors. The high degree of 
configurability of cache memory can require extensive 
design space exploration and is generally performed 
using execution-driven or trace-driven simulation. 
Execution-driven simulators can be highly accurate 
but require a detailed development flow and may 
impose performance costs. Trace-driven simulators are 
an efficient alternative but maintaining large traces 
can present storage and portability problems. We 
propose a distribution-driven trace generation 
methodology as an alternative to traditional execution- 
and trace- driven simulation. An adaptation of the 
Least Recently Used Stack Model is used to concisely 
capture the key locality features in a trace and a two-
state Markov chain model is used for trace generation. 
Simulation and analysis of a variety of embedded 
application traces demonstrate the cacheability 
characteristics of the synthetic traces are generally 
very well preserved and similar to their real trace, and 
we also highlight the potential performance 
improvement over ISA emulation. 

  
1. Introduction 

 
Caches are highly configurable features of modern 

processors and their architecture is characterised by 
parameters such as size, associativity, line (block) size, 
and replacement policy. Cache performance can vary 
considerably depending on the choice of configuration 
and workload, with penalties for an incorrectly 
configured cache including an increase in latency and 
area overhead (in using oversized caches). In order to 
maximise performance and reduce cost, much emphasis 
is therefore placed on finding the optimum 
configuration for an expected application workload. 

Cache memory is usually evaluated using 
execution-driven or trace-driven simulation. Execution-
driven simulation can be performed at various levels of 
abstraction, from the algorithmic level to the bit-
accurate and cycle-accurate RTL [1]. Instruction Set 
Architecture (ISA) emulators such as ARMulator [2] 
and SimpleScalar [3] can perform execution-driven 
cache simulation with a high level of behavioural and 
timing accuracy. However, execution-driven simulation 
can be slow and requires architectural models, 
application source-code, and a development toolkit. 
Trace-driven simulation is a faster and increasingly 
common way of evaluating memory systems. Trace-
driven simulators such DineroIII [4] accept a 
chronological stream of memory references and 
evaluate miss statistics based on the selected 
configuration. Trace-driven simulation can be an 
attractive way of exploring multi-level cache designs 
and multiprocessor system caches. However, as 
applications become more complex, they generate 
increasingly larger traces. A key problem is the storage 
requirement of enormous trace files containing 
hundreds of millions of memory references. 
Truncation, trace-sampling, and compression can be 
employed to reduce the effective length of a trace but 
often at the expense of accuracy and/or time. Synthetic 
trace generation can address the problems of 
maintaining large traces by using a distribution-driven 
(stochastic) model to generate an arbitrary number of 
memory references on-the-fly; the reference stream can 
then be passed to a trace-driven cache model for 
system evaluation. Unfortunately, synthetic trace 
models usually lack accuracy [11] unless detailed 
profiling procedures are employed, and as such may 
not always be suitable for fast and accurate cache 
design space exploration.  

 
2. Related Work 
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An early proposal by Denning [6] considered 
generating memory references based on their 
independent probability. Known as the Independent 
Reference Model (IRM), the approach fails to capture 
the locality of memory references inherent in a real 
trace. Thiebaut [8] looks at the generation of synthetic 
program traces using an extension of the basic Distance 
Model [7]. The idea is to model the probability 
distribution of the jumps between consecutive memory 
references as a hyperbolic relationship and generate 
new references using a random walk through an 
address space. The proposed model uses two 
parameters corresponding to the working-set size and 
locality of reference. The working-set size for a cache 
is the storage needed at any one time and contains 
current and recent data. As the working-set changes 
during the execution of a program, determining a 
parameter to quantify its size requires a number of 
simulation runs. Eeckhout [9] proposes an approach of 
profiling instruction mixes, branches and dependencies 
to establish a pattern in the memory reference stream. 
The approach requires detailed trace information to 
perform the profiling procedures and operand 
evaluations. The Partial Markov Model (PMM) 
presented in Agarwal [10] is based on a two-state 
Markov chain. The first state produces sequential 
memory references and the second state generates 
random references. Maintaining a state or switching 
state is governed by the data captured from the real 
trace. A problem with the proposed approach is that a 
single probability threshold for state transitioning does 
not capture sufficient temporal information. Sorenson 
[11] highlights the need to capture both spatial and 
temporal information from a real trace and extends the 
original work by Grimsrud [14] on three-dimensional 
plots called locality surfaces for visualising reference 
locality. Sorenson does not present a practical approach 
to quantify locality but does evaluate some existing 
synthetic trace models and analyses their performance 
using the locality surface. Berg [12] captures trace 
locality by profiling the reuse distance and applies the 
distribution to a probabilistic cache model to estimate 
the miss ratio of fully-associative caches. The reuse 
distance is the number of intervening memory 
references between identical references. The author 
uses the reuse distance due to the fact that a memory 
reference is less likely to remain in the cache the longer 
it has not been accessed – and it is this likelihood of 
eviction that the proposed cache model aims to exploit. 
However, the author’s assumption that the larger the 
reuse distance, the higher the probability of a cache line 
eviction is not necessarily true. The intermediate 
accesses could all be to the same memory location and 
a large reuse distance would not reflect this pattern. A 

much better measure of locality is presented by 
Mattson [13] in the form of the Least Recently Used 
Stack Model (LRUSM). The LRUSM is based on the 
stack distance, which is the number of unique 
intervening memory references between identical 
references and is a very effective measure of temporal 
locality. Grimsrud [14] analyses the efficiency of the 
stack distance model in preserving temporal locality 
using his locality surfaces, while Brehob [15] uses the 
stack distance model for implementing a probabilistic 
cache model to evaluate miss ratio. The works of 
Mattson, Grimsrud, and Brehob emphasise the fact that 
the LRUSM is a natural representation of least recently 
used behaviour. However, the works do not analyse the 
efficacy of the LRUSM in the generation of synthetic 
traces for trace-driven simulation of cache memory. In 
our work, we implement an adaptation of the LRUSM 
and apply it to an algorithm employing a two-state 
Markov chain and show we can generate accurate 
synthetic traces aimed at cache simulation using both 
least recently used and random block replacement 
policies. We use traces collated from application 
benchmarks executed on an embedded processor and 
evaluate the approach using a comprehensive range of 
cache configurations. We also compare the approach 
against ISA emulation to highlight the potential 
performance improvement. 

 
3. Trace Locality 

 
An important general rule of program execution is 

the 90/10 rule [16], also known as the Pareto Principle 
[17]. The rule states that 90% of a program’s execution 
time is spent in only 10% of the code and highlights the 
significance of locality in evaluating and optimising 
cache performance.  

Fundamentally, there are two types of locality that a 
cache exploits to achieve favourable hit rates: temporal 
locality, which is apparent when identical memory 
references occur close together in time; and spatial 
locality, which is present when physically proximate 
references occur close together in time. A cache can 
take advantage of temporal locality by keeping recently 
referenced data as long as possible, while spatial 
locality is exploited by performing block transfers 
(line-fills) on a miss. A synthetic memory reference 
model must seek to preserve the original temporal and 
spatial locality information. We capture spatial locality 
using line-size granularity and map memory references 
to cache line numbers. Any unique references mapping 
to the same cache line are treated as identical 
references. We use a distribution based on the LRUSM 
to quantify temporal locality. The LRUSM is 
formulated from the number of unique intervening 



memory references between two identical references. 
Although intended to apply to caches with LRU block 
replacement, the stack distance is a useful metric of 
temporal locality regardless of replacement policy and 
can in fact form the foundation for trace generation for 
caches with random block replacement. Listing 1 
describes the pseudo-code of the trace profiling 
algorithm.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Listing 1. Trace profiling algorithm. 

 
We use a dynamically growing integer stack (S). 

For each memory reference R we see if it is resident in 
the stack. If R is not found then it is pushed directly to 
the top of the stack and assigned a stack distance (sd) 
value of -1. If R is found in the stack then it is removed 
from its position and then pushed to the top. The depth 
from which R is fetched is the new sd. The stack 
distances are stored in a stack distance string data 
structure (SDS). New line accesses theoretically have a 
stack distance of ∞ as they have not been referenced 
previously but we use a finite value of -1 to enable 
quantitative profiling for the trace generation 
algorithm. We also capture new line accesses and the 
order in which they appear (L), the number of which 
we describe as the full working-set size of the 
application program code. In addition, a count of the 
total number of references is maintained. A cache line 
size of 32 bytes is assumed. 

SDS is profiled to generate a distribution of 
probabilities. Stack distance values with a probability 
lower than 0.001% are discarded to reduce the size of 
the distribution set and to improve performance of the 
trace generation algorithm. The probability distribution 
is then integrated to generate the cumulative 
distribution of stack distance values as a non-
decreasing function: 

 
 
The cumulative probability distribution F and 

corresponding stack distance values SD are stored as 
numerically ordered probability vectors in separate 
data structures. 

 
4. Trace Generation 

 
The trace generation algorithm is modelled as a 

Markov chain. A Markov chain is a discrete-time 
stochastic process that describes the different states a 
system can assume at successive time intervals. The 
Markov property stipulates that a state transition 
depends only on the current state of the system and not 
on past or future states. We use a two-state Markov 
chain model with the first state generating new memory 
references and the second state generating memory 
references based on a history of previous references. 
Both states are governed by the stack distance 
cumulative probability distribution vector F. 

Stack distance values are generated by a pseudo-
random number generator issuing a number in the 
interval [0:1] that is mapped to a stack distance using 
the Inverse Transform Sampling method [25], as 
illustrated in Figure 1. 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. Stack distance mapping. 
 

A stack distance value of -1 issues a new memory 
reference while any other value generates a previous 
reference. Inter-state and intra-state probabilities are 
treated as stochastically independent in line with the 
Markov property, as shown in Figure 2. 

Fi=Pi+Fi-1  ∀   i   where F0=P0 procedure Profile(tracefile) 
declareFIFO(SDS) 
declareFIFO(L) 
declareStack(S) 
B:=32 
SIZE:=0 
LCOUNT:=0 
while forever 
 R:=nextRef(tracefile) 
 if R=null then break  
 else 
  R:=R/B 
  for i:=0 to SIZE 
   if R=S[i] then break 
  end for 
  if i=SIZE then 
   sd=-1 
   pushBottom(SDS, sd) 
   pushBottom(L, R) 
   pushTop(S, R) 
   SIZE:=SIZE+1 
  else 
   sd:=i 
   pushBottom(SDS, sd) 
   temp:=S[sd] 
   remove(S, sd) 
   pushTop(S, temp) 
  end if 
  LCOUNT:=LCOUNT+1 
 end if 
end while 
end procedure 
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Figure 2. Markov model for trace generation. 
 
The key to the algorithm for random block 

replacement caches is the maintenance of a FIFO data 
structure that schedules the order of memory 
references. The FIFO is initialised with the full 
working-set of memory references mapped as cache 
line numbers (L). On every request for a new reference 
(state S1), the element at the front of the FIFO is 
popped off and pushed to the back, before being 
mapped back to a memory reference and passed to the 
output. On every request for an existing reference (state 
S2), the element at the requested stack distance is read 
from the back of the FIFO and passed to the output. 
The depth at which the element is fetched from the 
FIFO must be less than the running total of newly 
generated references (NEWREF). This is achieved by 
dynamically scaling the random number before it is 
mapped to the stack distance cumulative distribution. 
Stack distance values are selected from the stack 
distance probability vector (SD) using its 
corresponding cumulative probability distribution (F). 
The maximum possible stack distance value in theory is 
the length of the FIFO, but practically it is the value of 
the last element in SD. Both SD and F are numerically 
ordered vectors as F is a monotonically increasing 
cumulative distribution function. Listing 2 summarises 
the procedure for arbitrary length trace generation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Listing 2. Trace generation algorithm for random 
replacement caches. 

For LRU replacement, the procedure is almost 
identical except for a slight modification in the 
scheduler. As before, memory references are output 
from the top of the stack for each new reference while 
previous references use the bottom of the stack as the 
base and an offset equal to the requested stack distance. 
However additionally, each request for a previous 
reference causes the reference element at that depth to 
be removed and pushed to the bottom of the stack to 
represent the fact it was the most recently used. As the 
trace generation progresses, the stack organises itself 
such that the reference element at the bottom of the 
stack is the most recently used, with frequency 
gradually reducing up to the least recently used 
reference element at the top of the stack. Listing 3 
summarises the procedure. Listing 4 presents the 
algorithm for stack distance generation employed in 
both procedures. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Listing 3. Trace generation algorithm for LRU 
replacement caches. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Listing 4. Stack distance generation algorithm 

  
 S1 

  
 S2 

Fi =0 

Fi =0 

Fi >0 
Fi >0 

procedure TraceGen(L, SD, F, LCOUNT)  
declareFIFO(S) 
initialise(S, L) 
SIZE:=getLength(S) 
TLENGTH=arbitrary 
B:=32 
NEWREF:=0 
for i:=0 to TLENGTH 
 sd:=genStackDistance(SD,F, NEWREF) 
 if sd=-1 then 
  memRef:=S[0] 
  popFront(S) 
  pushBack(S, memRef) 
  memRef:=memRef*B 
  NEWREF:=NEWREF+1 
 else 
  memRef:=S[SIZE-1-sd] 
  memRef:=memRef*B 
 end if 
end for 
end procedure 

procedure TraceGen(L, SD, F, LCOUNT)  
declareStack(S) 
initialise(S, L) 
SIZE:=getLength(S) 
TLENGTH=arbitrary 
B:=32 
NEWREF:=0 
for i:=0 to TLENGTH 
 sd:=genStackDistance(SD,F, NEWREF) 
 if sd=-1 then 
  memRef:=S[0] 
  popTop(S) 
  pushBottom(S, memRef) 
  memRef:=memRef*B 
  NEWREF:=NEWREF+1 
 else 
  memRef:=S[SIZE-1-sd] 
  memRef:=memRef*B 
  pop(S, SIZE-1-sd) 
  pushBottom(S, memRef) 
 end if 
end for 
end procedure 

procedure genStackDistance(SD, F, NEWREF) 
SIZE:=getLength(SD) 
maxSD:=SD[SIZE-1] 
ran:=randomFloat(0,1) 
if NEWREF<=maxSD then 
 k:=0 
 while SD[k]<NEWREF 
  k:=k+1 
 end while 
 ran:=ran*F[k-1] 
end if 
for k:=0 to SIZE 
 if ran<F[k] then 
  sd:=SD[k] 
  return sd 
 end if 
end for 
end procedure 



5. Evaluation 
 
We evaluated the approach using the ARMulator 

instruction set simulator [2, 20]. ARMulator simulates 
the instructions sets and architecture of a variety of 
ARM processors, as well as memory systems and 
peripherals. We selected an ARM926 processor model 
[18], which has a Harvard cached architecture and 
hosts an ARM9 32-bit integer core. It was connected to 
program and data memory models through separate 
AMBA AHB interfaces. We simulated a variety of 
application benchmarks that may typically run in an 
embedded system: 

 
1.  mpeg2enc – MPEG-2 format video encoder 

from the MediaBench benchmark suite [21]. 
2. djpeg – JPEG format image decoder from the 

EEMBC Consumer benchmark suite [22]. 
3.  aes – security application from the EEMBC 

Consumer benchmark suite that implements 
the Advanced Encryption Standard using the 
Rijndael algorithm [22]. 

4. wcdma – application program that emulates 
the physical layer operation of the W-CDMA 
communications protocol [23]. 

5.  go – artificial intelligence game from the 
SpecInt95 benchmark suite that plays the 
game Go against itself [24]. 

6. compress – compression algorithm from the 
SpecInt95 benchmark suite that employs 
Limpel-Ziv encoding [24]. 

 
Executable images of the application source code 

were created using the ARM development toolkit [19]. 
The source code was compiled with optimisation level 
-O2 and targeted specifically for the ARM9 core to 
maximise use of any static scheduling and instruction-
set extensions. ARM program code supports static 
prefetching by way of conditional code generated by 
the compiler, in addition to the dynamic prefetching 
offered by the dedicated prefetch unit in the core. For 
our validation, we analysed traces of data transactions 
initiated by the core.  

 
5.1 Trace Characterisation 

 
We captured the cumulative distribution of stack 

distance for the data references of the application 
benchmarks. A stack distance value of zero is a cache 
line repetition, or in other words an intra-line memory 
reference, and is the single most frequent occurrence 
due to the naturally sequential nature of program 
execution and the atomic execution of multiple 
load/store operations. We chose not to include line 

repetition in our analysis as it has no bearing on the 
number of cache misses. The stack distance distribution 
of the references is illustrated in Figure 3. The relative 
smoothness of the curves indicates that the data 
memory locations are generally referenced in a 
progressive, orderly manner. 

 

 
Figure 3. Cumulative distribution of stack distance for 
the data reference traces. 

 
Table I summarises some of the characteristics of 

the data traces. The ratio of dynamic to static coverage 
is defined as the ratio of the number of new lines 
observed in the program execution (full working-set) to 
the number of cache lines in the static image. We use a 
32-byte line size. The static data size of the image is 
the combined size of the read-only data (constants, 
literals, etc), read-write data and zero-initialised data. 
Additionally, its full working-set also includes stack 
and heap accesses. The average stack distance can be a 
useful basic metric of locality and is defined as the 
mean number of unique cache line accesses between 
identical accesses: 

 
     ∑ ×=

i
SDi i

PSDSDAverage  

 
 Static 

Data Size 
(Bytes) 

Full 
Working-

Set  
(lines) 

Dynamic-
Static 

Coverage 
ratio 

Ave. 
SD 

1 16820 7781 46% 4.7 
2 815184 28375 3.5% 73.6 
3 3660 190 5.2% 5.3 
4 992476 41342 4.2% 29.2 
5 571468 20031 3.5% 33.7 
6 44112988 1380585 3.1% 398.6 

Table I. Characteristics of the traces for mpeg2enc (1), 
djpeg (2), aes (3), wcdma (4), go (5), and compress 
(6). 



5.2 Trace Simulation 
 
The profile data of each application benchmark was 

passed to the synthetic trace generation algorithm, 
which was configured to generate traces of half their 
original length. This was a somewhat arbitrary cut-off 
but allowed sufficient time for cache warmup. The 
synthetic traces were evaluated against their real 
counterpart using the DineroIII trace-driven cache 
simulator [4]. DineroIII was configured with a write-
allocate write miss policy, and a 32 byte cache line 
size. In order to demonstrate the performance of the 
approach, we looked at set-associative caches with all 
ways through to full associativity and cache size C ∈  
{64:16K} bytes. Figures 4 and 5 illustrate the cache 
miss ratio results of the real traces (expected) versus 
the synthetic traces (observed) for random and LRU 
block replacement caches.   

We note from the simulation results that the 
observed performance of the synthetic traces is 
generally representative of the expected behaviour. 
Although the synthetic trace for go consistently 
overestimates the miss ratio for random block 
replacement caches, it does so with an offset that is 
proportional to cache size. As a result, the synthetic 
trace still has the potential to perform accurately to find 
the best cache configuration for that application (based 
on some criteria such as minimising miss ratio, area, 
and/or latency) since the observed results do very well 
to track the expected miss ratios, albeit with the 
proportional offset. While it is accepted that no 
synthetic trace generation model can consistently 
generate exact cache simulation results for every cache 
configuration and for every input trace due to the very 
nature of stochastic modelling, our results typically 
show that we are able to preserve the cacheability 
properties of the real trace and generate a synthetic 
trace with similar behaviour for random and LRU 
block replacement caches operating over a wide range 
of configurations. A comparison with the results 
presented by Sorenson [11] demonstrates the improved 
accuracy of the approach relative to some existing 
models. 

 
5.3 Performance Evaluation 

 
The speed of execution-driven cache simulation can 

be significantly affected not only by workload 
characteristics but also the cache configuration. A 
notable trade-off exists between cache size and 
associativity. A smaller cache size causes a higher 
number of capacity misses, thereby increasing latency 
by the increased number of bus transactions. A higher 
associativity serves to reduce the number of conflict 

misses (and therefore bus usage), but the way selection 
logic imposes its own latency overhead.  Using 
ARMulator v1.4 running on the Intel Pentium IV 
3.00GHz CPU under Microsoft XP, we assessed the 
performance of ARMulator executing the mpeg2enc 
application benchmark for cache size C ∈  {1K, 16K} 
bytes and associativity A ∈  {direct-mapped:fully-
associative}. The results were compared with the 
combined time of the synthetic trace generation 
algorithm and the corresponding trace-driven cache 
simulation in the manner described previously. Table II 
illustrates the results for 135x106 instruction 
executions. The table shows the performance of ISA 
emulation is dependent on cache configuration and that 
performance can deteriorate with increasing 
associativity and/or decreasing cache size. On the other 
hand, the synthetic trace generation and simulation 
generally takes a fixed length of time. 

 
 time(secs) 

C=1K C=16K A 
ISA Model ISA Model 

1 138 76 121 76 
2 131 76 117 76 
4 125 76 117 76 
8 133 77 119 76 

16 127 78 122 77 
32 415 81 142 78 
64 - - 170 78 

128 - - 182 79 
256 - - 192 80 
512 - - 1495 82 

Table II. Performance evaluation results. 
 

6. Conclusions 
 

 Exploration of cache design space is usually 
performed using execution-driven or trace-driven 
simulation. Achieving the accuracy of execution-driven 
simulation is a trade-off against performance and 
factors such as architectural simulation models and 
application source-code. Trace-driven simulation is an 
efficient alternative, but large traces can present 
significant storage and portability problems. 

We have presented a synthetic trace generation 
methodology for trace-driven cache simulation that 
uses an efficient adaptation of the LRUSM that 
employs cache line profiling to concisely capture trace 
locality. A trace generation algorithm using a two-state 
Markov chain model is used to generate arbitrary 
length traces independent of cache size and 
associativity. Extensive simulation and analysis of 
traces of a variety of application benchmarks show the  
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Figure 4. Results for random block replacement. 
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Figure 5. Results for LRU block replacement. 



synthetic traces generally preserve the cacheability 
properties of the real trace for both LRU and random 
block replacement caches operating over a wide range 
of configurations. Performance evaluations against the 
ARMulator ISS show that the simulation speed of the 
approach is generally independent of cache architecture 
and has the potential to perform significantly faster 
than ISA emulation. 
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