
Synthetic Trace-Driven Simulation of Cache Memory

Abstract

The widening gap between CPU and memory speed

has made caches an integral feature of modern high-
performance processors. The high degree of
configurability of cache memory can require extensive
design space exploration and is generally performed
using execution-driven or trace-driven simulation.
Execution-driven simulators can be highly accurate
but require a detailed development flow and may
impose performance costs. Trace-driven simulators are
an efficient alternative but maintaining large traces
can present storage and portability problems. We
propose a distribution-driven trace generation
methodology as an alternative to traditional execution-
and trace- driven simulation. An adaptation of the
Least Recently Used Stack Model is used to concisely
capture the key locality features in a trace and a two-
state Markov chain model is used for trace generation.
Simulation and analysis of a variety of embedded
application traces demonstrate the cacheability
characteristics of the synthetic traces are generally
very well preserved and similar to their real trace, and
we also highlight the potential performance
improvement over ISA emulation.

1. Introduction

Caches are highly configurable features of modern

processors and their architecture is characterised by
parameters such as size, associativity, line (block) size,
and replacement policy. Cache performance can vary
considerably depending on the choice of configuration
and workload, with penalties for an incorrectly
configured cache including an increase in latency and
area overhead (in using oversized caches). In order to
maximise performance and reduce cost, much emphasis
is therefore placed on finding the optimum
configuration for an expected application workload.

Cache memory is usually evaluated using
execution-driven or trace-driven simulation. Execution-
driven simulation can be performed at various levels of
abstraction, from the algorithmic level to the bit-
accurate and cycle-accurate RTL [1]. Instruction Set
Architecture (ISA) emulators such as ARMulator [2]
and SimpleScalar [3] can perform execution-driven
cache simulation with a high level of behavioural and
timing accuracy. However, execution-driven simulation
can be slow and requires architectural models,
application source-code, and a development toolkit.
Trace-driven simulation is a faster and increasingly
common way of evaluating memory systems. Trace-
driven simulators such DineroIII [4] accept a
chronological stream of memory references and
evaluate miss statistics based on the selected
configuration. Trace-driven simulation can be an
attractive way of exploring multi-level cache designs
and multiprocessor system caches. However, as
applications become more complex, they generate
increasingly larger traces. A key problem is the storage
requirement of enormous trace files containing
hundreds of millions of memory references.
Truncation, trace-sampling, and compression can be
employed to reduce the effective length of a trace but
often at the expense of accuracy and/or time. Synthetic
trace generation can address the problems of
maintaining large traces by using a distribution-driven
(stochastic) model to generate an arbitrary number of
memory references on-the-fly; the reference stream can
then be passed to a trace-driven cache model for
system evaluation. Unfortunately, synthetic trace
models usually lack accuracy [11] unless detailed
profiling procedures are employed, and as such may
not always be suitable for fast and accurate cache
design space exploration.

2. Related Work

Antony Harris
ARM Ltd,

Sheffield, UK.
aharris@arm.com

Rahman Hassan
Institute for System Level Integration,

Livingston, UK.
rhassan@sli-institute.ac.uk

Nigel Topham, Aris Efthymiou
School of Informatics,

University of Edinburgh, UK.
{npt, aefthymi}@inf.ed.ac.uk

An early proposal by Denning [6] considered
generating memory references based on their
independent probability. Known as the Independent
Reference Model (IRM), the approach fails to capture
the locality of memory references inherent in a real
trace. Thiebaut [8] looks at the generation of synthetic
program traces using an extension of the basic Distance
Model [7]. The idea is to model the probability
distribution of the jumps between consecutive memory
references as a hyperbolic relationship and generate
new references using a random walk through an
address space. The proposed model uses two
parameters corresponding to the working-set size and
locality of reference. The working-set size for a cache
is the storage needed at any one time and contains
current and recent data. As the working-set changes
during the execution of a program, determining a
parameter to quantify its size requires a number of
simulation runs. Eeckhout [9] proposes an approach of
profiling instruction mixes, branches and dependencies
to establish a pattern in the memory reference stream.
The approach requires detailed trace information to
perform the profiling procedures and operand
evaluations. The Partial Markov Model (PMM)
presented in Agarwal [10] is based on a two-state
Markov chain. The first state produces sequential
memory references and the second state generates
random references. Maintaining a state or switching
state is governed by the data captured from the real
trace. A problem with the proposed approach is that a
single probability threshold for state transitioning does
not capture sufficient temporal information. Sorenson
[11] highlights the need to capture both spatial and
temporal information from a real trace and extends the
original work by Grimsrud [14] on three-dimensional
plots called locality surfaces for visualising reference
locality. Sorenson does not present a practical approach
to quantify locality but does evaluate some existing
synthetic trace models and analyses their performance
using the locality surface. Berg [12] captures trace
locality by profiling the reuse distance and applies the
distribution to a probabilistic cache model to estimate
the miss ratio of fully-associative caches. The reuse
distance is the number of intervening memory
references between identical references. The author
uses the reuse distance due to the fact that a memory
reference is less likely to remain in the cache the longer
it has not been accessed – and it is this likelihood of
eviction that the proposed cache model aims to exploit.
However, the author’s assumption that the larger the
reuse distance, the higher the probability of a cache line
eviction is not necessarily true. The intermediate
accesses could all be to the same memory location and
a large reuse distance would not reflect this pattern. A

much better measure of locality is presented by
Mattson [13] in the form of the Least Recently Used
Stack Model (LRUSM). The LRUSM is based on the
stack distance, which is the number of unique
intervening memory references between identical
references and is a very effective measure of temporal
locality. Grimsrud [14] analyses the efficiency of the
stack distance model in preserving temporal locality
using his locality surfaces, while Brehob [15] uses the
stack distance model for implementing a probabilistic
cache model to evaluate miss ratio. The works of
Mattson, Grimsrud, and Brehob emphasise the fact that
the LRUSM is a natural representation of least recently
used behaviour. However, the works do not analyse the
efficacy of the LRUSM in the generation of synthetic
traces for trace-driven simulation of cache memory. In
our work, we implement an adaptation of the LRUSM
and apply it to an algorithm employing a two-state
Markov chain and show we can generate accurate
synthetic traces aimed at cache simulation using both
least recently used and random block replacement
policies. We use traces collated from application
benchmarks executed on an embedded processor and
evaluate the approach using a comprehensive range of
cache configurations. We also compare the approach
against ISA emulation to highlight the potential
performance improvement.

3. Trace Locality

An important general rule of program execution is

the 90/10 rule [16], also known as the Pareto Principle
[17]. The rule states that 90% of a program’s execution
time is spent in only 10% of the code and highlights the
significance of locality in evaluating and optimising
cache performance.

Fundamentally, there are two types of locality that a
cache exploits to achieve favourable hit rates: temporal
locality, which is apparent when identical memory
references occur close together in time; and spatial
locality, which is present when physically proximate
references occur close together in time. A cache can
take advantage of temporal locality by keeping recently
referenced data as long as possible, while spatial
locality is exploited by performing block transfers
(line-fills) on a miss. A synthetic memory reference
model must seek to preserve the original temporal and
spatial locality information. We capture spatial locality
using line-size granularity and map memory references
to cache line numbers. Any unique references mapping
to the same cache line are treated as identical
references. We use a distribution based on the LRUSM
to quantify temporal locality. The LRUSM is
formulated from the number of unique intervening

memory references between two identical references.
Although intended to apply to caches with LRU block
replacement, the stack distance is a useful metric of
temporal locality regardless of replacement policy and
can in fact form the foundation for trace generation for
caches with random block replacement. Listing 1
describes the pseudo-code of the trace profiling
algorithm.

Listing 1. Trace profiling algorithm.

We use a dynamically growing integer stack (S).

For each memory reference R we see if it is resident in
the stack. If R is not found then it is pushed directly to
the top of the stack and assigned a stack distance (sd)
value of -1. If R is found in the stack then it is removed
from its position and then pushed to the top. The depth
from which R is fetched is the new sd. The stack
distances are stored in a stack distance string data
structure (SDS). New line accesses theoretically have a
stack distance of ∞ as they have not been referenced
previously but we use a finite value of -1 to enable
quantitative profiling for the trace generation
algorithm. We also capture new line accesses and the
order in which they appear (L), the number of which
we describe as the full working-set size of the
application program code. In addition, a count of the
total number of references is maintained. A cache line
size of 32 bytes is assumed.

SDS is profiled to generate a distribution of
probabilities. Stack distance values with a probability
lower than 0.001% are discarded to reduce the size of
the distribution set and to improve performance of the
trace generation algorithm. The probability distribution
is then integrated to generate the cumulative
distribution of stack distance values as a non-
decreasing function:

The cumulative probability distribution F and

corresponding stack distance values SD are stored as
numerically ordered probability vectors in separate
data structures.

4. Trace Generation

The trace generation algorithm is modelled as a

Markov chain. A Markov chain is a discrete-time
stochastic process that describes the different states a
system can assume at successive time intervals. The
Markov property stipulates that a state transition
depends only on the current state of the system and not
on past or future states. We use a two-state Markov
chain model with the first state generating new memory
references and the second state generating memory
references based on a history of previous references.
Both states are governed by the stack distance
cumulative probability distribution vector F.

Stack distance values are generated by a pseudo-
random number generator issuing a number in the
interval [0:1] that is mapped to a stack distance using
the Inverse Transform Sampling method [25], as
illustrated in Figure 1.

Figure 1. Stack distance mapping.

A stack distance value of -1 issues a new memory
reference while any other value generates a previous
reference. Inter-state and intra-state probabilities are
treated as stochastically independent in line with the
Markov property, as shown in Figure 2.

Fi=Pi+Fi-1 ∀ i where F0=P0 procedure Profile(tracefile)
declareFIFO(SDS)
declareFIFO(L)
declareStack(S)
B:=32
SIZE:=0
LCOUNT:=0
while forever
 R:=nextRef(tracefile)
 if R=null then break
 else
 R:=R/B
 for i:=0 to SIZE
 if R=S[i] then break
 end for
 if i=SIZE then
 sd=-1
 pushBottom(SDS, sd)
 pushBottom(L, R)
 pushTop(S, R)
 SIZE:=SIZE+1
 else
 sd:=i
 pushBottom(SDS, sd)
 temp:=S[sd]
 remove(S, sd)
 pushTop(S, temp)
 end if
 LCOUNT:=LCOUNT+1
 end if
end while
end procedure

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

Stack Distance

P
ro

ba
bi

lit
y

Figure 2. Markov model for trace generation.

The key to the algorithm for random block

replacement caches is the maintenance of a FIFO data
structure that schedules the order of memory
references. The FIFO is initialised with the full
working-set of memory references mapped as cache
line numbers (L). On every request for a new reference
(state S1), the element at the front of the FIFO is
popped off and pushed to the back, before being
mapped back to a memory reference and passed to the
output. On every request for an existing reference (state
S2), the element at the requested stack distance is read
from the back of the FIFO and passed to the output.
The depth at which the element is fetched from the
FIFO must be less than the running total of newly
generated references (NEWREF). This is achieved by
dynamically scaling the random number before it is
mapped to the stack distance cumulative distribution.
Stack distance values are selected from the stack
distance probability vector (SD) using its
corresponding cumulative probability distribution (F).
The maximum possible stack distance value in theory is
the length of the FIFO, but practically it is the value of
the last element in SD. Both SD and F are numerically
ordered vectors as F is a monotonically increasing
cumulative distribution function. Listing 2 summarises
the procedure for arbitrary length trace generation.

Listing 2. Trace generation algorithm for random
replacement caches.

For LRU replacement, the procedure is almost
identical except for a slight modification in the
scheduler. As before, memory references are output
from the top of the stack for each new reference while
previous references use the bottom of the stack as the
base and an offset equal to the requested stack distance.
However additionally, each request for a previous
reference causes the reference element at that depth to
be removed and pushed to the bottom of the stack to
represent the fact it was the most recently used. As the
trace generation progresses, the stack organises itself
such that the reference element at the bottom of the
stack is the most recently used, with frequency
gradually reducing up to the least recently used
reference element at the top of the stack. Listing 3
summarises the procedure. Listing 4 presents the
algorithm for stack distance generation employed in
both procedures.

Listing 3. Trace generation algorithm for LRU
replacement caches.

Listing 4. Stack distance generation algorithm

 S1

 S2

Fi =0

Fi =0

Fi >0
Fi >0

procedure TraceGen(L, SD, F, LCOUNT)
declareFIFO(S)
initialise(S, L)
SIZE:=getLength(S)
TLENGTH=arbitrary
B:=32
NEWREF:=0
for i:=0 to TLENGTH
 sd:=genStackDistance(SD,F, NEWREF)
 if sd=-1 then
 memRef:=S[0]
 popFront(S)
 pushBack(S, memRef)
 memRef:=memRef*B
 NEWREF:=NEWREF+1
 else
 memRef:=S[SIZE-1-sd]
 memRef:=memRef*B
 end if
end for
end procedure

procedure TraceGen(L, SD, F, LCOUNT)
declareStack(S)
initialise(S, L)
SIZE:=getLength(S)
TLENGTH=arbitrary
B:=32
NEWREF:=0
for i:=0 to TLENGTH
 sd:=genStackDistance(SD,F, NEWREF)
 if sd=-1 then
 memRef:=S[0]
 popTop(S)
 pushBottom(S, memRef)
 memRef:=memRef*B
 NEWREF:=NEWREF+1
 else
 memRef:=S[SIZE-1-sd]
 memRef:=memRef*B
 pop(S, SIZE-1-sd)
 pushBottom(S, memRef)
 end if
end for
end procedure

procedure genStackDistance(SD, F, NEWREF)
SIZE:=getLength(SD)
maxSD:=SD[SIZE-1]
ran:=randomFloat(0,1)
if NEWREF<=maxSD then
 k:=0
 while SD[k]<NEWREF
 k:=k+1
 end while
 ran:=ran*F[k-1]
end if
for k:=0 to SIZE
 if ran<F[k] then
 sd:=SD[k]
 return sd
 end if
end for
end procedure

5. Evaluation

We evaluated the approach using the ARMulator

instruction set simulator [2, 20]. ARMulator simulates
the instructions sets and architecture of a variety of
ARM processors, as well as memory systems and
peripherals. We selected an ARM926 processor model
[18], which has a Harvard cached architecture and
hosts an ARM9 32-bit integer core. It was connected to
program and data memory models through separate
AMBA AHB interfaces. We simulated a variety of
application benchmarks that may typically run in an
embedded system:

1. mpeg2enc – MPEG-2 format video encoder

from the MediaBench benchmark suite [21].
2. djpeg – JPEG format image decoder from the

EEMBC Consumer benchmark suite [22].
3. aes – security application from the EEMBC

Consumer benchmark suite that implements
the Advanced Encryption Standard using the
Rijndael algorithm [22].

4. wcdma – application program that emulates
the physical layer operation of the W-CDMA
communications protocol [23].

5. go – artificial intelligence game from the
SpecInt95 benchmark suite that plays the
game Go against itself [24].

6. compress – compression algorithm from the
SpecInt95 benchmark suite that employs
Limpel-Ziv encoding [24].

Executable images of the application source code

were created using the ARM development toolkit [19].
The source code was compiled with optimisation level
-O2 and targeted specifically for the ARM9 core to
maximise use of any static scheduling and instruction-
set extensions. ARM program code supports static
prefetching by way of conditional code generated by
the compiler, in addition to the dynamic prefetching
offered by the dedicated prefetch unit in the core. For
our validation, we analysed traces of data transactions
initiated by the core.

5.1 Trace Characterisation

We captured the cumulative distribution of stack

distance for the data references of the application
benchmarks. A stack distance value of zero is a cache
line repetition, or in other words an intra-line memory
reference, and is the single most frequent occurrence
due to the naturally sequential nature of program
execution and the atomic execution of multiple
load/store operations. We chose not to include line

repetition in our analysis as it has no bearing on the
number of cache misses. The stack distance distribution
of the references is illustrated in Figure 3. The relative
smoothness of the curves indicates that the data
memory locations are generally referenced in a
progressive, orderly manner.

Figure 3. Cumulative distribution of stack distance for
the data reference traces.

Table I summarises some of the characteristics of

the data traces. The ratio of dynamic to static coverage
is defined as the ratio of the number of new lines
observed in the program execution (full working-set) to
the number of cache lines in the static image. We use a
32-byte line size. The static data size of the image is
the combined size of the read-only data (constants,
literals, etc), read-write data and zero-initialised data.
Additionally, its full working-set also includes stack
and heap accesses. The average stack distance can be a
useful basic metric of locality and is defined as the
mean number of unique cache line accesses between
identical accesses:

 ∑ ×=

i
SDi i

PSDSDAverage

 Static

Data Size
(Bytes)

Full
Working-

Set
(lines)

Dynamic-
Static

Coverage
ratio

Ave.
SD

1 16820 7781 46% 4.7
2 815184 28375 3.5% 73.6
3 3660 190 5.2% 5.3
4 992476 41342 4.2% 29.2
5 571468 20031 3.5% 33.7
6 44112988 1380585 3.1% 398.6

Table I. Characteristics of the traces for mpeg2enc (1),
djpeg (2), aes (3), wcdma (4), go (5), and compress
(6).

5.2 Trace Simulation

The profile data of each application benchmark was

passed to the synthetic trace generation algorithm,
which was configured to generate traces of half their
original length. This was a somewhat arbitrary cut-off
but allowed sufficient time for cache warmup. The
synthetic traces were evaluated against their real
counterpart using the DineroIII trace-driven cache
simulator [4]. DineroIII was configured with a write-
allocate write miss policy, and a 32 byte cache line
size. In order to demonstrate the performance of the
approach, we looked at set-associative caches with all
ways through to full associativity and cache size C ∈
{64:16K} bytes. Figures 4 and 5 illustrate the cache
miss ratio results of the real traces (expected) versus
the synthetic traces (observed) for random and LRU
block replacement caches.

We note from the simulation results that the
observed performance of the synthetic traces is
generally representative of the expected behaviour.
Although the synthetic trace for go consistently
overestimates the miss ratio for random block
replacement caches, it does so with an offset that is
proportional to cache size. As a result, the synthetic
trace still has the potential to perform accurately to find
the best cache configuration for that application (based
on some criteria such as minimising miss ratio, area,
and/or latency) since the observed results do very well
to track the expected miss ratios, albeit with the
proportional offset. While it is accepted that no
synthetic trace generation model can consistently
generate exact cache simulation results for every cache
configuration and for every input trace due to the very
nature of stochastic modelling, our results typically
show that we are able to preserve the cacheability
properties of the real trace and generate a synthetic
trace with similar behaviour for random and LRU
block replacement caches operating over a wide range
of configurations. A comparison with the results
presented by Sorenson [11] demonstrates the improved
accuracy of the approach relative to some existing
models.

5.3 Performance Evaluation

The speed of execution-driven cache simulation can

be significantly affected not only by workload
characteristics but also the cache configuration. A
notable trade-off exists between cache size and
associativity. A smaller cache size causes a higher
number of capacity misses, thereby increasing latency
by the increased number of bus transactions. A higher
associativity serves to reduce the number of conflict

misses (and therefore bus usage), but the way selection
logic imposes its own latency overhead. Using
ARMulator v1.4 running on the Intel Pentium IV
3.00GHz CPU under Microsoft XP, we assessed the
performance of ARMulator executing the mpeg2enc
application benchmark for cache size C ∈ {1K, 16K}
bytes and associativity A ∈ {direct-mapped:fully-
associative}. The results were compared with the
combined time of the synthetic trace generation
algorithm and the corresponding trace-driven cache
simulation in the manner described previously. Table II
illustrates the results for 135x106 instruction
executions. The table shows the performance of ISA
emulation is dependent on cache configuration and that
performance can deteriorate with increasing
associativity and/or decreasing cache size. On the other
hand, the synthetic trace generation and simulation
generally takes a fixed length of time.

 time(secs)

C=1K C=16K A
ISA Model ISA Model

1 138 76 121 76
2 131 76 117 76
4 125 76 117 76
8 133 77 119 76

16 127 78 122 77
32 415 81 142 78
64 - - 170 78

128 - - 182 79
256 - - 192 80
512 - - 1495 82

Table II. Performance evaluation results.

6. Conclusions

 Exploration of cache design space is usually
performed using execution-driven or trace-driven
simulation. Achieving the accuracy of execution-driven
simulation is a trade-off against performance and
factors such as architectural simulation models and
application source-code. Trace-driven simulation is an
efficient alternative, but large traces can present
significant storage and portability problems.

We have presented a synthetic trace generation
methodology for trace-driven cache simulation that
uses an efficient adaptation of the LRUSM that
employs cache line profiling to concisely capture trace
locality. A trace generation algorithm using a two-state
Markov chain model is used to generate arbitrary
length traces independent of cache size and
associativity. Extensive simulation and analysis of
traces of a variety of application benchmarks show the

mpeg2enc - rand

0%

10%

20%

30%

40%

64
 2-

W

12
8 4

-W

25
6 4

-W

51
2 2

-W

51
2 8

-W

1K 2-
W

1K
 8-

W

1K
 32

-W

2K
 4-

W

2K
 16

-W

2K
 64

-W

4K
 4-

W

4K
 16

-W

4K
 64

-W

Cache Configuration

%
 M

is
s

R
at

io

Expected
Observed

djpeg - rand

0%
10%
20%
30%

40%
50%
60%
70%

64
 2

-W

25
6 2

-W

51
2 2

-W

51
2 1

6-
W

1K
 8-

W

2K
 2-

W

2K
 16

-W

4K
 2-

W

4K
 16

-W

4K
 12

8-
W

8K
 8-

W

8K
 64

-W

Cache Configuration

%
 M

is
s

R
at

io

Expected
Observed

aes - rand

0%
10%
20%
30%
40%
50%
60%
70%
80%

64
 2-

W

12
8 4

-W

25
6 4

-W

51
2 2

-W

51
2 8

-W

1K
 2-

W

1K
 8-

W

1K 32
-W

2K
 4-

W

2K
 16

-W

2K 64
-W

Cache Configuration

%
 M

is
s

R
at

io

Expected
Observed

wcdma - rand

0%

10%

20%

30%

40%

50%

60%

64
 2-

W

12
8 4

-W

25
6 4

-W

51
2 2

-W

51
2 8

-W

1K
 2-

W

1K
 8-

W

1K
 32

-W

2K
 4-

W

2K
 16

-W

2K
 64

-W

Cache Configuration

%
 M

is
s

R
at

io

Expected
Observed

go - rand

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

64
 2-

W

25
6 2

-W

51
2 2

-W

51
2 1

6-W

1K 8-
W

2K
 2-

W

2K
 16

-W

4K
 2-

W

4K
 16

-W

4K 12
8-W

8K
 8-

W

8K
 64

-W

16
K 2-W

16
K 16-

W

16K
 1

28-W

Cache Configuration

%
 M

is
s

R
at

io

Expected
Observed

compress - rand

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

64
 2-

W

25
6 2

-W

51
2 2

-W

51
2 1

6-W

1K 8-
W

2K
 2-

W

2K 16
-W

4K
 2-

W

4K
 16

-W

4K 12
8-

W

8K
 8-

W

8K
 64

-W

16
K 2-

W

16
K 1

6-
W

16
K 1

28
-W

Cache Configuration

%
 M

is
s

R
at

io

Expected
Observed

Figure 4. Results for random block replacement.

mpeg2enc - lru

0%

10%

20%

30%

64
 2-

W

128
 4-

W

25
6 4

-W

51
2 2

-W

512
 8-

W

1K
 2-

W

1K
 8-

W

1K
 32

-W

2K
 4-

W

2K
 16

-W

2K
 64

-W

4K
 4-

W

4K
 16

-W

4K
 64

-W

Cache Configuration

%
 M

is
s

R
at

io

Expected
Observed

djpeg - lru

0%
10%
20%
30%
40%
50%
60%
70%
80%

64
 2

-W

12
8 4

-W

25
6 4

-W

51
2 2

-W

51
2 8

-W

1K 2-
W

1K
 8-

W

1K
 32

-W

2K
 4-

W

2K
 16

-W

2K
 64

-W

4K
 4-

W

4K
 16

-W

4K
 64

-W

Cache Configuration

%
 M

is
s

R
at

io

Expected
Observed

aes - lru

0%
10%
20%
30%
40%
50%
60%
70%
80%

64
 2-

W

12
8

4-
W

256
 4-

W

51
2

2-
W

51
2

8-
W

1K
 2-

W

1K
 8-

W

1K
 32

-W

2K
 4-

W

2K
 16

-W

2K
 64

-W

Cache Configuration

%
 M

is
s

R
at

io

Expected
Observed

wcdma - lru

0%

10%

20%

30%

40%

50%

64
 2

-W

25
6 2

-W

51
2 2

-W

51
2 1

6-
W

1K
 8-

W

2K
 2-

W

2K
 16

-W

4K 2-
W

4K
 16

-W

4K
 12

8-
W

8K
 8-

W

8K 64
-W

Cache Configuration

%
 M

is
s

R
at

io

Expected
Observed

go - lru

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

64
 2-

W

25
6

2-
W

51
2

2-
W

51
2 1

6-W

1K 8-
W

2K 2-
W

2K
 16

-W

4K 2-
W

4K
 16

-W

4K
 12

8-
W

8K 8-
W

8K
 64

-W

16
K 2

-W

16
K 16

-W

16
K 12

8-
W

Cache Configuration

%
 M

is
s

R
at

io

Expected
Observed

compress - lru

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

64
 2-

W

25
6 2

-W

51
2 2

-W

51
2 1

6-W

1K
 8-

W

2K
 2-

W

2K
 16

-W

4K 2-
W

4K
 16

-W

4K
 12

8-
W

8K
 8-

W

8K
 64

-W

16
K 2-

W

16
K 16

-W

16
K 1

28
-W

Cache Configuration

%
 M

is
s

R
at

io

Expected
Observed

Figure 5. Results for LRU block replacement.

synthetic traces generally preserve the cacheability
properties of the real trace for both LRU and random
block replacement caches operating over a wide range
of configurations. Performance evaluations against the
ARMulator ISS show that the simulation speed of the
approach is generally independent of cache architecture
and has the potential to perform significantly faster
than ISA emulation.

7. References

[1] J. Connell, ARM System-Level Modeling, ARM

Ltd, 2003.
[2] RealView ARMulator ISS, ARM Ltd, 2004.
[3] T. Austin et al, SimpleScalar Tutorial v4,

University of Michigan.
[4] D. M. Hill, DineroIII Cache Simulator, University

of California, Berkeley, 1985.
[5] D. J. Lilja, Measuring Computer Performance: A

Practitioner’s Guide, Cambridge University Press,
2000.

[6] P. Denning and S. Schwartz, Properties of the
Working-Set Model, Communications of the ACM,
1972.

[7] J. Spirn, Program Behavior: Models and
Measurements, Elsevier, 1977.

[8] D. Thiebaut, J. L. Wolf, and H. S. Stone, Synthetic
Traces for Trace-Driven Simulation of Cache
Memories, IEEE Transactions on Computers, 1992.

[9] L. Eeckhout, K. De Bosschere, and H. Neefs,
Performance Analysis Through Synthetic Trace
Generation, IEEE Symposium on Performance
Analysis of Systems and Software, 2000.

[10] A. Agarwal, M. Horowitz, and J. Hennessy, An
Analytical Cache Model, ACM Transactions on
Computer Systems, 1989.

[11] E. Sorenson and J. K. Flanagan, Evaluating
Synthetic Trace Models using Locality Surfaces,
IEEE Workshop on Workload Characterization,
2002.

[12] E. Berg and E. Hagersten, StatCache: A
Probabilistic Approach to Efficient and Accurate
Data Locality Analysis, IEEE Symposium on
Performance Analysis of Systems and Software,
2004.

[13] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L.
Traiger, Evaluation Techniques for Storage
Hierarchies, IBM System Journal, 1970.

[14] K. Grimsrud, J. Archibald, R. Frost, and B. Nelson,
On The Accuracy of Memory Reference Models,
Seventh International Conference on Modeling
Techniques and Tools for Computer Performance
Evaluation, 1994.

[15] M. Brehob and R. Enbody, An Analytical Model of
Locality and Caching, Michigan State University,
1999.

[16] J. L. Hennessy and D. A. Patterson, Computer
Architecture: A Quantitative Approach, Morgan
Kauffman Publishers, 2003.

[17] D. Spinellis, Code Quality: The Open Source
Perspective, Addison Wesley, 2006.

[18] ARM926E-S Technical Reference Manual, ARM
Ltd, 2001

[19] ARM Developer Suite: Compiler, Linker, and
Utilities Guide, ARM Ltd, 2000.

[20] RealView Developer Suite: AXD and armsd
Debuggers Guide, ARM Ltd, 2004.

[21] C. Lee, M. Potkonjak, and H. Mangione-Smith,
MediaBench: A Tool for Evaluating and
Synthesizing Multimedia and Communications
Systems, Micro-30, November 1997.

[22] EDN Embedded Microprocessor Benchmark
Consortium, http://www.eembc.org.

[23] H. Lee, wcdmaBench, Software Defined Radio
Group, University of Michigan, 2006.

[24] SPEC Benchmark Suite, http://www.spec.org.
[25] Luc Devroye, Non-Uniform Random Variate

Generation, Springer-Verlag, 1986.

