The Performance of SCI Multiprocessor Rings

Roberto A Hexsel Nigel P Topham

Depto. de Informética Dept. of Computer Science

UFPR — Centro Politécnico Edinburgh University

Caixa Postal 19081 JCMB — The King’s Buildings

81531-970 Curitiba, PR Edinburgh EH9 3J7Z

Fax 455 (0)41 267 4236 Scotland

roberto@inf .ufpr.br npt@dcs.ed.ac.uk
Abstract

The Scalable Coherent Interface (SCI) is an IEEE standard that defines a
hardware platform for scalable shared-memory multiprocessors. This paper
contains a quantitative performance evaluation of an SCI-connected multi-
processor that assesses both the communication and cache coherence sub-
systems. For the architecture and workload simulated, it was found that the
largest efficient ring size is eight nodes and that raw network bandwidth seen
by a processing element is limited at about 80Mbytes/s. A comparison to
the DASH multiprocessor indicates that SCI’s faster network yields better

overall performance.

Keywords Scalable Coherent Interface, Rings, Multiprocessor, Performance evalua-

tion, Simulation.

1 Introduction

In the quest for more affordable computing power, the Computer Architecture commu-
nity has been paying a great deal of attention to multiprocessors built with logically-
shared physically-distributed memory systems. Machines have been conceived, designed
and built with sizes ranging from a handful to a few thousand (micro-)processors. One
of the hurdles faced by designers of these machines is the network needed to intercon-
nect the processors and memory since it must provide high-bandwidth low-latency path
between them and must also support to the shared-memory model of programming.

The Scalable Coherent Interface (SCI) is an IEEE standard [12] that defines a net-
work that, in theory, satisfies the above criteria. SCI defines a physical layer (cabling,
clock frequencies), a logical communication protocol (point-to-point links) and a cache
coherent protocol (invalidation-based distributed directory). The performance of the
communication layer of SCI has been thoroughly investigated (e.g. [18, 17]) and it does
satisfy the high-bandwidth low-latency requirement.

This paper contains a performance evaluation of a complete multiprocessor based on
an SCI interconnect where the influence of the cache coherence protocol on performance
is investigated in detail. The experiments also relate the performance of the memory
hierarchy to that of the interconnect. The influence of machine size, cache size and
processor clock speed are assessed in turn. The topology studied is the ring and machine
size ranges from one to 16 processors. The architecture simulator is driven with address
sequences generated as a by-product of the execution of “real” programs. The workload
consists of three programs from the SPLASH suite [19] (Cholesky, MP3D and Water) and
three parallel loops (Gaussian elimination, matrix multiplication and all-to-all minimum
cost paths).

The paper is organised as follows. Section 2 describes the simulation environment
and the workload used to drive the architecture simulator. Section 3 contains a compar-
ison between the DASH multiprocessor and an SCI machine with similar architectural
parameters. Section 4 investigates the performance SCI rings.. Finally, Section 5 sums
up the results of the simulations and presents conclusions. The Appendix gives a brief

introduction to the communication and cache coherence protocols in SCI.

2 The Simulation Environment

The simulator consists of a memory reference stream generator and an architecture
simulator. The reference stream is piped to the architecture simulator which computes
the latency of each (simulated processor) reference to memory. This latency is used
by the reference stream generator to choose the next simulated thread to run. The
architecture simulator consists of an approximate model of the SCI link interfaces and
of a detailed model of the distributed cache coherence protocol. The model of the ring
interfaces is similar to those in [18, 17]. The model of the cache coherence protocol
mimics the “typical set coherence protocol” as defined in [12]. For a description of the
SCI communication protocol see [12, 17, 9]. For the description of the model of an SCI
ring employed in the simulator, please see [10, 9].

The address sequences used to drive the simulator are generated by instrumenting
parallel programs with Symbolic Parallel Abstract Execution (SPAE) [8]. SPAE is based
on the GNU gcc compiler and allows for tracing parallel programs at any desired level
of detail. Typically, a simulation run takes from 1 to 50 CPU hours on a lightly loaded
Sparcstation?. In order to simplify the simulator, it is assumed that on data accesses
the concurrent instruction fetch hits in the primary cache and, accesses to local data
and instructions do not cause any traffic on the ring. It is also assumed that page faults
have zero cost.

The Workload. The workload used to investigate the behaviour of SCI multiprocessors
consists of three parallel loops and three “real” programs. The parallel loops, based on
doall loops are small and exhibit a well defined pattern of memory references. The real
programs are much larger and are part of Stanford’s SPLASH suite [19]. The arrays
and variables that hold shared data are allocated to a specific range of addresses. The
architecture simulator treats references to these addresses as references to shared data.
One way of ensuring a uniform distribution of work across processors is by keeping the
number of references to shared data (roughly) constant. By choosing a large enough
number of references, the caches can be fully and equally exercised, thus minimising
distortion caused by cold starts. Sizes were chosen so that there are at least 1.0 x
108 references to shared data. Table 1 shows the data-set sizes and the reference counts

for the simulations.

chol() performs parallel Cholesky factorisation of a sparse matrix using supernodal
elimination [19]. Cache size is one of the parameters used by the scheduler to allocate
work to processors. The input matrix used is bcsstk14 which contains 1806 equations
and 30824 non-zeroes in the matrix and 110461 in the factor. The matrix bcsstk14
occupies 420Kbytes unfactored and 1.4Mbytes factored.

mp3d() is a rarefied fluid flow simulator based on Monte Carlo methods [19]. The
scheduling of tasks is static, synchronisation is based on barriers and granularity of work
is large. Molecules are attached to processors rather than to spatial coordinates. The
data set is scaled as 1.5 X nodes. The simulation lasts 50 time steps.

water () is an n-body molecular dynamics program that evaluates forces and poten-
tials in a system of water molecules in the liquid state [19]. The scheduling of tasks
is static, synchronisation is based on barriers and granularity of work is large. The
computation describing molecular motion involves a large number of array and floating
point operations. The data set is scaled as 1.45 X nodes . The system of molecules is
simulated for 4 time steps.

ge() solves a system of linear equations by Gaussian elimination and backwards
substitution. In this implementation, it is assumed that the system of equations has
some property that makes Gaussian elimination without pivoting numerically stable (e.g.
diagonal dominance). The algorithm consists of several elimination stages. Each stage
consists of a vector scale operation of the form (zy41 = cxy) followed by a (rank—1)
update of the matrix (Ag41 = Ag + day) where 2 and y are vectors, ¢ and d are scalars.
At the k-th stage, matrix A has dimension ((n — k) X (n — k + 1)). Input data set size
grows as 1.26 X nodes.

mmult () computes C' = A x B for square matrices A and B. The algorithm consists
of three nested loops and each processor computes a slice of the result matrix. This
algorithm is also O(n?) and the input data sets are scaled up as 1.26 X nodes.

paths () is a member of the class of transitive closure algorithms. For a graph with
N nodes, paths() finds the lowest cost path from each node to every other node [5].
The vertices are labelled with the distance between the nodes they join and are stored
in the matrix D. Thus, D[1,j] is the distance between nodes i and j and absence of
a vertex is represented by infinite cost. The simulated graph is a random graph with

outdegree 6. Input data set size is scaled as 1.26 X nodes.

Machine size 1 2 4 8 16
Cholesky — chol()
fixed size input: bcsstkl4
shared (% wr) 10.4 (18) 12.6 (23) 8.6 (23) 5.2 (23) 2.9 (19)
private (% wr) 31.0 (27) 8.5 (26) 2.7 (23) 1.0 (18) 0.9 (17)
instructions 71.7 37.0 20.3 11.6 8.1
MP3D — mp3d()
molecules (x1000) 3.0 4.5 6.7 10.1 15.2
shared (% wr) 5.4 (39) 5.5(29) 4.5 (27) 5.0 (18) 6.0 (11)
private (% wr) 12.2 (18) 9.0 (18) 6.8 (18) 5.0 (18) 3.7 (18)
instructions 32.8 27.0 21.1 19.0 18.6
Water — water()
molecules 54 78 113 163 237
shared (% wr) 1.4 (18) 1.5 (17) 2.2 (12) 2.9 (9) 2.9 (9)
private (% wr) 14.3(19) 154 (19) 16.2(19) 16.5(19) 17.0(19)
instructions 30.0 30.5 33.0 34.7 35.5
Gaussian elimination — ge ()
TOWS 136 171 216 272 343
shared (% wr) 2.6 (33) 2.6 (33) 2.6 (33) 2.5 (33) 2.5 (33)
private (% wr) 13.0 (7) 12.8 (7) 128 (7) 128 (7) 128 (7)
instructions 33.6 33.3 33.4 33.2 33.2
Matrix multiplication — mmult ()
TOWS 100 126 159 200 252
shared (% wr) 2.0(0.5) 2.0(0.4) 2.0(0.3) 2.0(0.2) 2.0(0.2)
private (% wr) 14.2 (14) 141 (14) 14.2(14) 14.1(14) 14.1(14)
instructions 33.2 33.2 33.3 33.1 33.1
All-to-all minimum cost paths — paths()

vertices 70 88 111 140 176
shared (% wr) 1.0(0.8) 1.0(0.6) 1.0(0.4) 1.0(0.3) 1.0(0.2)
private (% wr) 5.6 (6) 5.6 (6) 5.5 (6) 5.5 (6) 5.5 (6)
instructions 15.0 14.9 14.9 14.9 14.8

Table 1: Data-set sizes and per processor reference counts for the workload, in millions.

256Kbytes caches.

The proportion of references to shared data is only a small fraction of all memory
accesses performed by the processor yet they sometimes account for a large fraction of
the execution time. A program is said to be processor bound if the largest proportion of

the execution time is spent performing instructions. Conversely, a program is memory

bound when the largest fraction of the time is spent on data references.

3 Comparing DASH and SCI

The Directory Architecture for SHared memory (DASH) multiprocessor was conceived
at Stanford University as a workbench for exploring the design of logically-shared

physically-distributed memory multiprocessors [14]. A DASH prototype was built and

5

its implementation and performance is discussed by Lenoski et al. in [15]. The availabil-
ity of performance data makes possible a comparison between DASH and an SCI-based
parallel machine with similar architectural parameters. However, because of intrinsic
differences in architecture and run time environments, i.e. simulation compared to an
actual machine, strict quantitative comparisons would be misleading. A qualitative com-
parison can nevertheless be informative. Table 2 shows the cost of individual memory
references for the two architectures.
The DASH architecture. DASH consists of clusters of processing nodes intercon-
nected by twin meshes. The clusters are bus-based multiprocessors within which cache
consistency is maintained by a snooping protocol. Inter-cluster consistency is maintained
by a full-directory invalidation protocol [14]. Each cluster contains four processors; each
processor is connected to a 128Kbytes split primary cache (64Kbytes for instructions and
64Kbytes for data, write-through) and a 256Kbytes write-back secondary cache. Both
caches are direct mapped and support 16-byte lines. The interface between primary
and secondary caches consists of a 4-word deep write-buffer and a one-word read-buffer.
Processor clock speed is 33MHz. The clusters also contain memory, the memory direc-
tory and inter-cluster communication interfaces. The interconnection network consists
of two worm-hole routed networks, one for requests and one for responses. The latency
through each node (network hop) is about 50ns. The peak bandwidth is 120Mbytes/s
in and out of each cluster.
The SCI ring. The SCI ring was simulated with only one processor per node, with
the same clock speed and cache hierarchy as DASH. The primary cache is split (64K +
64K), direct mapped, write-through. Secondary caches are 256Kbytes, direct mapped,
write-back. Lines are 64 bytes wide. There is no write-buffer between the caches. Cache
and memory latencies per word are the same as those in DASH — see Table 2. Notice
that on the SCI ring, the latencies vary with ring size and, in the case of writes, the
number of copies of the line. The processing nodes are interconnected by an SCI ring.
The workload for the comparison consists of chol(), mp3d() and water(). Data
sets are, for chol() bcsstk14, for mp3d () 40000 molecules simulated over 5 time steps,
and for water() 343 molecules simulated for two steps. In [15], Water is run with 512
molecules; the simulation time for that many molecules is so long as to be prohibitive.
Thus, water() was simulated with a smaller data-set. The comparison should still be

valid since, in the 16-node case, water() makes 2.6 million references per processor to

shared data and that is enough to fill up the secondary caches at least a few times.

Cache operation DASH | SCI ring
Read from primary cache 1 1
Fill from secondary cache 14 14
Fill from local memory 26 26
Fill from remote node 72 31-37
Fill from dirty-remote, remote home 90 49-60
Write owned by secondary cache 2 14
Write owned by local node 18 14
Write owned by remote node 64 63-207
Write to dirty remote, remote home 82 63-207

Table 2: Cache and memory operation latencies, in processor clock cycles.

Ring size 1 2 4 8 16
Cholesky — chol()
read refs. (107) 8444 9883 6875 4638 2904
write refs. (10%) 1862 2939 2075 1191 556
RD hit ratio 0.97 0.98 098 098 0.97
WR hit ratio 0.98 0.98 098 099 0.98
run time (s) 10.26 532 2.80 1.58 0.95
throughput (Mbytes/s) 0 1.18 2.06 2.54 2.69
MP3D — mp3d()
read refs. (10°) 3619 3755 1594 1041 1098
write refs. (10?) 2343 1171 585 293 147
RD hit ratio 0.95 0.89 085 082 0.77
WR hit ratio 0.95 0.89 085 081 0.74
run time (s) 483 296 1.61 0.90 0.58
throughput (Mbytes/s) 0 9.5 158 199 20.6
Water — water()
read refs. (10°) 20172 12619 8163 4093 2414
write refs. (10°) 3071 1536 768 384 192
RD hit ratio 0.96 0.96 088 084 0.83
WR hit ratio 0.99 0.99 095 093 0.92
run time (s) 41.96 21.20 10.90 5.50 2.81
throughput (Mbytes/s) 0 013 1.02 1.63 1.80

Table 3: Per node shared-data reference counts, secondary cache hit ratios, execution

time and node throughput on the SCI ring.

Speedup. Figure 1 shows the speedup plots for both DASH and the SCI ring. Speedup
data for DASH was taken from Figure 6 and Table 5 in [15]. The plot shows that chol ()
has a very similar speedup in both architectures. The differences for 2 and 4 nodes are
related to better data mapping in the SCI ring. The differences on mp3d() are more
pronounced. Network traffic is much higher than with the other two programs and,

given SCI’s higher bandwidth and lower latencies, it is not surprising that mp3d () scales

7

Figure 1: Speedup plots for chol() (left), mp3d() (mid) and water() (right).

Execution time breakdown. Figure 2 shows the execution time breakdown for
the workload on the SCI ring. Time is split into: (1) busy time when the processor
is performing instructions and operations on data; (2) the time wasted on read misses
(RDmiss); (3) the time wasted on write misses (WRmiss); (4) the time spent on syn-
chronisation actions (synchr). The plot also shows the total time spent on references
to shared data (shared) and the time lost because of network latencies (network). The
plots indicate that most of the stall cycles come from writes. This is partly because of
the high latency of a write (14 cycles) and partly a “normal” feature of cache-coherent
shared-memory multiprocessors [7]. The fraction of the time used up by chol() in ref-
erences to shared data increases with ring size because of the relatively higher costs of
remote references while the fraction due to instruction fetches becomes proportionally
more important as the work per processor decreases. mp3d() spends 57-43% of the time

on private references, a large fraction of which is on write misses. The fraction of time

Figure 2: Execution time breakdown for chol() (left), mp3d() (center) and water()

(right). The lines show the fraction of shared data references and network latency.

4 SCI Ring Multiprocessors

The Simulated Multiprocessor. The multiprocessor consists of a number of pro-
cessing nodes interconnected in a ring by SCI links. Each node contains a processor,
a split primary cache, a coherent secondary cache, memory and an SCI interface. The
CPU is a 32-bit SPARC processor that performs an instruction fetch and possibly a
data read/write access on every clock cycle. The processor clock frequency is 100MHz.
The simulated processors always stall on memory references (both read and write), thus
the memory model is sequential consistency [13].

The memory hierarchy comprises three levels: split primary caches, unified secondary
cache and main memory. The size of the instruction cache (i-cache) and data cache (d-
cache) is 8 Kbytes each (one page), both being direct mapped. The data cache is

write-through with no block allocation on write misses. The secondary cache is direct

mapped and, for private data references it is copy-back with no block allocation. The
mapping of virtual to physical addresses is performed in parallel with primary cache
tag-matching [16].

The secondary cache size is a simulation parameter. Sizes investigated are 64, 128,
256 and, 512Kbytes. Main memory is simulated as if implemented with DRAMs with
8-way interleaving. On all three levels of the memory hierarchy, cache and memory
lines (blocks) are 64 bytes. The memory hierarchy satisfies the multilevel inclusion
property [1] and the SCI coherency protocol actions affect only the secondary caches,
thus called coherent caches.

The internal buses are 64 bits wide, except the processor-primary caches which are
32 bits wide. The access latency for the secondary caches is 3 processor cycles. Loading a
line from the secondary cache into the primary caches or SCI controller costs 3 processor
cycles plus 2ns per 64 bit word (16ns). Loading a line from/to memory costs 120ns of
access latency plus 10ns per 64 bit word (80ns). Thus, a cache-to-memory read-line
transaction costs 246ns for a 100MHz processor. To that, the network latency must be
added if one end of the transaction, cache or memory, is at another node.

The sizes investigated are 64, 128, 256, 512 Kbytes and “infinite” caches. The size
of caches should be chosen to minimise the miss ratios, that is, as large as possible, and
to reduce the number of cycles the processor stalls waiting for memory references to
be satisfied. The cache latency depends to a large extent on the memory technology
and on the sophistication of the cache policies such as replacement, write-buffers, write-
through/back. cache controller, the latency of the coherent caches was estimated to be
three processor clock cycles. The access latency of DRAMs is of the order of tens of
nanoseconds — 60 to 180 (in 1994), depending on size and organization of the memory
array. When considering the overhead imposed by the coherency protocol, the latency
of the memory was set to 120ns.

The Influence of Cache Size. Coherent cache size and tag access latency are two of
the factors that have most impact on the performance of memory hierarchies. Figure 3
displays the execution time as a function of ring and cache size for the three SPLASH
programs. Recall that the data-set sizes are scaled up to keep the work each processor
does constant — see Table 1. For chol(), on a 4-node ring, the 128 Kbytes cache is
about 35% slower than the two larger sizes. The difference is not as pronounced for

the other ring sizes. The 64Kbytes cache being faster than the 128Kbytes is due to an

10

optimisation in chol(), by which the supernodes are chosen to fit the coherent caches.
For all cache sizes (64-512Kbytes) and ring sizes 2-16, mp3d () has shared data hit ratios
that are within one percentage point of one another. The same is true of the fraction
of run time due to network latency, except that the interval is 4%. On a 16-node ring,
water ()’s shared data-set does not fit in the 64Kbytes caches. Hence the difference in
execution time between the 64K and 128-512Kbytes coherent caches.

Figure 4 shows the relationship between cache and ring size and speed for the three
parallel loops. Data-set sizes are scaled up with machine size — see Table 1. For ge(),
the differences in run time are below 4% and this agrees with the rather small changes
in shared data hit ratio with cache size. The performance of the system, when executing
mmult (), improves with larger cache sizes. The improvement comes from a reduction
in conflict misses and network delays. The 8-node machines endure higher instruction
miss rates because of conflict misses. paths(), if the caches cannot accommodate the
working set, the program speed is bound by the speed of the memory and ultimately
by the network latency. For the 64Kbytes cache, the impact of the network latency
increases dramatically with ring and data set sizes because of the poorer hit ratios.
Sharing-list length. In an SCI-based shared memory multiprocessor, data that is
actively shared by processors is kept in linked lists, rooted at the data’s home mem-
ory. When the data is to be updated, the list collapses, the data is updated and the
sharing-list is eventually re-established. The collapsing of sharing-lists involves message
exchanges between the processor at the head of list and each of the other nodes in the
list. Sharing-list length is defined as the number of copies that have to be purged when a
line is updated. The sharing-list length reflects the level of interference between proces-
sors on each other’s computation. Because of the serialisation imposed by the coherence
protocol, the cost of purging grows linearly with the length of the sharing-list. paths()
has an average sharing-list length that grows roughly as P/2, for P processors. The other
five programs have sharing-list lengths of one or less for ring sizes 2-8 and under 1.2 for
16-node rings. Sharing-list length is fairly independent of cache size. This is because
most of the shared-data in chol(), mp3d() and water() is migratory in nature [21].

The same can be said of ge(), given its algorithm and simulation statistics.

11

Figure 3: Execution time as a function of cache size, for chol() (top), mp3d() (center)
and water() (bottom). Time is broken down into network latency, references to shared-

data and references to local data and instructions. Data sets grow with machine size.

12

Figure 4: Execution time as a function of cache size, for ge() (top), mmult() (center)
and paths() (bottom). Time is broken down into network latency, references to shared-

data and references to local data and instructions. Data sets grow with machine size.

13

Processor Clock Speed. Microprocessor technology is evolving at such a pace that
the speed of processors, and indeed of workstations, doubles roughly every two or three
years. What can be said about the performance of SCI, when the next generation of
processors is introduced? Figure 5 shows the speedup attained by doubling the processor
clock speed while keeping the other parameters unchanged. Note that coherent cache

access latency is 3 processor clock cycles in both cases.

speedup 200Mhz/100Mhz - 64K speedup 200Mhz/100Mhz - 256K
2
| | | | | | | | | |

18 |-

14 -

12 -

Ring size Ring size

Figure 5: Speedup achieved by doubling processor clock frequency, with cache sizes
of 64K (left) and 256Kbytes (right). ‘ch’ stands for chol(), ‘mp’ for mp3d(), ‘w’ for

water(), ‘ge’ for ge(), ‘mm’ for mmult (), ‘p’ for paths().

Some of the loss in speedup can be attributed to the relatively slower memory hier-
archy, the influence of which can be gauged from the values for the uniprocessor — about
10 to 37% loss in speedup. Most of the loss in speedup for chol (), mp3d() and paths()
is caused by network saturation. Plots of the ratio of link traffic for 100 and 200MHz
processors are almost identical to those in Figure 5. Programs that generate low levels
of network traffic can use a lot more bandwidth whereas programs that nearly saturate
the ring suffer even higher round-trip delays with a faster rate of network requests.
Bandwidth and Latency. The transport mechanism of SCI is based on unidirectional
point-to-point links. The simplest topology that can be implemented with these links
is the asynchronous insertion ring. The transmission of a packet is completed when its
echo is received by the transmitter. The time lapse between the insertion of a packet
into the output buffer and the receipt of its echo is the round-trip delay of the ring.
The number of packets a node can transmit per time unit depends on the traffic on the

ring. The traffic seen by a node at its ring interface is defined as the number of symbols

14

per time unit that is output by the ring interface. It consists of all the symbols passing
through plus those inserted by the node itself. Throughput is the number of symbols
per time unit inserted by the node and measures the amount of coherence-related traffic

generated by the processor and cache/memory controllers.

traffic throughput r-t delay

size 2 4 8 16 2 4 8 16| 2 4 8 16
chol() 8 30 72 144 | 6 10 12 12|37 46 72 130
mp3d() |65 198 383 621 |46 64 62 50|37 48 83 173
water() | 2 22 52 110 1 7 &8 8|35 45 69 123

ge() 1 5 16 52| 1 2 3 4136 49 75 130
mmult() | 1 6 20 118 1 2 4 10|33 52 74 132
paths() | 8 24 70 395| 5 9 12 34|36 50 78 156

Table 4: Link traffic (Mbyte/s), processor throughput (Mbyte/s) and round-trip delay
(ns) for the workload.

Link traffic. Table 4 shows the traffic per link as a function of ring size. mp3d()
and paths () produce high levels of traffic and suffer higher latencies. Traffic levels of
600 to 700Mbytes/s are a limiting factor in the performance of SCI-connected systems
since, at these levels, round-trip delays are holding down the rate of network requests
by processors. Bypass buffers endure utilisations of over 50% and that leaves few oppor-
tunities for injecting packets into the ring. The discussion about processor clock speed
in Section 4 is clear evidence of the effects of network saturation: doubling processor
clock rate does little to improve the performance of programs that are already driving
the network into saturation.

Node throughput. Table 4 shows the effective throughput per node. Note that
the measured throughput includes packet header overhead. Data throughput would be
somewhat lower. The reason for including header overheads in the throughput measure-
ment is that cache coherency commands are embedded in the packet headers and these
comprise a large fraction of the information transferred by the cache coherence protocol.
Round trip delay. Table 4 shows the average round trip delay as a function of ring
size. Note that latencies experienced accessing memory and caches are not included.
The static latency for a 16-node ring is 116ns, for an average packet size of 11 symbols.
chol(),water(), ge() and mmult () generate low network traffic and enjoy low latencies.
mp3d() and paths() endure much higher latencies because of their higher throughput

and increased network congestion.

15

Figure 6: Execution time breakdown for chol() (left), mp3d() (mid) and water()
(right) — 100MHz clock.

Express Ring, KSR1 and Hector. In order to compute the cost of a remote trans-
action, memory and cache tag access latencies must be added to the round-trip delay.
For the simulations reported here, the worst case is a cache-to-memory transaction:
ring latency +246ns (30ns 4 16ns plus 120ns 4 80ns). The best case is a cache-to-cache
transaction, such as an invalidate transaction, costing ring latency+60ns (2 x 30ns).
Barroso and Dubois, in [3], present simulation results for the Express Ring. The mul-
tiprocessor’s interconnect is based on a slotted ring and cache coherence is maintained

by a snooping protocol [2]. On a ring with 8 nodes, the shared-data miss latency for

16

chol(), mp3d() and water() is between 280 and 320ns. On a 16-node ring, between
320 and 380ns and, on a 32-node ring, between 390 and 440ns. On 8-node rings, the
shared-data miss latencies of an SCI ring are comparable to those of a slotted ring. On
16- and 32-node rings, the SCI ring would have higher latencies.

A comparison with the KSR1 [4] is difficult to make for lack of performance data
on the applications employed here. It is likely the results would show the same broad
tendencies as those of DASH since the two machines are built from similar technologies
— SCT’s faster network would provide a performance advantage. The Hector multipro-
cessor [20], using a hierarchical snooping protocol [6, 11] should have a performance
comparable to that of the Express Ring. Holliday and Stumm report in [11], that
Hector’s hierarchical protocol scales well to a large number of processors (1024) if the

applications possess good locality characteristics.

5 Conclusion

This paper contains a detailed performance evaluation study of SCI-based shared mem-
ory multiprocessors. Previous studies of SCI have concentrated on network performance
and to some extent ignored the influence of the cache coherence protocol. Here, the inter-
actions between interconnection network and cache coherence protocol are investigated.
The results of the simulations are summarised below.

A simple multiprocessor system was “implemented” in the simulator with compo-
nents compatible with the current levels of performance. Several architectural param-
eters were investigated, namely machine size, secondary cache size and processor clock
speed. Machines were simulated with one, two, four, eight and sixteen 100MIPS pro-
cessors. In order to reproduce accurately the interleaving of the memory references in a
NUMA architecture, the architecture simulator is driven by reference streams generated
as a by-product of the execution of real programs. The simulated threads are sched-
uled for execution according to the state of the simulated multiprocessor and the actual
delays incurred by references to remote memory and cache coherency actions.

Two of the programs in the workload are ill suited for execution on physically dis-
tributed memory. mp3d() has low hit ratios and its data is highly migratory, causing
high levels of cache coherence activity and network traffic. This program exhibits poor

performance in every published experiment seen by the authors. It is however very

17

useful to expose architectural bottlenecks. The data used by paths() has a high degree
of read-sharing and writes to shared data often cause the purging of long sharing-lists.
This also causes high levels of network traffic and, for the smaller cache sizes, high levels
of coherence activity. These two programs do drive the network into saturation and their
performance is, in most of the experiments, limited by network bandwidth and delays.
The other four programs have more regular behaviour and better coherent cache hit
ratios. For them, the performance penalties imposed by the cache coherence protocol
and interconnect are rather small. The overheads imposed by the cache coherence pro-
tocol are always smaller than 5% of the execution time. The losses caused by network
latencies are under 10% of the execution time.

Node throughput is defined as the network bandwidth available to processing ele-
ments. For rings with processors and memory hierarchy as simulated, the experiments
revealed that raw processor throughput is limited at about 80Mbytes/s because of net-
work saturation. Data-only throughput is about 20 to 30% of raw throughput. Given
that under 14% of all packets injected into the ring carry 64 bytes of data [9] while
all except echo packets carry cache coherency information, raw throughput is a better
measure of overall system performance.

High levels of network traffic cause queue backlogs in the link interfaces with round-
trip delays increasing by as much as 25% as a consequence. For mp3d() and paths(),
network saturation occurs for link traffic at 600 to 700Mbytes/s, for 8- and 16-node rings,
and this in turn limits node throughput at 80Mbytes/s. The simulation results for
SCI-rings indicate that, for hardware and software with characteristics similar to those
investigated here, the maximum eflicient ring size is between eight and sixteen. The scal-
ability in these small systems (1, 2,4, 8, and 16 processors) was found to be fairly good.

There is still work to be done in the performance evaluation of SCI based multi-
processors. Further investigation of small systems is needed since SCI is inexpensive
enough to be used in small to medium sized machines. The evaluation of systems with
hundreds of processors is necessary in order to assess the scalability of SCI-based mul-
tiprocessors. For simulations of large systems, the programs in the workload will need
to be adapted, rewritten or replaced because they were designed and coded for medium
size machines (32-64 processors). These codes are unlikely to scale up well to hundreds
of processors without extensive rewriting. The simulation technique used here produces

accurate results but its computational cost is very high. Two alternatives seem attrac-

18

tive. One is the direct simulation of the processors, thus avoiding interactions with the

operating system. The other is to use a customisable synthetic workload. While not

strictly realistic, proper tuning of parameters can produce insightful results.

Acknowledgements The source code for ge () was provided by Graham Riley, from the

Centre for Novel Computing, Manchester University. The parallel version was compiled

and optimised for the KSR1 at CNC. This work was partially supported by a scholarship
from CAPES, Ministry of Education, Brazil.

References

(1]

Jean-Loup Baer and Wen-Hann Wang. On the inclusion properties for multi-level cache

hierarchies. In Proc. 15th Int. Symp. on Computer Architecture, pages 73-80, May 1988.

Luiz A Barroso and Michel Dubois. Cache coherence on a slotted ring. In Proc 1991 Int.
Conf. Parallel Processing, volume 1, pages 230-237, St. Charles, IL, USA| August 1991.

Luiz A Barroso and Michel Dubois. The performance of cache-coherent ring-based multi-
processors. In Proc. 20th Int. Symp. on Computer Architecture, pages 268-277. ACM
SIGARCH Comp Arch News 21(2), May 1993.

H Burkhardt. Overview of the KSR1 computer system. Tech Report KSR-TR-9202001,
Kendall Square Research, Boston, 1992.

N Deo, CY Pang, and R E Lord. Two parallel algorithms for shortest path problems. Tech
Report CS-80-059, Washington State Univ, March 1980.

K Farkas, Z Vranesic, and M Stumm. Cache consistency in hierarchical ring-based mul-
tiprocessors. Tech Report EECG TR-92-09-01, Univ. of Toronto, 1992. Also in Proc. of
Supercomputing '92.

K Gharachorloo, A Gupta, and J Hennessy. Performance evaluation of memory consistency
models for shared-memory multiprocessors. In Fourth Int. Conf. on Architectural Support
for Progr. Lang. and Oper. Sys., pages 245-257. ACM SIGARCH Comp Arch News 19(2),
April 1991.

D Grunwald, G J Nutt, D Wagner, and B Zorn. A parallel execution evaluation testbed.
Tech Report CU-CS-560-91, Dept of Computer Science, Univ of Colorado, November 1991.

Roberto A Hexsel. A Quantitative Performance Fvaluation of SCI Memory Hierarchies.
PhD dissertation, Dept. of Computer Science, University of Edinburgh, October 1994. Tech
Report CST 112-94.

19

[10]

Roberto A Hexsel and Nigel P Topham. The performance of SCI memory hierarchies. In
Proc of the Int. Workshop on Support for Large Scale Shared Memory Architectures, pages
1-17, Cancun, Mexico, April 1994. In conjunction with 8th IPPS. Also Univ of Edinburgh
Dept of Computer Science Tech Report CSR-30-94.

Mark Holliday and Michael Stumm. Performance evaluation of hierarchical ring-based

shared memory multiprocessors. IEEE Trans. on Computers, C-43(1):52-67, January 1994.

IEEE. ANSI/IEEE Std 1596-1992 — Standard for Scalable Coherent Interface. IEEE, 1992.
IEEE publications are available from the Institute of Electrical and Electronics Engineers,

Inc., Service Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331.

Leslie Lamport. How to make a multiprocessor that correctly executes multiprocess pro-

grams. IEEE Trans. on Computers, C-28(9):690-691, September 1979.

D Lenoski, J Laudon, K Gharachorloo, A Gupta, and J L. Hennessy. The directory-based
cache coherence protocol for the DASH multiprocessor. In Proc. 17th Int. Symp. on Com-
puter Architecture, pages 148-159. ACM SIGARCH Comp Arch News 18(2), May 1990.

D Lenoski, J Laudon, T Joe, D Nakahira, L. Stevens, A Gupta, and J Hennessy. The
DASH prototype: Implementation and performance. In Proc. 19th Int. Symp. on Computer
Architecture, pages 92-103. ACM SIGARCH Comp Arch News 20(2), May 1992.

O A Olukotun, T N Mudge, and R B Brown. Implementing a cache for a high-performance
GaAs microprocessor. In Proc. 18th Int. Symp. on Computer Architecture, pages 138-147.
ACM SIGARCH Comp Arch News 19(3), May 1991.

S L Scott, J R Goodman, and M K Vernon. Performance of the SCI ring. In Proc. 19th
Int. Symp. on Computer Architecture, pages 403-414. ACM SIGARCH Comp Arch News
20(2), May 1992.

Steven L Scott and James R Goodman. Performance of pipelined K-ary N-cube networks.

Tech Report 1010, Computer Sciences Dept, Univ of Wisconsin-Madison, February 1991.

J P Singh, W-D Weber, and A Gupta. SPLASH: Stanford Parallel. Applications for SHared-
memory. Technical Report CSL-TR-91-469, Computer Science Dept, Stanford Univ, April
1991. Also in ACM SIGARCH Comp Arch News 20(1).

7 Vranesic, M Stumm, D Lewis, and R White. Hector: a hierarchically structured shared
memory multiprocessor. IEEE Computer, 24(1):72-78, January 1991.

Wolf-Dietrich Weber and Anoop Gupta. Analysis of cache invalidation patterns in multi-
processors. In Therd Int. Conf. on Architectural Support for Progr. Lang. and Oper. Sys.,
pages 243-256. ACM SIGARCH Comp Arch News 17(2), April 1989.

20

Appendix: The Scalable Coherent Interface

The description that follows concentrates on those features of SCI that are of rel-
evance in this paper. SCI consists of three parts, the physical-level interfaces, the
packet-based logical communication protocol, and the distributed cache coherence pro-
tocol. The physical interfaces are high speed unidirectional point-to-point links. One
of the versions prescribes links 16 bits wide which can transfer data at peak speed of
1 Gbyte/s. The standard supports a general interconnect, providing a coherent shared-
memory model, scalable up to 64K nodes. An SCI node can be a memory module, a
processor-cache pair, an 10 module or any combination of these. For most applications,
a multiprocessor will consist of several rings, connected together by switches, i.e. nodes

with more than one pair of link interfaces.

Node interface

active

buffers buffer input

Twait T buffer

output

mux bypass buffer 4\—‘
output stripper f=— input
link | link
Tout Tpass Tstrip Twire

Figure 7: SCI link interface.

Logical Protocol. The logical protocol comprises the specification of the sizes and
types of packets and of the actions involved in the transference of information between
nodes. A packet consists of an unbroken sequence of 16-bit symbols. It contains address,
command /control and status information plus optional data and a check symbol. A
command /control packet can be 8 or 16 symbols long, a data packet is 40 symbols long
and an echo packet is 4 symbols in length. A data packet carries 64 bytes of data.

The protocol supports two types of actions: requests and responses. A complete
transaction, for instance, a remote memory data read, starts with the requester sending
a request-send packet to the responder. The acceptance of the packet by the responder

is acknowledged with a request-echo. When the responder has executed the command,

21

it generates a response-send packet containing status information and possibly data.
Upon receiving the response-send packet, the requester completes the transaction by
returning a response-echo packet. The communication protocol ensures forward progress
and contains deadlock and livelock avoidance mechanisms.

The network access mechanism used by SCI is the register insertion ring — see Fig-
ure 7. A node retains packets addressed to itself and forwards other packets to the
downstream node. A request transaction starts with the sender node placing a request-
send packet, addressed to the receiver node, in the output buffer. Transmission can
start if there are no packets at the bypass buffer and no packet is being forwarded from
the stripper to the multiplexor. At the receiver node, the stripper parses the incoming
packet and diverts it to the input buffer. On recognising a packet addressed to itself,
the stripper generates an echo packet addressed to the sender and inserts it in place
of the “stripped” packet. If there is space at the input buffer, the echo carries an ack
(positive acknowledge) status. Otherwise, the packet is dropped and a nack (negative
acknowledge) is returned to the sender who will then retransmit the packet.

It is likely that during the transmission of a packet, the bypass buffer will be filled
with packets not addressed to the node. Once transmission stops, the node enters the re-
covery phase during which no packets can be inserted by the node. Fach packet stripped
creates spaces in the symbol stream. These spaces, called idle symbols, eventually allow
the bypass buffer to drain, when new transmissions are possible. The protocol also en-
sures that the downstream nodes cannot insert new packets until the recovery phase is
complete. This will cause a reduction in overall traffic and create enough idles to drain
the bypass buffer.

When a packet is output, a copy of it is kept in an active buffer. If the status
of its echo is ack, the original packet is dropped from the active buffer and the node
can transmit another packet. If the echo carries a nack, the packet is retransmitted.
This allows for one or more packets to be active simultaneously, e.g. one transaction
initiated by the processor and other(s) initiated by the cache or memory controller(s).
The number of active buffers depends on the type of the “pass transmission protocol”
implemented. The options are: only one outstanding packet, one request-send and one
response-send outstanding or, several outstanding request- or response-send packets.
Coherence Protocol. The SCI coherence protocol is based on a write-invalidate

chained directory. Each cache line tag contains pointers to the next and previous nodes

22

in the doubly-linked sharing list. A line’s address consists of a 16-bit node-id and 48-bit
offset. The storage overhead for the memory directory and the cache tags is a fixed
percentage of the storage capacity. For a 64-byte cache block, the overheads are 4% at

memory and 7% at the cache tags.

cache A cache B cache C cache A 1) cache B cache C
head invalid invalid head |_ (2) . mid tail
[[[I%I [[
AN
NN
(2) .\ N
EI gone EI gone
mem M mem M
cache A) cache B cache C cache A cache B cache C
tail ... 6) .| head invalid head invalid tail
[(] (] CI=r " (]
, N st
4). e e s
@7 3 L
- a
[J gone EI gone
mem M mem M
cache A cache B © cache C cache A cache B cache C
tail mid (10) _1 head exclusive invalid invalid
@
_ (7)
[T gone - EI dirty
mem M mem M

Figure 8: Sharing list setup (left) and purge sequence (right). Solid lines represent

sharing list links, dotted lines represent messages.

Consider processors A, B and C, read-sharing a memory line L that resides at node M
— see Figure 8. Initially, the state of the memory lines is home and the cache blocks
are invalid. A read-cached transaction is directed from processor A to the memory
controller M (1). The state of line L changes from home to gone and the requested line
is returned (2). The requester’s cache block state changes to the head state, i.e. head of
the sharing list. When processor B requests a copy of line L (3), it receives a pointer to
A from M (4). A cache-to-cache transaction, called prepend, is directed from B to A (5).
On receiving the request, A sets its backward pointer to B and returns the requested

line (6). Node C then requests a copy of L from M (7) and receives a pointer to node

23

B (8). Node C requests a copy from B (9). The state of the line at B changes from head
to mid and B sends a copy of L. to C (10). In SCI, rather than having several request
transactions blocked at the memory controller, all requests are immediately prepended
to the respective sharing lists. When a block has to be replaced, the processor detaches
itself from the sharing list before flushing the line from the cache.

Before writing to a shared line, the processor at the head of the sharing-list must
purge the other entries in the list to obtain exclusive ownership of the line — see Fig-
ure 8. Node A, in the head state, sends an invalidate command to node B (1). Node B
invalidates its copy of L and returns its forward pointer (pointing to C) to A (2). Node
A sends an invalidate command to C (3) which responds with a null pointer, indicating
it is the tail node of the sharing list (4). The state of line L, at node A, changes to
exclusive and the write completes. When a node other then the head needs to write to a
shared line, that node has to interrogate the memory directory for the head of the list,
acquire head status and then purge the other entries. If the writer is at the middle or
tail, it first has to detach itself from the sharing list before attempting to become the

new head.

24

