
The Performance of SCI Multiprocessor RingsRoberto A Hexsel Nigel P TophamDepto. de Inform�atica Dept. of Computer ScienceUFPR { Centro Polit�ecnico Edinburgh UniversityCaixa Postal 19081 JCMB { The King's Buildings81531-970 Curitiba, PR Edinburgh EH9 3JZFax +55 (0)41 267 4236 Scotlandroberto@inf.ufpr.br npt@dcs.ed.ac.ukAbstractThe Scalable Coherent Interface (SCI) is an IEEE standard that de�nes ahardware platform for scalable shared-memory multiprocessors. This papercontains a quantitative performance evaluation of an SCI-connected multi-processor that assesses both the communication and cache coherence sub-systems. For the architecture and workload simulated, it was found that thelargest e�cient ring size is eight nodes and that raw network bandwidth seenby a processing element is limited at about 80Mbytes/s. A comparison tothe DASH multiprocessor indicates that SCI's faster network yields betteroverall performance.Keywords Scalable Coherent Interface, Rings, Multiprocessor, Performance evalua-tion, Simulation. 1



1 IntroductionIn the quest for more a�ordable computing power, the Computer Architecture commu-nity has been paying a great deal of attention to multiprocessors built with logically-shared physically-distributed memory systems. Machines have been conceived, designedand built with sizes ranging from a handful to a few thousand (micro-)processors. Oneof the hurdles faced by designers of these machines is the network needed to intercon-nect the processors and memory since it must provide high-bandwidth low-latency pathbetween them and must also support to the shared-memory model of programming.The Scalable Coherent Interface (SCI) is an IEEE standard [12] that de�nes a net-work that, in theory, satis�es the above criteria. SCI de�nes a physical layer (cabling,clock frequencies), a logical communication protocol (point-to-point links) and a cachecoherent protocol (invalidation-based distributed directory). The performance of thecommunication layer of SCI has been thoroughly investigated (e.g. [18, 17]) and it doessatisfy the high-bandwidth low-latency requirement.This paper contains a performance evaluation of a complete multiprocessor based onan SCI interconnect where the in
uence of the cache coherence protocol on performanceis investigated in detail. The experiments also relate the performance of the memoryhierarchy to that of the interconnect. The in
uence of machine size, cache size andprocessor clock speed are assessed in turn. The topology studied is the ring and machinesize ranges from one to 16 processors. The architecture simulator is driven with addresssequences generated as a by-product of the execution of \real" programs. The workloadconsists of three programs from the SPLASH suite [19] (Cholesky, MP3D and Water) andthree parallel loops (Gaussian elimination, matrix multiplication and all-to-all minimumcost paths).The paper is organised as follows. Section 2 describes the simulation environmentand the workload used to drive the architecture simulator. Section 3 contains a compar-ison between the DASH multiprocessor and an SCI machine with similar architecturalparameters. Section 4 investigates the performance SCI rings.. Finally, Section 5 sumsup the results of the simulations and presents conclusions. The Appendix gives a briefintroduction to the communication and cache coherence protocols in SCI.2



2 The Simulation EnvironmentThe simulator consists of a memory reference stream generator and an architecturesimulator. The reference stream is piped to the architecture simulator which computesthe latency of each (simulated processor) reference to memory. This latency is usedby the reference stream generator to choose the next simulated thread to run. Thearchitecture simulator consists of an approximate model of the SCI link interfaces andof a detailed model of the distributed cache coherence protocol. The model of the ringinterfaces is similar to those in [18, 17]. The model of the cache coherence protocolmimics the \typical set coherence protocol" as de�ned in [12]. For a description of theSCI communication protocol see [12, 17, 9]. For the description of the model of an SCIring employed in the simulator, please see [10, 9].The address sequences used to drive the simulator are generated by instrumentingparallel programs with Symbolic Parallel Abstract Execution (SPAE) [8]. SPAE is basedon the GNU gcc compiler and allows for tracing parallel programs at any desired levelof detail. Typically, a simulation run takes from 1 to 50 CPU hours on a lightly loadedSparcstation2. In order to simplify the simulator, it is assumed that on data accessesthe concurrent instruction fetch hits in the primary cache and, accesses to local dataand instructions do not cause any tra�c on the ring. It is also assumed that page faultshave zero cost.TheWorkload. The workload used to investigate the behaviour of SCI multiprocessorsconsists of three parallel loops and three \real" programs. The parallel loops, based ondoall loops are small and exhibit a well de�ned pattern of memory references. The realprograms are much larger and are part of Stanford's SPLASH suite [19]. The arraysand variables that hold shared data are allocated to a speci�c range of addresses. Thearchitecture simulator treats references to these addresses as references to shared data.One way of ensuring a uniform distribution of work across processors is by keeping thenumber of references to shared data (roughly) constant. By choosing a large enoughnumber of references, the caches can be fully and equally exercised, thus minimisingdistortion caused by cold starts. Sizes were chosen so that there are at least 1:0 �106 references to shared data. Table 1 shows the data-set sizes and the reference countsfor the simulations. 3



chol() performs parallel Cholesky factorisation of a sparse matrix using supernodalelimination [19]. Cache size is one of the parameters used by the scheduler to allocatework to processors. The input matrix used is bcsstk14 which contains 1806 equationsand 30824 non-zeroes in the matrix and 110461 in the factor. The matrix bcsstk14occupies 420Kbytes unfactored and 1:4Mbytes factored.mp3d() is a rare�ed 
uid 
ow simulator based on Monte Carlo methods [19]. Thescheduling of tasks is static, synchronisation is based on barriers and granularity of workis large. Molecules are attached to processors rather than to spatial coordinates. Thedata set is scaled as 1:5� nodes . The simulation lasts 50 time steps.water() is an n-body molecular dynamics program that evaluates forces and poten-tials in a system of water molecules in the liquid state [19]. The scheduling of tasksis static, synchronisation is based on barriers and granularity of work is large. Thecomputation describing molecular motion involves a large number of array and 
oatingpoint operations. The data set is scaled as 1:45 � nodes . The system of molecules issimulated for 4 time steps.ge() solves a system of linear equations by Gaussian elimination and backwardssubstitution. In this implementation, it is assumed that the system of equations hassome property that makes Gaussian elimination without pivoting numerically stable (e.g.diagonal dominance). The algorithm consists of several elimination stages. Each stageconsists of a vector scale operation of the form (xk+1 = cxk) followed by a (rank�1)update of the matrix (Ak+1 = Ak + dxy) where x and y are vectors, c and d are scalars.At the k-th stage, matrix A has dimension ((n� k)� (n� k + 1)). Input data set sizegrows as 1:26� nodes .mmult() computes C = A�B for square matrices A and B. The algorithm consistsof three nested loops and each processor computes a slice of the result matrix. Thisalgorithm is also O(n3) and the input data sets are scaled up as 1:26� nodes .paths() is a member of the class of transitive closure algorithms. For a graph withN nodes, paths() �nds the lowest cost path from each node to every other node [5].The vertices are labelled with the distance between the nodes they join and are storedin the matrix D. Thus, D[i,j] is the distance between nodes i and j and absence ofa vertex is represented by in�nite cost. The simulated graph is a random graph withoutdegree 6. Input data set size is scaled as 1:26� nodes .4



Machine size 1 2 4 8 16Cholesky { chol()�xed size input: bcsstk14shared (% wr) 10.4 (18) 12.6 (23) 8.6 (23) 5.2 (23) 2.9 (19)private (% wr) 31.0 (27) 8.5 (26) 2.7 (23) 1.0 (18) 0.9 (17)instructions 71.7 37.0 20.3 11.6 8.1MP3D { mp3d()molecules (�1000) 3.0 4.5 6.7 10.1 15.2shared (% wr) 5.4 (39) 5.5 (29) 4.5 (27) 5.0 (18) 6.0 (11)private (% wr) 12.2 (18) 9.0 (18) 6.8 (18) 5.0 (18) 3.7 (18)instructions 32.8 27.0 21.1 19.0 18.6Water { water()molecules 54 78 113 163 237shared (% wr) 1.4 (18) 1.5 (17) 2.2 (12) 2.9 (9) 2.9 (9)private (% wr) 14.3 (19) 15.4 (19) 16.2 (19) 16.5 (19) 17.0 (19)instructions 30.0 30.5 33.0 34.7 35.5Gaussian elimination { ge()rows 136 171 216 272 343shared (% wr) 2.6 (33) 2.6 (33) 2.6 (33) 2.5 (33) 2.5 (33)private (% wr) 13.0 (7) 12.8 (7) 12.8 (7) 12.8 (7) 12.8 (7)instructions 33.6 33.3 33.4 33.2 33.2Matrix multiplication { mmult()rows 100 126 159 200 252shared (% wr) 2.0(0.5) 2.0(0.4) 2.0(0.3) 2.0(0.2) 2.0(0.2)private (% wr) 14.2 (14) 14.1 (14) 14.2 (14) 14.1 (14) 14.1 (14)instructions 33.2 33.2 33.3 33.1 33.1All-to-all minimum cost paths { paths()vertices 70 88 111 140 176shared (% wr) 1.0(0.8) 1.0(0.6) 1.0(0.4) 1.0(0.3) 1.0(0.2)private (% wr) 5.6 (6) 5.6 (6) 5.5 (6) 5.5 (6) 5.5 (6)instructions 15.0 14.9 14.9 14.9 14.8Table 1: Data-set sizes and per processor reference counts for the workload, in millions.256Kbytes caches.The proportion of references to shared data is only a small fraction of all memoryaccesses performed by the processor yet they sometimes account for a large fraction ofthe execution time. A program is said to be processor bound if the largest proportion ofthe execution time is spent performing instructions. Conversely, a program is memorybound when the largest fraction of the time is spent on data references.3 Comparing DASH and SCIThe Directory Architecture for SHared memory (DASH) multiprocessor was conceivedat Stanford University as a workbench for exploring the design of logically-sharedphysically-distributed memory multiprocessors [14]. A DASH prototype was built and5



its implementation and performance is discussed by Lenoski et al. in [15]. The availabil-ity of performance data makes possible a comparison between DASH and an SCI-basedparallel machine with similar architectural parameters. However, because of intrinsicdi�erences in architecture and run time environments, i.e. simulation compared to anactual machine, strict quantitative comparisons would be misleading. A qualitative com-parison can nevertheless be informative. Table 2 shows the cost of individual memoryreferences for the two architectures.The DASH architecture. DASH consists of clusters of processing nodes intercon-nected by twin meshes. The clusters are bus-based multiprocessors within which cacheconsistency is maintained by a snooping protocol. Inter-cluster consistency is maintainedby a full-directory invalidation protocol [14]. Each cluster contains four processors; eachprocessor is connected to a 128Kbytes split primary cache (64Kbytes for instructions and64Kbytes for data, write-through) and a 256Kbytes write-back secondary cache. Bothcaches are direct mapped and support 16-byte lines. The interface between primaryand secondary caches consists of a 4-word deep write-bu�er and a one-word read-bu�er.Processor clock speed is 33MHz. The clusters also contain memory, the memory direc-tory and inter-cluster communication interfaces. The interconnection network consistsof two worm-hole routed networks, one for requests and one for responses. The latencythrough each node (network hop) is about 50ns. The peak bandwidth is 120Mbytes/sin and out of each cluster.The SCI ring. The SCI ring was simulated with only one processor per node, withthe same clock speed and cache hierarchy as DASH. The primary cache is split (64K +64K), direct mapped, write-through. Secondary caches are 256Kbytes, direct mapped,write-back. Lines are 64 bytes wide. There is no write-bu�er between the caches. Cacheand memory latencies per word are the same as those in DASH { see Table 2. Noticethat on the SCI ring, the latencies vary with ring size and, in the case of writes, thenumber of copies of the line. The processing nodes are interconnected by an SCI ring.The workload for the comparison consists of chol(), mp3d() and water(). Datasets are, for chol() bcsstk14, for mp3d() 40000 molecules simulated over 5 time steps,and for water() 343 molecules simulated for two steps. In [15], Water is run with 512molecules; the simulation time for that many molecules is so long as to be prohibitive.Thus, water() was simulated with a smaller data-set. The comparison should still bevalid since, in the 16-node case, water() makes 2:6 million references per processor to6



shared data and that is enough to �ll up the secondary caches at least a few times.Cache operation DASH SCI ringRead from primary cache 1 1Fill from secondary cache 14 14Fill from local memory 26 26Fill from remote node 72 31{37Fill from dirty-remote, remote home 90 49{60Write owned by secondary cache 2 14Write owned by local node 18 14Write owned by remote node 64 63{207Write to dirty remote, remote home 82 63{207Table 2: Cache and memory operation latencies, in processor clock cycles.Ring size 1 2 4 8 16Cholesky { chol()read refs. (103) 8444 9883 6875 4638 2904write refs. (103) 1862 2939 2075 1191 556RD hit ratio 0.97 0.98 0.98 0.98 0.97WR hit ratio 0.98 0.98 0.98 0.99 0.98run time (s) 10.26 5.32 2.80 1.58 0.95throughput (Mbytes/s) 0 1.18 2.06 2.54 2.69MP3D { mp3d()read refs. (103) 3619 3755 1594 1041 1098write refs. (103) 2343 1171 585 293 147RD hit ratio 0.95 0.89 0.85 0.82 0.77WR hit ratio 0.95 0.89 0.85 0.81 0.74run time (s) 4.83 2.96 1.61 0.90 0.58throughput (Mbytes/s) 0 9.5 15.8 19.9 20.6Water { water()read refs. (103) 20172 12619 8163 4093 2414write refs. (103) 3071 1536 768 384 192RD hit ratio 0.96 0.96 0.88 0.84 0.83WR hit ratio 0.99 0.99 0.95 0.93 0.92run time (s) 41.96 21.20 10.90 5.50 2.81throughput (Mbytes/s) 0 0.13 1.02 1.63 1.80Table 3: Per node shared-data reference counts, secondary cache hit ratios, executiontime and node throughput on the SCI ring.Speedup. Figure 1 shows the speedup plots for both DASH and the SCI ring. Speedupdata for DASH was taken from Figure 6 and Table 5 in [15]. The plot shows that chol()has a very similar speedup in both architectures. The di�erences for 2 and 4 nodes arerelated to better data mapping in the SCI ring. The di�erences on mp3d() are morepronounced. Network tra�c is much higher than with the other two programs and,given SCI's higher bandwidth and lower latencies, it is not surprising that mp3d() scales7



up better in the SCI ring. For water(), SCI's advantage comes partly from the betternetwork, partly from the smaller number of molecules and the resulting improvementin hit ratios. In DASH with 16 processors, water() uses 4:6% and 5:3% of availablebandwidth for the request and response networks respectively. In the SCI ring, it usesless than 1% of the bandwidth. Also, the smaller latencies, coupled with the lowerhit ratios on larger machines, give SCI a de�nite advantage. In these programs, datais mostly migratory [21] and so SCI's linear latency when purging long sharing-lists isonly felt in synchronisation actions. Those however are infrequent when compared todata references.sp
ee

du
p

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

ch
-1

ch
-2

ch
-4

ch
-8

ch
-1

6

m
p

-1

m
p

-2

m
p

-4

m
p

-8

m
p

-1
6

w
-1

w
-2

w
-4

w
-8

w
-1

6

DASH

SCI

Figure 1: Speedup plots for chol() (left), mp3d() (mid) and water() (right).Execution time breakdown. Figure 2 shows the execution time breakdown forthe workload on the SCI ring. Time is split into: (1) busy time when the processoris performing instructions and operations on data; (2) the time wasted on read misses(RDmiss); (3) the time wasted on write misses (WRmiss); (4) the time spent on syn-chronisation actions (synchr). The plot also shows the total time spent on referencesto shared data (shared) and the time lost because of network latencies (network). Theplots indicate that most of the stall cycles come from writes. This is partly because ofthe high latency of a write (14 cycles) and partly a \normal" feature of cache-coherentshared-memory multiprocessors [7]. The fraction of the time used up by chol() in ref-erences to shared data increases with ring size because of the relatively higher costs ofremote references while the fraction due to instruction fetches becomes proportionallymore important as the work per processor decreases. mp3d() spends 57{43% of the timeon private references, a large fraction of which is on write misses. The fraction of time8



water() spends on shared data references is very small and most of the write-stalls arecaused by private data misses.Given the workload employed, the comparison of the two architectures indicatesthat SCI's higher network bandwidth and lower latencies compensate for any advantagethat DASH's coherence protocol may o�er. It is likely that this conclusion would holdfor the less restrictive memory consistency models as well. However, the small sharingsets in the applications do not fully expose SCI's potential bottleneck of purging longsharing-lists serially.
fr

ac
tio

n 
of

 e
xe

cu
tio

n 
tim

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ch
-1

ch
-2

ch
-4

ch
-8

ch
-1

6

m
p

-1

m
p

-2

m
p

-4

m
p

-8

m
p

-1
6

w
-1

w
-2

w
-4

w
-8

w
-1

6

synchr

WRmiss

RDmiss

busy

network

shared data

Figure 2: Execution time breakdown for chol() (left), mp3d() (center) and water()(right). The lines show the fraction of shared data references and network latency.4 SCI Ring MultiprocessorsThe Simulated Multiprocessor. The multiprocessor consists of a number of pro-cessing nodes interconnected in a ring by SCI links. Each node contains a processor,a split primary cache, a coherent secondary cache, memory and an SCI interface. TheCPU is a 32-bit SPARC processor that performs an instruction fetch and possibly adata read/write access on every clock cycle. The processor clock frequency is 100MHz.The simulated processors always stall on memory references (both read and write), thusthe memory model is sequential consistency [13].The memory hierarchy comprises three levels: split primary caches, uni�ed secondarycache and main memory. The size of the instruction cache (i-cache) and data cache (d-cache) is 8 Kbytes each (one page), both being direct mapped. The data cache iswrite-through with no block allocation on write misses. The secondary cache is direct9



mapped and, for private data references it is copy-back with no block allocation. Themapping of virtual to physical addresses is performed in parallel with primary cachetag-matching [16].The secondary cache size is a simulation parameter. Sizes investigated are 64, 128,256 and, 512Kbytes. Main memory is simulated as if implemented with DRAMs with8-way interleaving. On all three levels of the memory hierarchy, cache and memorylines (blocks) are 64 bytes. The memory hierarchy satis�es the multilevel inclusionproperty [1] and the SCI coherency protocol actions a�ect only the secondary caches,thus called coherent caches.The internal buses are 64 bits wide, except the processor-primary caches which are32 bits wide. The access latency for the secondary caches is 3 processor cycles. Loading aline from the secondary cache into the primary caches or SCI controller costs 3 processorcycles plus 2ns per 64 bit word (16ns). Loading a line from/to memory costs 120ns ofaccess latency plus 10ns per 64 bit word (80ns). Thus, a cache-to-memory read-linetransaction costs 246ns for a 100MHz processor. To that, the network latency must beadded if one end of the transaction, cache or memory, is at another node.The sizes investigated are 64, 128, 256, 512 Kbytes and \in�nite" caches. The sizeof caches should be chosen to minimise the miss ratios, that is, as large as possible, andto reduce the number of cycles the processor stalls waiting for memory references tobe satis�ed. The cache latency depends to a large extent on the memory technologyand on the sophistication of the cache policies such as replacement, write-bu�ers, write-through/back. cache controller, the latency of the coherent caches was estimated to bethree processor clock cycles. The access latency of DRAMs is of the order of tens ofnanoseconds { 60 to 180 (in 1994), depending on size and organization of the memoryarray. When considering the overhead imposed by the coherency protocol, the latencyof the memory was set to 120ns.The In
uence of Cache Size. Coherent cache size and tag access latency are two ofthe factors that have most impact on the performance of memory hierarchies. Figure 3displays the execution time as a function of ring and cache size for the three SPLASHprograms. Recall that the data-set sizes are scaled up to keep the work each processordoes constant { see Table 1. For chol(), on a 4-node ring, the 128Kbytes cache isabout 35% slower than the two larger sizes. The di�erence is not as pronounced forthe other ring sizes. The 64Kbytes cache being faster than the 128Kbytes is due to an10



optimisation in chol(), by which the supernodes are chosen to �t the coherent caches.For all cache sizes (64-512Kbytes) and ring sizes 2{16, mp3d() has shared data hit ratiosthat are within one percentage point of one another. The same is true of the fractionof run time due to network latency, except that the interval is 4%. On a 16-node ring,water()'s shared data-set does not �t in the 64Kbytes caches. Hence the di�erence inexecution time between the 64K and 128-512Kbytes coherent caches.Figure 4 shows the relationship between cache and ring size and speed for the threeparallel loops. Data-set sizes are scaled up with machine size { see Table 1. For ge(),the di�erences in run time are below 4% and this agrees with the rather small changesin shared data hit ratio with cache size. The performance of the system, when executingmmult(), improves with larger cache sizes. The improvement comes from a reductionin con
ict misses and network delays. The 8-node machines endure higher instructionmiss rates because of con
ict misses. paths(), if the caches cannot accommodate theworking set, the program speed is bound by the speed of the memory and ultimatelyby the network latency. For the 64Kbytes cache, the impact of the network latencyincreases dramatically with ring and data set sizes because of the poorer hit ratios.Sharing-list length. In an SCI-based shared memory multiprocessor, data that isactively shared by processors is kept in linked lists, rooted at the data's home mem-ory. When the data is to be updated, the list collapses, the data is updated and thesharing-list is eventually re-established. The collapsing of sharing-lists involves messageexchanges between the processor at the head of list and each of the other nodes in thelist. Sharing-list length is de�ned as the number of copies that have to be purged when aline is updated. The sharing-list length re
ects the level of interference between proces-sors on each other's computation. Because of the serialisation imposed by the coherenceprotocol, the cost of purging grows linearly with the length of the sharing-list. paths()has an average sharing-list length that grows roughly as P=2, for P processors. The other�ve programs have sharing-list lengths of one or less for ring sizes 2{8 and under 1:2 for16-node rings. Sharing-list length is fairly independent of cache size. This is becausemost of the shared-data in chol(), mp3d() and water() is migratory in nature [21].The same can be said of ge(), given its algorithm and simulation statistics.11



tim
e 

(s
) 

- 
ch

ol
()

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

6
4

K
-1 2 4 8

1
6

1
2

8
K

-1 2 4 8
1

6

2
5

6
K

-1 2 4 8
1

6

5
1

2
K

-1 2 4 8
1

6

IN
F

-1 2 4 8
1

6

network

shared

if+local

tim
e 

(s
) 

- 
m

p3
d(

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6
4

K
-1 2 4 8

1
6

1
2

8
K

-1 2 4 8
1

6

2
5

6
K

-1 2 4 8
1

6

5
1

2
K

-1 2 4 8
1

6

IN
F

-1 2 4 8
1

6

network

shared

if+local

tim
e 

(s
) 

- 
w

at
er

()

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

6
4

K
-1 2 4 8

1
6

1
2

8
K

-1 2 4 8
1

6

2
5

6
K

-1 2 4 8
1

6

5
1

2
K

-1 2 4 8
1

6

IN
F

-1 2 4 8
1

6

network

shared

if+local

Figure 3: Execution time as a function of cache size, for chol() (top), mp3d() (center)and water() (bottom). Time is broken down into network latency, references to shared-data and references to local data and instructions. Data sets grow with machine size.12



tim
e 

(s
) 

- 
ge

()

0

0.1

0.2

0.3

0.4

0.5

0.6

6
4

K
-1 2 4 8

1
6

1
2

8
K

-1 2 4 8
1

6

2
5

6
K

-1 2 4 8
1

6

5
1

2
K

-1 2 4 8
1

6

IN
F

-1 2 4 8
1

6

network

shared

if+local

tim
e 

(s
) 

- 
m

m
ul

t(
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

6
4

K
-1 2 4 8

1
6

1
2

8
K

-1 2 4 8
1

6

2
5

6
K

-1 2 4 8
1

6

5
1

2
K

-1 2 4 8
1

6

IN
F

-1 2 4 8
1

6

network

shared

if+local

tim
e 

(s
) 

- 
pa

th
s(

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

6
4

K
-1 2 4 8

1
6

1
2

8
K

-1 2 4 8
1

6

2
5

6
K

-1 2 4 8
1

6

5
1

2
K

-1 2 4 8
1

6

IN
F

-1 2 4 8
1

6

network

shared

if+local

Figure 4: Execution time as a function of cache size, for ge() (top), mmult() (center)and paths() (bottom). Time is broken down into network latency, references to shared-data and references to local data and instructions. Data sets grow with machine size.13



Processor Clock Speed. Microprocessor technology is evolving at such a pace thatthe speed of processors, and indeed of workstations, doubles roughly every two or threeyears. What can be said about the performance of SCI, when the next generation ofprocessors is introduced? Figure 5 shows the speedup attained by doubling the processorclock speed while keeping the other parameters unchanged. Note that coherent cacheaccess latency is 3 processor clock cycles in both cases.
1

1.2

1.4

1.6

1.8

2

1 2 4 8 16
Ring size

speedup 200Mhz/100Mhz - 64K

ch
mp

w
ge

mm
p

1

1.2

1.4

1.6

1.8

2

1 2 4 8 16
Ring size

speedup 200Mhz/100Mhz - 256K

ch
mp

w
ge

mm
pFigure 5: Speedup achieved by doubling processor clock frequency, with cache sizesof 64K (left) and 256Kbytes (right). `ch' stands for chol(), `mp' for mp3d(), `w' forwater(), `ge' for ge(), `mm' for mmult(), `p' for paths().Some of the loss in speedup can be attributed to the relatively slower memory hier-archy, the in
uence of which can be gauged from the values for the uniprocessor { about10 to 37% loss in speedup. Most of the loss in speedup for chol(), mp3d() and paths()is caused by network saturation. Plots of the ratio of link tra�c for 100 and 200MHzprocessors are almost identical to those in Figure 5. Programs that generate low levelsof network tra�c can use a lot more bandwidth whereas programs that nearly saturatethe ring su�er even higher round-trip delays with a faster rate of network requests.Bandwidth and Latency. The transport mechanism of SCI is based on unidirectionalpoint-to-point links. The simplest topology that can be implemented with these linksis the asynchronous insertion ring. The transmission of a packet is completed when itsecho is received by the transmitter. The time lapse between the insertion of a packetinto the output bu�er and the receipt of its echo is the round-trip delay of the ring.The number of packets a node can transmit per time unit depends on the tra�c on thering. The tra�c seen by a node at its ring interface is de�ned as the number of symbols14



per time unit that is output by the ring interface. It consists of all the symbols passingthrough plus those inserted by the node itself. Throughput is the number of symbolsper time unit inserted by the node and measures the amount of coherence-related tra�cgenerated by the processor and cache/memory controllers.tra�c throughput r-t delaysize 2 4 8 16 2 4 8 16 2 4 8 16chol() 8 30 72 144 6 10 12 12 37 46 72 130mp3d() 65 198 383 621 46 64 62 50 37 48 83 173water() 2 22 52 110 1 7 8 8 35 45 69 123ge() 1 5 16 52 1 2 3 4 36 49 75 130mmult() 1 6 20 118 1 2 4 10 33 52 74 132paths() 8 24 70 395 5 9 12 34 36 50 78 156Table 4: Link tra�c (Mbyte/s), processor throughput (Mbyte/s) and round-trip delay(ns) for the workload.Link tra�c. Table 4 shows the tra�c per link as a function of ring size. mp3d()and paths() produce high levels of tra�c and su�er higher latencies. Tra�c levels of600 to 700Mbytes/s are a limiting factor in the performance of SCI-connected systemssince, at these levels, round-trip delays are holding down the rate of network requestsby processors. Bypass bu�ers endure utilisations of over 50% and that leaves few oppor-tunities for injecting packets into the ring. The discussion about processor clock speedin Section 4 is clear evidence of the e�ects of network saturation: doubling processorclock rate does little to improve the performance of programs that are already drivingthe network into saturation.Node throughput. Table 4 shows the e�ective throughput per node. Note thatthe measured throughput includes packet header overhead. Data throughput would besomewhat lower. The reason for including header overheads in the throughput measure-ment is that cache coherency commands are embedded in the packet headers and thesecomprise a large fraction of the information transferred by the cache coherence protocol.Round trip delay. Table 4 shows the average round trip delay as a function of ringsize. Note that latencies experienced accessing memory and caches are not included.The static latency for a 16-node ring is 116ns, for an average packet size of 11 symbols.chol(), water(), ge() and mmult() generate low network tra�c and enjoy low latencies.mp3d() and paths() endure much higher latencies because of their higher throughputand increased network congestion. 15



4.1 Other Ring-based SystemsDASH Again. Section 3 compares the performance of an SCI-based multiprocessorto that of DASH. Figure 6 shows the execution time broken down by type of memoryoperation for chol(), mp3d() and water() with the architectural parameters used inthis section. Compare this to Figure 2. Because of the smaller and varying data setssizes, the instruction-related fraction is relatively larger. Note that both cache andmemory access latencies are shorter in Figure 6. Also, the primary caches are 8 timessmaller. The most striking di�erences are the increases in the rate of memory requestsand network latency and the consequent increase in the cost of shared-data references.Figure 6 highlights, for mp3d() in particular, the relationship between network tra�cand overall performance. The relative increase in the cost of shared references, as ringsize grows, is caused mostly by higher network tra�c and longer latencies. This is notthe case, however, for chol() because of its �xed-size data set.fr
ac

tio
n 

of
 e

xe
cu

tio
n 

tim
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ch
-1

ch
-2

ch
-4

ch
-8

ch
-1

6

m
p

-1

m
p

-2

m
p

-4

m
p

-8

m
p

-1
6

w
-1

w
-2

w
-4

w
-8

w
-1

6

synchr

WRmiss

RDmiss

busy

network

shared data

Figure 6: Execution time breakdown for chol() (left), mp3d() (mid) and water()(right) { 100MHz clock.Express Ring, KSR1 and Hector. In order to compute the cost of a remote trans-action, memory and cache tag access latencies must be added to the round-trip delay.For the simulations reported here, the worst case is a cache-to-memory transaction:ring latency+246ns (30ns+16ns plus 120ns+80ns). The best case is a cache-to-cachetransaction, such as an invalidate transaction, costing ring latency+60ns (2 � 30ns).Barroso and Dubois, in [3], present simulation results for the Express Ring. The mul-tiprocessor's interconnect is based on a slotted ring and cache coherence is maintainedby a snooping protocol [2]. On a ring with 8 nodes, the shared-data miss latency for16



chol(), mp3d() and water() is between 280 and 320ns. On a 16-node ring, between320 and 380ns and, on a 32-node ring, between 390 and 440ns. On 8-node rings, theshared-data miss latencies of an SCI ring are comparable to those of a slotted ring. On16- and 32-node rings, the SCI ring would have higher latencies.A comparison with the KSR1 [4] is di�cult to make for lack of performance dataon the applications employed here. It is likely the results would show the same broadtendencies as those of DASH since the two machines are built from similar technologies{ SCI's faster network would provide a performance advantage. The Hector multipro-cessor [20], using a hierarchical snooping protocol [6, 11] should have a performancecomparable to that of the Express Ring. Holliday and Stumm report in [11], thatHector's hierarchical protocol scales well to a large number of processors (1024) if theapplications possess good locality characteristics.5 ConclusionThis paper contains a detailed performance evaluation study of SCI-based shared mem-ory multiprocessors. Previous studies of SCI have concentrated on network performanceand to some extent ignored the in
uence of the cache coherence protocol. Here, the inter-actions between interconnection network and cache coherence protocol are investigated.The results of the simulations are summarised below.A simple multiprocessor system was \implemented" in the simulator with compo-nents compatible with the current levels of performance. Several architectural param-eters were investigated, namely machine size, secondary cache size and processor clockspeed. Machines were simulated with one, two, four, eight and sixteen 100MIPS pro-cessors. In order to reproduce accurately the interleaving of the memory references in aNUMA architecture, the architecture simulator is driven by reference streams generatedas a by-product of the execution of real programs. The simulated threads are sched-uled for execution according to the state of the simulated multiprocessor and the actualdelays incurred by references to remote memory and cache coherency actions.Two of the programs in the workload are ill suited for execution on physically dis-tributed memory. mp3d() has low hit ratios and its data is highly migratory, causinghigh levels of cache coherence activity and network tra�c. This program exhibits poorperformance in every published experiment seen by the authors. It is however very17



useful to expose architectural bottlenecks. The data used by paths() has a high degreeof read-sharing and writes to shared data often cause the purging of long sharing-lists.This also causes high levels of network tra�c and, for the smaller cache sizes, high levelsof coherence activity. These two programs do drive the network into saturation and theirperformance is, in most of the experiments, limited by network bandwidth and delays.The other four programs have more regular behaviour and better coherent cache hitratios. For them, the performance penalties imposed by the cache coherence protocoland interconnect are rather small. The overheads imposed by the cache coherence pro-tocol are always smaller than 5% of the execution time. The losses caused by networklatencies are under 10% of the execution time.Node throughput is de�ned as the network bandwidth available to processing ele-ments. For rings with processors and memory hierarchy as simulated, the experimentsrevealed that raw processor throughput is limited at about 80Mbytes/s because of net-work saturation. Data-only throughput is about 20 to 30% of raw throughput. Giventhat under 14% of all packets injected into the ring carry 64 bytes of data [9] whileall except echo packets carry cache coherency information, raw throughput is a bettermeasure of overall system performance.High levels of network tra�c cause queue backlogs in the link interfaces with round-trip delays increasing by as much as 25% as a consequence. For mp3d() and paths(),network saturation occurs for link tra�c at 600 to 700Mbytes/s, for 8- and 16-node rings,and this in turn limits node throughput at 80Mbytes/s. The simulation results forSCI-rings indicate that, for hardware and software with characteristics similar to thoseinvestigated here, the maximum e�cient ring size is between eight and sixteen. The scal-ability in these small systems (1, 2, 4, 8, and 16 processors) was found to be fairly good.There is still work to be done in the performance evaluation of SCI based multi-processors. Further investigation of small systems is needed since SCI is inexpensiveenough to be used in small to medium sized machines. The evaluation of systems withhundreds of processors is necessary in order to assess the scalability of SCI-based mul-tiprocessors. For simulations of large systems, the programs in the workload will needto be adapted, rewritten or replaced because they were designed and coded for mediumsize machines (32{64 processors). These codes are unlikely to scale up well to hundredsof processors without extensive rewriting. The simulation technique used here producesaccurate results but its computational cost is very high. Two alternatives seem attrac-18



tive. One is the direct simulation of the processors, thus avoiding interactions with theoperating system. The other is to use a customisable synthetic workload. While notstrictly realistic, proper tuning of parameters can produce insightful results.Acknowledgements The source code for ge() was provided by GrahamRiley, from theCentre for Novel Computing, Manchester University. The parallel version was compiledand optimised for the KSR1 at CNC. This work was partially supported by a scholarshipfrom CAPES, Ministry of Education, Brazil.References[1] Jean-Loup Baer and Wen-Hann Wang. On the inclusion properties for multi-level cachehierarchies. In Proc. 15th Int. Symp. on Computer Architecture, pages 73{80, May 1988.[2] Luiz A Barroso and Michel Dubois. Cache coherence on a slotted ring. In Proc 1991 Int.Conf. Parallel Processing, volume 1, pages 230{237, St. Charles, IL, USA, August 1991.[3] Luiz A Barroso and Michel Dubois. The performance of cache-coherent ring-based multi-processors. In Proc. 20th Int. Symp. on Computer Architecture, pages 268{277. ACMSIGARCH Comp Arch News 21(2), May 1993.[4] H Burkhardt. Overview of the KSR1 computer system. Tech Report KSR-TR-9202001,Kendall Square Research, Boston, 1992.[5] N Deo, C Y Pang, and R E Lord. Two parallel algorithms for shortest path problems. TechReport CS-80-059, Washington State Univ, March 1980.[6] K Farkas, Z Vranesic, and M Stumm. Cache consistency in hierarchical ring-based mul-tiprocessors. Tech Report EECG TR-92-09-01, Univ. of Toronto, 1992. Also in Proc. ofSupercomputing '92.[7] K Gharachorloo, A Gupta, and J Hennessy. Performance evaluation of memory consistencymodels for shared-memory multiprocessors. In Fourth Int. Conf. on Architectural Supportfor Progr. Lang. and Oper. Sys., pages 245{257. ACM SIGARCH Comp Arch News 19(2),April 1991.[8] D Grunwald, G J Nutt, D Wagner, and B Zorn. A parallel execution evaluation testbed.Tech Report CU-CS-560-91, Dept of Computer Science, Univ of Colorado, November 1991.[9] Roberto A Hexsel. A Quantitative Performance Evaluation of SCI Memory Hierarchies.PhD dissertation, Dept. of Computer Science, University of Edinburgh, October 1994. TechReport CST 112-94. 19



[10] Roberto A Hexsel and Nigel P Topham. The performance of SCI memory hierarchies. InProc of the Int. Workshop on Support for Large Scale Shared Memory Architectures, pages1{17, Canc�un, Mexico, April 1994. In conjunction with 8th IPPS. Also Univ of EdinburghDept of Computer Science Tech Report CSR-30-94.[11] Mark Holliday and Michael Stumm. Performance evaluation of hierarchical ring-basedshared memory multiprocessors. IEEE Trans. on Computers, C-43(1):52{67, January 1994.[12] IEEE. ANSI/IEEE Std 1596-1992 { Standard for Scalable Coherent Interface. IEEE, 1992.IEEE publications are available from the Institute of Electrical and Electronics Engineers,Inc., Service Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331.[13] Leslie Lamport. How to make a multiprocessor that correctly executes multiprocess pro-grams. IEEE Trans. on Computers, C-28(9):690{691, September 1979.[14] D Lenoski, J Laudon, K Gharachorloo, A Gupta, and J L Hennessy. The directory-basedcache coherence protocol for the DASH multiprocessor. In Proc. 17th Int. Symp. on Com-puter Architecture, pages 148{159. ACM SIGARCH Comp Arch News 18(2), May 1990.[15] D Lenoski, J Laudon, T Joe, D Nakahira, L Stevens, A Gupta, and J Hennessy. TheDASH prototype: Implementation and performance. In Proc. 19th Int. Symp. on ComputerArchitecture, pages 92{103. ACM SIGARCH Comp Arch News 20(2), May 1992.[16] O A Olukotun, T N Mudge, and R B Brown. Implementing a cache for a high-performanceGaAs microprocessor. In Proc. 18th Int. Symp. on Computer Architecture, pages 138{147.ACM SIGARCH Comp Arch News 19(3), May 1991.[17] S L Scott, J R Goodman, and M K Vernon. Performance of the SCI ring. In Proc. 19thInt. Symp. on Computer Architecture, pages 403{414. ACM SIGARCH Comp Arch News20(2), May 1992.[18] Steven L Scott and James R Goodman. Performance of pipelined K-ary N-cube networks.Tech Report 1010, Computer Sciences Dept, Univ of Wisconsin{Madison, February 1991.[19] J P Singh, W-DWeber, and A Gupta. SPLASH: Stanford ParalleL Applications for SHared-memory. Technical Report CSL-TR-91-469, Computer Science Dept, Stanford Univ, April1991. Also in ACM SIGARCH Comp Arch News 20(1).[20] Z Vranesic, M Stumm, D Lewis, and R White. Hector: a hierarchically structured sharedmemory multiprocessor. IEEE Computer, 24(1):72{78, January 1991.[21] Wolf-Dietrich Weber and Anoop Gupta. Analysis of cache invalidation patterns in multi-processors. In Third Int. Conf. on Architectural Support for Progr. Lang. and Oper. Sys.,pages 243{256. ACM SIGARCH Comp Arch News 17(2), April 1989.20



Appendix: The Scalable Coherent InterfaceThe description that follows concentrates on those features of SCI that are of rel-evance in this paper. SCI consists of three parts, the physical-level interfaces, thepacket-based logical communication protocol, and the distributed cache coherence pro-tocol. The physical interfaces are high speed unidirectional point-to-point links. Oneof the versions prescribes links 16 bits wide which can transfer data at peak speed of1 Gbyte/s. The standard supports a general interconnect, providing a coherent shared-memory model, scalable up to 64K nodes. An SCI node can be a memory module, aprocessor-cache pair, an IO module or any combination of these. For most applications,a multiprocessor will consist of several rings, connected together by switches, i.e. nodeswith more than one pair of link interfaces.
bypass buffer

Tout

input

buffer

Node interface

output

buffer
active

buffers

output

link

Twait

Tpass

mux

stripper input

link

Tstrip TwireFigure 7: SCI link interface.Logical Protocol. The logical protocol comprises the speci�cation of the sizes andtypes of packets and of the actions involved in the transference of information betweennodes. A packet consists of an unbroken sequence of 16-bit symbols. It contains address,command/control and status information plus optional data and a check symbol. Acommand/control packet can be 8 or 16 symbols long, a data packet is 40 symbols longand an echo packet is 4 symbols in length. A data packet carries 64 bytes of data.The protocol supports two types of actions: requests and responses. A completetransaction, for instance, a remote memory data read, starts with the requester sendinga request-send packet to the responder. The acceptance of the packet by the responderis acknowledged with a request-echo. When the responder has executed the command,21



it generates a response-send packet containing status information and possibly data.Upon receiving the response-send packet, the requester completes the transaction byreturning a response-echo packet. The communication protocol ensures forward progressand contains deadlock and livelock avoidance mechanisms.The network access mechanism used by SCI is the register insertion ring { see Fig-ure 7. A node retains packets addressed to itself and forwards other packets to thedownstream node. A request transaction starts with the sender node placing a request-send packet, addressed to the receiver node, in the output bu�er. Transmission canstart if there are no packets at the bypass bu�er and no packet is being forwarded fromthe stripper to the multiplexor. At the receiver node, the stripper parses the incomingpacket and diverts it to the input bu�er. On recognising a packet addressed to itself,the stripper generates an echo packet addressed to the sender and inserts it in placeof the \stripped" packet. If there is space at the input bu�er, the echo carries an ack(positive acknowledge) status. Otherwise, the packet is dropped and a nack (negativeacknowledge) is returned to the sender who will then retransmit the packet.It is likely that during the transmission of a packet, the bypass bu�er will be �lledwith packets not addressed to the node. Once transmission stops, the node enters the re-covery phase during which no packets can be inserted by the node. Each packet strippedcreates spaces in the symbol stream. These spaces, called idle symbols, eventually allowthe bypass bu�er to drain, when new transmissions are possible. The protocol also en-sures that the downstream nodes cannot insert new packets until the recovery phase iscomplete. This will cause a reduction in overall tra�c and create enough idles to drainthe bypass bu�er.When a packet is output, a copy of it is kept in an active bu�er. If the statusof its echo is ack, the original packet is dropped from the active bu�er and the nodecan transmit another packet. If the echo carries a nack, the packet is retransmitted.This allows for one or more packets to be active simultaneously, e.g. one transactioninitiated by the processor and other(s) initiated by the cache or memory controller(s).The number of active bu�ers depends on the type of the \pass transmission protocol"implemented. The options are: only one outstanding packet, one request-send and oneresponse-send outstanding or, several outstanding request- or response-send packets.Coherence Protocol. The SCI coherence protocol is based on a write-invalidatechained directory. Each cache line tag contains pointers to the next and previous nodes22



in the doubly-linked sharing list. A line's address consists of a 16-bit node-id and 48-bito�set. The storage overhead for the memory directory and the cache tags is a �xedpercentage of the storage capacity. For a 64-byte cache block, the overheads are 4% atmemory and 7% at the cache tags.
mem M

mem M

mem M

cache A cache B cache C

cache A cache B cache C

cache Ccache Bcache A

head invalid invalid

invalidheadtail

tail mid head

(1)

(2)

(3)
(4)

(5)

(6)

(7)

(8)

(9)

(10)

gone

gone

gone

mem M

mem M

mem M

cache A cache B cache C

cache A cache B cache C

cache A cache B cache C

head mid tail

gone

head invalid tail

exclusive

dirty

invalid invalid

gone

(1)

(2)

(3)

(4)

Figure 8: Sharing list setup (left) and purge sequence (right). Solid lines representsharing list links, dotted lines represent messages.Consider processors A, B and C, read-sharing a memory line L that resides at node M{ see Figure 8. Initially, the state of the memory lines is home and the cache blocksare invalid. A read-cached transaction is directed from processor A to the memorycontroller M (1). The state of line L changes from home to gone and the requested lineis returned (2). The requester's cache block state changes to the head state, i.e. head ofthe sharing list. When processor B requests a copy of line L (3), it receives a pointer toA from M (4). A cache-to-cache transaction, called prepend, is directed from B to A (5).On receiving the request, A sets its backward pointer to B and returns the requestedline (6). Node C then requests a copy of L from M (7) and receives a pointer to node23



B (8). Node C requests a copy from B (9). The state of the line at B changes from headto mid and B sends a copy of L to C (10). In SCI, rather than having several requesttransactions blocked at the memory controller, all requests are immediately prependedto the respective sharing lists. When a block has to be replaced, the processor detachesitself from the sharing list before 
ushing the line from the cache.Before writing to a shared line, the processor at the head of the sharing-list mustpurge the other entries in the list to obtain exclusive ownership of the line { see Fig-ure 8. Node A, in the head state, sends an invalidate command to node B (1). Node Binvalidates its copy of L and returns its forward pointer (pointing to C) to A (2). NodeA sends an invalidate command to C (3) which responds with a null pointer, indicatingit is the tail node of the sharing list (4). The state of line L, at node A, changes toexclusive and the write completes. When a node other then the head needs to write to ashared line, that node has to interrogate the memory directory for the head of the list,acquire head status and then purge the other entries. If the writer is at the middle ortail, it �rst has to detach itself from the sharing list before attempting to become thenew head.

24


