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Abstract

 

High performance architectures depend heavily on effi-
cient multi-level memory hierarchies to minimize the cost
of accessing data. This dependence will increase with the
expected increases in relative distance to main memory.
There have been a number of published proposals for
cache conflict-avoidance schemes. In this paper we inves-
tigate the design and performance of conflict-avoiding
cache architectures based on polynomial modulus func-
tions, which earlier research has shown to be highly effec-
tive at reducing conflict miss ratios. We examine a number
of practical implementation issues and present experimen-
tal evidence to support the claim that pseudo-randomly in-
dexed caches are both effective in performance terms and
practical from an implementation viewpoint.

 

1 Introduction

 

On current projections the next 10 years could see CPU
clock frequencies increase by a factor of twenty whereas
DRAM row-address-strobe delays are projected to
decrease by only a factor of two. This potential ten-fold
increase in the distance to main memory has serious
implications for the design of future cache-based memory
hierarchies as well as for the architecture of memory
devices themselves.

There are many options for an architect to consider in
the battle against memory latency. These can be partitioned
into two broad categories - latency reduction and latency
hiding. Latency reduction techniques rely on caches to
exploit locality with the objective of reducing the latency
of each individual memory reference. Latency hiding
techniques exploit parallelism to overlap memory latency
with other operations and thus “hide” it from a program’s
critical path.

This paper addresses the issue of latency reduction and
the degree to which future cache architectures can isolate

their processor from increasing memory latency. We
discuss the theory, and evaluate the practice, of using a
particular class of conflict-avoidance indexing functions.
We demonstrate how such a cache could be constructed
and provide practical solutions to some previously un-
reported problems, as well as some known problems,
associated with unconventional indexing schemes. The key
contribution of this paper is to explore the design space of
conflict-resistant caches and evaluate their performance on
programs both with and without high levels of conflict
misses.

In section 2 we present an overview of the causes of
conflict misses and summarise previous techniques that
have been proposed to minimize their effect on
performance. We propose a method of cache indexing
which has demonstrably lower miss ratios than alternative
schemes, and summarise the known characteristics of this
method. In section 3 we discuss a number of
implementation issues, such as the effect of using this
novel indexing scheme on the processor cycle time. We
present an experimental evaluation of the proposed
indexing scheme in section 4. Our results show how the
IPC (instructions committed per cycle) of an out-of-order
superscalar processor can be improved through the use of
our proposed indexing scheme. Finally, in section 5, we
draw conclusions from this study.

 

2 The problem of cache conflicts

 

Whenever a block of main memory is brought into cache a
decision must be made on which block, or set of blocks, in
the cache will be candidates for storing that data. This is
referred to as the placement policy. Conventional caches
typically extract a field of  bits from the address and use
this to select one block from a set of . Whilst simple,
and easy to implement, this indexing function is not robust.
The principal weakness of this function is its susceptibility
to repetitive conflict misses. For example, if  is the
number of cache sets and  is the block size, then
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addresses  and  map to the same cache set if
. If  and  collide on the same

cache set, then addresses  and  also collide
in cache, for any integer , except when

(i)

where

 (ii)

and

 (iii)

There are two common cases when this happens:
• when accessing a stream of addresses 

 if  collides with , then 
there may be up to  conflict misses in this 
stream.

• when accessing elements of two distinct arrays  
and , if  collides with  then 

 collides with .

-way set-associativity can help to alleviate such
conflicts. However, if a working set contains 
conflicts on some cache set, then associativity can only
eliminate at most  of those conflicts. The following
section proposes a remedy to the problem of cache conflicts
by defining an improved method of block placement.

 

2.1 Conflict-resistant cache placement functions

 

The objective of a conflict-resistant placement function is
to avoid the repetitive conflicts described above. This is
analogous to finding a suitable hash function for a hash
table. Perhaps the most well-known alternative to
conventional cache indexing is the skewed associative
cache [21]. This involves two or more indexing functions
derived by XORing two -bit fields from an address to
produce an -bit cache index. In the field of interleaved
memories it is well known that bank conflicts can be
reduced by using bank selection functions other than the
simple modulo-power-of-two. Lawrie and Vora proposed a
scheme using prime-modulus functions [16], Harper and
Jump [11], and Sohi [24] proposed skewing functions. The
use of XOR functions was proposed by Frailong 

 

et al

 

. [5],
and pseudo-random functions were proposed by Raghavan
& Hayes [17] and Rau 

 

et al

 

. [18], [19]. These schemes each
yield a more or less uniform distribution of requests to
banks, with varying degrees of theoretical predictability
and implementation cost. In principle each of these
schemes could be used to construct a conflict-resistant
cache by using them as the indexing function. However,
when considering conflict resistance in cache architectures
two factors are critical. Firstly, the chosen placement
function must have a logically simple implementation, and
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secondly we would like to be able to guarantee good
behavior on all regular address patterns - even those that
are pathological under a conventional placement function.
In both respects the irreducible polynomial modulus (I-
Poly) permutation function proposed by Rau [19] is an
ideal candidate.

The I-Poly scheme effectively defines families of
pseudo-random hash functions which are implemented
using exclusive-OR gates. They also have some useful
behavioral characteristics which we discuss later. In [10]
the miss ratio of the I-Poly indexing scheme is evaluated
extensively in the context of cache indexing, and is
compared with a number of different cache organizations
including; direct-mapped, set-associative, victim, hash-
rehash, column-associative and skewed-associative. The
results of that study suggest that the I-Poly function is
particularly robust. For example, on Spec95 an 8Kb two-
way associative cache has an average miss ratio of 13.84%.
An I-poly cache of identical capacity and associativity
reduces that miss ratio to 7.14%, which compares well
against a fully-associative cache which has a miss ratio of
6.80%. 

 

2.1.1 Polynomial-modulus cache placement

 

To define the most general form of conflict resistant cache
indexing scheme let the placement of a block of data from
an -bit address , in each of  ways of a -way
associative cache with  sets, be determined by the
set of indices . In I-Poly indexing each  is
computed by the function , for

. In this scheme  is a member of a set of ,
possibly distinct, integer values , in the
range . If we choose to use distinct values for
each  the cache will be skewed, though skewing is not
an obligatory feature of this scheme. Each index function is
defined as follows. Consider the integers  and  in
terms of their binary representations, as shown for example
in equation (iv)

 (iv)

The binary representations of  can be interpreted as a
polynomial defined over the field GF(2), thus:

(v)

Similarly  can be interpreted as the polynomial .
For best performance  will be an irreducible
polynomial, though it need not be so.

Each cache index  is also defined over
GF(2), and is given by the polynomial  of order less
than  computed by the following modulus operation

(vi)

Effectively  is the polynomial modulus function
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 ignoring the higher order  terms
of . Each bit of the index can be computed using an
XOR tree, if  is constant, or an AND-XOR tree if one
requires a configurable index function. For best
performance  should be as close as possible to ,
though it may be as small as  for this scheme to be
distinct from conventional block placement. Examples of
how this function can be applied to cache indexing can be
found in [10].

 

2.1.2 Polynomial placement characteristics

 

The class of polynomial hash functions described above
have been studied previously in the context of stride-
insensitive interleaved memories (see [18] and [19]). These
functions have certain provable characteristics which are of
significant value in the context of cache indices. For
example, all strides of the form  produce address
sequences that are free from conflicts. This is a
fundamental result for polynomial indexing; if the
addresses of a -strided sequence are partitioned into -
long sub-sequences, where  is the number of cache
blocks, we can guarantee that there are no cache conflicts
within each sub-sequence. Any conflicts between sub-
sequences are due to capacity problems and only be solved
by larger caches or tiling of the iteration space.

The stride-insensitivity of the I-Poly index function
can be seen in figure 1 which shows the behavior of four
cache configurations, identical except in their indexing
functions. All have 8KB capacity, 32 byte block size, and
two-way associativity. They were each driven from an
address trace representing repeated accesses to a vector of
64 8-byte elements in which the elements were separated
by stride . With no conflicts such a sequence would use
at most half of the 128 sets in the cache. The experiment
was repeated for all strides in the range  to
determine how many strides exhibited bad behavior for
each indexing function. The experiment compares three
different indexing schemes; conventional modulo power-
of-2 (labelled a2), the XOR function proposed in [21] for
the skewed-associative cache (a2-Hx-Sk) and two I-Poly
functions. The I-Poly scheme was simulated both with and
without skewed index functions (a2-Hp and a2-Hp-Sk
respectively). 

For all schemes the majority of strides yield low miss
ratios. However, both the conventional and the skewed
XOR functions display pathological behavior (miss ratio >
50%) on more than 6% of all strides. The I-Poly scheme
with skewing does not exhibit significant cache conflicts
for any of the strides in the range 1 to 4096, suggesting a
higher degree of conflict resistance than one can obtain
through conventional set-associativity or other (non
polynomial) XOR-based index functions. 
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3 Implementation Issues

 

The logic of the polynomial modulus operation in GF(2)
defines a class of hash functions which compute the cache
placement of an address by combining subsets of the
address bits using XOR gates. This means that, for
example, bit 0 of the cache index may be computed as the
exclusive-OR of bits 0, 11, 14, and 19 of the original
address. The choice of polynomial determines which bits
are included in each set. The implementation of such a
function for a cache with an 8-bit index would require just
eight XOR gates with fan-in of 3 or 4.

Whilst this appears remarkably simple, there is more
to consider than just the placement function. Firstly, the
function itself uses address bits beyond the normal limit
imposed by typical minimum page size restriction.
Secondly, the use of pseudo-random placement in a multi-
level memory hierarchy has implications for the
maintenance of Inclusion. Here we briefly examine these
two issues and show how the virtual-real two-level cache
hierarchy proposed by Wang 

 

et al

 

. [25] provides a clean
solution to both problems. Finally, the impact of XOR
gates on the critical path of address computation is
analyzed, and a scheme based on address prediction is
proposed to overcome the penalties caused by extensions to
the critical path.
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Figure 1. 

 

Frequency distribution of miss ratios for 
conventional and pseudo-random indexing schemes. 
Columns represent I-Poly indexing and lines represent 
conventional and skewed-associative indexing.



 

 4

 

3.1 Overcoming page size restrictions

 

Typical operating systems permit pages to be as small as
4Kbytes. In a conventional cache this places a limit on the
first-level cache size if address translation is to proceed in
parallel with tag lookup. Similarly, any novel cache
indexing scheme which uses address bits beyond the
minimum page size boundary cannot use a virtually-
indexed physically-tagged cache. From the alternative
options available one might consider:

1. Performing address translation prior to tag lookup 
(i.e. use physical indices)

2. Enabling I-Poly indexing only when data pages are 
known to be large enough

3. Using a virtually-indexed virtually-tagged level-1 
cache 

4. Indexing conventionally, but use a polynomial rehash 
on a level-1 miss.

Option 1 is attractive if an existing processor pipeline
performs address translation at least one stage prior to tag
lookup. This might be the case in a processor which is able
to hide memory latency through dynamic execution or
multi-threading, for example. However, in many systems,
performing address translation prior to tag lookup will
either extend the critical path through a critical pipeline
stage or introduce an extra cycle of untolerated latency via
an additional pipeline stage. 

Option 2 could be attractive in high performance
systems where large data sets and large physical memories
are the norm. In such circumstances processes may
typically have data pages of 256Kbytes or more. The O/S
would need to track the page sizes of segments currently in
use by a process (and its kernel) and enable polynomial
cache indexing at the first-level cache if all segments’ page
sizes were above a certain threshold. This would provide
more unmapped bits to the hash function when possible,
but revert to conventional indexing when this is not
possible.

For example, if the threshold is 256Kbytes and the
cache is 8Kbytes two-way associative, one could
implement a polynomial function combining 13 unmapped
physical address bits to produce 7 cache index bits. This
would be sufficient to produce good conflict-free behavior.
Provided the level-1 cache is flushed when the indexing
function is changed, there is no reason why the indexing
function needs to remain constant.

The third option is not currently popular, primarily
because of potential difficulties with aliases in the virtual
address space as well as the difficulty of shooting down a
level-1 virtual cache line when a physically-addressed
invalidation operation is received from another processor.

However, the two-level virtual-real cache hierarchy
proposed by Wang 

 

et al.

 

 in [25] provides an interesting way
of implementing a virtually-tagged L1 cache, thus
exposing more address bits to the indexing function
without incurring address translation delays. We consider
this to be the most promising option for implementing an I-
poly cache; it enables more address bits to be used in the
index function and also provides a mechanism for
maintaining Inclusion in the presence of holes (discussed in
section 3.2).

The fourth option would be appropriate for a
physically-tagged direct-mapped cache. It is similar in
principle to the hash-rehash [1] and the column-associative
caches [2]. The idea is to make an initial probe with a
conventional integer-modulus indexing function, using
only unmapped address bits. If this probe does not hit we
probe again, but at a different index. By the time the second
probe begins, the full physical address is available and can
be used in a polynomial hashing function to compute the
index of the second probe. 

Addresses which can be co-resident under a
conventional index function will not collide on the first
probe. Conversely, sets of addresses which do collide
under a conventional indexing function collide under the
second probe with negligible probability , due to the
pseudo-random distribution of the polynomial hashing
function. This provides a kind of pseudo-full associativity
in what is effectively a direct-mapped cache. The hit time
of such a cache on the first probe would be as good as any
direct-mapped physically-indexed cache. However, the
average hit time is lengthened slightly due the occasional
need for a second probe. We have investigated this style of
cache and devised a scheme for swapping cache lines
between their “conventional” modulo-indexed location and
their “alternative” polynomially-indexed location. This
leads to a typical probability of around 90% that a hit is
detected at the first probe. However, the slight increase in
average hit time due to occasional double probes means
that a column-associative cache is only attractive when
miss penalties are comparatively large. Space restrictions
prevent further coverage of this option.

 

3.2 Requirements for Inclusion

 

Coherent cache architectures normally require that the
property of Inclusion is maintained between all levels of
the memory hierarchy. Thus, if  represents the set of
data present in cache at level , the property of Inclusion
demands that  for  in an -level
memory hierarchy. Whenever this property is maintained a
snooping bus protocol need only compare addresses of
global write operations with the tags of the lowest level of
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private cache.
A line at index  in the L2 cache is replaced when a

line at index  in the L1 cache is replaced with data at
address  if  is not already present in L2. If line 
contains valid data we must be sure that after replacement
its data is not still present in L1. In a conventionally-
indexed cache this is not an issue because it is relatively
easy to guarantee that the data at L2 index  is always
located at L1 index , thus ensuring that L1 replacement
will automatically preserve Inclusion. In a pseudo-
randomly indexed cache there is in general no way to make
this guarantee. Instead, the cache replacement protocols
must explicitly enforce Inclusion by invalidating data at L1
when required. This is guaranteed by the two-level virtual-
real cache, but leads to the creation of holes at the upper
level of the cache, in turn leading to the possibility of
additional cache misses. 

 

3.3 Performance implication of holes

 

In a two-level virtual-real cache hierarchy there are three
causes of holes at L1; these are:

1. Replacements at L2 

2. Removal of virtual aliases at L1

3. Invalidations due to external coherency actions

It is probable that the frequency of item 2 occurring will be
low; for this kind of hole to cause a performance problem a
process must issue interleaved accesses to two segments at
distinct virtual addresses which map to the same physical
address. We preserve a consistent copy of the data at these
virtual addresses by ensuring that at most one such alias
may be present in L1 at any instant. This does not prevent
the physical copy from residing undisturbed at L2; it
simply increases the traffic between L1 and L2 when
accesses to virtual aliases are interleaved.

Invalidations from external coherency actions occur
regardless of the cache architecture so we do not consider
them further in this analysis. The events that are of primary
importance are invalidations at L1 due to the maintenance
of Inclusion between L1 and L2. It is important to quantify
their frequency and the effect they have on hit ratio at L1. 

Recall that the index function at L2 is based on a
physical address whereas the index function at L1 uses a
virtual address. Also, the number of bits included in the
index function and the function itself will be different in
both cases. As these functions are pseudo-random there
will be no correlation between the indices at L1 and L2 for
each particular datum. For example, assuming direct-
mapped caches, when a line is replaced at L2 the data being
replaced will also exist in L1 with probability 
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(vii)

where  and  are the number of bits in the indices at
L1 and L2 respectively.

If the data being replaced at L2 does exist in L1, it is
possible that the L1 index is coincidentally equal to the
index of the data being brought into L1 (as the L2
replacement is actually caused by an L1 replacement). If
this occurs a hole will not be created after all. Thus the
probability that the elimination of a line at L1 to preserve
inclusion will result in a hole is given by 

(viii)

The net probability that a miss at L2 will cause a hole to
appear at L1 is , given by the product of  and ,
thus:

(ix)

When the size ratio between L1 and L2 is large the value of
 is small. For example, an 8KB L1 cache and a 256KB

L2 cache with 32 byte lines yield . Slightly
more than 3% of L2 misses will result in the creation of a
hole.

The expected increase in compulsory miss ratio at L1
can be modelled by the product of  and the L2 miss
ratio. When compared with simulated miss ratios we found
that this approximation is accurate for L2:L1 cache size
ratios of 16 or above. For instance simulations of the whole
Spec95 suite with an 8Kb two-way skewed I-Poly L1 cache
backed by a 1 Mb conventionally-indexed two-way set-
associative L2 cache showed that the effect of holes on L1
miss ratio is negligible. The percentage of L2 misses that
created a hole averaged less than 0.1% and was never
greater than 1.2% for any program.

The two-level virtual-real cache described in [25]
implements a protocol between the L1 and L2 cache which
effectively provides a mechanism for ensuring that
inclusion is maintained, that coherence can be maintained
without reverse address translation, and in our case that
holes can be created at level-1 when required by the
inclusion property.

The use of pseudo-random index functions means that
some holes will be created at L1, but simulations and
simple probabilistic models both predict that their impact
will be negligible.
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3.4 Effect of polynomial mapping on critical 
path

 

A cache memory access in a conventional organization
normally computes its effective address by adding two
registers or a register plus a displacement. I-poly indexing
implies additional circuitry to compute the index from the
effective address. This circuitry consists of several XOR
gates that operate in parallel and therefore the total delay is
just the delay of one gate. Each XOR gate has a number of
inputs that depend on the particular polynomial being used.
For the experiments reported in this paper the number of
inputs is never higher than 5. Therefore, the delay due to
the XOR gates will be low compared with the delay of a
complete pipeline stage. 

Depending on the particular design, it may happen that
this additional delay can be hidden. For instance, if the
memory access does not begin until the complete effective
address has been computed, the XOR delay can be hidden
since the address is computed from right to left and the
XOR gates use only the least-significant bits of the address
(19 in the experiments reported in this paper). Notice that
this is true even for carry look-ahead adders (CLA). A CLA
with look-ahead blocks of size 

 

b

 

 bits computes first the 

 

b

 

least-significant bits, which are available after a delay of
approximately one look-ahead block. After a three-block
delay the 

 

b

 

2

 

 least-significant bits are available. In general,
the 

 

b

 

i

 

 least-significant bits have a delay of approximately

 

2i–1

 

 blocks. For instance, for 64-bit addresses and a binary
CLA, the 19 bits required by the I-poly functions used in
the experiments of this paper have a delay of about 9 blocks
whereas the whole address computation requires 11 block-
delays. Once the 19 least-significant bits have been
computed, it is reasonable to assume that the XOR gate
delay is shorter than the time required to compute the
remaining bits.

However, since the cache access time usually
determines the pipeline cycle, the fact that the least-
significant bits are available early is sometimes exploited
by designers in order to shorten the latency of memory
instructions by overlapping part of the cache access (which
requires only the least-significant bits) with the
computation of the most significant address bits. This
approach results in a pipeline with a structure similar to that
shown in figure 2. Notice that this organization requires a
pipelined memory (in the example we have assumed a two-
stage pipelined memory). In this case, the polynomial
mapping may cause some additional delay to the critical
path. We will show later that even if the additional delay
induces a one cycle penalty in the cache access time, the
polynomial mapping provides a significant overall
performance improvement. An additional delay in a load
instruction may have a negative impact on the performance

of the processor because the issue of dependent instructions
may be delayed accordingly. On the other hand, this delay
has a negligible effect, if any, on store instructions since
these instructions are issued to memory when they are
committed in order to have precise exceptions, and
therefore the XOR functions can usually be performed
while the instruction is waiting in the store buffer. Besides,
only load instructions may depend on stores but these
dependencies are resolved in current microprocessors (e.g.
PA8000 [12]) by forwarding. This technique compares the
effective address of load and store instructions in order to
check a possible match but the cache index, which involves
the use of the XOR gates, is not required by this operation.

 

Memory address prediction

 

 can be also used to avoid
the penalty introduced by the XOR delay when it lengthens
the critical path. The effective address of memory
references has been shown to be highly predictable. For
instance, in [9] it has been shown that the address of about
75% of the dynamically executed memory instructions of
the Spec95 suite can be predicted with a simple scheme
based on a table that keeps track of the last address seen by
a given instruction and its last stride. We propose to use a
similar scheme to predict early in the pipeline the line that
is likely to be accessed by a given load instruction. In
particular, the scheme works as follows. 

The processor incorporates a table indexed by the
instruction address. Each entry stores the last address and
the predicted stride for some recently executed load
instruction. In the fetch stage, this table is accessed with the
program counter. In the decode stage, the predicted address
is computed and the XOR functions are performed to
compute the predicted cache line. Notice that this can be
done in just one cycle since the XOR can be performed in
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A pipeline that overlaps part of the address 
computation with the memory access.
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parallel with the computation of the most-significant bits as
discussed above, and the time to perform an integer
addition is not higher than one cycle in the vast majority of
processors. When the instruction is subsequently issued to
the memory unit it uses the predicted line number to access
the cache in parallel with the actual address and line
computation. If the predicted line turns out to be incorrect,
the cache access is repeated again with the actual address.
Otherwise, the data provided by the speculative access can
be loaded into the destination register.

The scheme to predict the effective address early in the
pipeline has been previously used for other purposes. In
[7], a Load Target Buffer is presented, which predicts
effective address adding a stride to the previous address. In
[3] and [4] a Fast Address Calculation is performed by
computing load addresses early in the pipeline without
using history information. In those proposals the memory
access is overlapped with the non-speculative effective
address calculation in order to reduce the cache access
time, though none of them execute speculatively the
subsequent instructions that depend on the predicted load. 

A number of previous papers have proposed the use of
a memory address prediction scheme in order to execute
memory instructions speculatively, as well as instructions
dependent upon them [8], [9] and [20]. In the case of a
miss-speculation, a recovery mechanism similar to that
used by branch prediction schemes is utilized to squash the
miss-speculated instructions.

 

4 Experimental Evaluation

 

In order to verify the impact of polynomial mapping on a
realistic microprocessor architecture we have developed a
parametric simulator of an out-of-order execution
processor. A four-way superscalar processor has been
simulated. Table 1 shows the different functional units and
their latency considered for this experiment. The size of the
reorder buffer is 32 entries. There are two separate physical
register files (FP and Integer), each one having 64 physical
registers. The processor has a lockup-free data cache [14]
that allows 8 outstanding misses to different cache lines.
The cache size is either 8Kb or 16 Kb and is 2-way set-
associative with 32-byte line size. The cache is write-
through and no-write-allocate. The hit time of the cache is
two cycles and the miss penalty is 20 cycles. An infinite L2
cache is assumed and a 64-bit data bus between L1 and L2
is considered (i.e., a line transaction occupies the bus
during four cycles). There are two memory ports and
dependencies thorough memory are speculated using a
mechanism similar to the ARB of the Multiscalar [6] and
PA8000 [12]. A branch history table with 2K entries and 2-
bit saturating counters is used for branch prediction.

The memory address prediction scheme has been

implemented by means of a direct-mapped table with 1K
entries and without tags in order to reduce cost at the
expense of more interference in the table. Each entry
contains the last effective address of the last load
instruction that used this entry and the last observed stride.
In addition, each entry contains a 2-bit saturating counter
that assigns confidence to the prediction. Only when the
most-significant bit of the counter is set is the prediction
considered to be correct. The address field is updated for
each new reference regardless of the prediction, whereas
the stride field is only updated when the counter goes
below 10

 

2

 

. 

Table 2 shows the IPC and the miss ratio for different
configurations. The baseline configuration is an 8 Kb cache
with I-poly indexing and no address prediction (4th
column). The average IPC of this configuration is 1.27 and
the average miss ratio (6th column) is 16.53

 

1

 

. When I-poly
indexing is used the average miss ratio goes down to 9.68
(8th column). If the XOR gates are not in the critical path
this implies an increase in the IPC up to 1.33 (7th column).
On the other hand, if the XOR gates are in the critical path
and we assume a one cycle penalty in the cache access
time, the resulting IPC is 1.29 (9th column). However, the
use of the memory address prediction scheme when the
XOR gates are in the critical path (10th column) provides
the same overall performance as a cache with the XOR
gates not in the critical path (7th column). Thus, the main
conclusion of this study is that the memory address
prediction scheme can offset the penalty introduced by the
additional delay of the XOR gates when they are in the
critical path. Finally, table 2 also shows the performance of
a 16 Kb 2-way set-associative cache (2nd and 3rd
columns). Notice that the addition of I-poly indexing to an
8Kb cache yields over 60% of the IPC increase that can be
obtained by doubling the cache size.

 

1. For each benchmark we simulated 100M instructions after
skipping the first 2000M.

 

Functional Unit Latency Repeat rate

1 Simple Integer 1 1

1 Complex Integer 9 multiply
67 divide

1
67

2 Effective Address 1 1

1 Simple FP 4 1

1 FP Multiplication 4 1

1 FP Divide and SQR 16 divide
35 SQR

16
35

 

Table 1:

 

 Functional units and instruction latency.
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The absolute differences are low, but this is because
the benefit of I-poly indexing is perceived by a small subset
of the benchmark programs. In the Spec95 benchmark suite
there are many benchmarks that exhibit a relatively low
conflict miss ratio. In fact the Spec95 conflict miss ratio of
a 2-way associative cache is less than 4% for all programs
except tomcatv, swim and wave5. If we perform
independent analyses on the benchmarks with high conflict
miss ratios, versus those with low conflict miss ratios, we
can observe the ability of polynomial mapping to reduce
the miss ratio and significantly boost the performance of
the problem cases. This is shown in table 3, which contains
the results for the three programs with high conflict miss
ratios together with their averages and the averages of the
remaining fifteen programs with lower conflict miss ratios.
In this breakdown one can see that the polynomial mapping
provides a significant improvement in performance for the
bad programs even if the XOR gates are in the critical path
and the memory address prediction scheme is not used

(27% increase in IPC). When memory address prediction is
used the IPC is 33% higher than that of a conventional
cache of the same capacity and 16% higher than that of a
conventional cache with twice the capacity. Notice that the
polynomial mapping scheme with prediction is even better
than the organization with the XOR gates not in the critical
path but without prediction. This is due to the fact that the
memory address prediction scheme reduces by one cycle
the effective cache hit time when the predictions are
correct, since the address computation is overlapped with
the cache access (the computed address is used to verify
that the prediction was correct). However, the main
benefits observed in table 3 come from the reduction in
conflict misses. To isolate the different effects we have also
simulated an organization with the memory address
prediction scheme and conventional indexing for an 8Kb
cache (column 5). If we compare this IPC with that in
column 4 of table 3, we see that the benefits of the memory
address prediction scheme due to the reduction of the hit

 

Conventional indexing I-poly indexing

16kb
8 Kb

8Kb

Xor no CP
Xor in CP

IPC

miss

no pred. with 
pred.

IPC miss no pred with 
pred IPC miss IPC IPC

go 1.00 5.45 0.87 0.88 10.87 0.87 10.60 0.83 0.84

m88ksim 1.56 1.41 1.53 1.53 2.62 1.52 2.89 1.49 1.51

gcc 1.16 5.63 1.04 1.05 10.01 1.03 10.77 0.98 0.99

compress 1.13 12.96 1.12 1.13 13.63 1.11 14.17 1.07 1.10

li 1.40 4.72 1.30 1.32 8.01 1.33 7.10 1.26 1.31

ijpeg 1.31 0.94 1.28 1.28 3.72 1.29 2.17 1.28 1.30

perl 1.45 4.52 1.26 1.27 9.47 1.24 10.26 1.19 1.21

vortex 1.39 4.97 1.27 1.28 8.37 1.30 7.87 1.25 1.27

tomcatv 1.18 35.14 1.03 1.04 54.45 1.33 19.67 1.30 1.36

swim 1.30 29.56 1.06 1.08 66.62 1.53 8.85 1.49 1.57

su2cor 1.28 13.74 1.24 1.26 14.69 1.24 14.66 1.21 1.25

hydro2d 1.14 15.40 1.13 1.15 17.23 1.13 17.22 1.11 1.15

applu 1.63 5.54 1.61 1.63 6.16 1.57 6.84 1.55 1.59

mgrid 1.51 4.91 1.50 1.53 5.05 1.50 5.31 1.46 1.52

turb3d 1.85 4.67 1.80 1.82 6.05 1.81 5.38 1.78 1.82

apsi 1.13 10.03 1.08 1.09 15.19 1.08 13.36 1.07 1.09

fpppp 2.14 1.09 2.00 2.00 2.66 1.98 2.47 1.93 1.94

wave5 1.37 27.72 1.26 1.28 42.76 1.51 14.67 1.48 1.54

Int average 1.29 5.07 1.19 1.20 8.34 1.20 8.23 1.15 1.17

Fp average 1.42 14.78 1.34 1.35 23.09 1.44 10.84 1.41 1.46

Combined 
average 1.36 10.47 1.27 1.28 16.53 1.33 9.68 1.29 1.33

 

Table 2:

 

IPC and load miss ratio for different cache configuration. Miss ratios are averaged with arithmetic
mean, and IPC rates are averaged with geometric means.
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Conventional indexing Polynomial mapping

16kb
8 Kb

8Kb

Xor no CP
Xor in CP

IPC

miss

no pred. with 
pred.

IPC miss no pred. with 
pred. IPC miss IPC IPC

tomcatv 1.18 35.14 1.03 1.04 54.45 1.33 19.67 1.30 1.36

swim 1.30 29.56 1.06 1.06 66.62 1.53 8.85 1.49 1.57

wave5 1.37 27.72 1.26 1.28 42.76 1.51 14.67 1.48 1.54

Average-bad 1.28 30.80 1.11 1.13 54.61 1.46 14.40 1.42 1.49

Average-good 1.38 6.40 1.30 1.32 8.91 1.30 8.74 1.27 1.30

 

Table 3:

 

IPC and load miss ratio for different cache configurations for the selected bad programs. Miss
ratios are averaged using an arithmetic mean, whereas IPC rates are averaged using a geometric
mean. Final row shows averages for the 15 programs with low conflict miss ratios.

 

time are almost negligible. This confirms that the
improvement observed in the I-poly indexing scheme with
address prediction derives from the reduction in conflict
misses. 

The averages for the fifteen programs which exhibit
low levels of conflict misses (labelled “average-good”)
show a small (1.7%) deterioration in average IPC when I-
poly indexing is used and the XOR gates are in the critical
path. This is due to a slight increase in the average hit time
rather than an overall increase in miss ratio (which on
average falls by 2%). For these programs the reduction in
aggregated miss penalty does not outweigh the slight
extension in critical path length.

 

5 Conclusions

 

In this paper we have described a pseudo-random indexing
scheme which is robust enough to eliminate repetitive
cache conflicts. We have discussed the main
implementation issues that arise from the use of such novel
indexing schemes. For example, I-poly indexing uses more
address bits than a conventional cache to compute the
cache index. Also, the use of different indexing functions
at L1 and L2 results in the occasional creation of a hole at
L1. Both of these problems can be solved using a two-level
virtual-real cache hierarchy. Finally, we have proposed a
memory address prediction scheme to avoid the penalty
due to the potential delay in the critical path introduced by
the I-poly indexing function.

Detailed simulations of an o-o-o superscalar processor
have demonstrated that programs with significant numbers
of conflict misses in a conventional 8Kb 2-way set-
associative cache perceive IPC improvements of 33%
(with address prediction) or 27% (without address
prediction). This is up to 16% higher than the IPC
improvements obtained simply by doubling the cache
capacity. Furthermore, from the programs we analyzed,

those that do not experience significant conflict misses on
average see only a 1.7% reduction in IPC when I-poly
indexing appears on the critical path for computing the
effective address, and address prediction is used. If the
index function does not appear on the critical path no
deterioration in overall performance is experienced by
those programs. The small potential reduction in IPC for
some programs may appear to detract from the benefit of
using I-poly indexing; one could argue that an expert
programmer could restructure the application to avoid
cache conflicts. This of course assumes the programmer is
able to identify and locate the source of conflicts.

We believe the key contribution of I-poly indexing is
the resulting predictability of cache behavior. In our
experiments we see that I-poly indexing reduces the
standard deviation of miss ratios across Spec95 from 18.49
to 5.16. The use of caches in real-time systems is often
problematic when it cannot be guaranteed that pathological
miss ratios will not occur. If conflict misses are eliminated,
the miss ratio depends solely on compulsory and capacity
misses, which in general are easier to predict and control.
Systems which incorporate an I-poly cache could be
particularly useful in the real-time domain. Conflict
resistance could also be beneficial in cache-based scientific
computing where expert programmers and restructuring
compilers use iteration-space tiling to manage data locality.
Tiling often introduces additional conflict misses which
depend on array dimensions as well as stride. An I-poly
cache would, for example, eliminate the need to compute
conflict-free tile dimensions.
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