
A Comparison of Data Prefetching on an Access Decoupled andSuperscalar Machine�G. P. Jones N. P. TophamDept. of Computer Science Dept. of Computer ScienceEdinburgh University Edinburgh UniversityEdinburgh, Scotland, U.K Edinburgh, Scotland, UKAbstractIn this paper we investigate the behavior of dataprefetching on an access decoupled machine and a su-perscalar machine. We assess if there are bene�ts tousing the decoupling paradigm given that an out-of-order (o-o-o) superscalar architecture could in prin-ciple prefetch to the same degree as an access decoupledmachine.We have found that for large issue width the ac-cess decoupled machine can hide memory latency moree�ectively than a single instruction window o-o-o su-perscalar architecture. Our �ndings also demonstratethat an access decoupled machine o�ers the bene�t ofreducing the complexity of window issue logic.1 IntroductionThe future of high performance microprocessordesign is to provide improved performance by ex-tracting higher degrees of instruction level parallelism.In superscalar architectures parallelism is exploitedby reordering instructions within an instruction win-dow and issuing multiple independent instructions percycle. However as processor speeds increase and issuewidths get larger the cost of a main memory access isbecoming relatively more expensive. One solution isto hide memory latency by data prefetching.Data prefetching is a technique that hides memorylatency by overlapping access and data operations.Data prefetching can be implemented in either hard-ware [6] and software [3] or a hybrid [4] of bothschemes. However as memory latencies become relat-ively more expensive the number of independent over-lapped instructions required to hide the access timesincreases. Larger instruction windows are thereforerequired to detect independent instructions that canexecute in parallel with memory access operations.The pressure to increase window sizes is also driven�This research was supported by EPSRC grant K19723

by the goal of providing ever larger issue widths.However large window and issue width sizes in-troduces greater complexity in window issue logic.Palacharla et al have shown that delays in the issuelogic vary quadratically with window and issue widthsize [11]. Since delays in issue logic will be critical toprocessor clock there is a need to consider architec-tures that simplify issue window logic.To solve the window complexity problem some ar-chitectures use separate microclusters. Microclustersmay share or have a dedicated instruction window,but each has its own register �le and function units.This simpli�es window logic by 
agging instructionsfor execution on particular microclusters, and reducesthe size of the instruction window, but can limit thenumber of instructions issued per cycle.Access decoupling is a latency hiding technique thatpartitions a programs - statically or dynamically -into two separate instruction streams in order prefetchdata aggressively [1, 10, 12]. The instruction streamsare loosely coupled. One stream, executed on an ad-dress unit (AU), prefetches data for the second stream,executed on a data unit (DU). Memory accesses canthen be pipelined to tolerate large memory latenciesprovided the two streams can decoupled su�ciently.In principle the same level of prefetching in an ac-cess decoupled machine could be achieved with an out-of-order (o-o-o) superscalar architecture. The ques-tion is then \why should designers consider using thedecoupling paradigm?"Memory latencies are typically 20-50 cycles whereasarithmetic function latencies are 2-5 cycles (excludingdivide and intrinsics). A system could easily toleratea small degree of o-o-o execution amongst arithmeticoperations provided loads could slip by a large amountwith respect to arithmetic operations. This slippagebetween arithmetic and load operation is exactly whatoccurs in a decoupled machine. In e�ect, we can im-



plement a small instruction window for arithmetic andaccess operations provided the latter can slip by alarge amount with respect to the former.In answer to our question, we believe that an ac-cess decoupled machine can be viewed as a variant ofa microcluster architecture with two separate instruc-tion windows. The asynchronously executing units,through code partition and dynamic slippage, com-bine the bene�ts of reducing window logic complexitywith data prefetching.In this paper we compare the relationship betweenwindow size and memory latency for an access de-coupled machine (DM) and a single window o-o-o su-perscalar machine (SWSM). We also evaluate the sizeof window required by the SWSM to achieve the sameperformance as the DM.The thesis of this paper is developed in the followingway. In section 2 we outline the DM and SWSM. Insection 4 we describe our simulation technique. Insection 3 we discuss the notion of the e�ective singlewindow (ESW) to help explain some of our �ndings.In section 5 we present the results of our work. Finallyin section 6 we draw together our �ndings and suggestavenues for future work in this area.2 The Architectural ModelsThe access decoupled machine (DM) modelledin our experiments is shown in Figure 1. The ma-chine consists of two separate out-of-order (o-o-o) su-perscalar processors, the address unit (AU) and thedata unit (DU), responsible for executing the accessand data operations. Each unit has is own separateinstruction window, functional units and register �les.The units can share results by moving data betweenregister �les. The number of instructions issued percycle is determined by the issue width.The decoupled memory lies between the two su-perscalar pipelines and the rest of the memory sys-tem. The decoupled memory receives addresses fromthe AU and sends them to the memory system. Whena referenced value is returned the decoupled memorybu�ers the value until it is requested by the DU. Re-quests from the decoupled memory take a single cycle.AU self loads are executed in a similar way. Previouslythe decoupled memory has been implemented throughthe use of queues [1, 10].The single window superscalar machine(SWSM) is shown in Figure 2. The architecture isan o-o-o machine with a single instruction window forreordering operations. In each cycle independent op-erations which are ready to execute are issued to thefunction units. Unlike the DM the full issue widthis available for issuing instructions every cycle. This
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Figure 2: SWSMmeans that if the SWSM is able to guarantee 100%utilisation of the full issue width it could outperformthe DM.There are di�erent types of hardware, software andhybrid schemes for data prefetching. For SWSM weuse a hybrid scheme. Every memory operation com-prises two instructions, a prefetch and an access oper-ation. The prefetch instruction pre-loads data into theprefetch bu�er ahead of the access operation. Prefetchoperations, unlike software schemes, are allowed to be-gin execution as soon as runtime resources allow. Us-ing this scheme we gain the bene�ts of exact addresscomputation with dynamic execution. The prefetchbu�er is a fully associative bu�er responsible for stor-ing prefetched data. Requests from the prefetch bu�ertake a 1 cycle.Thememory system consists of the mainmemorybut may also be composed of �rst or second levelcaches. We are not concerned with a detailed sim-ulation of the memory system; instead we model itsexecution by considering every access to have a �xed



cost. The �xed cost we refer to as the memory di�er-ential (MD). The memory di�erential is the di�erencein time between a register and memory system access.The purpose of all latency hiding techniques is to elim-inate any perceived memory di�erential.3 The E�ective Single Window (ESW)An advantage of the DM is that the dynamic slip-page between the window of instructions on the AUand DU means that the e�ective single window sizecan be greater than the sum of the individual units'window sizes. Figure 2 illustrates the idea of the ESW.The diagram shows the streams for the AU, DU anda single instruction stream. In the single instructionstream the instructions are shown in program order(with later instructions appearing further down thepage) and labelled with the units on which they ex-ecute in the DM. The diagram shows that, due tothe dynamic slippage between the units, the AU is ex-ecuting instruction further into the instruction streamthan the DU. The ESW is the minimum size of win-dow required to bu�er all instructions from the oldestDU instruction to the youngest AU instruction.
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InstructionFigure 3: E�ective Single Window4 Simulation TechniqueIn our experiments we simulated the execution ofseven programs from the PERFECT club suite [5] (fora full discussion of the simulation technique see [9]).Load and store operations on the DM are executedas one instruction on each of the units. On the SWSMloads and stores generate a prefetch and an access op-eration. Integer and address computations have a 1cycle cost. Floating point operations take 5 cycles tocomplete.There is no speculative execution but we assumeloop closing branches have been removed by optimisa-tions like loop unrolling and branch prediction. Data

dependency analysis is perfect and false dependenciesare removed by renaming. The purpose of examiningsuch an ideal case is to provide the best opportun-ity for prefetching data, to have high instruction levelparallelism (ILP) and to place the greatest pressureon the latency hiding mechanism.The issue width used for the AU and DU were 4and 5 respectively. These widths were found to bean optimal con�guration in [8]. An issue width of 9instructions was used for the SWSM.5 Experimental ResultsIn this section we present the major �ndings of thepaper. For the purposes of this paper we have selectedthree representative programs that exhibit the rangeof observed behavior. The three selected programswere FLO52Q, MDG and TRACK. Table 1 shows thelatency hiding e�ectiveness of all seven programs whenthe window size is unlimited and the memory di�er-ential is 60 cycles 1 The latency hiding e�ectiveness(LHE) is de�ned as LHE = Tperfect=Tactual whereTactual is the execution time for the DM and Tperfect isthe execution time for a machine with perfect latencyhiding in which each memory access perceives a singlecycle latency. It can be seen there are three bandsin which the programs are highly (80-100%), moder-ately (40-60%) and poorly (< 40%) e�ective at hidinglatency. It can be seen that the three programs fallwithin each of the bands.Prog. DM Window Size1 1 20 40 50 100TRFD 1.00 0.90 0.53 0.41 0.42 0.45ADM 1.00 0.72 0.43 0.39 0.38 0.39FLO52Q 0.97 0.82 0.74 0.70 0.70 0.73DYFESM 0.87 0.81 0.53 0.48 0.49 0.49QCD2 0.55 0.76 0.46 0.43 0.43 0.44MDG 0.48 0.56 0.33 0.32 0.34 0.40TRACK 0.22 0.45 0.23 0.23 0.22 0.22Table 1: Latency Hiding E�ectiveness for MD=60cyclesFigures 4, 5 and 6 show the variation in speedupwith window size for the access decoupled and super-scalar architecture when the memory di�erential is 01An MD of 60 was chosen because it is comparable to thecost of a second level cache miss (the pentium Pro has 50 cycleL2 miss latency[2]) and it assumes a weak memory system cap-able of capturing no locality. In practice for a high performancearchitecture the memory system will be able to reduce the av-erage access time by using �rst and second level caches.



and 60 cycles. When MD is 0 we see that for smallwindow sizes the DM performs better than the SWSMwith same window size. This is due to the DM hav-ing two windows for reordering operations comparedto one for the SWSM. This means there are fewerresource con
icts for window slots and greater scopefor reordering operations. It will also be noticed thatthe graphs show the law of diminishing returns forincreasing window size; once window sizes are above10 instructions, doubling the size does not double thespeedup. All the programs reach a cut-o� point forwindow sizes between 40 and 80 instructions when theSWSM performs more e�ectively. This is due the be-ne�t of the larger instruction issue width available tothe SWSM. This bene�t is only realised once the in-struction window is large enough to utilise the avail-able issue width.In Figures 4, 5 and 6 we see that once MD reaches60 cycles there is no cut-o� point when the SWSMperforms better than the DM. This results applieseven for very large windows of 100 instruction slots.The di�erence between the performance of the two ma-chines must be solely due to the more e�ective dataprefetching of the DM. Operations on the SWSMwhich on DM would have been executed on the DU,are causing address computations to execute later, re-ducing the pipelining of memory accesses and decreas-ing the e�ectiveness of the data prefetching. The dif-ference in performance between the two machines isalso dependent on the type of program. For FLO52Qwhich is highly parallel the gap between the DM andSWSM is large. However, for TRACK which has littleparallelism there is little di�erence between the twoarchitectures.We can state therefore that for all the programs wehave simulated the DM is more e�ective at hiding largememory latencies than the SWSM. The di�erence inperformance is dependent on the parallelism and de-coupling in the program. Programs that decouple wellshow the largest improvement in performance for theDM.Figures 7, 8 and 9 show, for a range of memorydi�erentials, the ratio of the SWSM and DM windowsizes that yield equivalent performance. We will referto this ratio as the equivalent window ratio. The ra-tio was derived by projecting from the DM graph toSWSM graph in Figures 4,5 and 6. The graphs showthe way in which the ratio varies as a function of thememory latency. It can be seen that as latencies ap-proach 60 cycles the ratio gets larger. This is duesolely to the more e�ective data prefetching of theaccess decoupled machine. As the memory latency in-

creases, the DU waits longer for data to arrive andthe slippage between the two units grows. This meansconceptually that the e�ective single window size (seeFigure 3) for DM gets larger. In order for the SWSMto achieve equivalent performance it requires a corres-pondingly larger window.The graphs in Figures 7, 8 and 9 also show that asthe DM window size is increased the equivalent win-dow ratio reduces. This is due to the SWSM archi-tecture being able to reorder operations to a similardegree as the DM, and also the bene�ts of the largerissue width.Signi�cantly it can be observed that for a realisticDM window size of 30 instructions and a memorylatency of 60 cycles, the required increase in windowsize for equivalent SWSM performance is dependenton the program, but lies between 2.5 to 5. Experi-ments with the other benchmark programs have alsobeen found to fall within this range. Larger windowsintroduce extra hardware complexity and longer win-dow logic delays 2. We can state therefore that theDM requires smaller instruction windows and hencesimpler window logic.
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Figure 4: FLO52QHaving shown that the DM performs consistentlybetter than the SWSM we now compare the latencyhiding e�ectiveness of the DM against a perfectlatency hiding technique (one in which all the memorydi�erential is hidden). Table 1 shows the measuredLHE for di�erent window sizes when the memory dif-ferential is 60 cycles.The results show that when window sizes are smallincreasing the window size causes a reduction in theLHE. This is due to the extra parallelism on the2In [11] is was shown that delays vary quadratically withwindow size.
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SWSM md=60Figure 6: TRACKDU placing greater pressure on the memory system.The AU window is not yet large enough allow the AUto pipeline accesses su�ciently to hide the latency.However there eventually comes a point when the lar-ger window size allows more operations to execute inparallel and the LHE starts to improve. For six ofthe programs this point is between 40 to 50 instruc-tions. This result suggests that for realistic windowsizes (1 to 30 instructions), increasing the window sizewill result in the latency hiding mechanism of the DMperforming less e�ectively. Table 1 also shows thateven with large window sizes we do not approach theLHE of an DM with unlimited resources.Our �ndings show that for realistic window sizes theDM can hide latencies better than SWSM but that asthe window size increases its e�ectiveness at hidinglatency deteriorates. This illustrates the tensions thatexist between having greater parallelism and the ac-cess decoupling mechanism. As the window size get
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Figure 7: FLO52Q
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Figure 8: MDGlarger, the instruction level parallelism increases andthe execution times fall. However the extra parallelismplaces greater pressure on the decoupling mechanismresulting in a decrease in LHE. The result is thatmore of the critical path time is now composed of thememory di�erential. There comes a point however,when the AU window is large enough to compensatefor the extra parallelism on the DU, and more addressoperations can be pipelined to hide the latency.In the short to medium term high performance ar-chitectures will have window sizes in the range thatshows a reduction in the LHE. In future work we willinvestigate mechanisms to improve the latency hidingof the DM. One possibility is a bypass mechanismwhich captures the temporal locality exposed by de-coupling [7].6 Conclusion and Future WorkThis paper has focused on two objectives in thedesign space of future microprocessors; the need to
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Figure 9: TRACKhide large memory latencies and the need to reducethe complexity of window issue logic. We have in-vestigated the use of data prefetching on an accessdecoupled machine and a single window o-o-o super-scalar architecture.In this paper we have examined the relationshipbetween memory latency, window size and speedupfor the two architectures. In order to remove the im-pact of other architectural issues we have assumedan idealistic environment. This environment providesgood conditions for data prefetching, high levels of ILPand places the greatest pressure on the latency hidingmechanism.We have found that the DM is more e�ective athiding memory latency than the SWSM. For largememory di�erentials (60 cycles) we have found thateven for large window sizes of 100 instructions, the DMconsistently performs better than the SWSM. Our res-ults have also shown that to achieve the same speedupas an DM the SWSM needs a window size between 2.5to 5 larger. The increase in window size required toachieve equivalent performance on the SWSM was alsofound to increase with larger latencies.To explain some of our �ndings we have introducedthe concept of the e�ective single window. The ESWconceptually illustrates how the DM is able to per-form better than an architecture with twice the sizeof instruction window.Our results have also shown how the latency hidinge�ectiveness of the DM decreases as the window sizeincreases to 40 instructions. Though the speedup didincrease with larger window size the DMwas not foundto be as e�ective at hiding latency. However whenwindows were greater than 50 instructions the LHEwas found to improve. This behavior illustrates thetensions that exist between higher ILP and the access
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