
MU6V: A PARALLEL VECTOR PROCESSING SYSTEM

R. N. Ibbett, P. C. Capon & N. P. Topham

Department of Computer Science
University of Manchester

ABSTRACT

MU6V is a parallel vector processing sys-
tem in which a linear set of processors,
each capable of both vector and scalar
operations, is interconnected by a common
communication highway. Memory is fully
distributed among the processors and
interprocessor communication occurs by
means of global broadcasts controlled in
hardware by a data driven synchronization
mechanism. A prototype model based on
68000 microprocessors, in which vector
orders are emulated as "extracodes", has
been constructed. A host machine pro-
vides a software support environment and
a run-time system in the prototype pro-
vides diagnostic information. Program-
ming language features have been designed
to exploit this configuration and an
example algorithm is presented.

INTRODUCTION

The MU6V computer described here is a
prototype of a potentially very high per-
formance system. It was designed for use
in the solution of compute-bound problems
amenable to both vectorization and to
decomposition into concurrently execut-
able sub-processes. Typical applications
could involve, for example, direct or
indirect solutions of equations, solu-
tions of Laplace equations or matrix mul-
tiplication. An important characteristic
of the algorithms used is that the number
of data items transferred from one sub-
process to other sub-processes is at
least an order of magnitude less than the
number of arithmetic operations within
that sub-process.

The design of MU6V can be traced back to
MU5 [i], a system in which instructions
contained information about the type of
operand they required (scalar, vector
element etc.). This information was used,
for example, to control special hardware
provided to assist with accesses to vec-
tor or array elements, although opera-
tions on whole vectors were organised by
program loops rather than by specific

vector orders. An MU5 with vector orders
would have resembled the CDC Cyber 205
computer [2] with the MU5 Primary Operand
Unit corresponding with the Cyber 205
Scalar Unit and the MU5 Secondary Operand
Unit with the Cyber 205 Vector Unit. In
principle the number of Vector Units
could be expanded in either MU5 or the
Cyber 205 to give a system (fig.l) simi-
lar to the TI-ASC [3].

The number of Vector Units which can be
operated in parallel in the system shown
in fig.l is limited by two principal fac-
tors, the first being the performance of
the Scalar Unit. If all the Vector Units
are to be kept busy the Scalar Unit must
be able to initiate operations in all of
them within the time taken by any one of
them to execute a complete vector opera-
tion. The Scalar Unit is also required
to carry out some scalar arithmetic on
results produced by the Vector Units, and
this essentially sequential activity can
itself limit performance. In MU6V each
Vector Unit is endowed with scalar facil-
ities and made independently programm-
able. The result is a set of parallel
processors in which each processor hap-
pens to have a vector instruction capa-
bility. The prototype is based on 68000
microprocessors and the instruction set
of each MU6V processor comprises 68000
scalar instructions augmented by a set of
emulated vector instructions. These
instructions are planted by the compiler
as ordinary in-line code but the op-codes
used for the vector instructions cause
the processor to trap to supervisor-level
instruction emulator "extracodes".

The second performance limitation of the
system shown in fig.l is access to common
memory and a variety of mechanisms have
been used in other systems to allow such
access from a number of processors
(cross-bar switches, multi-port memories,
etc.). All involve additional hardware
and/or time penalties, and alternative
system design techniques which reduce the
number of accesses to common memory have
therefore been sought. Systolic archi-
tectures [43 have significant attractions

0149-7111/85/0000/0136501.00 © 1985 IEEE
136

from this point of view, but suffer from
the drawback that the preferred topology
of interconnection is algorithm depen-
dent.

An alternative solution to the common
memory problem is to distribute some or
all of the memory among the processing
units. Now most memory requests are
satisfied by local memory, and the common
memory bottleneck is largely removed.
Accesses to common memory (or to the
memories of other units in a fully dis-
tributed system) are still necessary,
however, since in most applications some
results must pass between units, and some
global data must normally be available to
all units. MU6V uses a fully distributed
memory and the mechanisms used for the
communication and synchronization of data
passing between units are essential
features of its design.

COMMUNICATION AND SYNCHRONIZATION

One of the main objectives of the MU6V
design was that it should consist of a
set of parallel vector processors which
could be used effectively on a wide
variety of algorithms. The system was not
to be constrained by an interconnection
structure which would restrict the move-
ment of data between processors. Thus a
topology was sought which would allow
communication between any combination of
processors to occur with equal ease and
without reference to their physical posi-
tion. The structure chosen was that of a
linear array of processors, each with its
own local memory and each connected to
the others by a common communication
highway (fig.2).

Communication Protocol

Inter-processor communication occurs when
a process running on one of the proces-
sors reaches a point where it must update
the value of a variable held elsewhere in
the system. The processor effects this
communication by placing on the highway a
packet containing the new value for the
variable being updated plus an identifier
which allows other processors to recog-
nise it. This value is now the most up-
to-date version of the corresponding
variable, and consequently all vector
units holding a copy of the variable must
update the value they hold for it. In
the prototype system the highway is
implemented as an LSTTL tri-state bus,
and an arbitration unit is used to ensure
an orderly flow of information on to the
bus. Within each vector unit an auto-
nomous logic unit, acting in parallel
with the instruction processor, recog-
nises and either accepts or rejects each
result placed on the bus.

This communication protocol implies that
global variables are not read from one
processor by another, but are sent from
one processor to all others at the moment
of production. This 'pushing' of global
information has a number of advantages
over the more conventional 'pulling' of
information by the issuin 9 of read
requests. Firstly, a conventional read-
request scheme requires two bus cycles,
one for the outgoing memory address and
the other for the returning information;
a write-scheme only occupies a single bus
cycle per global result and furthermore,
reduces significantly the time lost
through latency delays. Secondly, if
several vector units require the same
result, then in a read-request scheme
they would each access it separately and
generate a large number of read requests
to the same value.

This system is to some extent analogous
with the Common Data Bus used in the
floating-point unit of the IBM System/360
Model 91 [5]. Here each result produced
by an arithmetic sub-unit is placed on
the Common Data Bus, together with an
identifier, and is taken off by whichever
device attached to the bus holds a match-
ing identifier. The MU6V system is dif-
ferent, however, in that not every result
produced within a unit is broadcast to
other units. Thus mechanisms are required
in both hardware and software to deter-
mine which results should be transmitted
to the bus, and which results should be
taken from it. Identification of results
placed on the highway requires the use of
a global addressing mechanism, and a syn-
chronization mechanism is required to
ensure that the corrrect copy of a given
result is used in each unit.

Global Addressing

The global addresses used in MU6V do not
identify specifically the unit(s) in
which the corresponding data items are
held. They are therefore virtual
addresses, and within each unit there
must exist a separate virtual-to-real
address translation mechanism. In a con-
ventional virtually addressed system the
basic units of store area handled by the
store management system are normally
pages or segments. This allows arbitrary
data structures to be dealt with on an
equal basis. In a machine specifically
geared to vector processing, the vector
is clearly the most important data struc-
ture, and the addressing mechanism ought
therefore to be tailored to the efficient
manipulation of vectors. In MU6V a vec-
tor identifier (or name) is used in a
manner analogous to a segment identifier
in conventional systems and a virtual
address references a vector element by a
combination of a vector name and a vector

137

subscript:

I I I I NAME , SUBSCRIPT

When performing the virtual-to-real
address translation one of the most
important items of information required
about a particular vector is its real
origin. The simplest and most straighfor-
ward way of translating from a vector
name to the corresponding vector origin
is by a direct table look-up. The vector
name field width defines the length of
the look-up table while the size of the
vector origin defines the width of each
entry in the table. If this logic is
implemented using 256K RAM devices, for
example, a table length of 256K may be
assumed, and this corresponds to a field
width, for the vector name, of 18 bits.
In the prototype MU6V, however, 64K RAM
devices are used and the vector name is
therefore restricted to 16 bits.

Synchronization Protocol

A synchronization protocol is required in
MU6V to ensure an orderly flow of data
between producers and consumers. There
are two instances in which the synchroni-
zation constraint must be applied:

(a) Processor B consumes its old value of
variable X and some time later
attempts to access X, expecting to
find a new value; however, no new
value has arrived and processor B
must not reference its copy of vari-
able X until a new value does arrive.

(b) Processor A produces a result for
variable X and attempts to send this
result to processor B, but processor
B has not yet finished processing the
previous instance of X.

The protocol required to deal with case
(a) is straightforward; the processor
reading the out-of-date variable must be
held up until the new value arrives. Case
(b) is more difficult, however. Other
processors may be able to accept the new
value for X and may even be waiting for
it. Processor A therefore places its out-
put packet on the highway, but unless all
the processors containing a copy of vari-
able X indicate that they are able to
accept this new result, processor A must
abandon its attempt to transmit the
result and wait for the highway arbitra-
tion unit to allocate it another cycle.
Processors which do not contain X indi-
cate immediate acceptance so far as the
highway is concerned.

The mechanism used to ensure proper syn-
chronization is relatively simple. A sin-
gle bit is associated with every word of
vector memory to indicate the validity of

that vector element. The act of writing
to an element of a vector memory automat-
ically sets the synchronization bit,
while the act of reading the element may
(according to a parameter of the instruc-
tion) reset it. While the bit is set the
local vector unit may read from or write
to that element, but the element may not
be overwritten by data coming from other
vector units. If the bit is not set then
the local vector unit may write to the
element but may not read it, and data may
be written into the element from any
other vector unit. Thus after receiving
new data an element may be read, and
after being "consumed" an element may
receive a new value. If synchronization
is not required for a specific vector,
synchronization may be inhibited for that
vector. Mechanisms similar to these are
used in the Denelcor HEP [63. Like MU6V,
HEP contains multiple processors, but
within any one HEP processor there is
also apparent parallelism created by the
interleaving of multiple processes at the
instruction level within the pipeline.
This avoids instruction dependency delays
and hence improves overall performance.
MU6V uses vector orders for this purpose.

THE VECTOR INSTRUCTION SET

The design of the vector instruction set
was influenced by a variety of considera-
tions. Important among these were the
naming concept and the use of descriptors
derived from MU5, and the need to handle
sparse vectors. A vector is identified in
MU6V by its name, which acts as a pointer
to a descriptor containing not only an
origin address (as in the Cyber 205, for
example) but also type and size informa-
tion. As in MU5, elements of various
sizes may be close packed in store, and
implicit in the design of the instruction
set is the assumption that there will
exist hardware capable of automatically
packing and unpacking elements within
store words. The type information defines
the nature of the vector eg. directly or
indirectly accessed, dense or sparse, and
by encoding this information as part of
the vector description, instructions can
be independent of the vector data type.

Operation Codes

A typical vector instruction operates on
two source vectors (Vi and V2) to produce
a destination vector (V0) and may involve
the use of a single scalar operand (S) in
instructions of the form:

VO <- V1 + (V2 * S)

In the 68000-based prototype vector
instruction are implemented by emulation
as "extracodes". Each vector instruction
consists of a 16-bit op-code and a 16-bit

138

operand specification word followed
(optionally) by up to three 32-bit
literal address fields (fig.3a). The
four most significant bits of the op-code
define the instruction as a vector opera-
tion and cause the processor to switch to
the emulation code. The vector operations
themselves are grouped into four types
(defined by bits I0 and ii of the op-
code): Data Movement, Data Identifica-
tion, Arithmetic and Accumulative Arith-
metic.

Within each group eight major functions
may be defined and for each major func-
tion eight sub-functions may be defined,
although none of the sets is currently
full. The Data Movement group of major
functions includes MOVE, FILL and
COMPRESS, where the criterion used by the
COMPRESS function, for example, is
defined by the sub-function (copy ele-
ments of V1 = S to V0, elements of V1 > S
to V0, etc.). The Data Identification
group includes SEARCH instructions which
return, for example, the value or index
of the maximum or minimum element within
a vector, COMPARISON instructions which
return the index of the first correspond-
ing pair of elements in the two source
vectors which satisfy a condition speci-
fied by the sub-function (=, >, etc.) and
COUNT instructions which return the
number of elements in source vector Vl
satisfying a condition relative to the
scalar operand S. The Arithmetic group
includes the major functions ADD, SUB-
TRACT, MULTIPLY, etc. with the sub-
function defining the choice of operand
in instructions such as:

V0 <- V1 + V2
VO <- V1 + S
VO ,- V1 + (V2 * S)

or the type of SHIFT or LOGICAL opera-
tion, while the Accumulative Arithmetic
group includes functions which allow the
logical AND, OR, etc. or the arithmetic
SUM of all elements in a vector to be
formed, and in particular the sum of the
products of two vectors, ie. the vector
inner product.

The scalar operand is implicitly speci-
fied by the function to be taken either
from the (single) accumulator or from one
of the four B (index) registers which the
instruction set assumes to exist in the
processor. These are mapped by the
extracodes on to the data and address
registers within the 68000 processor. If
the accumulator is specified the operand
size may also be selected to be 8, 16, 32
or 64 bits. An additional register used
by the instruction set is the N register,
the content of which defines the number
of elemental operations to be performed
by the vector instruction.

Operand Types

The operand specification word contains
the information required to access the
(maximum of) three vectors associated
with each vector instruction. Associated
with each vector are two access mode con-
trol bits, the Z-bit and the W-bit, which
operate independently of both the func-
tion and the vector type, and must there-
fore be contained within the operand
specification word. This leaves three
bits per vector for specification of the
name. These bits are therefore inter-
preted as shown in fig.3a; the name may
either be a 32-bit literal following the
instruction or may be the contents of one
of the four B-registers. In either case
the 32-bit word is interpreted as a 16-
bit vector name and a 16-bit starting
index (ie. an offset to be added to the
origin address at the start of the opera-
tion).

The Z-bit controls the use of the commun-
ication and synchronization mechanisms.
When the Z-bit is set for a source
operand (Vi or V2) the act of reading an
element of that ~ector causes the syn-
chronization bit for that element to be
reset. When the Z-bit is set for a desti-
nation operand (VO) the act of writing to
an element of that vector causes the data
to be distributed globally rather than
being written into the local vector
memory.

The W-bit enables or disables the wrap-
around of indices within the bounds of
the specified vector. If the W-bit is set
and the processor attempts to access the
next element beyond the upper bound of
the vector, the element at the lower
bound (origin + offset) is taken instead
and further indexing proceeds normally
from that point. If an attempt is made
to access an element beyond the upper
bound without the W-bit set, a bound fail
exception is generated. For certain
types of algorithm wrap-around allows
better utilisation, and hence greater
overall performance, to be obtained from
the set of parallel processors.

The vector name is used to address a
descriptor (fig.3b) containing the origin
address (16 bits long in the prototype;
32 bits would be more realistic in a
'production machine'), the length of the
vector (used as an upper bound in some
circumstances), two operand size bits
(vector elements may be of size 8, 16, 32
or 64 bits), two type bits and a defined
bit. When a packet is received from the
communication bus the first task which
each unit performs (in parallel with all
others) is a table look-up on the name
field in dedicated memory to find the
corresponding descriptor. Not all vectors

139

are required by any given unit, however,
and so the defined bit is used to deter-
mine whether or not that vector exists
within the unit. The defined bits are
initialised by special instructions
within each processor before any input
data values are broadcast at the start of
a process and before any computed values
can be produced.

SOFTWARE

The software system on MU6V is designed
to exploit both the vector processing
capability of the architecture and the
parallel processing and synchronization
mechanisms. A host machine (MU6-G [73) is
used to provide support for software
development in the form of a cross-
compilation system for an extended form
of Pascal and for MUSL (a high-level sys-
tem programming language). Code generated
by these compilers is down loaded into
the prototype via a serial link. The host
also provides run-time support for appli-
cation programs in the form of a remote
filestore facility.

Pascal is augmented with a small set of
implicitly defined vector handling pro-
cedures, through which the application
code accesses vector memory and communi-
cates with other processes. In the proto-
type these vector functions are emulated
at a low level, and this provides a flex-
ible environment in which to develop both
algorithms for vector addressing mechan-
isms and protocols for inter-processor
communication. Application programs are
written in this augmented Pascal, cross-
compiled on the host machine and down
loaded into one of the MU6V processors
(designated the "master")and tranferrred,
where appropriate, into other processors
via the common communication mechanism.

Within MU6V itself there exists a runtime
system which provides a mechanism for
interrogating the vector memory. The
current prototype system also allows each
vector unit to direct Pascal output to an
appropriate window at the user terminal.
These facilities, together with a diag-
nostic window which shows information
relating to interprocessor communication,
have been found to be extremely useful
during the development of several algo-
rithms, including the Gauss-Seidel algo-
rithm described below.

A software simulator, running entirely on
the host machine, has been developed.
This uses the multi-tasking facilities of
the MUSS operating system running on
MU6-G [8] to simulate any number of vec-
tor units. This simulator runs MU6V pro-
grams and has facilities for producing a
detailed trace of all communication and
process synchronization.

Parallelism

Since the processors in MU6V are auto-
nomous and independent it is necessary to
control their operation at least to the
extent of initiating them to perform a
particular task and determining when the
task is complete. This controlling pro-
cess could be external to MU6V, but in
fact resides in one of the MU6V proces-
sors which could be regarded as a master
processor. This means that it can use
the same facilities as all the other pro-
cessors and if necessary take an active
role in the computation. Many programs
decompose naturally into such a master or
"harness" process and subprocesses. The
master performs initialisation before
initiating parallel subprocesses. While
the subprocesses continue the master pro-
cess might test for termination or con-
vergence of subprocesses and initiate
further subprocesses.

Syntactically a subprocess is similar to
a procedure with the word process replac-
ing procedure in the heading. Initiation
of a subprocess is similar to a procedure
call. It is convenient to provide a
language mechanism to indicate whether
subprocesses may execute in parallel
rather than sequentially. A standard
parallel construct is one way of achiev-
ing this, e.g:

parallel
begin

pl;
p2;
p3

end;
p4

In this example pl, p2 and p3 may be exe-
cuted in parallel followed by p4. Often
a row of similar subprocesses, each per-
forming similar operations on different
data sets is required. A construct of the
form:

parallel i = 1 to n do
p (i);

initiates n parallel processes parameter-
ised by i.

The parallel statements need not always
initiate separate processes. A statement
of the form:

parallel i = i to n do
f(i)

where f is an ordinary function allows
the various f(i) ... f(n) to be executed
in any order. This can be used even on a
single processor to allow processing to
be ordered according to data availabil-
ity.

140

parallel i = 1 to n do f(x[i])

could first operate on whichever x[i]
were available, given that access to x[i]
is controlled by a synchronization
mechanism. Sometimes several statements
are executed sequentially within one
strand of parallelism. Here a sequential
construct can be used:

parallel i = 1 to n do
sequential

begin
p(i);
f(i)

end

In this case each f(i) is executed after
the corresponding p(i) but all p(i)s may
be executed in parallel.

Communication and Synchronization

In the MU6V multi-processor system
independent subprocesses can be handled
by separate processors. Sometimes a prob-
lem can be partitioned arbitrarily into
independent processes, in which case it
is easy to assign one process to each
processor and execute all the processes
in parallel. The ordering of the proces-
sors in this allocation is arbitrary on
MU6V. In most practical problems the
processes will not be completely indepen-
dent since data may need to be shared or
passed between processes and also some
synchronization of processes may be
necessary. For example, if a matrix prob-
lem such as a solution to the Laplace
equation is shared between a number of
processes each operating on a region of
the matrix, then the boundary elements of
the regions need to be shared between the
processes operating on each side of the
boundary. Furthermore in some algorithms
the use of the shared data must be syn-
chronized. In some systems the software
mechanisms for such sharing and synchron-
ization are based on the concepts of
shared data and semaphores. Alterna-
tively, the use of explicit sharing may
be avoided by using a CSP-like mechanism
[9] for communicating information along
channels between pairs of processes.
This approach is used in Occam [i0].

Any of these mechanisms can be imple-
mented in MU6V. When global data is used,
each sharing process has its own local
copy of the item which is used whenever a
read is made. A write to such an item
must be interpreted by the hardware as a
broadcast of the item to all the
processes requiring it. As all copies of
the shared data are the same, the pro-
grammer need not be aware that the shar-
ing is implemented by multiple copies.
The hardware protocol ensures that all

copies are updated simultaneously. If
the shared data is to be synchronized
this may be done explicitly or impli-
citly. In an implicit scheme every read
of a synchronized item would consume that
item and every write would update by glo-
bal broadcasting. This is somewhat res-
trictive and a mechanism which allows
multiple reading of a synchronized data
item is preferred. This arrangement
corresponds precisely to the hardware
mechanism of MU6V. Basing the notation
loosely on CSP:

is used to accept a new value of V. As
all data is identified by the hardware on
the global bus the name V is effectively
both a channel name and a variable name.
The ?V request in the consuming process
may occur at the point when V is used but
this could lead to the producing process
being held up unnecessarily waiting for V
to be accepted. If the ?V request occurs
as early as possible unnecessary waits
can be avoided. The input takes place in
parallel with other processing in the
receiving process which is only held up
if the value of V is not available when
the eventual reference is made. A similar
technique can be used in Occam.

A frequent action is to consume the
available value of V and immediately
request a new value for V. In this case
the notation V? is a convenient shorthand
so:

x := f(V); ?V;

can be written:

x := f(v?)

with ? as a postfix unary operator. The
prefix operator T is used to indicate
production of a result to be broadcast:

tV := expression.

The Gauss Seidel Example

The Gauss Seidel method for the indirect
solution of a system of linear equations
may be used to demonstrate some of the
above features. Given a system of equa-
tions:

A x = b

and an initial approximation xl to the
solution, new approximations to each ele-
ment of x, xl ... xn, are computed in
turn using the newest computed values of
the other elements of x. Although the
algorithm appears sequential all elements
of x can in theory be computed in paral-

141

lel. A simple algorithm for a single row
can be expressed as:

process gauss seidel row
(i:row; arow:slice, x,b:vector, N:dim)

repeat
s := 0, temp := x[i];
parallel j := 1 to N do

s := s + arow[j] * x[j]?;
~x[i] := temp - (b[i] - s)/arow[i]

until converged;

while a harnessing procedure might be:

procedure harness;
parallel
begin

parallel i := 1 to N do
gauss seidel row (i,a[i,~],b,N);

{compute convergence}
end

The order in which elements become avail-
able to gauss seidel row is in fact x[i]
.. x[N], x[l] ... x[i-l]. The non-
determinism in the parallel statement can
be used to avoid unnecessary waiting.
Alternatively the parallel statement can
be recast to permute j to the optimal
ordering. The test for convergence can
take place in the harness process. The
harness process reads all the computed
x[i]s broadcasting a new value of con-
verged after each iterative sweep.
"until converged" in gauss seidel row
becomes "until converged?", while {com-
pute convergence} in the harness becomes:

repeat
diverged := true;
parallel i := 1 to N do
begin

diverged := diverged and
(x[i]-y[i]<limit);

y[i] := x[i]?
end;
Tconverged := not diverged

until converged?

The timing diagram (fig.4) shows that
once this process is initialised very
efficient processor utilisation results.
Each process broadcasts one result after
an inner product calculation and results
are available in sufficient time to keep
all the processes busy. Usually there
will be many more rows than processors,
so the solution is reformulated to allow
gauss seidel row to deal with a selection
of rows of the matrix rather than a sin-
gle row. This change makes no difference
to processor utilisation, except for end
effects caused by slightly uneven distri-
bution of work.

Vector Orders.

In a high performance implementation each

unit in MU6V will execute vector orders
directly, so language mechanisms must be
provided to exploit this facility.
Straightforward extensions can be made to
a Pascal-like language in which array
names or slices of arrays appear as
operands in array operations. Actus [ii]
is one language providing this type of
facility and much of the Actus notation
is appropriate. However in its use of
index sets for subscript selection Actus
is more oriented towards the control vec-
tor approach to element selection than is
convenient in MU6V.

The user may nominate the dimension of
the array which is to be contiguous in
memory using : in the subscript in place
of .. e.g. var a,b : array [i:i0, 1..5]
of real. Here the first subscript is
contiguous and varies most rapidly while
the second subscript will cause one of 5
vector names to be selected. Some exam-
ples of possible array assignments are:

a := b
a[~,2] := b[~,3]

for the whole array
for one column

CONCLUSION

The design principles of a potentially
very high performance computer system
have been described. Performance is
achieved by enabling a multiplicity of
vector processors to co-operate effi-
ciently on a single problem. A 68000
based prototype system has been built,
capable of accommodating up to 16 proces-
sors, of which three have been con-
structed and brought to an operational
state. Approaches to programming this
system have been explored and a variety
of powerful mechanisms enable the
hardware to be exploited to the full in
various applications such as direct and
indirect solutions of equations. Thus the
prototype has demonstrated the viability
of the architectural concepts of the sys-
tem. In an implementation based on
current supercomputer technology a system
with 16 processors and a i0 ns clock
would offer a peak performance of 1.6
gigaflops.

ACKNOWLEDGEMENTS

The authors wish to thank Professor
D.B.G. Edwards for the provision of
facilities and equipment and N.P. Topham
acknowledges financial support from the
SERC. The authors are grateful to a
number of colleagues for contributions to
discussions about the project and among
the reseach students who have been
involved the authors would particularly
like to acknowledge the contributions of
Dr Q. Lin and Dr I.O.A. Sanusi.

J42

[i]

[2]

[3]

[4]

[5]

[6]

[7]

[s]

[9]

[io]

[ii]

REFERENCES

R.N. Ibbett & P.C. Capon, "The
Development of the MU5 Computer
System", Communications ACM, Vol
21, 1978, pp 13-24.

"Control Data Cyber 200 Model 205
Computer System - Hardware Refer-
ence Manual", Control Data Corpora-
tion, St. Paul, Minnesota, 1981.

w.J. Watson, "The TI ASC - A Highly
Modular and Flexible Super Computer
Architecture", AFIPS FJCC Conf.
Proc., Vol 41, 1972, pp 221-228.

H.T. Kung, "Why Systolic Architec-
tures?", Computer, January 1982, pp
37-46.

R.M. Tomasulo, "An efficient algo-
rithm for exploiting multiple
arithmetic units", IBM Journal of R
& D, VOi ii, 1971, pp 8-24.

J.W. Moore, "The HEP parallel pro-
cessor", Los Alamos Science, No. 9,
Fall 1983.

D.B.G Edwards, A.E. Knowles & J.V.
Woods, "MU6-G. A new design to
achieve mainframe performance from
a mini-sized computer", Proc. 7th
Annual Symposium of Computer Archi-
tecture, 1978, pp 161-167.

G.R. Frank & C.J. Theaker, "The
design of the MUSS operating sys-
tem", Software Practice and Experi-
ence, Vol. 9, 1979, pp 599-620.

C.A.R. Hoare, "Communicating
Sequential Processes", Communica-
tions ACM, Vol. 21, No. 4, 1978, pp
666-677.

D. May, "Occam", ACM Sigplan
Notices, Vol. 18, April 19830 pp
69-79.

R.H. Perrott, "A language for array
and vector processors", ACM Toplas,
Vol. 1, Oct. 1979, pp 177-195.

Vector

I
-L on!t

v.tor k - -
I L unit

" I

I

Vector
Unit

l

Scalar]
Unit

Memory Interface Unit
L_

to/from stores

J Arithmetic [
Pipeline

~ Arithmetic
Pipeline

Arithmetic i
Pipeline I

Figure i A Multiple Vector Unit System

__~_ Input
Logic

COMMON COMMUNICATION MEDIUM

Slave (
Local Processor Output
Memory Logic
_ _ 0

h °glc.-I Mam°ry ' I gl°/

Input Local Slave Processor Output
l Logic Memory m-i Lo91c

L

•I•nput - Local
-~_~ i2_ Memory

Master OutpOur ~ FOutpu }
Processor ~Logic I

Input Local I-O
Procaeaor Memory og ic

i
I

NETWORK

Figure 2 MUBV System Organisation

143

Scalar
Group Sub-function Type

0 -code for ~ ~ L.~,--J' ,
V:ctor Functlon Spare I
Instruction . j

I Accumulator
Function

I ° ~_~_~it~ L_I F-F
I~ I 0 32 Bits
I I ! 64 Bits

Index Register
Function

VO Vl V2

N z l. 1 ~ - I q ~ - ~ - l - ~ I , - F W ~ E:::

_ J _ J __J 'a
Address Source

i
Address L i t e ra l s

Figure 3a Prototype Vector Instruction Set

32
Origin

Size

Type

t 6

i Leogth T--~-- -3-~

'1 II 16
32
64

O e n s e / S p a r s e l J

Direct/lnOirectJ

,Defined = - -

*X [i }

I t " x I2]

- - l t " x [3 I

I I " X [4]

, t I

" - . . ~x [n]
I I

Vectorlzed lnner product J 1
[length n)

Scalar computation _ _ I
[length s)

Sequential Processing Tlme= k.n(n÷s)
Para l le l Processing Time - k .n[l+s)
{ for k iterations)

Figure 4a Gauss Sel~el Row Calculat ions

^X [1] ~X [i+11 "X [2m÷1}
VU$ i I,,4] I I I I--4F

*X [2] *X [m+2] "X {2m.2]
VU2 ~ - - - - - F 4 1] I I I I I - -

"X [3] "X [m+31 *X [2e+3]
VU3 ~ ,--t--II-- I 4~ I I V - - -

"X [4] *X [m+4] "X I2a+4]
VU4 .00¢XX.,,Ol i I I I I I I I ~ - -

t i I
I] i
I I I
I 1 I
i 1 1

* x [m] ~x [~] "x [3=]
VUm ~,KXXXXXXXX~ i II 111 I-II---

~C~ - Idle time Vector Unit
U t l l l s a t l o n

L n [e+~) j

s+i

Figure 4b Gauss Seidel PerfoPmlnce Nhen m < n

Figure 3B Descr iptor Format

144

