Performance of Weak Consistency Schemes on the DEC Alpha

Tim Harris and Nigel Topham * ~

“Department of Computer Science, University of Edinburgh,
The King’s Buildings, Edinburgh, Scotland, EH9 3J7Z

The performance of a shared memory multiprocessor is largely dependent upon the
model of shared memory that is presented to the user. Where the first such machines
typically supported a very powerful model of shared memory, that of sequential consist-
ency, more recent designs have often benefited from the use of weaker memory models.
However, there has been little standardisation between these weak models, and little
practical work has been done to outline their possible implementations and performance.
In the following we consider the weakly consistent model of shared memory which is
supported by the DEC Alpha, which promises to be a common building block for such
multiprocessors in the future. We suggest possible implementations of the model, using
both hardware and software techniques, and consider the subsequent performance of these
schemes on a variety of applications.

1. Introduction

Shared memory has proven to be a powerful model of parallel computation, but it
is often a challenge to implement the model efficiently given the discrepancy between
the fast performance of CPUs and the slow performance of memory systems in current
technologies. Traditionally shared memory multiprocessors supported strongly consistent
models of shared memory, in the sense that the ordering of instructions which access the
shared memory was as close to that of a uniprocessor as possible. The most common
such scheme is sequential consistency, where the ordering of multiprocessor instructions
is defined such that (i) all the operations of a single processor are ordered in sequential
order, and (ii) the operations of the entire machine are ordered as some interleaving of
these sequential threads [1]. More recently, multiprocessor architects have realised that
the efficiency of a shared memory implementation can be substantially improved by the
use of a weaker model of consistency, where instructions may be reordered in a more
liberal way which may contradict the premises of sequential consistency. A large variety
of such models have been suggested and analysed, but few have been implemented in
practice yet.

In this paper we consider the model of shared memory that is supported by the DEC
Alpha microprocessor. Given that this chip will likely form the basis of a variety of
future multiprocessors, the memory model it supports may eventually become a de facto
standard among weakly consistent models. We suggest possible implementations for the
Alpha model when used on a cache-based shared memory machines. In particular, we
outline a possible hardware coherency scheme and a family of software schemes which are

*This work was funded by the the European Community ESPRIT project SHIPS, number P6253.

designed for use on a typical shared memory architecture. We then provide experimental
evidence as to the performance of these schemes on a set of common applications. These
results have been generated through use of a discrete event simulation which takes as
input a parallel address trace resulting from the execution of three applications from the
Perfect Club benchmark suite [2].

We show that with some applications one can expect very similar performance between
Software and Hardware schemes. However, as the Epoch size and the amount of reuse
in an application decreases the performance of a Software scheme will fall off steeply
in comparison to that of a hardware scheme. We also observe that the synchronisation
primitive of the Alpha memory model provides a useful abstraction for defining the Epochs
necessary for the use of a Software Coherency scheme.

2. Architectural Assumptions

We assume a typical design for a parallel shared memory machine with a modest number
of processors. In particular, we assume that all our processors share access to one memory
sub-system, and hence our design is likely not scalable past a modest number of processors.
However, the large majority of shared memory multiprocessors in use today also share this
limitation. Our results are primarily presented within the context of a UMA architecture
(Uniform Memory Access), i.e. we assume constant cost memory access throughout most
of our analysis. This is primarily to simplify the understanding of our results, as our
goal is not to assess the performance of our memory system as much as it is to evaluate
the effects of that memory system performance within the context of a weakly consistent
model.

Proc 1 Proc 2 Proc n

Interconnection Network or Bus |

T

Memory Bank 1 Memory Bank 2 Memory Bank k

Figure 1. Assumed Architecture.

A simple schematic of the assumed architecture can be seen in figure 1. It shows a
multiprocessor, where each processor has a local cache, and where all processors may
access (over a crossbar switch or other interconnection network) an interleaved memory

system with multiple memory banks. Each memory bank has its own queue and we assume
requests are not reordered within these queues. Such a memory system is designed to allow
pipelining of memory requests. The cache sizes will be varied in our analysis, as will the
number of processors and the implementation of our coherency scheme. Our cache is
direct mapped and has a “fast” access time of five cycles, whereas we assume a “slow”
access time of 100 cycles for main memory, and every cache line has four 64-bit words.
These figures may be typical for a moderately loaded system with a fast clock speed of
200 MHz or greater. We assume processors with pipelined floating point performance and
which support the memory model described below.

2.1. Cache Coherency

Caching has long been a popular technique to reduce the average latency of a memory
system. However, caching in case of a multiprocessors becomes non-trivial when copies
of the same cache line may exist in the various processors caches. The question of cache
coherency addresses the problem of what should take place if one processor decides to
modify one of the shared cache data items.

Cache coherency schemes are typically referred to as either hardware or software based.
Hardware schemes maintain status bits for cache lines and main memory which reflect the
state of data, and these bits are updated at run time by special purpose hardware. These
bits are then used to determine when lines of data will be updated or invalidated during
execution. Software schemes, on the other hand, make decisions regarding invalidation of
cache lines based on a static compile-time evaluation of a program. Since this compile-
time analysis must ensure correct program behaviour it will often result in more data
being invalidated than with a hardware scheme, and hence slower performance. However,
software schemes have the obvious benefit of not relying on potentially expensive special
purpose hardware. Beyond these general characteristics one must have an understand-
ing of the memory model to be supported before further defining the coherency scheme
implementation. For a thorough description of cache coherency schemes see [3].

3. Weak Coherency Schemes

The goal of a weak coherency scheme is to provide the architect with more flexibility in
terms of the implementation of the shared memory model. This flexibility comes at the
cost of providing the user with a more difficult model to use. In particular the user must
assume that the instructions in a weakly coherent memory model may be reordered, and
that the completion of any instruction may be delayed indefinitely in many such models.
The degree to which these events may take place is defined explicitly in the scheme, and
it becomes the responsibility of the user or the compiler writer to ensure that a program
will always be correct given these assumptions.

The primary benefits of a weaker scheme is that the architect is then able to use
techniques such as memory access pipelining and write buffering. As mentioned above,
Sequential Consistency has been the traditional model supported by shared memory mul-
tiprocessors. A slightly weaker model, Processor Consistency, relaxes some of the con-
straints such that pipelining of memory access is possible without violating the model
by allowing writes to be delayed [4]. Roughly stated the model requires that from the
perspective of a processor its own write instructions are not reordered, but a processor

may observe different ordering of writes which take place on two different processors.

With weaker memory models users typically need to be more careful of their use of
synchronisation and locking in order to ensure correctness. Various models depend on
the user labelling operations explicitly such as the acquisition and release of a lock, a
competing access, and looping constructs. Release Consistency is typical of such schemes,
where the release of a lock results in a partial barrier, after which it is guaranteed that
all previous instructions are then completed, but where there is no guarantee that future
instructions will not be issued. For a comparison of this class of models see [5].

The DEC Alpha model falls somewhere between Processor Consistency and Release
Consistency in terms of its degree of strongness, and is similar to the model called simple
Weak Consistency. In the Alpha model the user is provided with a full barrier synchron-
isation, the Memory-Barrier instruction (MB), which ensures that all previous instructions
will have completed and that no future instructions will begin [6]. It therefore ensures
that all instructions before an MB are strongly ordered with respect to the instructions
after an MB. Between MBs writes and reads that do not access the same memory location
may be reordered, though a read and a write to the same data from a processor will not
be reordered. No labelling (beyond the use of MBs) is necessary.

In order to ensure correct program behaviour one must execute MB instructions each
time a processor wants to share data with other processors. For example, an MB will
typically be issued after a processor has written a flag, or when a processor wants to read
a flag. The Alpha model allows both instruction reordering and write buffering between
MB instructions.

4. Implementation of the Alpha Model

The primary component of an implementation of the Alpha model is the implementation
of the Memory-Barrier instruction itself. With the architecture described above all other
constraints will naturally be maintained, e.g. multiple accesses from a given processor to
a particular memory element will not be reordered as long as we do not allow memory
requests to be reordered within the memory bank queues. The primary responsibility of
the MB instruction will be to ensure that caches become coherent at the point at which
an MB completes. Pending writes inside the Alpha write buffer will automatically be
forced out once an MB is issued.

4.1. The Hardware Memory Barrier

The hardware coherency scheme we propose is a write-invalidate scheme, where each line
of data in main memory has the status of shared or exclusive. Briefly stated, the scheme
works such that, if a processor wants to write to a cached value, it will first broadcast
an invalidation for that line across the system bus (or through the network in the case
of a directory based scheme). The status of the line in main memory is then changed to
exclusive and the processor may write. We assume write-thru’ to main memory also takes
place, and a miss-on-write will result in a new cache line being loaded from main memory
(i.e. write-allocate).

In the Alpha scheme there is no need for a processor to await acknowledgement when
write access to a line has been requested. Writes may be buffered in the Alpha, and writes
to main memory may end up reordered due to the pipelining implicit in our memory

architecture. However, at any time the coherency operations required to enforce strong
ordering have at least been initiated, and MB only needs to ensure that they have all
completed. It does this by sending a request for acknowledgment to the memory system,
which will only be acknowledged when each memory bank queue has drained. Additionally
a request for acknowledgment is also sent to each processor, which must be guaranteed to
not overtake any invalidation instructions during transit. The processors then may send
back the acknowledgement as soon as they receive the request, with the knowledge that
any invalidations that were sent out earlier have been received and processed. Once the
initiating processor receives acknowledgment for the MB from the remote processors as
well as the memory system then processing may begin again.

4.2. The Software Memory Barrier

Software coherency schemes are based on the notion of an Epoch, a unit of computation
within which data dependencies ideally do not exist. The simplest schemes invalidate all
cached values at the end of each Epoch. More sophisticated software schemes use compile-
time analysis to determine what data structures are modified within an Epoch and which
are not. Data which is potentially written to is marked Shared/Writable and will be
invalidated at the end of an Epoch.

Memory Barrier operations provide a simple mechanism for identifying Epochs as they
will, by necessity, be placed such that data dependencies do not exist between them.
Therefore the Alpha model simple requires that we invalidate either all cached data, or
all shared/writable cached data at each MB. We must also wait for the memory bank
queues to drain, as in the hardware case. Hence a substantial benefit of the Alpha model
in this context is that the potentially difficult task of identifying Epochs at compile-time
becomes trivial.

5. The Simulation

The experimental results presented in this paper have been generated by trace-driven
discrete-event simulations. The input for the simulations consist of traces of memory
accesses and arithmetic operations which were generated by annotating scientific applic-
ations, writing in Fortran. The annotations allow the trace files to be written during
program execution, and the traces are parallel in the sense that each instruction has a
processor number which specifies which processor is to execute the instruction. These
processor numbers are generated by the annotation in a simple fine-grain manner; typ-
ically by using the induction variable of a second level do loop modulo the number of
processors in the simulated machine.

The size of the part of the program which is dispatched to each processor, referred to as
the granularity, is an important parameter. This is particularly true with weakly coherent
memory models, as the frequency of synchronisation events is inversely proportional to
this grain size; i.e. if processors only work on very small pieces of data then they must
execute Memory-Barrier instructions regularly, and hence they will benefit little from the
weak consistency scheme. We have therefore used the largest granularity that does not
risk the correctness of the program execution, typically resulting in BLAS 1 or BLAS 2
size routines being dispatched to each processor. Additionally a larger grain size often
results in load balancing problems amongst the processors.

5.1. The Applications

The applications we have used to generate traces are well-known scientific codes from
established benchmarks, all written in Fortran. The most well know is the Linpack bench-
mark, a linear algebra subroutine designed to factor a dense matrix into its lower and
upper triangular components. This is a particularly floating point intensive application,
though the size of the loops varies from the full width of the matrix down to very small
inner loops as the matrix being consider becomes smaller and smaller.

The other two codes are both parallel versions of codes taken from the Perfect Club
benchmark suite [2]. The TFRD benchmark is a simulation of the behaviour of two
electrons. The most computationally intensive routine, OLDA, performs integral trans-
formations of four matrices and a transposition. Therefore there are a fairly large number
of memory references per each floating point operation. The OCEAN benchmark is a fluid
dynamics application which uses the spectral method, and is hence dominated by Fast
Fourier Transformation (FFT) operations. This application also has a significant number
of instructions which do nothing but copy data from one data structure to another.

6. Simulation Results

Typically one would expect a hardware coherence scheme to have performance better
than or equal to that of a software scheme. However, due to the added cost of providing
hardware support for coherency, a software scheme with slightly worse performance than
a hardware scheme may actually be the better option.

TFRD with 8 Processors and Non-selective Invalidation TFRD with 8 processors and Selective Invalidation
800000 T T T T T 800000 T T T T T
L "TFRD-Hardware-Times" — _| L "TFRD-Hardware-Times" — |
750000 ____"TFRD-Software-Times-Nonselective" ---- 750000 "TFRD-Software-Times" ----
700000 700000 -\
P 650000 g 650000 -\,
:% 600000 :% 600000
‘£ 550000 ‘£ 550000
2 500000 2 500000
= 450000 |- "~ 450000 -
400000 | 400000 |
350000 350000
300000 L L L L L 300000 L L L L L
0 200 400 600 800 1000 0 200 400 600 800 1000
Cache Size in Number of Lines Cache Size in Number of Lines

Figure 2. The Non-Selective Software In- Figure 3. The Software Scheme with Se-
validation Scheme. lective Invalidation.

Figure 2 shows a comparison of the performance of the simplest software coherency
scheme we have described, that of non-selective invalidation at each Memory-Barrier. It
shows that the performance of such a scheme is only close to that of the hardware schemes
at very small cache sizes. The software scheme does not benefit from cache sizes that are
larger than this threshold. This makes intuitive sense if we remember that the size of
an Epoch, in this case the number of operations between MBs, is fixed at a reasonably
small size. Therefore the performance we can expect from a scheme with non-selective

invalidation is that all data necessary for an Epoch may fit inside the cache. Furthermore,
many applications will have little data reuse within an Epoch, eg. within a doubly nested
loop. The real benefit of caching comes from data which is retained in cache and reused by
a processor across multiple epochs, which is clearly not possible if all data is invalidated
at each MB.

In figure 3 we show the performance of the more powerful software scheme described
on the TFRD application. In this scheme the program is analysed at compile time, and
within an Epoch all data structures that are written to are marked as shared/writable.
At the end of the Epoch all shared/writable data is invalidated, while other data is not.
We see that the performance of the software scheme is roughly thirty percent slower for
a cache with 4K lines, where each line has four words.

However, this performance discrepancy between the software and hardware schemes is
highly dependent on the application under consideration. The primary difference between
the two schemes in terms of performance is that in the software scheme all copies of a
given data element are invalidated, including those in the cache of the processor writing
the data. In the hardware scheme the cached data which has been written will not
be invalidated, only the other cached copies of the data will be invalidated. Therefore
applications where processors seldom access a given line of data after they have written to
it will not see much difference between the software and hardware scheme performance.
See, for example, the performance of the Linpack benchmark in figure 4. An even more
substantial performance discrepancy can be seen in the OCEAN benchmark performance
(see figure 5). This application uses large quantities of data, striding by one through the
arrays, and there is not substantial reuse. When there is reuse it tends to be the case
that the processor which has recently written to a data structure will want to read that
updated value later. In the software scheme this results in a cache miss, as all caches are
invalidated identically. We see that, with the four word cache lines we quickly achieve
roughly a 75% hit rate, as each line loaded into cache results quickly in three cache hits,
but that the Software scheme does not improve beyond this point.

LINPACK performance with 8 processors Performance of OCEAN with 8 Processors
2.5e+06 T T T T T T T T T T T T 7]
)] 170000 -
| "LINPACK-HW-Exec-Times" —— "OCEAN-Hardware-Times" —
2.4e+06 -\ "LINPACK-SW-Exec-Times" ---- 7 "OCEAN-Software-Times" ----
2.3e+06 \\ - 160000 .
8 2.2e+06 ‘ 8
D 2 2e+ @
% 5 150000 |- E
c 2.1e+06 <
[} [}
E 2e+06 £ 140000 - b
[[
1.9e+06
130000 b
1.8e+06
1.7e+06 ‘ : ‘ ‘ . 120000 R ———
0 200 400 600 800 1000 0 500 1000 1500 2000 2500 3000 3500 4000 4500
Cache Size in Number of Lines Cache Size in Number of Lines
Figure 4. The Linpack Application. Figure 5. The OCEAN application.

We now consider the relative performance of the software and hardware schemes as a
function of parallelism with a fixed size cache. In 6 we see that the performance of the

two schemes tends to converge as the number of processors is increased. This is due to the
fact that, as the number of processors grows, the probability a cache line will be reused
on the processor that previously wrote to it decreases.

Performance of TFRD as a function of the number of processors
3e+06 T T T T T T

"HW-scheme-variable-proc-no" ——
\ "SW-scheme-variable-proc-no" -----
2.5e+06 [R

26406 |\ g

1.5e+06 [g

Time in Cycles

1e+06 - B

500000 -

| |
0 5 10 15 20 25 30 35
Number of Processors

0 1 1

Figure 6. Performance as function of parallelism with 1000 line cache.

7. Conclusions

We have suggested possible implementations of coherency schemes which correspond to
the Alpha memory model and perhaps other weakly coherent models. The software based
schemes, though cheaper to implement in hardware, give performance not dissimilar from
the hardware schemes for some applications, and particularly with a higher number of
processors. We are currently extending this work to other underlying architectural models
such as decoupled architectures.

REFERENCES

1. L. Lamport, How to Make a Multiprocessor Computer that Correctly Executes Mul-
tiprocess Programs. [EEE Trans. on Computers, Vol. 29, No. 9, Sept. 1979.

2. G. Cybenko, L. Kipp, L. Pointer, D. Kuck, Supercomputer Performance Evaluation
and the Perfect Benchmarks”, International Conference on Supercomputing, 1990.

3. Per Stenstrom, A Survey of Cache Coherence Schemes for Multiprocessors IEEFE Com-
puter, Vol. 23, No. 6, 1990.

4. J. Goodman, Cache Consistency and Sequential Consistency. Tech report 61, SCI
Committee, March, 1989.

5. K. Gharachorloo, S. Adve, A. Gupta, J. Hennessy, M. Hill, Programming for Different
Memory Consistency Models, Journal of Parallel and Distributed Computing, Vol. 15,
1992.

6. Alpha Architecture Handbook, Digital Equipment Corporation, 1992.

