
1Performance of Weak Consistency Schemes on the DEC AlphaTim Harris and Nigel Topham a �aDepartment of Computer Science, University of Edinburgh,The King's Buildings, Edinburgh, Scotland, EH9 3JZThe performance of a shared memory multiprocessor is largely dependent upon themodel of shared memory that is presented to the user. Where the �rst such machinestypically supported a very powerful model of shared memory, that of sequential consist-ency, more recent designs have often bene�ted from the use of weaker memory models.However, there has been little standardisation between these weak models, and littlepractical work has been done to outline their possible implementations and performance.In the following we consider the weakly consistent model of shared memory which issupported by the DEC Alpha, which promises to be a common building block for suchmultiprocessors in the future. We suggest possible implementations of the model, usingboth hardware and software techniques, and consider the subsequent performance of theseschemes on a variety of applications.1. IntroductionShared memory has proven to be a powerful model of parallel computation, but itis often a challenge to implement the model e�ciently given the discrepancy betweenthe fast performance of CPUs and the slow performance of memory systems in currenttechnologies. Traditionally shared memory multiprocessors supported strongly consistentmodels of shared memory, in the sense that the ordering of instructions which access theshared memory was as close to that of a uniprocessor as possible. The most commonsuch scheme is sequential consistency, where the ordering of multiprocessor instructionsis de�ned such that (i) all the operations of a single processor are ordered in sequentialorder, and (ii) the operations of the entire machine are ordered as some interleaving ofthese sequential threads [1]. More recently, multiprocessor architects have realised thatthe e�ciency of a shared memory implementation can be substantially improved by theuse of a weaker model of consistency, where instructions may be reordered in a moreliberal way which may contradict the premises of sequential consistency. A large varietyof such models have been suggested and analysed, but few have been implemented inpractice yet.In this paper we consider the model of shared memory that is supported by the DECAlpha microprocessor. Given that this chip will likely form the basis of a variety offuture multiprocessors, the memory model it supports may eventually become a de factostandard among weakly consistent models. We suggest possible implementations for theAlpha model when used on a cache-based shared memory machines. In particular, weoutline a possible hardware coherency scheme and a family of software schemes which are�This work was funded by the the European Community ESPRIT project SHIPS, number P6253.



2designed for use on a typical shared memory architecture. We then provide experimentalevidence as to the performance of these schemes on a set of common applications. Theseresults have been generated through use of a discrete event simulation which takes asinput a parallel address trace resulting from the execution of three applications from thePerfect Club benchmark suite [2].We show that with some applications one can expect very similar performance betweenSoftware and Hardware schemes. However, as the Epoch size and the amount of reusein an application decreases the performance of a Software scheme will fall o� steeplyin comparison to that of a hardware scheme. We also observe that the synchronisationprimitive of the Alpha memorymodel provides a useful abstraction for de�ning the Epochsnecessary for the use of a Software Coherency scheme.2. Architectural AssumptionsWe assume a typical design for a parallel shared memorymachine with a modest numberof processors. In particular, we assume that all our processors share access to one memorysub-system, and hence our design is likely not scalable past a modest number of processors.However, the large majority of shared memorymultiprocessors in use today also share thislimitation. Our results are primarily presented within the context of a UMA architecture(Uniform Memory Access), i.e. we assume constant cost memory access throughout mostof our analysis. This is primarily to simplify the understanding of our results, as ourgoal is not to assess the performance of our memory system as much as it is to evaluatethe e�ects of that memory system performance within the context of a weakly consistentmodel.
Proc 1 Proc 2 Proc n

Interconnection Network or Bus

Cache CacheCache

Memory Bank 1 Memory Bank 2 Memory Bank kFigure 1. Assumed Architecture.A simple schematic of the assumed architecture can be seen in �gure 1. It shows amultiprocessor, where each processor has a local cache, and where all processors mayaccess (over a crossbar switch or other interconnection network) an interleaved memory



3system with multiplememory banks. Each memory bank has its own queue and we assumerequests are not reordered within these queues. Such a memory system is designed to allowpipelining of memory requests. The cache sizes will be varied in our analysis, as will thenumber of processors and the implementation of our coherency scheme. Our cache isdirect mapped and has a \fast" access time of �ve cycles, whereas we assume a \slow"access time of 100 cycles for main memory, and every cache line has four 64-bit words.These �gures may be typical for a moderately loaded system with a fast clock speed of200 MHz or greater. We assume processors with pipelined 
oating point performance andwhich support the memory model described below.2.1. Cache CoherencyCaching has long been a popular technique to reduce the average latency of a memorysystem. However, caching in case of a multiprocessors becomes non-trivial when copiesof the same cache line may exist in the various processors caches. The question of cachecoherency addresses the problem of what should take place if one processor decides tomodify one of the shared cache data items.Cache coherency schemes are typically referred to as either hardware or software based.Hardware schemes maintain status bits for cache lines and main memory which re
ect thestate of data, and these bits are updated at run time by special purpose hardware. Thesebits are then used to determine when lines of data will be updated or invalidated duringexecution. Software schemes, on the other hand, make decisions regarding invalidation ofcache lines based on a static compile-time evaluation of a program. Since this compile-time analysis must ensure correct program behaviour it will often result in more databeing invalidated than with a hardware scheme, and hence slower performance. However,software schemes have the obvious bene�t of not relying on potentially expensive specialpurpose hardware. Beyond these general characteristics one must have an understand-ing of the memory model to be supported before further de�ning the coherency schemeimplementation. For a thorough description of cache coherency schemes see [3].3. Weak Coherency SchemesThe goal of a weak coherency scheme is to provide the architect with more 
exibility interms of the implementation of the shared memory model. This 
exibility comes at thecost of providing the user with a more di�cult model to use. In particular the user mustassume that the instructions in a weakly coherent memory model may be reordered, andthat the completion of any instruction may be delayed inde�nitely in many such models.The degree to which these events may take place is de�ned explicitly in the scheme, andit becomes the responsibility of the user or the compiler writer to ensure that a programwill always be correct given these assumptions.The primary bene�ts of a weaker scheme is that the architect is then able to usetechniques such as memory access pipelining and write bu�ering. As mentioned above,Sequential Consistency has been the traditional model supported by shared memory mul-tiprocessors. A slightly weaker model, Processor Consistency, relaxes some of the con-straints such that pipelining of memory access is possible without violating the modelby allowing writes to be delayed [4]. Roughly stated the model requires that from theperspective of a processor its own write instructions are not reordered, but a processor



4may observe di�erent ordering of writes which take place on two di�erent processors.With weaker memory models users typically need to be more careful of their use ofsynchronisation and locking in order to ensure correctness. Various models depend onthe user labelling operations explicitly such as the acquisition and release of a lock, acompeting access, and looping constructs. Release Consistency is typical of such schemes,where the release of a lock results in a partial barrier, after which it is guaranteed thatall previous instructions are then completed, but where there is no guarantee that futureinstructions will not be issued. For a comparison of this class of models see [5].The DEC Alpha model falls somewhere between Processor Consistency and ReleaseConsistency in terms of its degree of strongness, and is similar to the model called simpleWeak Consistency. In the Alpha model the user is provided with a full barrier synchron-isation, the Memory-Barrier instruction (MB), which ensures that all previous instructionswill have completed and that no future instructions will begin [6]. It therefore ensuresthat all instructions before an MB are strongly ordered with respect to the instructionsafter an MB. Between MBs writes and reads that do not access the same memory locationmay be reordered, though a read and a write to the same data from a processor will notbe reordered. No labelling (beyond the use of MBs) is necessary.In order to ensure correct program behaviour one must execute MB instructions eachtime a processor wants to share data with other processors. For example, an MB willtypically be issued after a processor has written a 
ag, or when a processor wants to reada 
ag. The Alpha model allows both instruction reordering and write bu�ering betweenMB instructions.4. Implementation of the Alpha ModelThe primary component of an implementation of the Alpha model is the implementationof the Memory-Barrier instruction itself. With the architecture described above all otherconstraints will naturally be maintained, e.g. multiple accesses from a given processor toa particular memory element will not be reordered as long as we do not allow memoryrequests to be reordered within the memory bank queues. The primary responsibility ofthe MB instruction will be to ensure that caches become coherent at the point at whichan MB completes. Pending writes inside the Alpha write bu�er will automatically beforced out once an MB is issued.4.1. The Hardware Memory BarrierThe hardware coherency schemewe propose is a write-invalidate scheme, where each lineof data in main memory has the status of shared or exclusive. Brie
y stated, the schemeworks such that, if a processor wants to write to a cached value, it will �rst broadcastan invalidation for that line across the system bus (or through the network in the caseof a directory based scheme). The status of the line in main memory is then changed toexclusive and the processor may write. We assume write-thru' to main memory also takesplace, and a miss-on-write will result in a new cache line being loaded from main memory(i.e. write-allocate).In the Alpha scheme there is no need for a processor to await acknowledgement whenwrite access to a line has been requested. Writes may be bu�ered in the Alpha, and writesto main memory may end up reordered due to the pipelining implicit in our memory



5architecture. However, at any time the coherency operations required to enforce strongordering have at least been initiated, and MB only needs to ensure that they have allcompleted. It does this by sending a request for acknowledgment to the memory system,which will only be acknowledged when each memory bank queue has drained. Additionallya request for acknowledgment is also sent to each processor, which must be guaranteed tonot overtake any invalidation instructions during transit. The processors then may sendback the acknowledgement as soon as they receive the request, with the knowledge thatany invalidations that were sent out earlier have been received and processed. Once theinitiating processor receives acknowledgment for the MB from the remote processors aswell as the memory system then processing may begin again.4.2. The Software Memory BarrierSoftware coherency schemes are based on the notion of an Epoch, a unit of computationwithin which data dependencies ideally do not exist. The simplest schemes invalidate allcached values at the end of each Epoch. More sophisticated software schemes use compile-time analysis to determine what data structures are modi�ed within an Epoch and whichare not. Data which is potentially written to is marked Shared/Writable and will beinvalidated at the end of an Epoch.Memory Barrier operations provide a simple mechanism for identifying Epochs as theywill, by necessity, be placed such that data dependencies do not exist between them.Therefore the Alpha model simple requires that we invalidate either all cached data, orall shared/writable cached data at each MB. We must also wait for the memory bankqueues to drain, as in the hardware case. Hence a substantial bene�t of the Alpha modelin this context is that the potentially di�cult task of identifying Epochs at compile-timebecomes trivial.5. The SimulationThe experimental results presented in this paper have been generated by trace-drivendiscrete-event simulations. The input for the simulations consist of traces of memoryaccesses and arithmetic operations which were generated by annotating scienti�c applic-ations, writing in Fortran. The annotations allow the trace �les to be written duringprogram execution, and the traces are parallel in the sense that each instruction has aprocessor number which speci�es which processor is to execute the instruction. Theseprocessor numbers are generated by the annotation in a simple �ne-grain manner; typ-ically by using the induction variable of a second level do loop modulo the number ofprocessors in the simulated machine.The size of the part of the program which is dispatched to each processor, referred to asthe granularity, is an important parameter. This is particularly true with weakly coherentmemory models, as the frequency of synchronisation events is inversely proportional tothis grain size; i.e. if processors only work on very small pieces of data then they mustexecute Memory-Barrier instructions regularly, and hence they will bene�t little from theweak consistency scheme. We have therefore used the largest granularity that does notrisk the correctness of the program execution, typically resulting in BLAS 1 or BLAS 2size routines being dispatched to each processor. Additionally a larger grain size oftenresults in load balancing problems amongst the processors.



65.1. The ApplicationsThe applications we have used to generate traces are well-known scienti�c codes fromestablished benchmarks, all written in Fortran. The most well know is the Linpack bench-mark, a linear algebra subroutine designed to factor a dense matrix into its lower andupper triangular components. This is a particularly 
oating point intensive application,though the size of the loops varies from the full width of the matrix down to very smallinner loops as the matrix being consider becomes smaller and smaller.The other two codes are both parallel versions of codes taken from the Perfect Clubbenchmark suite [2]. The TFRD benchmark is a simulation of the behaviour of twoelectrons. The most computationally intensive routine, OLDA, performs integral trans-formations of four matrices and a transposition. Therefore there are a fairly large numberof memory references per each 
oating point operation. The OCEAN benchmark is a 
uiddynamics application which uses the spectral method, and is hence dominated by FastFourier Transformation (FFT) operations. This application also has a signi�cant numberof instructions which do nothing but copy data from one data structure to another.6. Simulation ResultsTypically one would expect a hardware coherence scheme to have performance betterthan or equal to that of a software scheme. However, due to the added cost of providinghardware support for coherency, a software scheme with slightly worse performance thana hardware scheme may actually be the better option.
300000

350000

400000

450000

500000

550000

600000

650000

700000

750000

800000

0 200 400 600 800 1000

T
im

e 
in

 C
yc

le
s

Cache Size in Number of Lines

TFRD with 8 Processors and Non-selective Invalidation

"TFRD-Hardware-Times"
"TFRD-Software-Times-Nonselective"

Figure 2. The Non-Selective Software In-validation Scheme. 300000

350000

400000

450000

500000

550000

600000

650000

700000

750000

800000

0 200 400 600 800 1000

T
im

e 
in

 C
yc

le
s

Cache Size in Number of Lines

TFRD with 8 processors and Selective Invalidation

"TFRD-Hardware-Times"
"TFRD-Software-Times"

Figure 3. The Software Scheme with Se-lective Invalidation.Figure 2 shows a comparison of the performance of the simplest software coherencyscheme we have described, that of non-selective invalidation at each Memory-Barrier. Itshows that the performance of such a scheme is only close to that of the hardware schemesat very small cache sizes. The software scheme does not bene�t from cache sizes that arelarger than this threshold. This makes intuitive sense if we remember that the size ofan Epoch, in this case the number of operations between MBs, is �xed at a reasonablysmall size. Therefore the performance we can expect from a scheme with non-selective



7invalidation is that all data necessary for an Epoch may �t inside the cache. Furthermore,many applications will have little data reuse within an Epoch, eg. within a doubly nestedloop. The real bene�t of caching comes from data which is retained in cache and reused bya processor across multiple epochs, which is clearly not possible if all data is invalidatedat each MB.In �gure 3 we show the performance of the more powerful software scheme describedon the TFRD application. In this scheme the program is analysed at compile time, andwithin an Epoch all data structures that are written to are marked as shared/writable.At the end of the Epoch all shared/writable data is invalidated, while other data is not.We see that the performance of the software scheme is roughly thirty percent slower fora cache with 4K lines, where each line has four words.However, this performance discrepancy between the software and hardware schemes ishighly dependent on the application under consideration. The primary di�erence betweenthe two schemes in terms of performance is that in the software scheme all copies of agiven data element are invalidated, including those in the cache of the processor writingthe data. In the hardware scheme the cached data which has been written will notbe invalidated, only the other cached copies of the data will be invalidated. Thereforeapplications where processors seldom access a given line of data after they have written toit will not see much di�erence between the software and hardware scheme performance.See, for example, the performance of the Linpack benchmark in �gure 4. An even moresubstantial performance discrepancy can be seen in the OCEAN benchmark performance(see �gure 5). This application uses large quantities of data, striding by one through thearrays, and there is not substantial reuse. When there is reuse it tends to be the casethat the processor which has recently written to a data structure will want to read thatupdated value later. In the software scheme this results in a cache miss, as all caches areinvalidated identically. We see that, with the four word cache lines we quickly achieveroughly a 75% hit rate, as each line loaded into cache results quickly in three cache hits,but that the Software scheme does not improve beyond this point.
1.7e+06

1.8e+06

1.9e+06

2e+06

2.1e+06

2.2e+06

2.3e+06

2.4e+06

2.5e+06

0 200 400 600 800 1000

T
im

e 
in

 C
yc

le
s

Cache Size in Number of Lines

LINPACK performance with 8 processors

"LINPACK-HW-Exec-Times"
"LINPACK-SW-Exec-Times"

Figure 4. The Linpack Application. 120000

130000

140000

150000

160000

170000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e 
in

 C
yc

le
s

Cache Size in Number of Lines

Performance of OCEAN with 8 Processors

"OCEAN-Hardware-Times"
"OCEAN-Software-Times"

Figure 5. The OCEAN application.We now consider the relative performance of the software and hardware schemes as afunction of parallelism with a �xed size cache. In 6 we see that the performance of the



8two schemes tends to converge as the number of processors is increased. This is due to thefact that, as the number of processors grows, the probability a cache line will be reusedon the processor that previously wrote to it decreases.
0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

0 5 10 15 20 25 30 35

T
im

e 
in

 C
yc

le
s

Number of Processors

Performance of TFRD as a function of the number of processors

"HW-scheme-variable-proc-no"
"SW-scheme-variable-proc-no"

Figure 6. Performance as function of parallelism with 1000 line cache.7. ConclusionsWe have suggested possible implementations of coherency schemes which correspond tothe Alpha memory model and perhaps other weakly coherent models. The software basedschemes, though cheaper to implement in hardware, give performance not dissimilar fromthe hardware schemes for some applications, and particularly with a higher number ofprocessors. We are currently extending this work to other underlying architectural modelssuch as decoupled architectures.REFERENCES1. L. Lamport, How to Make a Multiprocessor Computer that Correctly Executes Mul-tiprocess Programs. IEEE Trans. on Computers, Vol. 29, No. 9, Sept. 1979.2. G. Cybenko, L. Kipp, L. Pointer, D. Kuck, Supercomputer Performance Evaluationand the Perfect Benchmarks", International Conference on Supercomputing, 1990.3. Per Stenstr�om, A Survey of Cache Coherence Schemes for Multiprocessors IEEE Com-puter, Vol. 23, No. 6, 1990.4. J. Goodman, Cache Consistency and Sequential Consistency. Tech report 61, SCICommittee, March, 1989.5. K. Gharachorloo, S. Adve, A. Gupta, J. Hennessy, M. Hill, Programming for Di�erentMemory Consistency Models, Journal of Parallel and Distributed Computing, Vol. 15,1992.6. Alpha Architecture Handbook, Digital Equipment Corporation, 1992.


