
The Scalability of Decoupled MultiprocessorsTim J. Harris Nigel P. TophamDepartment of Computer Science Department of Computer ScienceUniversity of Edinburgh University of EdinburghEdinburgh, Scotland Edinburgh, ScotlandAbstractIn the following we consider the ability of the tech-nique of decoupling to improve the scalability of mul-tiprocessors which have physically distributed memorybut which support a shared memory model of computa-tion. We consider the performance of a variety of sim-ilar such architectures; those with and without cachingand those with and without decoupling. As a metricof scalability we focus on the speedup of these archi-tectures while executing a suite of parallel scienti�capplications. We show that decoupling can play a sub-stantial role in improving the scalability of such anarchitecture. Furthermore the additional technique ofcaching with hardware coherence can further improvethis scalability in the face of high latency memory ac-cess.1 IntroductionDecoupling is a technique by which the address-ing and memory fetch operations of a process are ex-ecuted concurrently with the computations inherentin that process. A decoupled processor will typicallyhave two sub-processors, one which is designed to donothing but make requests to memory and the otherwhich simply computes results from the data whichhas arrived in its queue, as we will describe in detail.The shared memory model of parallel computinghas received particular attention in recent years, dueto its similarity with uniprocessor programming andits ease of use. However, there are still many di�cultquestions as to the best way to support this model,given that any truly scalable architecture will by ne-cessity have its memory physically distributed acrossall the nodes of the system. To provide good perform-ance on such a system both latency reducing tech-niques and latency tolerating techniques must be con-sidered.

Latency tolerating techniques are those that allowthe processor to continue doing useful work while wait-ing for a memory access to complete, instead of simplyremaining idle for the full latency of memory afterevery access. Typically such techniques exploit on-chip parallelism, as in the case of multithreading orprefetching. Latency reducing techniques are thosethat reduce the delay associated with a memory ac-cess, but without mitigating the e�ect that delay willhave on run time.In this paper we evaluate the latency toleratingtechnique of decoupling in terms of its suitabilityfor massively parallel architectures, especially thosewhere the latency of a remote memory access growsas the size of the machine increases. We also considerthe latency reducing technique of caching, and the waythese two techniques interact on multiprocessors. Ourgoal is to evaluate the speedup achieved by a variety ofsuch related architectures on a set of parallel scienti�capplications.We now proceed to outline previous work in thisarea and how our contribution �ts into this back-ground. In section two we describe in more detailthe architecture model we consider. Section three ex-plains the techniques used in our simulation, and theapplications from which we have generated our par-allel address traces. Section four provides the bulk ofour experimental results, and in section 5 we conclude.1.1 Previous WorkMuch work exists to address the subject of de-coupled uniprocessors. In [4] a VLSI decoupled ar-chitecture was compared to a traditional architec-ture while the speed of memory is altered. In [8] adocoupled machine with interleaved memory was com-pared with the CRAY-1 architecture. In the relatedwork of [9] decoupled architectures were shown to beinsensitive to memory latency when performing op-timally. Uniprocessors with caches are considered in

comparison to decoupled machines in [6]. And in [3]various applications are considered in terms of theirinherent suitability for decoupling.Our main contribution is to consider the e�ectsof decoupling as the number of processors in a ma-chine is increased and the latency of requests to re-mote memory becomes subsequently larger. We alsoprovide insight into the bene�ts of using decoupling inconjunction with caching, and the e�ects this combin-ation has upon performance scaling.2 The ArchitectureThe technique of decoupling consists of dividing anormal instruction stream into two sub-streams; oneof which is entirely addressing and memory fetch op-erations, and the other of which is entirely arithmetic.The two streams are then executed in parallel by sep-arate units, the Address Unit (AU) and Data Unit(DU), as shown in �gure 1. The AU performs the ne-cessary addressing operations and then places memoryrequests into the Load-Address-Queue (LAQ), hope-fully in a highly pipelined manner. After the memoryrequests are serviced by the memory system, the res-ulting memory operands are placed in the Load-Data-Queue(LDQ). The two units store data by interact-ing via the Store-Data-Queue (SDQ) and the Store-Address-Queue (SAQ). Decoupled execution occurswhen the DU is able to process data at its maximumspeed with no idle time, due to the fact that the oper-ands it needs will have been previously requested bythe AU and will be already waiting in the LDQ. Whenthis is the case the AU serves as a prefetch engine forthe DU, and the latency of the memory system has noe�ect on the execution rate of the machine, ie. latencyis \tolerated". The architecture shown in �gure 1 alsohas a cache memory, as we assume in later parts ofthe paper.With most programs the AU and DU will period-ically need to synchronize, and event called a Loss ofDecoupling or LOD. A Loss of Decoupling will takeplace at conditional jumps, where the AU will need aresult to be computed by the DU before it can continuefetching operands. Various coherency operations inmultiprocessors will also cause LODs. After an LODthe DU must wait the full latency of the memory sys-tem before its �rst operands arrive in the LDQ. Themain technique of our analysis is to evaluate the cu-mulative LOD costs of applications under various con-ditions and a variety of architectures.In the case of a multiprocessor decoupled machine,we assume each processor has an AU and DU, as well

Address
 Unit

Data
Unit

LDQ

SDQSAQ

LAQ

Main Memory

Cache MemoryFigure 1: A Decoupled Architecture Modelwith Cache.as a block of local memory. Shared memory is distrib-uted amongst these memory modules such that thecost of a memory access increases in proportion to thedistance a request must travel through the network.We assume a two-dimensional mesh interconnectionnetwork, so memory access time increases in propor-tion to the square root of the number of processorsplus some initial cost which corresponds to access-ing the memory module once the request has arrivedat the appropriate node. The general idea is to as-sume a high bandwidth but reasonably high latencymemory system, as this may be seen as typical of dis-tributed memory supercomputers of the future andhence provides an interesting benchmark for analysis.
0

50

100

150

200

250

0 20 40 60 80 100 120 140

M
ax

im
um

 M
em

or
y

La
te

nc
y

in
 C

yc
le

s

Number of Processors

Figure 2: Memory Latency as a function ofnumber of processors.We assume a lightly loaded system, in the sensethat memory latency is not a function of network con-tention in the system. We assume that each memorymodule has an access time of 40 cycles and that it re-quires an additional 20 cycles for a message to travel

across one link of our interconnection network. Theinterconnection network we assume is a simple two-dimensional mesh, so the diameter of our network isalways proportional to the square-root of the numberof processors, and we assume that every memory re-quest will pay the full latency of the network (unlessit is a cache hit). With this architecture the latency ofa memory access will increase substantially as the sizeof our machine grows, so in this sense we are consider-ing an architecture that will naturally have di�cultyscaling to a high processor count (see �gure 2). Thisworst case model allows us to focus on the bene�tsof our latency reducing and hiding techniques in thepresence of large memory access times.2.1 Multiprocessor CachingIn much of the following we consider the perform-ance of both decoupled and non-decoupled architec-tures with the inclusion of caching. In the decoupledcase we assume each processor has its own small cachewhich is readable or writable by either the DU or AU,as shown in �gure 3. The primary di�erence betweenthe caches and local memorymodules is that each dataitem held in local memorywill exist only once, whereasa value in a cache will be a copy of a value which ex-ists somewhere in a local memory of the system, andother such copies of the same value may exist in mul-tiple caches.
CacheAU DU

Local Memory

CacheAU DU

Local Memory

CacheAU DU

Local Memory

CacheAU DU

Local Memory

CacheAU DU

Local Memory

CacheAU DU

Local Memory

CacheAU DU

Local Memory

CacheAU DU

Local Memory

CacheAU DU

Local MemoryFigure 3: A Decoupled Mesh with Cache.The primary di�culty in using cache in a multi-processor is coherency; ensuring that processors seea consistent view of memory despite the various cop-ies potentially distributed throughout the system. We

assume a hardware coherency scheme with one cent-ralized directory of cache information. Our schemeis write-though with invalidate and allocate-on-write,so to write a cached value a processor will �rst needto achieve exclusive access to a cache line by sendinginvalidation messages to all other processors that cur-rently hold a copy. Upon each subsequent write theupdated values will also be sent to the appropriatelocation in the shared distributed memory to main-tain coherency between the cached values and mainmemory. We assume a 5 cycle cache hit time, andour cache is direct mapped. We assume a weak co-herency scheme in the sense that coherency opera-tions are not guaranteed to �nish until a barrier op-eration is encountered. Execution of a barrier oper-ations requires waiting until all pending invalidationshave taken place and the operation has been globallyacknowledged. The memory model we implement cor-responds loosely to that supported by the DEC AlphaChip set [2]. More details on this caching scheme andmemory model may be seen in [5].3 The SimulationWe simulate these architectures with an event-driven simulator written in C. The input for the sim-ulator is a set of address traces, generated by execut-ing a suite of Fortran applications, each of which wasannotated such that every memory access is followedby writing a line to the trace �le which speci�es theaddress of the access which has taken place. Addition-ally, each memory operation is allocated to a particu-lar processor, so processor IDs are another componentof the trace �les. Unlike our previous work [5], ingenerating these traces we have used a �ne grain ap-proach to maximize the parallelism of the applications,often using the index of the inner most do-loop as theprocessor ID indicator. In addition to memory fetchoperations, we also include memory barrier operationsin the annotations to the applications, as required tomaintain consistency within the assumptions of ourweakly coherent model [2].In our multiprocessor results we focus on machineswith between one and thirty-two processors. Due tothe large computational costs of detailed simulationsof highly parallel processors it becomes impractical tomodel much larger machines, but we expect our resultswill naturally extrapolate to higher numbers of pro-cessors. Our limits on computational power have alsoreduced our ability to generate large numbers of datapoints for each curve, as should be clear to the reader.However, despite these limitations we believe we have

identi�ed trends in execution time and speedup thatwill be maintained for a large variety of machine sizes.3.1 The Application SuiteWe have considered the performance of our variousarchitectures on three scienti�c programs written inFortran. One is the well known Linpack benchmark;a linear algebra subroutine which factors a dense mat-rix into its upper and lower triangular components.This is a particularly
oating point intensive applica-tion, though as the factoring progresses the loop sizesbecome small enough that some e�ciency is lost.The other two programs are parallel versions ofbenchmark codes taken from the Perfect Club suite[7]. The TFRD benchmark is a simulation of the be-haviour of two electrons. The most computationallyintensive routine, OLDA, performs integral transform-ations of four matrices and a transposition. There-fore there are a fairly large number of memory refer-ences per each
oating point operation. The OCEANbenchmark is a
uid dynamics application which usesthe spectral method, and is hence dominated by FastFourier Transformation (FFT) operations. This ap-plication also has a signi�cant number of instructionswhich do nothing but copy data from one data struc-ture to another. The trace �les generated by theseapplications typically contain hundreds of thousandsof events.4 ResultsWe begin by considering the execution times of anapplication as a function of the number of processorsfor both the decoupling case and the non-decouplingcase. Given that the our non-decoupled model hasfew optimizations and is quite sensitive to latency, it islittle surprise that the decoupled architecture providessubstantial performance gains, as shown in �gure 4 forthe case of the Linpack benchmark. Such a result isalso a logical extension of the work shown in [4, 8,6]. The on-chip parallelism of each node allows thelatency of memory access to be hidden, as the AUand DU are able to stay busy once the initial startuplatency has past.A more important measure for the purposes of de-termining scalability is the speedup as a function ofthe number of processors, which we show in �gure 5.We de�ne the speedup with n processors for a givenarchitecture as the execution time for 1 processor onthat architecture divided by that on n processors. If

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

0 5 10 15 20 25 30 35

T
im

e
in

 C
yc

le
s

Number of Processors

Coupled with No Cache
Decoupled with No Cache

Figure 4: The execution time of Linpack.we de�ned speedup in terms of the best case serial al-gorithm as often suggested, then it would fail to com-pensate for the substantial di�erences in uniprocessorperformance seen in our various architecture models.Our goal is instead to about scalability independentof the range of uniprocessor execution rates. Withour de�nition the speedup curves provide a measureof the scalability of a model in the presence of in-creasing latency of memory access, and it serves tobalance out some of the absolute di�erences in exe-cution times for our models. The speedup curve of�gure 5 shows that our basic decoupled processor hasgood potential as a latency hiding and hence scalablearchitecture. However, a more interesting comparisonis with decoupling and other techniques for achievingfast memory access.
0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35

R
el

at
iv

e
S

pe
ed

up

Number of Processors

Coupled with No Cache
Decoupled with No Cache

Figure 5: The speedup of Linpack.We therefore now consider the performance of ournon-decoupled model with cache to a decoupled ar-chitecture without cache for a variety of sizes. Intu-

itively one might guess that our model of decouplingwill provide better execution times than simple cach-ing, for a variety of reasons. First, to read a cache linewill cost additional time when compared to a read ina non-caching architecture, and given the coherencyoperations necessary for a parallel cache, such as pos-sibly frequent invalidations, it is possible the newlyread cache line will never be accessed again. Secondly,when a decoupled machine is behaving optimally, thelatency of memory access is entirely hidden, whereasthe best a cache architecture can hope to achieve is areduction in that latency. These ideas are born out in�gure 6, where we compare the speedup achieved fromthe use of caching in a non-decoupled machine with adecoupled architecture which does not use cache. Wesee that the bene�ts of caching are substantial in thenon-decoupled architecture, but that the decoupledmachine still provides more scalability than either thenon-cached or the cached traditional architecture.
0

5

10

15

20

25

0 5 10 15 20 25 30 35

R
el

at
iv

e
S

pe
ed

up

Number of Processors

Coupled with No Cache
Coupled with Cache

Decoupled with No Cache

Figure 6: Speedup of OCEAN.4.1 Caching in Decoupled ArchitecturesThe bene�ts of caching in conjunction with decoup-ling are varied for a multiprocessor. For the TFRDapplication, shown in �gure 7, we see substantial im-provements in speedup due to the inclusion of cach-ing in our decoupled model. However, if we considerinstead Linpack or OCEAN, there are few improve-ments. We now outline the reasons for these di�er-ences.Firstly, its important to realize that caching canonly provide additional improvements in latency re-duction when the job of latency hiding attemptedthrough decoupling has not been entirely successful.This is typically the case in applications where manysynchronisation events are inherent in the algorithm,

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35

R
el

at
iv

e
S

pe
ed

up

Number of Processors

Coupled with Cache
Decoupled with No Cache

Decoupled with Cache

Figure 7: Speedup of TFRD.such as one with many conditional branches or fre-quent barrier operations for ensuring cache coherency.We refer to such synchronisation costs as loss of de-coupling (LOD) delays, and we have displayed the ac-cumulated delays of the three applications when usingdecoupling without caching in �gure 8. It shows thatthe OCEAN benchmark has substantially fewer LODdelays as the processor count increases, and hence thatwe can expect little gains from the use of caching toreduce these costs.
0

10000

20000

30000

40000

50000

60000

70000

0 5 10 15 20 25 30 35

D
el

ay
 in

 C
yc

le
s

Number of Processors

TFRD
OCEAN
Linpack

Figure 8: Accumulated LOD delays.Secondly, an application does have substantial LODcosts such as TFRD and Linpack, the hit rate of thecache will still need to be high to achieve any perform-ance gains from use of a cache. In �gure 9 we comparethe hit rates of the two applications and see that, asthe processor count increases, the hit rate of Linpackrapidly falls o�. TFRD, on the other hand, maintainsa good hit rate and hence can reduce the LOD costswe have shown above and �nally achieve bene�ts from

the additional use of cache with decoupling. Keepingin mind these two factors, it is clear that TFRD is theonly application of the three that achieves the two ne-cessary conditions for achieving the speedup bene�ts.
50

55

60

65

70

75

80

85

90

95

100

0 5 10 15 20 25 30 35

H
it

R
at

e
in

 p
er

ce
nt

Processor Number

Hit Rate

TFRD
Linpack
OCEAN

Figure 9: Hit rates for decoupled model.5 Summary and ConclusionsIn most cases multiprocessors with distributedmemory will have memory access latencies that in-crease rapidly as the number of processors in themachine increase. We have shown that decouplingserves a useful purpose in such machines in hiding thatlatency and hence allowing good speedups on such ma-chines though the general technique of on-chip paral-lelism. We also have shown that the additional tech-nique of caching for latency reduction can further en-hance the bene�ts of decoupling, and believe that theas a general result multiprocessors of the future willoften bene�t from the such combinations of reductionand tolerating techniques.AcknowledgementsWe would like to thank Alasdair Rawsthorne, PeterBird, and Bob Fredieu for our many discussions oncaches in decoupled architectures. Many of the mo-tivating principles of this work evolved from those dis-cussions.This work has been funded by the European Com-munity ESPRIT project SHIPS, contract numberP6253.

References[1] S. Adve, V. Adve, M. Hill, and M. Ver-non. Comparison of Hardware and Soft-ware Cache Coherency Schemes. Com-puter Sciences Technical Report No.1012, University of Wisconsin-Madison,March 1991.[2] Alpha Architecture Handbook. DigitalEquipment Corporation, 1992.[3] P. Bird, A. Rawsthorne, and N. Topham.The E�ectiveness of Decoupling. Proc.7th Int. Conf. on Supercomputing, July,1993.[4] J. Goodman, J. Hsieh, K. Liou, A.Plezkun, P. Schectuer, and H. Young.PIPE: A VLSI Decoupled Architecture".Proc. 12th International Symp. on Com-puter Architecture, 1985.[5] T. Harris and N. Topham. Performanceof Weak Consistency Schemes on theDEC Alpha. Proceedings of InternationalConference on Parallel Computing '93,Grenoble France, North-Holland Pub-lishing, September 1993.[6] L. Kurian, P. Hulina, and L.Coraor. Memory Latency E�ects in De-coupled Architectures with a Single DataMemory Module. Proc. 19th Int. Symp.on Computer Architecture, May, 1992.[7] G. Cybenko, L. Kipp, L. Pointer, D.Kuck, Supercomputer Performance Eval-uation and the Perfect Benchmarks", In-ternational Conference on Supercomput-ing, 1990.[8] J. Smith, S. Weiss, and N. Pang. A Sim-ulation Study of Decoupled ArchitectureComputers. IEEE Trans. on Computers,Vol. C-35, No. 8, August 1986.[9] J. Smith, et. al. The ZS-1 Central Pro-cessor. Proc. 2nd Int. Conf. on Archi-tectural Support for Programming Lan-guages and Operating Systems, October,1987.[10] A. Rawsthorne, N. Topham and P. Bird.Saxe Diagrams: A Notation for Visualiz-ing Performance in Decoupled Architec-tures. In Preparation.

