The Scalability of Decoupled Multiprocessors

Tim J. Harris

Department of Computer Science
University of Edinburgh
Edinburgh, Scotland

Abstract

In the following we consider the ability of the tech-
nique of decoupling to improve the scalability of mul-
tiprocessors which have physically distributed memory
but which support a shared memory model of computa-
tion. We consider the performance of a variety of sim-
tlar such architectures; those with and without caching
and those with and without decoupling. As a metric
of scalability we focus on the speedup of these archi-
tectures while executing a suite of parallel scientific
applications. We show that decoupling can play a sub-
stantial role in tmproving the scalability of such an
architecture. Furthermore the additional technique of
caching with hardware coherence can further improve
this scalability in the face of high latency memory ac-
cess.

1 Introduction

Decoupling i1s a technique by which the address-
ing and memory fetch operations of a process are ex-
ecuted concurrently with the computations inherent
in that process. A decoupled processor will typically
have two sub-processors, one which is designed to do
nothing but make requests to memory and the other
which simply computes results from the data which
has arrived in its queue, as we will describe in detail.

The shared memory model of parallel computing
has received particular attention in recent years, due
to its similarity with uniprocessor programming and
its ease of use. However, there are still many difficult
questions as to the best way to support this model,
given that any truly scalable architecture will by ne-
cessity have its memory physically distributed across
all the nodes of the system. To provide good perform-
ance on such a system both latency reducing tech-
niques and latency tolerating techniques must be con-
sidered.

Nigel P. Topham

Department of Computer Science
University of Edinburgh
Edinburgh, Scotland

Latency tolerating techniques are those that allow
the processor to continue doing useful work while wait-
ing for a memory access to complete, instead of simply
remaining idle for the full latency of memory after
every access. Typically such techniques exploit on-
chip parallelism, as in the case of multithreading or
prefetching. Latency reducing techniques are those
that reduce the delay associated with a memory ac-
cess, but without mitigating the effect that delay will
have on run time.

In this paper we evaluate the latency tolerating
technique of decoupling in terms of its suitability
for massively parallel architectures, especially those
where the latency of a remote memory access grows
as the size of the machine increases. We also consider
the latency reducing technique of caching, and the way
these two techniques interact on multiprocessors. Our
goal is to evaluate the speedup achieved by a variety of
such related architectures on a set of parallel scientific
applications.

We now proceed to outline previous work in this
area and how our contribution fits into this back-
ground. In section two we describe in more detail
the architecture model we consider. Section three ex-
plains the techniques used in our simulation, and the
applications from which we have generated our par-
allel address traces. Section four provides the bulk of
our experimental results, and in section 5 we conclude.

1.1 Previous Work

Much work exists to address the subject of de-
coupled uniprocessors. In [4] a VLSI decoupled ar-
chitecture was compared to a traditional architec-
ture while the speed of memory is altered. In [8] a
docoupled machine with interleaved memory was com-
pared with the CRAY-1 architecture. In the related
work of [9] decoupled architectures were shown to be
insensitive to memory latency when performing op-
timally. Uniprocessors with caches are considered in

comparison to decoupled machines in [6]. And in [3]
various applications are considered in terms of their
inherent suitability for decoupling.

Our main contribution is to consider the effects
of decoupling as the number of processors in a ma-
chine is increased and the latency of requests to re-
mote memory becomes subsequently larger. We also
provide insight into the benefits of using decoupling in
conjunction with caching, and the effects this combin-
ation has upon performance scaling.

2 The Architecture

The technique of decoupling consists of dividing a
normal instruction stream into two sub-streams; one
of which is entirely addressing and memory fetch op-
erations, and the other of which is entirely arithmetic.
The two streams are then executed in parallel by sep-
arate units, the Address Unit (AU) and Data Unit
(DU), as shown in figure 1. The AU performs the ne-
cessary addressing operations and then places memory
requests into the Load-Address-Queue (LAQ), hope-
fully in a highly pipelined manner. After the memory
requests are serviced by the memory system, the res-
ulting memory operands are placed in the Load-Data-
Queue(LDQ). The two units store data by interact-
ing via the Store-Data-Queue (SDQ) and the Store-
Address-Quene (SAQ). Decoupled execution occurs
when the DU is able to process data at its maximum
speed with no idle time, due to the fact that the oper-
ands it needs will have been previously requested by
the AU and will be already waiting in the LDQ. When
this i1s the case the AU serves as a prefetch engine for
the DU, and the latency of the memory system has no
effect on the execution rate of the machine, ie. latency
is “tolerated”. The architecture shown in figure 1 also
has a cache memory, as we assume in later parts of
the paper.

With most programs the AU and DU will period-
ically need to synchronize, and event called a Loss of
Decoupling or LOD. A Loss of Decoupling will take
place at conditional jumps, where the AU will need a
result to be computed by the DU before it can continue
fetching operands. Various coherency operations in
multiprocessors will also cause LODs. After an LOD
the DU must wait the full latency of the memory sys-
tem before its first operands arrive in the LDQ. The
main technique of our analysis is to evaluate the cu-
mulative LOD costs of applications under various con-
ditions and a variety of architectures.

In the case of a multiprocessor decoupled machine,
we assume each processor has an AU and DU, as well

Address SAQ sSbQ Data
Unit H H Unit

H H

,_
>
o]
-
v
O

Cache Memory

~—ITT

—1IT

Main Memory

Figure 1: A Decoupled Architecture Model
with Cache.

as a block of local memory. Shared memory is distrib-
uted amongst these memory modules such that the
cost of a memory access increases in proportion to the
distance a request must travel through the network.
We assume a two-dimensional mesh interconnection
network, so memory access time increases in propor-
tion to the square root of the number of processors
plus some initial cost which corresponds to access-
ing the memory module once the request has arrived
at the appropriate node. The general idea is to as-
sume a high bandwidth but reasonably high latency
memory system, as this may be seen as typical of dis-
tributed memory supercomputers of the future and
hence provides an interesting benchmark for analysis.

Maximum Memory Latency in Cycles

1 1
0 20 40 60 80 100 120 140
Number of Processors

0 1

Figure 2: Memory Latency as a function of
number of processors.

We assume a lightly loaded system, in the sense
that memory latency is not a function of network con-
tention in the system. We assume that each memory
module has an access time of 40 cycles and that it re-
quires an additional 20 cycles for a message to travel

across one link of our interconnection network. The
interconnection network we assume is a simple two-
dimensional mesh, so the diameter of our network is
always proportional to the square-root of the number
of processors, and we assume that every memory re-
quest will pay the full latency of the network (unless
it is a cache hit). With this architecture the latency of
a memory access will increase substantially as the size
of our machine grows, so in this sense we are consider-
ing an architecture that will naturally have difficulty
scaling to a high processor count (see figure 2). This
worst case model allows us to focus on the benefits
of our latency reducing and hiding techniques in the
presence of large memory access times.

2.1 Multiprocessor Caching

In much of the following we consider the perform-
ance of both decoupled and non-decoupled architec-
tures with the inclusion of caching. In the decoupled
case we assume each processor has its own small cache
which is readable or writable by either the DU or AU,
as shown in figure 3. The primary difference between
the caches and local memory modules is that each data
item held in local memory will exist only once, whereas
a value in a cache will be a copy of a value which ex-
ists somewhere in a local memory of the system, and
other such copies of the same value may exist in mul-
tiple caches.

| Local Memory |

| Local Memory | | Local Memory |

| Local Memory | | Local Memory | | Local Memory |

| Local Memory |

| Local Memory | | Local Memory |

Figure 3: A Decoupled Mesh with Cache.

The primary difficulty in using cache in a multi-
processor is coherency; ensuring that processors see
a consistent view of memory despite the various cop-
ies potentially distributed throughout the system. We

assume a hardware coherency scheme with one cent-
ralized directory of cache information. Our scheme
is write-though with invalidate and allocate-on-write,
so to write a cached value a processor will first need
to achieve exclusive access to a cache line by sending
invalidation messages to all other processors that cur-
rently hold a copy. Upon each subsequent write the
updated values will also be sent to the appropriate
location in the shared distributed memory to main-
tain coherency between the cached values and main
memory. We assume a 5 cycle cache hit time, and
our cache 1s direct mapped. We assume a weak co-
herency scheme in the sense that coherency opera-
tions are not guaranteed to finish until a barrier op-
eration is encountered. Execution of a barrier oper-
ations requires waiting until all pending invalidations
have taken place and the operation has been globally
acknowledged. The memory model we implement cor-
responds loosely to that supported by the DEC Alpha
Chip set [2]. More details on this caching scheme and
memory model may be seen in [5].

3 The Simulation

We simulate these architectures with an event-
driven simulator written in C. The input for the sim-
ulator is a set of address traces, generated by execut-
ing a suite of Fortran applications, each of which was
annotated such that every memory access is followed
by writing a line to the trace file which specifies the
address of the access which has taken place. Addition-
ally, each memory operation is allocated to a particu-
lar processor, so processor 1Ds are another component
of the trace files. Unlike our previous work [5], in
generating these traces we have used a fine grain ap-
proach to maximize the parallelism of the applications,
often using the index of the inner most do-loop as the
processor 1D indicator. In addition to memory fetch
operations, we also include memory barrier operations
in the annotations to the applications, as required to
maintain consistency within the assumptions of our
weakly coherent model [2].

In our multiprocessor results we focus on machines
with between one and thirty-two processors. Due to
the large computational costs of detailed simulations
of highly parallel processors it becomes impractical to
model much larger machines, but we expect our results
will naturally extrapolate to higher numbers of pro-
cessors. Our limits on computational power have also
reduced our ability to generate large numbers of data
points for each curve, as should be clear to the reader.
However, despite these limitations we believe we have

identified trends in execution time and speedup that
will be maintained for a large variety of machine sizes.

3.1 The Application Suite

We have considered the performance of our various
architectures on three scientific programs written in
Fortran. One is the well known Linpack benchmark;
a linear algebra subroutine which factors a dense mat-
rix into its upper and lower triangular components.
This is a particularly floating point intensive applica-
tion, though as the factoring progresses the loop sizes
become small enough that some efficiency is lost.

The other two programs are parallel versions of
benchmark codes taken from the Perfect Club suite
[7]. The TFRD benchmark is a simulation of the be-
haviour of two electrons. The most computationally
intensive routine, OLDA | performs integral transform-
ations of four matrices and a transposition. There-
fore there are a fairly large number of memory refer-
ences per each floating point operation. The OCEAN
benchmark is a fluid dynamics application which uses
the spectral method, and is hence dominated by Fast
Fourier Transformation (FFT) operations. This ap-
plication also has a significant number of instructions
which do nothing but copy data from one data struc-
ture to another. The trace files generated by these
applications typically contain hundreds of thousands
of events.

4 Results

We begin by considering the execution times of an
application as a function of the number of processors
for both the decoupling case and the non-decoupling
case. Given that the our non-decoupled model has
few optimizations and is quite sensitive to latency, it 1s
little surprise that the decoupled architecture provides
substantial performance gains, as shown in figure 4 for
the case of the Linpack benchmark. Such a result is
also a logical extension of the work shown in [4, 8,
6]. The on-chip parallelism of each node allows the
latency of memory access to be hidden, as the AU
and DU are able to stay busy once the initial startup
latency has past.

A more important measure for the purposes of de-
termining scalability is the speedup as a function of
the number of processors, which we show in figure 5.
We define the speedup with n processors for a given
architecture as the execution time for 1 processor on
that architecture divided by that on n processors. If

3.5e+06 T T T T

Coupled with No Cache —
Decoupled with No Cache ---- E

3e+06 -

2.5e+06 -

2e+06 -

1.5e+06 -

Time in Cycles

1e+06 |~

500000 [

0 1 1 e
0 5 10 15 20 25 30 35
Number of Processors

Figure 4: The execution time of Linpack.

we defined speedup in terms of the best case serial al-
gorithm as often suggested, then it would fail to com-
pensate for the substantial differences in uniprocessor
performance seen in our various architecture models.
Our goal is instead to about scalability independent
of the range of uniprocessor execution rates. With
our definition the speedup curves provide a measure
of the scalability of a model in the presence of in-
creasing latency of memory access, and it serves to
balance out some of the absolute differences in exe-
cution times for our models. The speedup curve of
figure b shows that our basic decoupled processor has
good potential as a latency hiding and hence scalable
architecture. However, a more interesting comparison
is with decoupling and other techniques for achieving
fast memory access.

20 T T T T

18 | Coupled with No Cache —— |
Decoupled with No Cache™-——-

16 | e

14 + B

Relative Speedup

1 1 1
0 5 10 15 20 25 30 35
Number of Processors

Figure 5: The speedup of Linpack.

We therefore now consider the performance of our
non-decoupled model with cache to a decoupled ar-
chitecture without cache for a variety of sizes. Intu-

itively one might guess that our model of decoupling
will provide better execution times than simple cach-
ing, for a variety of reasons. First, to read a cache line
will cost additional time when compared to a read in
a non-caching architecture, and given the coherency
operations necessary for a parallel cache, such as pos-
sibly frequent invalidations, it is possible the newly
read cache line will never be accessed again. Secondly,
when a decoupled machine is behaving optimally, the
latency of memory access is entirely hidden, whereas
the best a cache architecture can hope to achieve is a
reduction in that latency. These ideas are born out in
figure 6, where we compare the speedup achieved from
the use of caching in a non-decoupled machine with a
decoupled architecture which does not use cache. We
see that the benefits of caching are substantial in the
non-decoupled architecture, but that the decoupled
machine still provides more scalability than either the
non-cached or the cached traditional architecture.

25 T T T
Coupled with No Cache .~——
Coupled with Caché ----
20 Decoupled with No Cache ----- R
15 F P

Relative Speedup

0 g 1 1 1 1 1
0 5 10 15 20 25 30 35
Number of Processors

Figure 6: Speedup of OCEAN.

4.1 Caching in Decoupled Architectures

The benefits of caching in conjunction with decoup-
ling are varied for a multiprocessor. For the TFRD
application, shown in figure 7, we see substantial im-
provements in speedup due to the inclusion of cach-
ing in our decoupled model. However, if we consider
instead Linpack or OCEAN, there are few improve-
ments. We now outline the reasons for these differ-
ences.

Firstly, its important to realize that caching can
only provide additional improvements in latency re-
duction when the job of latency hiding attempted
through decoupling has not been entirely successful.
This 1s typically the case in applications where many
synchronisation events are inherent in the algorithm,

16 T T T

Coupled with Cache.-~——
M Decoupled with No Cache ---- 7
Decoupled with Cache -

12

Relative Speedup

1 1 1
0 5 10 15 20 25 30 35
Number of Processors

Figure 7: Speedup of TFRD.

such as one with many conditional branches or fre-
quent barrier operations for ensuring cache coherency.
We refer to such synchronisation costs as loss of de-
coupling (LOD) delays, and we have displayed the ac-
cumulated delays of the three applications when using
decoupling without caching in figure 8. It shows that
the OCEAN benchmark has substantially fewer LOD
delays as the processor count increases, and hence that
we can expect little gains from the use of caching to
reduce these costs.

70000 T T

TFRD —
OCEAN ---- E
Linpack -----

60000 |-
50000 |-
40000 |-

30000 [

Delay in Cycles

20000 -

10000 |- .

1 1 1
0 5 10 15 20 25 30 35
Number of Processors

Figure 8: Accumulated LOD delays.

Secondly, an application does have substantial LOD
costs such as TFRD and Linpack, the hit rate of the
cache will still need to be high to achieve any perform-
ance gains from use of a cache. In figure 9 we compare
the hit rates of the two applications and see that, as
the processor count increases, the hit rate of Linpack
rapidly falls off. TFRD, on the other hand, maintains
a good hit rate and hence can reduce the LOD costs
we have shown above and finally achieve benefits from

the additional use of cache with decoupling. Keeping
in mind these two factors, it 1s clear that TFRD is the
only application of the three that achieves the two ne-
cessary conditions for achieving the speedup benefits.

Hit Rate
100 | | |
\ —_—
95 —
\ OCEAN -----
0 7
= sk N\ |
c .
8 .
@ 80 | |
Q .
£ =L . |
]
g 70 + \\\\\\ o 7
* 65 |- 7
60 |
50 ‘ | ‘ ; Il Il
0 5 10 15 20 25 o .

Processor Number

Figure 9: Hit rates for decoupled model.

5 Summary and Conclusions

In most cases multiprocessors with distributed
memory will have memory access latencies that in-
crease rapidly as the number of processors in the
machine increase. We have shown that decoupling
serves a useful purpose in such machines in hiding that
latency and hence allowing good speedups on such ma-
chines though the general technique of on-chip paral-
lelism. We also have shown that the additional tech-
nique of caching for latency reduction can further en-
hance the benefits of decoupling, and believe that the
as a general result multiprocessors of the future will
often benefit from the such combinations of reduction
and tolerating techniques.

Acknowledgements

We would like to thank Alasdair Rawsthorne, Peter
Bird, and Bob Fredieu for our many discussions on
caches in decoupled architectures. Many of the mo-
tivating principles of this work evolved from those dis-
cussions.

This work has been funded by the Furopean Com-

munity ESPRIT project SHIPS, contract number
P6253.

(1]

References

S. Adve, V. Adve, M. Hill, and M. Ver-
non. Comparison of Hardware and Soft-
ware Cache Coherency Schemes. Com-
puter Sciences Technical Report No.
1012, University of Wisconsin-Madison,
March 1991.

Alpha Architecture Handbook. Digital
Equipment Corporation, 1992.

P. Bird, A. Rawsthorne, and N. Topham.
The Effectiveness of Decoupling. Proc.
7th Int. Conf. on Supercomputing, July,
1993.

J. Goodman, J. Hsieh, K. Liou, A.
Plezkun, P. Schectuer, and H. Young.
PIPE: A VLSI Decoupled Architecture”.
Proc. 12th International Symp. on Com-
puter Architecture, 1985.

T. Harris and N. Topham. Performance
of Weak Consistency Schemes on the
DEC Alpha. Proceedings of International
Conference on Parallel Computing 93,
Grenoble France, North-Holland Pub-
lishing, September 1993.

L. Kurian, P. Hulina, and L.
Coraor. Memory Latency Effects in De-
coupled Architectures with a Single Data
Memory Module. Proc. 19th Int. Symp.
on Computer Architecture, May, 1992.

G. Cybenko, L. Kipp, L. Pointer, D.
Kuck, Supercomputer Performance Eval-
uation and the Perfect Benchmarks”, In-
ternational Conference on Supercomput-

g, 1990.

J. Smith, S. Weiss, and N. Pang. A Sim-
ulation Study of Decoupled Architecture
Computers. IEEE Trans. on Computers,
Vol. C-35, No. 8, August 1986.

J. Smith, et. al. The ZS-1 Central Pro-
cessor. Proc. 2nd Int. Conf. on Archi-
tectural Support for Programming Lan-
guages and Operating Systems, October,
1987.

A. Rawsthorne, N. Topham and P. Bird.
Saxe Diagrams: A Notation for Visualiz-
ing Performance in Decoupled Architec-
tures. In Preparation.

