
Applied Databases

Handout 1. Introduction.

22 September 2010

Lecture 1

• Course Overview

• Assessment

• Introduction to Databases

• The Relational Model

• Case studies

AD 1.1

General information

Web page: http://homepages.inf.ed.ac.uk/opb/ad

Lab page: http://homepages.inf.ed.ac.uk/hmueller/teaching/ad/

provisional – will move

Lecturer: Peter Buneman opb at inf dot ed dot ac dot uk

Room 5.15 Informatics Forum

Office hours: Tuesdays, 1pm-2pm.

Demonstrator: Nan Tang ntang at inf dot ed dot ac dot uk

Room 5.38 Informatics Forum

Office hours: TBA

Other support DB admin support: pgsql-admin@inf.ed.ac.uk

Please consult the web page for updates, course material, etc.

AD 1.2

Times and places

Lectures: Wednesdays, 0900–1050, Room S1, 7 George Square

Labs: Wednesdays 1200-1300 and 1300-1400 AT 4.12

Other important times (please check):

First assignment due Friday, 22 October

Second assignment due Friday, 12 November

Final Assignment due Friday, 26 November

AD 1.3

Who is this course aimed at?

• Entry level start - no prior DBMS experience is assumed.

– Will cover basics at a fast pace

– Research orientated

• Practical use, design and implementation of DBMSs.

• Preparation to use DBMS systems in summer projects and beyond.

• Will require some basic programming. Labs are there to help.

AD 1.4

Course Outcomes

• Demonstrate the ability to use and apply DBMS systems.

• Understand the underlying principles.

• Compare and contrast various relational and XML based solutions.

• Appreciate the roles and limitations of DBMS in commercial and research scenarios.

AD 1.5

Course Design

• Lectures cover essential background. Will generally last 100 minutes with an optional

mid session break.

• Labs to demonstrate essential code in supervised situation

• Later labs will have no set structure and are provided as drop-in support sessions.

• Self-study and assignment designed to cover practical implementation

AD 1.6

Assessment

• Coursework for a total of 30%:

– Basic SQL and relational algebra (5%)

– Database design and implementation (10%)

– Build a “complete” system (15%): Choose a situation that requires or would benefit

from using a DBMS Design and implement the DBMS Develop and test the required

queries. Build the appropriate middle-ware and user interface systems.

• Exam (essays and short questions) 70%

Please note that the exam for this course is in December, at the end of term

Plagiarism will be refereed externally

Late submissions will be penalised

AD 1.7

Databases at Edinburgh

• e-Science centre

• Digital Curation Centre

• Strongest DB research group in the UK

• New DB courses:

– Applied Databases

– Advanced Databases

– Querying and Storing XML

– Distributed Databases

• Scottish Database Group email list (seminars)

• Lots of consumers of DB technology (esp. bio/neuro-informatics)

AD 1.8

Let’s get to work: introduction to databases

What is a Database?

• A database (DB) is a large, integrated collection of data.

• A DB models a real-world “enterprise” or collection of knowledge/data.

• A database management system (DBMS) is a software package designed to store and

manage databases.

AD 1.9

Why study databases?

• Everybody needs them, i.e. $$$ (or even £££).

• They are connected to most other areas of computer science:

– programming languages and software engineering (obviously)

– algorithms (obviously)

– logic, discrete math, and theory of comp. (essential for data organization and query

languages).

– “Systems” issues: concurrency, operating systems, file organization and networks.

• There are lots of interesting problems, both in database research and in implementation.

Good design is always a challenge.

AD 1.10

Why not “program” databases when we need them?

For simple and small databases this is often the best solution. Flat files and grep get us a

long way.

We run into problems when

• The structure is complicated (more than a simple table)

• The database gets large

• Many people want to use it simultaneously

AD 1.11

Example: A personal calendar

Of course, such things are easy to find, but let’s consider designing the “database”

component from scratch. We might start by building a file with the following structure:

What When Who Where

Lunch 24/10 1pm Fred Curry House

CS123 25/10 9am Dr. Egghead Room 234

Biking 26/10 9am Jane Start at Jane’s

Dinner 26/10 6pm Jane Cafe le Boeuf

...

This text file is an easy structure to deal with (though it would be nice to have some

software for parsing dates etc.) So there’s no need for a DBMS.

AD 1.12

Problem 1. Data Organization

So far so good. But what about the “who” field? We don’t just want a person’s name, we

want also to keep e-mail addresses, telephone numbers etc. Should we expand the file?

What When Who Who-email Who-tel Where

Lunch 24/10 1pm Fred fred@abc.com 1234 Curry House

CS123 25/10 9am Egghead eggy@boonies.edu 7862 Room 234

Biking 26/10 9am Jane janew@xyz.org 4532 Start at Jane’s

Dinner 26/10 6pm Jane janew@xyz.org 4532 Cafe le Boeuf

...

But this is unsatisfactory. It appears to be keeping our address book in our calendar and

doing so redundantly.

So maybe we want to link our calendar to our address book. But how?

AD 1.13

Problem 2. Efficiency

Probably a personal address book would never contain more than a few hundred entries,

but there are things we’d like to do quickly and efficiently – even with our simple file.

Examples:

• “Give me all appointments on 10/28”

• “When am I next meeting Jane?”

We would like to “program” these as quickly as possible.

We would like these programs to be executed efficiently. What would happen if you were

maintaining a “corporate” calendar with hundreds of thousands of entries?

AD 1.14

Problem 3. Concurrency and Reliability

Suppose other people are allowed access to your calendar and are allowed to modify it?

How do we stop two people changing the file at the same time and leaving it in a physical

(or logical) mess?

Suppose the system crashes while someone is changing the calendar. How do we recover

our work?

Example: You schedule a lunch with a friend, and your secretary simultaneously schedules

lunch with your chairman?

You both see that the time is open, but only one will show up in the calendar. Worse, a

“mixture” or corrupted version of the two appointments may appear.

AD 1.15

Concurrency continued

Suppose you deposit a cheque for £100 by mail and sometime later withdraw £50 from a

cash machine.

It might happen that two processes, deposit and withdraw, are simultaneously called:

1. withdraw reads your balance into memory location M1.

2. deposit reads your balance into memory location M2

3. withdraw subtracts £50 from M1.

4. deposit adds £100 to M2.

5. deposit writes out M2 to your balance.

6. withdraw writes out M1 to your balance.

Would you be happy?

AD 1.16

Transactions

• Key concept for concurrency is that of a transaction – a sequence of database actions

(read or write) that is considered as one indivisible action.

• Key concept for recoverability is that of a log – a record of the sequence of actions that

changed the database.

• DBMSs are usually constructed with a client/server architecture.

DBMS

Transactions, SQL

Web servers, GUIs ADBS students
Database Adminstrators

AD 1.17

Database architecture – the traditional view

It is common to describe databases in two ways:

• The logical structure. What users see. The program or query language interface.

• The physical structure. How files are organized. What indexing mechanisms are used.

Further it is traditional to split the “logical” level into two components. The overall

database design and the views that various users get to see.

This led to the term “three-level architecture”

AD 1.18

Three-Level Architecture

External
memory

Schema

(file organisation,
indexing)

Physical Level

Conceptual Level

View 1 View 2 View n. . .

AD 1.19

The Relational Model

This 30-year old model is by far the most popular, but not the first, “logical” approach to

databases.

In this lecture we are going to discuss relational query languages.

We’ll discuss SQL, the widely used language for querying, updating and creating relational

databases.

We’ll also discuss a “implementation language”: relational algebra into which SQL is

translated. We need this to understand how optimisation works.

AD 1.20

What is a relational database?

As you probably guessed, it is a collection of relations or tables.

Munros: MId MName Lat Long Height Rating

1 The Saddle 57.167 5.384 1010 4

2 Ladhar Bheinn 57.067 5.750 1020 4

3 Schiehallion 56.667 4.098 1083 2.5

4 Ben Nevis 56.780 5.002 1343 1.5

Hikers: HId HName Skill Age

123 Edmund EXP 80

214 Arnold BEG 25

313 Bridget EXP 33

212 James MED 27

Climbs: HId MId Date Time

123 1 10/10/88 5

123 3 11/08/87 2.5

313 1 12/08/89 4

214 2 08/07/92 7

313 2 06/07/94 5

AD 1.21

Munros

• Sir Hugh Thomas Munro (1856—1919)

• Scottish mountaineer

• List of mountains in Scotland over 3,000 feet (914.4 m),

known as the Munros.

• 283 Munros in total (in 2009)

AD 1.22

Why is the database like this?

Each peak has an an id, a height, a latitude, a longitude, and a rating (how difficult it is.)

Each hiker has an id, a name, a skill level and an age.

A climb records who climbed what peak on what date and how long it took (time).

We will deal with how we arrive at such a design later. Right now observe that the data

values in these tables are all “simple”. None of them is a complex structure – like a tuple

or another table.

AD 1.23

Some Terminology

The column names of a relation/table are often called attributes or fields

The rows of a table are called tuples

Each attribute has values taken from a domain.

For example, the domain of HName is string and that for Rating is real

AD 1.24

Describing Tables

Tables are described by a schema which can be expressed in various ways, but to a DBMS

is usually expressed in a data definition language – something like a type system of a

programming language. We’ll discuss data definition languages along with database design

in lecture 2

Munros(MId:int, MName:string, Lat:real, Long:real, Height:int,

Rating:real)

Hikers(HId:int, HName:string, Skill:string, Age:int)

Climbs(HId:int, MId:int, Date:date, Time:int)

Given a relation schema, we often refer to a table that conforms to that schema as an

instance of that schema.

Similarly, a set of relation schemas describes a database, and a set of conforming instances

is an instance of the database.

AD 1.25

A Note on Domains

Relational DBMSs have fixed set of “built-in” domains, such as int, string etc. that are

familiar in programming languages.

The built-in domains often include other useful domains like date but probably not, for

example, degrees:minutes:seconds which in this case would have been be useful. (The

minutes and seconds were converted to fractions of a degree)

One of the advantages of object-oriented and object-relational systems is that new domains

can be added, sometimes by the programmer/user, and sometimes they are “sold” by the

vendor.

Database people, when they are discussing design, often get sloppy and forget domains.

They write, for example,

Munros(MId, MName, Lat, Long, Height, Rating)

AD 1.26

Keys

A key is a set of attributes that uniquely identify a tuple in a table. HId is a key for

Hikers; MId is a key for Munros.

Keys are indicated by underlining the attribute(s):

Hikers(HId, Hname, Skill, Age)

What is the key for Climbs?

A key is a constraint on the instances of a schema: given values of the key attributes,

there can be at most one tuple with those attributes.

In the “pure” relational model an instance is a set of tuples. SQL databases allow multisets,

and the definition of a key needs to be changed.

We’ll discuss keys in more detail when we do database design.

AD 1.27

SQL

Reading: R&G Chapter 5

Claimed to be the most widely used programming language, SQL can be divided into three

parts:

• A Data Manipulation Language (DML) that enables us to query and update the

database.
• A Data Definition Language (DDL) that defines the structure of the database and

imposes constraints on it.
• Other stuff. Features for triggers, security, transactions . . .

SQL has been standardised (SQL-92, SQL:99)

AD 1.28

Things to remember about SQL

• Although it has been standardised, few DBMSs support the full standard (SQL-92),

and most DBMSs support some “un-standardised” features, e.g. asserting indexes, a

programming language extension of the DML.

• SQL is large. When last I looked, the SQL-92 standard amounted to 1400 pages. Two

reasons:

– There is a lot of “other stuff”.

– SQL has evolved in an unprincipled fashion from a simple core language.

• Most SQL is generated by other programs — not by people.

AD 1.29

Basic Query

SELECT [DISTINCT] target-list

FROM relation-list

WHERE condition

• relation-list: A list of table names. A table name may be followed by a “range variable”

(an alias)

• target-list: A list of attributes of the tables in relation-list: or expressions built on

these.

• condition: Usually equality or comparisons. Some more elaborate predicates (e.g. string

matching using regular expressions) are available.

• DISTINCT: This optional keyword indicates that duplicates should be eliminated from

the result. Default is that duplicates are not eliminated.

AD 1.30

Conceptual Evaluation Strategy

• Compute the product of relation-list

• Discard tuples that fail qualification

• Project over attributes in target-list

• If DISTINCT then eliminate duplicates

This is probably a very bad way of executing the query, and a good query optimizer will

use all sorts of tricks to find efficient strategies to compute the same answer.

AD 1.31

Select-Project Queries

SELECT *

FROM Munros

WHERE Lat > 57;

gives

MId MName Lat Long Height Rating

1 The Saddle 57.167 5.384 1010 4

2 Ladhar Bheinn 57.067 5.750 1020 4

SELECT Rating, Height

FROM Munros;
gives

Rating Height

4 1010

4 1020

2.5 1083

1.5 1343

AD 1.32

Product

SELECT *

FROM Hikers, Climbs
gives

HId HName Skill Age HId MId Date Time

123 Edmund EXP 80 123 1 10/10/88 5

214 Arnold BEG 25 123 1 10/10/88 5

313 Bridget EXP 33 123 1 10/10/88 5

212 James MED 27 123 1 10/10/88 5

123 Edmund EXP 80 123 3 11/08/87 2.5

214 Arnold BEG 25 123 3 11/08/87 2.5

...

Note that column names get duplicated. (One tries not to let this happen.)

AD 1.33

Product with selection (join)

SELECT HName, MId

FROM Hikers, Climbs

WHERE Hikers.HId = Climbs.HId

AND Climbs.Time >= 5

gives

HName MId

Edmund 1

Arnold 2

Bridget 2

Note that HName and Mid are abbreviations for Hikers.HName and Climbs.Mid. They are

unambiguous.

AD 1.34

Aliases

The previous query could have been written:

SELECT H.HName, C.MId

FROM Hikers H, Climbs C

WHERE H.HId = C.HId

AND C.Time >= 5

Note the use of aliases (a.k.a. local variables) H and C. The are here only for convenience

(they make the query a bit shorter.)

When we want to join a table to itself, they are essential.

AD 1.35

Duplicate Elimination

SELECT Rating

FROM Routes;
gives

Rating

4

4

2.5

1.5

SELECT DISTINCT Rating

FROM Routes;
gives

Rating

4

2.5

1.5

AD 1.36

String Matching

LIKE is a predicate that can be used in where clause. is a wild card – it denotes any

character. % stands for 0 or more characters.

SELECT *

FROM Munros

WHERE MName LIKE ’S %on’

gives

MId MName Lat Long Height Rating

3 Schiehallion 56.667 4.098 1083 2.5

AD 1.37

Arithmetic

Arithmetic can be used in the SELECT part of the query as well as in the WHERE part.

Columns can be relabelled using AS.

SELECT MName, Height * 3.28 AS HeightInFeet

FROM Munros

WHERE Lat + Long > 61;

gives

MName HeightInFeet

The Saddle 3313

Ladhar Bheinn 3346

Question: How would you compute 2 + 2 in SQL?

AD 1.38

Set Operations – Union

SELECT HId

FROM Hikers

WHERE Skill = ’EXP’

UNION

SELECT HId

FROM Climbs

WHERE MId = 1;

gives

HId

123

313

The default is to eliminate duplicates from the union.

To preserve duplicates, use UNION ALL

AD 1.39

What Does “Union Compatible” Mean?

SELECT HId

FROM Hikers

UNION

SELECT MId

FROM Climbs;

gives

HId

123

214

313

212

1

3

2

SELECT HName

FROM Hikers

UNION

SELECT MId

FROM Munros;

gives Error!!!

• “Union-compatible” means the types as determined by the order of the columns must

agree

• The column names are taken from the first operand.

AD 1.40

Intersection and difference

The operator names are INTERSECT for ∩, and MINUS (sometimes EXCEPT or DIFFERENCE)

for − (set difference).

These are set operations (they eliminate duplicates).

Should MINUS ALL and INTERSECT ALL exist? If so, what should they mean?

Using bag semantics (not eliminating duplicates) for SELECT ...FROM ...WHERE ... is

presumably done partly for efficiency.

For MINUS and INTERSECT it usually doesn’t cost any more to eliminate duplicates (why?)

so one might as well do it.

UNION is it treated like MINUS and INTERSECT.

AD 1.41

Nested Queries

The predicate x IN S tests for set membership. Consider:

SELECT HId

FROM Climbs

WHERE HId IN (SELECT HId

FROM Hikers

WHERE Age < 40) ;

and

SELECT HId

FROM Climbs

INTERSECT

SELECT HId

FROM Hikers

WHERE Age < 40

Do these give the same result?

A “difference” can be written as:

SELECT HId

FROM Climbs

WHERE HId NOT IN (SELECT HId

FROM Hikers

WHERE Age < 40) ;

AD 1.42

Correlated Nested Queries

“Correlated” means using a variable in an inner scope.

SELECT HId FROM Hikers h

WHERE EXISTS (SELECT * FROM Climbs c

WHERE h.HId=c.HId AND c.MId = 1);

SELECT CId FROM Hikers h

WHERE NOT EXISTS (SELECT * FROM Climbs c

WHERE h.CId=c.CId);

SELECT CId FROM Hikers h

WHERE EXISTS UNIQUE (SELECT * FROM Climbs c

WHERE h.CId=c.CId);

EXISTS = non-empty, NOT EXISTS = empty, EXISTS UNIQUE = singleton set.

AD 1.43

Comparisons with sets

x op ANY S means x op s for some s ∈ S

x op ALL S means x op s for all s ∈ S

SELECT HName, Age

FROM Hikers

WHERE Age >= ALL (SELECT Age

FROM Hikers)

SELECT HName, Age

FROM Hikers

WHERE Age > ANY (SELECT Age

FROM Hikers

WHERE HName=’Arnold’)

What do these mean?

AD 1.44

SQL is compositional – sometimes!

You can use a SELECT ... expression wherever you can use a table name.

Consider the query: “Find the names of hikers who have not climbed any peak.”

SELECT HName

FROM (SELECT HId

FROM Hikers

MINUS

SELECT HId

FROM Climbs) Temp,

Hikers

WHERE Temp.HId = Hikers.HId;

AD 1.45

Views

[R&G 3.6]

To make complex queries understandable, we should decompse them into understandable

pieces. E.g. We want to say something like:

NC := SELECT HId
FROM Hikers
MINUS
SELECT HId
FROM Climbs ;

and then

SELECT HName
FROM NC, Hikers
WHERE NC.HId = Hikers.HId;

Instead we write

CREATE VIEW NC
AS SELECT HId

FROM Hikers
MINUS
SELECT HId
FROM Climbs ;

and then
SELECT HName
FROM NC, Hikers
WHERE NC.HId = Hikers.HId;

AD 1.46

Views – cont.

The difference between a view and a value (in the programming language sense) is that

we expect the database to change.

When the DB changes, the view should change. That is, we should think of a view as a

niladic function, which gets re-evaluated each time it is used.

In fact, SQL extends views to functions:

CREATE VIEW ClosePeaks(MyLat, MyLong)

AS SELECT *

FROM Munros

WHERE MyLat-0.5 < Lat AND Lat < MyLat+0.5

AND MyLong-0.5 < Long AND Long < MyLong+0.5

AD 1.47

Evaluating Queries on Views

CREATE VIEW MyPeaks

AS SELECT MName, Height

FROM Munros

and
SELECT *

FROM MyPeaks

WHERE MName = ‘Ben Nevis’

get rewritten to:

SELECT MName, Height

FROM Munros

WHERE MName = ‘Ben Nevis’

Is this always a good idea?

Sometimes it is better to materialise a view.

AD 1.48

Universal Quantification

This term describes queries that ask about “all” the things in a database with certain

properties. They are tricky to write.

“The names of hikers who have climbed all Munros”

AD 1.49

CREATE VIEW NotClimbed ← HId has not climbed MId

AS SELECT HId, MId FROM Hikers, Munros

MINUS

SELECT HId, MId FROM Climbs

CREATE VIEW ClimbedAll ← HIds of climbers who have climbed all peaks
AS SELECT HId FROM Hikers

MINUS

SELECT HId FROM NotClimbed

SELECT HName
FROM Hikers, ClimbedAll
WHERE Hikers.HId = ClimbedAll.Hid

AD 1.50

Univ. Quantification – an Alternative

The HIds of hikers who have climbed all peaks.

SELECT HId

FROM Hikers h

WHERE NOT EXISTS

(SELECT RId ← Routes not climbed by h.

FROM Munros m

WHERE NOT EXISTS

(SELECT *

FROM Climbs c

WHERE h.HId=c.HId

AND c.MId=m.MId))

It’s not clear whether this version is any more comprehensible!

AD 1.51

Aggregation

These are queries that compute over columns and “aggregate” data in one or more

columns. A simple example is counting:

SELECT COUNT(MId)

FROM Munros;
and

SELECT COUNT(Rating)

FROM Munros;

both give the same answer (to within attribute labels):

COUNT(Rating)

4

Why?

To fix the answer to the second, use SELECT COUNT(DISTINCT Rating)

AD 1.52

GROUP BY

SELECT Rating, COUNT(*)

FROM Munros

GROUP BY Rating;

gives

Rating COUNT(*)

1.5 1

2.5 1

4 2

The effect of GROUP BY is to partition the relation according to the GROUP BY field(s).

Aggregate operations can be performed on the other fields. The result is always a “flat”

(1NF) relation.

AD 1.53

GROUP BY – cont.

Note that only the columns that appear in the GROUP BY statement and “aggregated”

columns can appear in the output.

SELECT Rating, MName, COUNT(*)

FROM Munros

GROUP BY Rating;

gives
ERROR at line 1:

ORA-00979: not a

GROUP BY expression

AD 1.54

GROUP BY – cont.

SELECT Rating, AVG(Height)

FROM Munros

GROUP BY Rating

HAVING COUNT(*) > 1;

gives
Rating AVG(Height)

4 1015

HAVING acts like a WHERE condition on the “output fields” of the GROUP BY. I.e., on the

GROUP BY attributes and on any aggregate results.

In this case the output will only have tuples for the Rating groups with more than 1 tuple.

SQL has many more bells and whistles. E.g., one can order the output for display purposes

(but this does not mean that SQL can handle ordered data.)

AD 1.55

Null Values

The value of an attribute can be unknown (e.g., a rating has not been assigned) or

inapplicable (e.g., does not have a telephone).

SQL provides a special value null for such situations.

The presence of null complicates many issues. E.g.:

Special operators needed to check if value is/is not null.

Is Rating >3 true or false when Rating is null? How do AND, OR and NOT work on null?

(C.f. lazy evaluation of AND and OR in programming languages.

AD 1.56

Operations that generate null values

An example:

SELECT *

FROM Hikers NATURAL LEFT OUTER JOIN Climbs
gives

HId HName Skill Age MId Date Time

123 Edmund EXP 80 1 10/10/88 5

123 Edmund EXP 80 3 11/08/87 2.5

313 Bridget EXP 33 1 12/08/89 4

214 Arnold BEG 25 2 08/07/92 7

313 Bridget EXP 33 2 06/07/94 5

212 James MED 27 ⊥ ⊥ ⊥

AD 1.57

Updates

There are three kinds of update: insertions, deletions and modifications.

Examples:

INSERT INTO R(a1, . . . , an) VALUES (v1, . . . , vn);

DELETE FROM R WHERE 〈condition〉;

UPDATE R SET 〈new-value assignments〉 WHERE 〈condition〉;

Note: an update is typically a transaction, and an update may fail because it violates some

integrity constraint.

AD 1.58

Tuple Insertion

INSERT INTO Munros(MId, Mname, Lat, Long, Height, Rating)

VALUES (5, ‘Slioch’, 57.671, 5.341 981,3.5);

One can also insert sets. E.g., given MyPeaks(Name, Height)

INSERT INTO MyPeaks(Name, Height)

SELECT MName, Height

FROM Munros

WHERE Rating > 3

Note positional correspondence of attributes.

AD 1.59

Deletion

This is governed by a condition:

DELETE FROM Munros WHERE MName = ‘Snowdon’

In general one deletes a set. Use a key to be sure you are deleting at most one tuple

AD 1.60

Modifying Tuples

Non-key values of a relation can be changed using UPDATE.

Example (global warming):

UPDATE Munros SET Height = Height - 1 WHERE Lat < 5;

Old Value Semantics. Given

Emp Manager Salary

1 2 32,000

2 3 31,000

3 3 33,000

What is the effect of “Give a 2,000 raise to every employee earning less than their

manager”?

AD 1.61

Updating Views

This is a thorny topic. Since most applications see a view rather than a base table, we

need some policy for updating views, but if the view is anything less than a “base” table,

we always run into problems.

CREATE VIEW MyPeaks
AS SELECT MId, MName, Height

FROM Munros
WHERE Height > 1100

Now suppose we INSERT INTO MyPeaks (7, ‘Ben Thingy’, 1050). What is the effect

on Munros? We can add nulls for the fields that are not in the view. But note that, if we

do the insertion, the inserted tuple fails the selection criterion and does not appear in our

view!!

SQL-92 allows this kind of view update. With queries involving joins, things only get

worse. [R&G 3.6]

AD 1.62

Relational Algebra

R&S 4.1, 4.2

Rougly speaking SQL is optimised by translating queries into relational algebra.

This is a set of operations (functions) each of which takes a one or more tables as input

and produces a table as output.

There are six basic operations which can be combined to give us a reasonably expressive

database query language.

• Projection

• Selection

• Union

• Difference

• Rename

• Join

AD 1.63

Projection

Given a set of column names A and a table R, πA(R) extracts the columns in A from

the table. Example, given Munros =

MId MName Lat Long Height Rating
1 The Saddle 57.167 5.384 1010 4
2 Ladhar Bheinn 57.067 5.750 1020 4
3 Schiehallion 56.667 4.098 1083 2.5
4 Ben Nevis 56.780 5.002 1343 1.5

πMId,Rating(Munros) is

MId Rating
1 4
2 4
3 2.5
4 1.5

AD 1.64

Projection – continued

Suppose the result of a projection has a repeated value, how do we treat it?

πRating(Munros) is Rating

4

4

2.5

1.5

or Rating

4

2.5

1.5

?

In “pure” relational algebra the answer is always a set (the second answer). However SQL

and some other languages return a multiset for some operations from which duplicates

may be eliminated by a further operation.

AD 1.65

Selection

Selection σC(R) takes a table R and extracts those rows from it that satisfy the condition

C. For example,

σHeight > 1050(Munros) =

MId MName Lat Long Height Rating

3 Schiehallion 56.667 4.098 1083 2.5

4 Ben Nevis 56.780 5.002 1343 1.5

AD 1.66

What can go into a condition?

Conditions are built up from:

• Values, consisting of field names (Height, Age, . . .), constants (23, 17.23, "The

Saddle",)

• Comparisons on values. E.g., Height > 1000, MName = "Ben Nevis".

• Predicates constructed from these using ∨ (or), ∧ (and), ¬ (not).

E.g. Lat > 57 ∧ Height > 1000.

It turns out that we don’t lose any expressive power if we don’t have compound predicates

in the language, but they are convenient and useful in practice.

AD 1.67

Set operations – union

If two tables have the same structure (Database terminology: are union-compatible.

Programming language terminology: have the same type) we can perform set operations.

Example:

Hikers = HId HName Skill Age
123 Edmund EXP 80
214 Arnold BEG 25
313 Bridget EXP 33
212 James MED 27

Climbers = HId HName Skill Age
214 Arnold BEG 25
898 Jane MED 39

Hikers ∪ Climbers = HId HName Skill Age
123 Edmund EXP 80
214 Arnold BEG 25
313 Bridget EXP 33
212 James MED 27
898 Jane MED 39

AD 1.68

Set operations – set difference

We can also take the difference of two union-compatible tables:

Hikers − Climbers = HId HName Skill Age
123 Edmund EXP 80
313 Bridget EXP 33
212 James MED 27

N.B. In relational algebra “union-compatible” means the tables should have the same

column names with the same domains. Remember that in SQL, union compatibility is

determined by the order of the columns. The column names in R ∪ S and R − S are

taken from the first operand, R.

AD 1.69

Set operations – other

It turns out we can implement the other set operations using those we already have. For

example, for any tables (sets) R,S

R ∩ S = R − (R − S)

We have to be careful. Although it is mathematically nice to have fewer operators, this

may not be an efficient way to implement intersection. Intersection is a special case of a

join, which we’ll shortly discuss.

AD 1.70

Optimization – a hint of things to come

We mentioned earlier that compound predicates in selections were not “essential” to

relational algebra. This is because we can translate selections with compound predicates

into set operations. Example:

σC∧D(R) = σC(R) ∩ σD(R)

However, which do you think is more efficient?

Also, how would you translate R − σC(R)?

AD 1.71

Database Queries

Queries are formed by building up expressions with the operations of the relational algebra.

Even with the operations we have defined so far we can do something useful. For example,

select-project expressions are very common:

πHName,Age(σAge>30(Hikers))

What is this in SQL?

Also, could we interchange the order of the σ and π? Can we always do this?

As another example, how would you “delete” the hiker named James from the database?

AD 1.72

Joins

Join is a generic term for a variety of operations that connect two tables that are not union

compatible. The basic operation is the product, R × S, which concatenates every tuple

in R with every tuple in S. Example:

A B

a1 b1
a2 b2

×

C D

c1 d1

c2 d2

c3 d3

=

A B C D

a1 b1 c1 d1

a1 b1 c2 d2

a1 b1 c3 d3

a2 b2 c1 d1

a2 b2 c2 d2

a2 b2 c3 d3

AD 1.73

Product – continued

What happens when we form a product of two tables with columns with the same name?

Recall the schemas: Hikers(HId, HName, Skill, Age) and Climbs(HId, MId,

Date,Time). What is the schema of Hikers × Climbs?

Various possibilities including:

• Forget the conflicting name (as in R&G) (, HName,Skill, Age, , MId, Date,

Time). Allow positional references to columns.

• Label the conflicting colums with 1,2... (HId.1, HName,Skill, Age, HId.2, MId,

Date, Time).

Neither of these is satisfactory. The product operation is no longer commutative (a

property that is useful in optimization.)

AD 1.74

Natural join

For obvious reasons of efficiency we rarely use unconstrained products in practice.

A natural join (⊲⊳) produces the set of all merges of tuples that agree on their commonly

named fields.

HId MId Date Time
123 1 10/10/88 5
123 3 11/08/87 2.5
313 1 12/08/89 4
214 2 08/07/92 7
313 2 06/07/94 5

⊲⊳

HId HName Skill Age
123 Edmund EXP 80
214 Arnold BEG 25
313 Bridget EXP 33
212 James MED 27

=

HId MId Date Time HName Skill Age
123 1 10/10/88 5 Edmund EXP 80
123 3 11/08/87 2.5 Edmund EXP 80
313 1 12/08/89 4 Bridget EXP 33
214 2 08/07/92 7 Arnold BEG 25
313 2 06/07/94 5 Bridget EXP 33

AD 1.75

Natural Join – cont.

Natural join has interesting relationships with other operations. What is R ⊲⊳ S when

• R = S

• R and S have no column names in common

• R and S are union compatible

R&S also uses R ⊲⊳C S for σC(R ⊲⊳C S)

In these notes we shall only use natural join. When we want a product (rather than a

natural join) we’ll use renaming . . .

AD 1.76

Renaming

To avoid using any positional information in relational algebra, we rename columns to

avoid clashes ρA→A′,B→B′,...(R) produces a table with column A relabelled to A′, B to

B′, etc.

In practice we have to be aware of when we are expected to use a positional notation and

when we use a labelled notation.

Labelled notation is in practice very important for subtyping. A query typically does not

need to know the complete schema of a table.

It will be convenient to roll renaming into projection (not in R&G) πA→A′,B→B′,...(R)

extracts the A,B, . . . columns from R and relabels them to A′, B′,

That is, πA1→A′1,...,An→A′n
(R) = ρA1→A′1,...,An→A′n

(πA1,...,An(R))

AD 1.77

Examples

The names of people who have climbed The Saddle.

πHName(σMName="The Saddle"(Munros ⊲⊳ Hikers ⊲⊳ Climbs))

Note the optimization to:

πHName(σMName="The Saddle"(Munros) ⊲⊳ Hikers ⊲⊳ Climbs)

In what order would you perform the joins?

AD 1.78

Examples – cont

The highest Munro(s)

This is more tricky. We first find the peaks (their MIds) that are lower than some other

peak.
LowerIds = πMId(σHeight<Height’(Munros ⊲⊳ πHeight→Height’(Munros)))

Now we find the MIds of peaks that are not in this set (they must be the peaks with

maximum height)

MaxIds = πMId(Munros)− LowerIds

Finally we get the names:
πMName(MaxIds ⊲⊳ Munros)

Important note: The use of intermediate tables, such as LowerIds and MaxIds improves

readability and sometimes, when implemented as views, efficiency.

AD 1.79

Examples – cont

The names of hikers who have climbed all Munros

We start by finding the set of HId,MId pairs for which the hiker has not climbed that peak.

We do this by subtracting part of the Climbs table from the set of all HId,MId pairs.

NotClimbed = πHId(Hikers) ⊲⊳ πMId(Munros)− πHId,MId(Climbs)

The HIds in this table identify the hikers who have not climed some peak. By subtraction

we get the HIds of hikers who have climbed all peaks:

ClimbedAll = πHId(Hikers)− πHId(NotClimbed)

A join gets us the desired information:

πHName(Hikers ⊲⊳ ClimbedAll)

AD 1.80

What we cannot compute with relational algebra

There are things that we cannot compute with relational algebra.

Aggregate operations. E.g. “The number of hikers who have climbed Schiehallion” or

“The average age of hikers”. These are possible in SQL which has numerous extensions to

relational algebra.

Recursive queries. Given a table Parent(Parent, Child) compute the Ancestor table.

This appears to call for an arbitrary number of joins. It is known that it cannot be

expressed in first-order logic, hence it cannot be expressed in relational algebra.

Computing with structures that are not (1NF) relations. For example, lists, arrays,

multisets (bags); or relations that are nested. These are ruled out by the relational data

model, but they are important and are the province of object-oriented databases and

“complex-object”/XML query languages.

Of course, we can always compute such things if we can talk to a database from a

AD 1.81

full-blown (Turing complete) programming language. We’ll see how to do this later.

But communicating with the database in this way may well be inefficient, and adding

computational power to a query language remains an important research topic.

AD 1.82

Review – Lecture 1

Readings: R&G Chapters 1 and 3

• Introduction. Why DBs are needed. What a DBMS does.

• 3-level architecture: separation of “logical” and “physical” layers.

• The relational model.

• Terminology: domains, attributes/column names, tables/relations, relational schema,

instance, keys.

• SQL: basic forms and aggregation.

• Relational algebra: the 6 basic operations.

• Using labels vs. positions.

• Query rewriting for optimization.

• Limitations of relational algebra.

AD 1.83

