
Applied Databases

Handout 2a. Functional Dependencies and Normal Forms

20 Oct 2008

Functional Dependencies

This is the most “mathematical” part of the course. Functional dependencies provide an

alternative approach to database design.

Why you need to understand them:

1. They are a mathematical, rigourous formulation.

2. They are good for checking database design and anomalies in database design.

Why you don’t want to understand them:

1. They are a mathematical, rigourous formulation.

2. The approach is incomplete and, if extended, gets far too instense.

AD 2a.1

Not all designs are equally good!

• Why is this design bad?

Data(Id, Name, Address, CId, Description, Grade)

• And why is this design good?

Student(Id, Name, Address)

Course(CId, Description)

Enrolled(Id, CId, Grade)

AD 2a.2

An example of the “bad” design

Id Name Address CId Description Grade

124 Knox Troon Phil2 Plato A

234 McKay Skye Phil2 Plato B

789 Brown Arran Math2 Topology C

124 Knox Troon Math2 Topology A

789 Brown Arran Eng3 Chaucer B

• Some information is redundant, e.g. Name and Address.

• Without null values, some information cannot be represented, e.g, a student taking no

courses.

AD 2a.3

Functional Dependencies

• Recall that a key is a set of attribute names. If two tuples agree on the a key, they

agree everywhere (they are the same).

• In our “bad” design, Id is not a key, but if two tuples agree on Id then they agree on

Address, even though the tuples may be different.

• We say “Id determines Address” written Id → Address.

• A functional dependency is a constraint on instances.

AD 2a.4

Example

Here are some functional dependencies that we expect to hold in our student-course

database:

Id → Name, Address

CId → Description

Id, CId → Grade

Note that an instance of any schema (good or bad) should be constrained by these

dependencies.

A functional dependency X → Y is simply a pair of sets. We often use sloppy notation

A,B → C,D or AB → CD when we mean {A,B} → {C,D}

Functional dependencies (fd’s) are integrity constraints that subsume keys.

AD 2a.5

Definition

Def. Given a set of attributes R, and subsets X, Y of R, an instance rof R satisfies the

functional dependency X −→ Y if for any tuples t1, t2 in r, whenever t1[X] = t2[X]

then t1[Y] = t2[Y].

(We use t[X] to mean the “projection” of the tuple t on attributes X)

We say “X functionally determines Y ” or “X determines Y ”

A superkey (a superset of a key) is simply a set X such that X → R

A key can now be defined, somewhat perversely, as a minimimal superkey.

AD 2a.6

The Basic Intuition in Relational Design

A database design is “good” if all fd’s are of the form K → R, where K is a key for R.

Example: our bad design is bad because Id → Address, but Id is not a key for the table.

But it’s not quite this simple. A → A always holds, but we don’t expect any attribute A

to be a key!

AD 2a.7

There are lots of functional dependencies!

Functional dependencies generate other functional dependencies, using “Armstrong’s

Axioms”:

1. Reflexivity : if Y ⊆ X then X → Y

(These are called trivial dependencies.)

Example: Name, Address → Address

2. Augmentation: if X → Y then X ∪ W → Y ∪ W

Example: Given CId → Description, then CId,Id → Description,Id. Also, CId

→ Description,CId

3. Transitivity : if X → Y and Y → Z then X → Z

Example: Given Id,CId → CId and CId → Description, then Id, CId →

Description

AD 2a.8

Consequences of Armstrong’s Axioms

1. Union: if X → Y and X → Z then X → Y ∪ Z.

2. Pseudotransitivity: if X → Y and W ∪ Y → Z then X ∪ W → Z.

3. Decomposition: if X → Y and Z ⊆ Y then X → Z

Try to prove these using Armstrong’s Axioms!

AD 2a.9

An example

Proof of union.

1. X → Y and X → Z [Assumption]

2. X → X ∪ Y [Assumption and augmentation]

3. X ∪ Y → Z ∪ Y [Assumption and augmentation]

4. X → Y ∪ Z [2, 3 and transitivity]

AD 2a.10

Closure of an fd set

Def. The closure F+ of an fd set F is given by

{X → Y | X → Y can be deduced from F Armstrong’s axioms}

Def. Two fd sets F,G are equvalent if F+ = G+.

Unfortunately, the closure of an fd set is huge (how big?) so this is not a good way to test

whether two fd sets are equivalent.

A better way is to test whether each fd in one set follows from the other fd set and vice

versa.

AD 2a.11

Closure of an attribute set

Given a fd set set F , the closure X+ of an attribute set X is given by:

X
+ =

⋃
{Y | X → Y ∈ F

+}

Example. What are the the following?

• {Id}+

• {Id,Address}+

• {Id,CId}+

• {Id,Grade}+

AD 2a.12

Implication of a fd

“Is X → Y ∈ F+?” (“Is X → Y implied by the fd set F ”) can be answered by

checking whether Y is a subset of X+. X+ can be computed as follows:

X+ := X

while there is a fd U → V in F such that U ⊆ X+ and V 6⊆ X+

X+ := X+ ∪ V

Try this with Id,CId → Description,Grade

AD 2a.13

The general goal, to repeat

No “embedded” functional dependencies. For example the table (Id, Name, CId) is not

a good design, because {Id,CId} is the key; Id alone is not a key.

Why don’t we decompose into, say, {Id, Name, Address, Grade} and {CId,

Description}?

Or into {Id, Name, Address}, {CId, Description} and {Grade}?

We need some conditions on decomposition.

AD 2a.14

Lossless join decomposition

R1, R2, . . . , Rk is a lossless join decomposition with respect to a fd set F if, for every

intance of R that satisfies F ,

πR1(r) ⊲⊳ πR2(r) . . . πRk
(r) = r

Example:

Id Name Address CId Description Grade

124 Knox Troon Phil2 Plato A

234 McKay Skye Phil2 Plato B

What happens if we decompose on {Id, Name, Address} and {CId,

Description, Grade} or on {Id, Name, Address, Description, Grade} and

{CId, Description}?

AD 2a.15

Testing for a lossless join

Fact. R1, R2 is a lossless join decomposition of R with respect to F if at least one of

the following dependencies is in F+:

(R1 ∩ R2) → R1 − R2

(R1 ∩ R2) → R2 − R1

Example: with respect to the fd set

Id → Name, Address

CId → Description

Id, CId → Grade

is {Id, Name, Address} and {Id, CId, Description, Grade} a lossless

decomposition?

AD 2a.16

Dependency Preservation

Given a fd set F , we’d like a decomposition to “preserve” F . Roughly speaking we want

each X → Y in F to be contained within one of the attribute sets of our decomposition.

Def. The projection of an fd set F onto a set of attributes Z, FZ is given by:

FZ = {X → Y | X → Y ∈ F
+
and X ∪ Y ⊆ Z}

A decomposition R1, R2, . . . Rk is dependency preserving if

F
+ = (FR1

∪ FR2
∪ . . . ∪ FRk

)+

If a decomposition is dependency preserving, then we can easily check that an update on

an instance Ri does not violate F by just checking that it doesn’t violate those fd’s in

FRi
.

AD 2a.17

Example 1

The scheme: {Class, Time, Room}

The fd set: Class → Room

Room,Time → Class

The decomposition: {Class, Room} and {Room, Time}

Is it lossless?

Is it dependency preserving?

AD 2a.18

Example 2

The scheme: {Student, Time, Room, Course, Grade}

The fd set: Student, Time → Room

Student, Course → Grade

The decomposition: {Student, Time, Room} and {Student, Course, Grade}

It it lossless?

Is it dependency preserving?

AD 2a.19

Relational Database Design

Earlier we stated that the idea in analysing fd sets is to find a design (a decomposition)

such that for each non-trivial dependency X → Y (non-trivial means Y 6⊆ X), X is a

superkey for some relation scheme in our decomposition.

Example 1 shows that it is not possible to achieve this and to preserve dependencies.

This leads to two notions of normal forms....

AD 2a.20

Normal forms

Boyce-Codd Normal Form (BCNF) For every relation scheme R in the decomposition, and

for every X → A that holds on R (that is, X ∪ {A} ⊆ R, either

• A ∈ X (it is trivial), or

• X is a superkey for R.

Third Normal Form (3NF) For every relation scheme R and for every X → A that holds

on R,

• A ∈ X (it is trivial), or

• X is a superkey for R, or

• A is a member of some key of R (A is “prime”)

AD 2a.21

Observations on Normal Forms

BCNF is stronger than 3NF.

BCNF is clearly desirable, but example 1 shows that it is not always achievable.

There are algorithms to obtain

• a BCNF lossless join decomposition

• a 3NF lossless join, dependency preserving decomposition

AD 2a.22

So what’s this all for?

Even though there are algorithms for designing databases this way, they are hardly ever

used. People normally use E-R diagrams and the like. But...

• Automated procedures (or human procedures) for generating relational schemas from

diagrams often mess up. Further decomposition is sometimes needed (or sometimes

thet decompose too much, so merging is needed)

• Understanding fd’s is a good “sanity check” on your design.

• It’s important to have these criteria. Bad design w.r.t. these criteria often means that

there is redundancy or loss of information.

• For efficiency we sometimes design redundant schemes deliberately. Fd analysis allows

us to identify the redundancy.

AD 2a.23

Functional dependencies – review

• Redundancy and update anomalies.

• Functional dependencies.

• Implication of fd’s and Armstrong’s axioms.

• Closure and equivalence of fd sets.

• Lossless join decomposition and dependency preservation.

• BCNF and 3NF.

AD 2a.24

