Filiation of Manuscripts

Peter Buneman
The recovery of trees from measures of dissimilarity

The problem of inferring an evolutionary tree from a set of measurements
is one that crops up in various fields, such as biology, palacography, and
archaeology. For example, amino-acid sequences of the same protein ex-
tracted from diflerent organisms can be determined, and one can attempt,
from the dissimilarities between these sequences, to construct a phylogenetic
tree of these organisms. A similar situation occurs when one has a sct of
manuscripts all directly or indirectly copied from a common original
manuscript. One seeks to reconstruct a family tree or ‘stemma’ of these
documents from the errors that the various scribes made in copying one
document from another. A frequent starting point in the solution of such a
problem is the measurement of a dissimilarity coefficient (Dc) between
every pair of objects, and to this end one might, for example, count the
number of sites at which two protein sequences differ, Similarly, one might
count the number of places at which two manuscripts differ. A bc computed
from morphological data for taxonomic purposes could also be used,

The object of this paper is to show that there is a method for inferring a
tree from a D¢ which has properties that may make it rather more attractive
than other currently available methods. Sokal and Sneath (1963) and
Jardine and Sibson (1971) have given detailed accounts of the measurement
of pcs and we shall not discuss this further, except to state that there are
circumstances in which the measurement of a pc in the manner outlined
above for protein chains or manuscripts can obscure useful information
provided by the raw data. Thus the methods discussed here, involving Dcs,
arc not the only ones that might be employved nor are they necessarily the
best, but it is felt that they might provide a valuable starting point for closer
examination of the data. This may be of spetial use in the reconstruction of
a stemma where, for example, the techniques indicated by Maas ( 1958) for
this purpose are impractical for all but a small number of manuscripts.

If we are given a tree, which may be thought of informally as a collection
of nodes and links, the assignment of a length to each link will make each
node a certain distance from any other node. This distance is the total
length of the path between the two nodes, and we shall call such a measure of
distance ( which is itself a b ¢) an additive tree metric. A pcis not, in general,
an additive trec metric: we shall see later that to be so it must satisfy a
specific condition. Our problem then, is to find a transformation from the
given DC to an additive iree metric. Cavalli-Sforza and Edwards (1967)
and Eck and Dayhoff (1966) among others have described methods for
finding the nearest additive tree metric to a pc. A dissimilarity or stress can
be defined between two Dcs in a number of ways. Subject to this definition,



388 Evolutionary tree structures : Buneman

the nearest additive tree metric (we shall call it Ay) is that which minimizes
the stress between it and the given nc. To find Ay reliably is usually an
impossible task: it could involve a search through all the enormous number
of possible configurations for the tree and for each configuration optimizing
the link lengths. The methods invented for finding Ay operate by making a
good guéss at an initial configuration and then optimizing for a limited type
of perturbation of that configuration. Such methods can still be lengthy,
and there is no guarantee that they will not get trapped in a local, but not
absolute, minimum for the stress. Another objection to Ay, given that it can
be found, is that it will usually produce a detailed tree even from a DC
which does not at all resemble an additive tree metric. In the absence of any
theory as to why the data should give a tree, Ay, may be misleading.

It will help our purposes to give a slightly unusual definition of a tree; and
this is done in the next section. Observe that we are not seeking a tree which
directly relates the given objects: we may want to reconstrucl ‘missing’
nodes. Moreover we cannot hope to find a root to the tree on the basis of a
D e nor can we necessarily find it even from examination of the raw data.
What we shall do, therefore, is to define a tree in terms of its links. We can
then show that a dissimilarity coefficient will produce a set of links and an
additive tree metric, A,. The relative merits of Ay and A, are examined in
the last section. The mathematics that follows is all very straightforward, but
for any graph theoretical terms whose meaning is not obvious the reader is
referred to Harary { 1969).

TreEs DEFINED BY THEIR LINKS

We shall call the finite set of objects on which the given Dc has been measured
the base set. A link in a tree divides the nodes of the tree into two comple-
mentary subsets, and by analogy with this we shall define a splir of the base
set to be a pair of non-empty complementary subsets. Thus if S is the base
set, @ is a split if 6={ 59, 51} where §=5% U S%, and §° N 8 is empty. If two
members A and B of S lie in different members of o, we shall say that o
separates A from B. Suppose that ay={5%, §1} and o,={S%, 53} are two
splits; they are compatible if at least one of the intersections S{ N S9, S7N 83,
SIN S8, S} N Sk is empty. IT two such intersections were empty the splits
would be identical and, of course, any split is compatible with itself.

A tree on S can now be defined as a set of distinct, pairwise compatible
splits of S, Fromnowon, unlessexplicitlystated otherwise, we shall usetheword
‘tree¢’ in this sense. Suppose that T={cy, 03, ..., 0} is a tree. A node of Tisa
set { U, S&, ..., Si} where Sj& gy, and each of the intersections S{* N S; is
non-cmpty. Nodes exist; we can, for example, choose from each split that mem-
ber which contains some given member of 5..47(7") will be used to designate
the set of nodes of T. Two nodes are linked by &, if they are, in some order,

(i L
and G0y AN L.
That is to say that two nodes are linked by a split if they differ just on that
split. We can now show that this set of nodes and links constitutes a graph-
theoretic tree.
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Lemma I

Let & and M be two nodes of T; then there is a path from N to M.

This means we can find a sequence of nodes Ny, N, ... N, such that
N=Nj, M=N, and N, is linked to N, for 1<k<p. Suppose, for con-
venience, that N and M differ on oy ... o, so that they can be expressed:

M={S¥, ..., Si& S, ..o, S}

N={5i, ..., Sf% Sk, ..., Si}
where i1 ji, and so on, Of the £ members of N which do not agree with the
corresponding members of M there must be a minimal one (under set
inclusion). Suppose that it is Sf* Since it is minimal, its complement S}*
must intersect S{*, ..., Sf7'. But S also intersects Skt 8™ because
M is a node. Therefore

N2 o {S{I* bt it‘-|11 S;hl hem S:‘}
is a node and is linked by o, to N. Repeating this process we reduce, at each
step, the number of disagreements with M and thus get a path from N to M.
Lemma 2

4 (T)=IT|+1 .

The proof is by induction on | 7| and the result is trivial when T contains
just one split. Let & and M be two nodes linked by some member & of T,
The previous lemma assures us that such nodes exist. There can be only one
pair of nodes linked by o, for were there another such pair we would get a
violation of compatibility. Removing o from 7 therefore reduces the number
of nodes by just one; and this gives the inductive step.

Lemma 3

AT}, linked by T, is a graph-theoretic tree.

It is connected by lemma | and has the right Euler number by lemma 2.

The remaining results in this section are given without proof, which is in
all cases easy.

Lemma 4

The (graph theoretic) degree of a node is the number of minimal members

it contains. A terminal node has one minimal member.

The support of a node is the intersection of its members and a Jatent node
is one whose support is emply. A tree is maximal if there are no splits,
compatible with all its members, which it does not contain.

Lemma 5

A terminal node has non-empty support. A latent node has degree grealer

than two. The nodes of non-empty support partition the base set,
Lemma 6

| A (T)|=2(] 5§]—1). Equality obtains iff T is maximal.

Lemma 7

A tree is maximal iff every terminal node has support containing just one

member of § and every other node is latent and of degree three.

It may be of value to interpret briefly these preliminary results in terms of
the reconstruction of a stemma. The surviving manuscripts constitute the
base set. We can infer the former existence of a missing manuscript only
when we have two manuscripts, with some common ancestor, neither of
which has been copied from the other. Bearing in mind that we do not
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necessarily know the root of the stemma, this corresponds to the statement
that a latent node must have degree at least three. Moreover we cannot hope
to postulate the former existence of manuscripts which have not bcen
copied from, so that each terminal node of the stemma must have a surviving
manuscript in its support. It is also desirable, when the data is not adequate to
discriminate them, to allow two or more manuscripts to lie at the same node
in the stemma; and so we do nol insist that there should be a separate node
for each member of the base set. A parallel interpretation holds for the
reconstruction of phylogenetic trees. This definition of a tree, in terms of
compatible splits, is also of use when constructing a stemma, not from a
pe but from the actual variations between texts. In an ideal situation each
scribal error would give rise to a split, though in practice the problem is very
much complicated by some errors obscuring others.

ApDITIVE TREE METRICS

The given dissimilarity coefficient, d, is a function which associates with each
pair of points in the base set § a positive real number. It satisfies
d(A, A)=0
d(A, B)=0
d(A, B)=d(B, A)
for all members of 4, B of S. Any split ¢ of § defines an elementary DC, dq, by
do( A, B)=1if o separates A from B
dal A, B)=0 otherwise,
5., since it satisfies the triangle inequality, is a pseudometric, and it follows
that any positive linear combination Za,d, of these elementary DCs is also a
pseudometric. If the splits of such a sum are restricied to being the splits of a

tree T, then we can define an gdditive tree meiric by:
A(A, B)= Y o.0.(4, B) (as>0)

mal
[An additive tree metric is strictly speaking only a pseudo-metric for it
allows distinet members of S to be zero distance apart.]
An additive tree metric on 5 will define a metric A® on A7 (T) by:
A*(N, M)= Y. 2,65(N, M)
el

where 6¥(N, M)=1if ¢ is a link in the path from N to M
=() otherwise.
A* and A, while they are not the same thing (one is defined on §, the other
on A"(T)), are such that A* defines A for A4, B)=A%(N, M) whenever
A and B are in the respective supports of N and M. A* corresponds to the
informal definition of an additive tree metric given in the introduction but A
as defined is more convenient for our purposes. We now show how a dis-
similarity coefficient naturally gives us an additive tree metric. Suppose that
disapcon 8§ and o={S5% §1} is a split. We define
fte=1 min (d( A, C)+d(B, D)—d(A, B)—d(C, D))

for A, Bin §%and C, D in St
Lemma &8

If &; and 2 are splits such that y,,>0 and j,,>0 then 6, and oz are

compatible.
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If &y and o7 were not compatible then we could choose A, B, C, P so that
oy separates 4 and B from Cand D, and so that o separates 4 and C from B
and D. The quantity d{A, C)+d( B, D)—d(A, B}—d(C, D) would have to
be strictly positive since pg, >0, but since g, >0 it would also have to be
strictly negative,

From d we can derive Ty={o: i,>0} and lemma 8 ensures that T;is a
tree. Consequently we can define an additive tree metric A, by:

A= 2 Paaw
dela

Lemma 9

Asd .

For any pair of members 4, 8 of & there is by lemma 1 a path &7, N, ...
Ny such that A is in the support of Ny, B is in the support of N, and N, is
linked to Ny by o, for 1sk<p. For each o we may suppose that a,=
{57, 5!} with 4 e 8 and B e 5! Then we can choose, for each &, 1 <k<p,
a member Py of § such that P, lies in 8¢ N §l.;. We can do this because
S and S1_, are both members of the node N, and therefore have a non-
empty intersection. Thus o, separates A from Py for Isk<p—1 and it
separates B from Py for l<k=p-1; so that

Moy 1 (d( A, B)+d(A, P2)—d(B, Py)),
fay=H(d(A, P2)+d(B, P.)—d(A, P;)—d(B, P3)),
e =3 (d( A, P +d(B. P3)—d(A, P3)—d(B, Py)),

Hay- Lﬁﬂfffri B)+d(B, .Pd—} d(A, P-1))
Adding these we find that d(4, B)= E Mz, We have considered all those

splits in ¥ which separate A from B and so the result is proved.
Theorem 1
If Ty and T; are trees and Y oaf,= }, Pads where 2,>0 and f,>0,

el asT

then T1=T1% and t,=Fs ’ ’
This means that an additive tree metric specifies a unique tree. Let
d= E ttada. If A, B, C, D are chosen so that some split in T separates 4 and

T

B frgn; C and D then the gquantity

1(d(A, C)+d(B, D)—d(A, B)—d(C, D))
is, by the compatibility of splits in T, the sum of the =, for exactly those
splits which separate 4 and B from Cand D. From this we deduce that for all
splits & of Ty, pa=u, and hence T} = T, If the inclusion were strict we
would have A;>d contrary to the previous lemma. If then any of the in-
equalities p,>o, were strict we would similarly violate that lemma. We
conclude that Ty =T,=T; and ¢tz = jis =fls.

A mecessary and sufficient condition that d is an additive tree metric is

now given, It is that for all members 4, B, C, D of §,

di A, B)+d(C, Dysmax (d(A4, C)+d(B, D), d( B, C)+d(A, D))
and we shall refer to it as the four-point condition. Before proving this assertion
we can make some elementary observations about the four-point condition,
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If we put C= D in the expression above, it reduces to the triangle inequality,
so that a pc which satisfies the four-point condition is necessarily a pseudo-
metric. Each sum in this expression corresponds to one of the three distinct
ways of partitioning a set of four members into two subsets each of two
members. Notice that the four-point condition is equivalent to the condition
that two of these sums are equal and not less than the third. It is apparent
that there is a resemblance in form between the four-point condition and
the ultrametric inequality [d{ A4, B)<max (d(A, C), d(B, C))]; and we note
the following result, which can be proved in various ways:

Lemma 10

An ultrametric satisfies the four-point condition.

We now prove our assertion that the four-point condition is necessary
and sufficient for a pe to be an additive tree metric.

Theorem 2

As=d ifT d satisfies the four-point condition.

To establish this we shall first show that A, itself satisfies the four-point
condition, The converse is proved by showing that the four-point condition
implics that A, =d; and this, in view of lemma 9, is all that is nceded.

Consider four points and the way in which the splits of T, can separate
them. If & separates A and B from C and D, then, by compatibility, no split of
T, can separate A and C from B and D nor can it separate 4 and D from
B and C. We can write: d,p for the sum of the p, for which o separates A4
and B from Cand D; i for the sum of the y, for which o separates A from B,
Cand D;and Ap, de and iy similarly, Then AfA, B)-+A,C, D)=Aq+ An+
Ac+ip and AfA, C)+A(B, D)=A[B, C)+A,(A, D)=L+ ip+Ac+2p+
A4z and the four-point condition is satisfied,

For the converse, take any two members 4 and B of § and define a function
fon § by:

S(X)=d(A, X)—d(B, X)
d is necessarily a pscudo-metric and so for all X in § —d(4, B)<f(X)=
d( A, B). Suppose that x and &' are real numbers within this range such that
o' =o and lar no X does f{ X) lic between & and &', Then the pair of subsets,

(X:fiX)za'} and {X:f(X)<a}
forms a split, We shall show that for this split p =4(2"—a). By the definition
of sts there are members X, ¥, Z, T of S such that po=4(d( X, Z)+d( ¥, T)—
d( X, Y)=d(Z,T)) and such that X and Y are scparated by this split from
Z and T. We can assume for convenience that f{X)<f( Vise<a'=/(Z)<
f(T). Thus, for example, d{X, A)+d(Z, B)<d(X, B)+d(Z. A) and by
applying the four-point condition:

d( X, Z)=d( X, B)+d(Z, A)—d( A, B)
By further applications of the four-point condition we find:

d( Y, T)y=d( ¥, By+d(T, A)=d(A, B)

d( X, Y)<d(X, B)+d(Y, A)—d(4, B) ,

d(Z, T)<d(Z, B)+d(T, A)—d(A, B)
Combining these last four expressions gives:

Hez 3 ((Z)=f¥))z(a' —2)

Mow let =y, a3, ... o, be the values of f{ X') arranged in ascending order so
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that aj=—d( A, B)=f(A) and a,=d(4, B)=/(B). Each pair a;, &, gives
us a split &, in the manner just indicated and p,, =3 (2.1 —2,). Since each 7,
separates A from B, 'IM: get:

84(4, B)= E Ho 24 Z (o34 —0)=d(4, B)

which is what we wantcd to prove.

To summarize: we have defined the transformation d—A,: we have shown
that it defines a unique tree and preserves an additive tree metric; we have
also established a necessary and sufficient condition for 2 pC Lo be an additive
tree metric. One further observation will be of use to us in the discussion that
follows. The transformation A, is continuous with respect to the natural
topology on the set of pcs. Informally this means that, given reasonable
definition of stress between npcs, any sufficiently small perturbation of d will
result in a small perturbation of Ay

Discussion

Ay was described in the introduction as the nearest additive tree metric to d
for some given definition of stress. We now turn to a practical comparison
of the two transformations d—A, and d=Ay, Any discussion of why a
particular set of data should give rise to an additive tree metric has been
deliberately avoided. The justification would usually be given by some theory
such as a postulate about evolutionary rates. Such a theory might also be
adequate to determine how to recover the additive tree metric, but it is felt
that none of the existing theories which presently figure in any of the situa-
tions mentioned is sufficient 1o do this. We therefore list some criticisms of
Ay and A; which may be of value in deciding which is best suited to a parti-
cular situation.

(1) Ay is not well defined. There may be two additive tree metrics equally
near to d.

(2) There is no practical algorithm which reliably finds Ay on a large base
set.

(3) The transformation d—Ay is not continuous.

(4) A, can give unintercsting trees from a Dc which does not resemble an
additive tree metric.

The first of these is not a pedantic quibble. pDcs constructed, for example,
from amino acid sequences can take on small integral values, and it is quite
possible to find two additive tree metrics equally close to this pc. As for the
second point: we have seen some of the difficulties involved in finding Ay;
these do not apply Lo A,. It happens that there is a reasonably fast algorithm
for finding A, which does not involve a search through all the possible splits
of S, and it is hoped to publish details of this algorithm and its implementa-
tion shortly. Whether or not the third criticism is important depends on one’s
prior assumptions of what form the result can take. If there are no such
assumptions then it certainly is important; but there may be circumstances
where, because of some appreciation of the data, one can reject alternative
trees that can result from small perturbations of the original pc. Nevertheless,
it is felt that continuity is a desirable property of any transformation from a
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pcC to an additive tree metric. The fourth eriticism is very much bound up
with the third. The possibility of getting uninteresting trees (that is, trees
with few splits) is the price paid for continuity. A detailed tree produced by
Ay would usually be of value either because the stress with the original
pc is very low or because, having produced it, one can find some other
justification for its form. In the absence of any such justification, an intricate
trec may be more misleading than helpful. Moreover if Ay does give very
low stress with &, A, will do so also for much less computation.

The first and third of these criticisms are the same as those made by Jardine,
Jardine, and Sibson ( 1967) with respect to certain methods in cluster analysis.
We have also noticed a correspondence between the four-point condition and
the ultrametric inequality, which is central to nearly all types of cluster
analysis. These similarities are not all fortuitous, There is an extension of the
theory contained in this paper which embraces both. Loosely speaking, this
extension involves an asymmetry in the definition of a split and asymmetry
in the derivation of a pc from a split. In the limit of lop-sidedness, one
component of each split gets entirely neglected and the other turns into one
of Jardine's ball clusters (Jardine 1969). The four-point condition, or rather
its extension, turns into the ultrametric inequality. The case we have dealt
with is the symmetrical case in this extended theory and it may be that the
intermediate cases will prove of some value as well,

Computing a pc is not the only way open to us for finding a tree. For
protein chains one can avoid a pc and define a set of splits in terms of the
amino-acid sequences themselves; and these splits turn out to be compatible.
The same thing can be done with manuscripts or for any data in which one
has recorded a set of discrete attribute values for the given objects. Trees
construcied in this way can be more representative of the raw data since, as
we have noted, a b ¢ can obscure useful information. One way of sceing this is
that a pc is calculated on the properties of pairs of objects. while compatible
splits can be defined by properties of objects taken four at a time. It is not
surprising that by avoiding a pc, one can build trees which give much better
descriptions of the data. Finding trees, and possibly clusters, from raw
attribute data is something that deserves further investigation,
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