DISCRETE MATHEMATICS 9 (1974) 205-212. @ North-Holland Publishing Company

A CHARACTERISATION OF RIGID CIRCUIT GRAPHS

Peter BUNEMAN
School of Artificial Intellivence, Edinburgh University, Scotland, UK

Received 26 February 1973

1. Introduction

An interval graph is the intersection graph of a set of intervals of a
line; that is, a graph whose points represent these intervals and whose
edges join points which represent intervals with a non-empty intersec-
tion. One of the reasons for studying rigid circuit graphs lies in the prob-
lem, which has various applications [4, 6, 7], of deciding whether a
given graph is an interval graph. It turns out that a necessary but insuf-
ficient condition for a graph to be an interval graph is that it should
have the rigid circuit property. There is, however, another motivation
for studying graphs with this property. In the construction of evolution-
ary trees and in certain other classificatory problems, it is often desir-
able to say whether a graph is the intersection graph of a set of subtrees
of some tree. Here, the rigid circuit property is more naturally relevant
because it is both a necessary and sufficient condition for a graph to be
such a tree-intersection graph. The main purpose of this paper is to estab-
lish this fact, which will also be shown to provide rather more trans-
parent proofs of some existing theorems on rigid circuit graphs. A short
discussion of some of the problems of constructing evolutionary trees
is also included.

The graphs we shall deal with will all be undirected and finite with no
multiple edges. A path in a graph G is a sequence p;, P4, ..., p,, of distinct
points in G such that p;p;,, is an edge of & for 1 <i < n, and a graph is
connected iff there is a path between any two points in that graph. A
circuit is a path whose first and last points are joined by an edge and a
free is a connected graph with no circuits. A subtree of a tree is a con-
nected subgraph of the tree. A chord of the circuit py, p,,.... P, is an
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edge which joins points p; and Pj, where |i—j| # 1 (mod n), and a rigid
cireuit graph is a graph in which every circuit through more than three
points has a chord. Trees have, trivially, the rigid circuit pgaperty; so do
complete graphs, those graphs in which every possible edge is present.
The removal of any number of points from a graph with the rigid circuit
property does not affect that property.

2. Main theorems

Theorem 2.1. Let (T, T,,.... T, } be a set of subtrees of a tree T. Then
the intersection graph of {Ty, Ty, .... T, } is a rigid circuit graph.

Suppose otherwise. Then there is a sequence, 7y, T, ..., T, for con-
venience, such that the intersection of distinct subtrees T, and T} is non-
empty iff li—f| = | (mod p), and such that p > 3. Working mod p in the
obvious fashion, choose a point 5; from T; N T}, . By our suppositions,
the s5; are all distinct, so let ¢; be the last common point of the paths
from s; tos;_, and s; to s;,, . These paths lie respectively in T} and T,
so that ¢, lies in T; N T, and the {; are similarly all distinct. Moreover,
by this construction, the concatenation of the paths from 1, , to f; and
f; to 1;y is also a path. If the trees T; and T; do not intersect, then the
paths from ¢;_; to ¢; and f;_y to t; cannot intersect since they respect-
ively lie in these trees. By concatenating all such paths in order we ob-
tain a circuit in 7' which is counter to the definition of a tree.

The proof of the converse of this theorem can be accomplished in
various ways; the strategy adopted here is designed to show something
more of the structure of rigid circuit graphs. One reason for doing this
is that there is not necessarily a canonical set of subtrees of some tree
for representing a rigid circuit graph (consider, for example, the various
ways of representing as a set of subtrees the graph whose edges are a; day,
a3 a; and a4 a). Another reason is that in a discussion [2] of the
metric properties of trees, a characterisation of trees is used which
is closely related to some of the properties of rigid circuit graphs which
we shall need in order to prove this converse. Following Dirac [3], we
introduce some further definitions. If p, and p, are points in G, a set
C of points in G—{p;, p; } separates p, and p, if every path from "
to p; meets C. A set with this property is called a relative curset of G
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(relative to the separation of P1. P2). If no subset of C separates p and
P3. Cis called a relatively minimal cutset. We shall use the term “clique”
to refer to a maximal complete subgraph of a graph, and in what follows
the rigid circuit graph under consideration is taken to be connected,
though only minor modifications are needed if it is not so.

Lemma 2.2 (Dirac). If & is a rigid circuit graph, then any relatively mini-
mal cutset is complete in G 3],

Suppdse C is a relatively minimal cutset separating p, and p, and
suppose that it contains two points ¢, and g, . There must be a path
from p, to g, which meets C only in g, by the minimality of C. Simi-
lar paths must exist between ¢, and p,, ¢, and py, and g, and p,. There-
fore there are two paths from g, to g, which, apart from their end
points, lie entirely in distinct components of G—C. For each component,
choose such a path which is shortest and join these paths by their com-
mon end points to form a circuit. This circuit must have a chord by
the rigid circuit property. This chord cannot link the two components
of G—C, and since the paths from g, to q, are both shortest through
each component, it must be the chord g, g,. Similarly, there is an edge
in & between every pair of points in C.

Lemma 2.3. Any relatively minimal cutset in a rigid circuit graph G is
properly contained in at least two distinet cliques in G.

Suppose C is a minimal cutset relative to the separation of Py and
Py. Let G| be that component of G—C which contains Py- Choose
a point 5 of G; whose set C; of neighbours in C is as large as possible.
If C = C, let g be a point of C—C), and let ¢ be a neighbour of g
in &; which minimises the length of some path ¢, £}, 15, ..., 5 in G.
Since C is complete, gy, g, ¢, #}, t5, ..., § i5 a circuit for any point
gy of C;. This circuit has a chord, which must, by construction, be
qyt. t is therefore linked to every point of €] and to g, contradicting
the maximality of C;. There is therefore a complete graph with points
in G, which properly contains C, and a similar complete graph in
that component of G—C which contains p,.

Corollary 2.4. Each relatively minimal cutset C; gives rise to an equiv-
alence relation E; on the cliques of G. Two cliques are related if they
have points in the same component of C;.



208 P. Buneman, Rigld circuit graphs

Lemma 2.5. If E; and E; are two such equivalence relations, then at most
one equivalence class o; of E; is such that E; | o; is not the universal rela-
tion,

Suppose otherwise, and suppose that the relatively minimal cutsets
C; and C; give rise to the equivalence relations E; and E;, respectively.
Then we can find cliques S, S3, S5, §4 such that 5; and 5, have points
in one component of G—C; which are separated by the removal of (Z}
and such that 53 and 54 have similar points in another component of
G'—C;. But this would mean that C; has points in both components of
G—C; which is impossible since C; is complete in G.

Lemma 2.6. If G is a rigid circuit graph and is not itself complete, then
at least one of the equivalence relations defined by Corollary 2.4 has an
equivalence class which contains just one clique.

Suppose that the class g; of E; contains the cliques S, and 5,. There
must be two points, one in each of these cliques, which are not adjacent
in G. By finding a relatively minimal cutset which separates these points,
we can find an equivalence relation E; with classes o; and o} containing
§; and $;, respectively. From Lemma 2.5, one of E;io; and E;loj must
be the universal relation so that one of o; and g; is properly contained
in 0;. Repeating this we must eventually obtain an equivalence class con-
taining just one clique.

From this we can readily obtain the result noted by Dirac [3] and
Fulkerson and Gross [4] that any rigid cireuit graph contains at least
one point whose neighbours form a complete subgraph of G. 7

Theorem 2.7 (Converse of Theorem 2.1). A rigid circuit graph G is the in-
tersection graph of a set of subtrees of a tree T whose points correspona
to the cliques in G in such a way that if s; is the point of T correspond-
ing to the clique 8, in G, then the subtree T, corresponding to p in G
contains §; if and only {f 5; contains p.

We use induction on the number of cliques in G, If G is complete,
the result is trivial. Suppose that this theorem holds for all graphs with
fewer than N cliques and suppose G has the rigid circuit property and
contains just N cliques. By Lemma 2.6, we can find a relatively minimal



P Buneman, Rigid circwit graphs 209

cuset of C such that one component of G—C consists just of points

in a clique § and which, by Lemma 2.3, is properly contained in §, and
some other clique 55, say. Let us use D to denote the points of §; -C
and use the inductive hypothesis to construct a tree T with the proper-
ties of this theorem on the rigid circuit graph G—D which has N—1
cligques.

There will be a point 55 in T corresponding to the clique 5. We can
form a tree T with V points from T’ by attaching a point 5| to T by
the edge s, 8, . For each point in C, we extend the corresponding sub-
tree along the edge 5, 5, and for each point of D we form a new sub-
tree of T which contains just the point ;. 5; then corresponds in the
correct way to S, and the induction is complete.

The construction in Theorem 2.7 does not necessarily produce a
unique tree. The reason is that there may be, at any stage in the con-
struction, a clique which is the only member of, two or more equivalence
classes. This would mean that the point 5; in Theorem 2.7 could be at-
tached in more than one way to the tree . The tree produced by The-
orem 2.7 is minimal, for if G is the intersection graph of subtrees of a
tree 7, then there must be a map from a subset of the nodes of T onto
the cliques of 7, and the map we have produced is one to one.

3. Further results

The results in this section are irrelevant to the discussion in the final
section. Suppose @ is a set of subsets of some set. We say that © is &-
chromatic if k is the order of the smallest set K for which there is a map
f: ©® - K with the property that for any pair #,, &, of sets in @,

F(8 )+ f(#;) whenever 8, and 82 have a non-empty intersection. We
also define @ to be k-complement chromatic if k is the order of the
smallest set K for which a map f: © - K has the property that f(8,) #
f(85) whenever 8, and @, do not intersect. These definitions correspond
precisely to the definitions of chromaticity in the intersection graph of
© and in its complement. The chromatic properties of subtrees of a tree
are rather simple, for by choosing an arbitrary root for the tree it is easy
to devise colouring algorithms which vield to the following result:
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Theorem 3.1. 4 set of subtrees of a tree is k-chromatic, where k is the
largest number such that a point T lies in k subtrees. Any such set of sub-
trees is N-complement chromatic, where N < the number of points in T.

Using the term *‘chromatic” in its usual sense for graphs, we can readily
deduice two more theorems which are proved by Dirac [3]. (Caution:
Dirac uses the term “clique” to denote complete subgraphs rather than
maximal complete subgraphs.)

Theorem 3.2 (Berge [1]). A rigid circuit graph G is k-chromatic, where
k is the number of points in the largest cligue in G.

This follows directly from the first part of Theorem 3. 1.

Theorem 3.3. The complement of a rigid circuit graph G is k-chromatic,
where k& iy the number of cligues in G,

This is a consequence of the second part of Theorem 3.1.

The proof of Theorem 2.7 can also be used to show that the number
of cliques in a rigid circuit graph is equal to the maximum number of
pairwise unadjacent points in that graph. This fact taken with Theorem
3.3 proves a theorem of Hajnal and Suranyi [3, 5].

4. Constructing trees

The author has been involved in two practical problems which involve
evolutionary trees. One is the reconstruction of the evolutionary tree of
a set of organisms; the other is the recovery of the genealogy of a set of
medieval manuscripts which are all directly or indirectly copied from a
common source. In each case we observe among these objects certain
characteristics which are believed to be hereditary; that is, character-
istics that derive from a subtree of the tree which we are trying to con-
struct. In one of these problems these characteristics are introduced by
genetic mutation, in the other by scribal error. There are several com-
plications to this, one is that certain characteristics can appear indepen-
dently in different parts of the tree (two scribes making the same error
independently, for example). Another difficulty is that of * conflation™
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where one scribe copies from two or more sources. In the latter case the
underlying structure does not even have a tree form. But even if we neg-
lect these complications, there is another obstacle which presents it-

self; this is the problem of dealing with missing objects. In either the
manuscript or the hiological situation we may, and usually do, have only

a subset of the points in the tree we wish to construct and we will want =~
to infer the existence of objects from those thailt are available to us.

Suppose the descriptions of the objects are presented to usin the form
of an attribute table as in Example 1. Here the left-hand column lists the
set of objects and the other columns list the values that the various at-
tributes f}, fy, ... take on these objects. It is the attribute values which
we hope will correspond to inherited characteristics and therefore each
derive from a subtree of some tree. Is this possible? The overlap graph
of the attribute values is also given in Example 1, but we see that it has
anon-rigid circuit. In order to make this graph into a rigid circuit graph
we would have to add a chord to this circuit and this would mean that
two attribute values overlap although there is nothing in the attribute
table to say they do. In view of this, only one chord B, 73 can be drawn,
for were we to draw the other chord &, §;, we would be suggesting that
two values of the same attribute overlap. Having added this chord, The-
orem 2.7 shows us how to build the tree and we notice that the two
cliques created by the addition of this chord give us the “missing”™ ob-
jects. We have, of course, found an unrooted tree and the root would
have to be inferred from other evidence than that present in the attribute
table.

This raises the general question: Supposing there is a “rigidification™
of an attribute table, is there a simple method for finding it? Example 2
shows a table of six objects and three attributes which has two very dif-
ferent rigidifications. One would want such a method either to produce
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both trees or to manifest the ambiguity in some interesting way. The
problem of detecting conflations poses another problem in graph theory.
Given a graph &, what is the simplest graph H for which G is the inter-
section graph of a set /{;, H,, ... of subgraphs of #7 The term “simplest”
could be taken to mean “minimum connectivity”, but there may be an-
other use of the word which is relevant to this situation.
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