Query Optimization for Semistructured Data using Path Constraints

in a Deterministic Data Model

Peter Buneman*
University of Pennsylvania
peter@central.cis.upenn.edu

Abstract

Path constraints have been studied in [4, 11, 12, 13] for
semistructured data modeled as a rooted edge-labeled
directed graph. They have proven useful in the opti-
mization of path queries. However, in this graph model,
the implication problems associated with many natural
path constraints are undecidable [11, 13]. A variant of
the graph model, called the deterministic data model,
was recently proposed in [10]. In this model, data is rep-
resented as a graph with deterministic edge relations,
i.e., the edges emanating from any node in the graph
have distinct labels. The deterministic graph model is
more appropriate for representing, for example, ACeDB
[27] databases and Web sites.

This paper investigates path constraints for the de-
terministic data model. It demonstrates the application
of path constraints to, among other things, query opti-
mization. Three classes of path constraints are consid-
ered: the language P, introduced in [11], an extension
of P., denoted by P, by including wildcards in path
expressions, and a generalization of P, denoted by P,
by representing paths as regular expressions. The im-
plication problems for these constraint languages are
studied in the context of the deterministic data model.
It shows that in contrast to the undecidability result
of [11], the implication and finite implication problems
for P. are decidable in cubic-time and are finitely ax-
iomatizable. Moreover, the implication problems are
decidable for P*. However, the implication problems

c

for P} are undecidable.

1 Introduction

Semistructured data is usually modeled as an edge-
labeled rooted directed graph [1, 8]. Let us refer to this
graph model as the semistructured data model (SM).
For data found in many applications, the graph is de-
terministic, i.e., the edges emanating from each node
in the graph have distinct labels. For example, when
modeling Web pages as a graph, a node stands for an
HTML document and an edge represents a link with
an HTML label from one document (source) to another

*This work was partly supported by the Army Research Office
(DAAH04—95—1—0169) and NSF Grant CCR92-16122.

tSupported in part by Temple University.

fSupported by NSF Grant CCR-9403447.

Wenfei Fan'

Temple University
fan@joda.cis.temple.edu

Scott Weinstein?
University of Pennsylvania
weinstein@linc.cis.upenn.edu

(target). It is reasonable to assume that the HTML la-
bel uniquely identifies the target document. Even if this
is not literally the case, one can achieve this by includ-
ing the URL (Universal Resource Locator) of the target
document in the edge label. This yields a determinis-
tic graph. As another example, consider ACeDB [27],
which is a database management system popular with
biologists. A graph representing an ACeDB database
is also deterministic. In general, any database with
“exportable” data identities can be modeled as a de-
terministic graph by including the identities in the edge
labels. Here by exportable identities we mean directly
observable identities such as keys. Some relational and
object-oriented database management systems support
exportable identities. In particular, in the OEM model
(see, e.g., [3]), there are exportable object identities. To
capture this, we consider a data model for semistruc-
tured data which is a variant of SM, referred to as
the deterministic data model (DM). In DM, data is
represented as a deterministic, rooted, edge-labeled, di-
rected graph. An important feature of DM is that in
this model, each component of a database is uniquely
identified by a path.

A number of query languages (e.g., [3, 9, 24]) have
been developed for semistructured data. The study
of semistructured data has also generated the design
of query languages for XML (eXtensible Markup Lan-
guage [7]) documents (e.g., [17]). In these languages,
queries are described in terms of navigation paths. To
optimize path queries, it often appears necessary to use
structural information about the data described by path
constraints. Path constraints are capable of express-
ing natural integrity constraints that are a fundamen-
tal part of the semantics of the data, such as inclusion
dependencies and inverse relationships. In traditional
structured databases such as object-oriented databases,
this semantic information is described in schemas. Un-
like structured databases, semistructured data does not
have a schema, and path constraints are used to convey
the semantics of the data. The approach to querying
semistructured data with path constraints was proposed
in [4] and later studied in [11, 12, 13]. Several proposals
(e.g., [6, 19, 21, 22]) for adding structure or type sys-
tems to XML data also advocate the need for integrity
constraints that can be expressed as path constraints.

To use path constraints in query optimization, it is
important to be able to reason about them. That is,

emp

dept
Dépt
di d2

mager\ m D1 D2

El

ny

" Brady"

E3

name emp ame

" Smith” 3| " design”

Figure 1: An example semistructured database in DM

we need to settle the question of constraint implication:
given that certain constraints are known to hold, does
it follow that some other constraint is necessarily satis-
fied? In the context of databases, only finite instances
(graphs) are considered, and constraint implication is
referred to as finite implication. In the traditional logic
framework, both infinite and finite instances (graphs)
are permitted, and constraint implication is called un-
restricted implication or simply implication. For the
graph model SM, it has been shown that the implica-
tion problems associated with many natural integrity
constraints are undecidable. For example, the impli-
cation problem for the simple constraint language P,
studied in [11, 12, 13] is r.e. complete, and the finite
implication problem for P, is co-r.e. complete [11, 13].
In addition, we have already studied the connection
between object-oriented databases and semistructured
databases in SM with P, constraints in [12]. The re-
sults of [12] show that the connection is not simple.

In this paper, we investigate path constraints for the
deterministic data model DM . We demonstrate appli-
cations of path constraints to semantic specification and
query optimization, and study the implication problems
associated with path constraints. We show that in con-
trast to the undecidability result of [11, 13], the implica-
tion and finite implication problems for P, are decidable
in cubic-time and are finitely axiomatizable in the con-
text of DM . That is, there is a finite set of inference
rules that is sound and complete for implication and fi-
nite implication of P, constraints, and in addition, there
is an algorithm for testing P, constraint implication in
time O(n?), where n is the length of constraints. This
demonstrates that the determinism condition of DM
simplifies the analysis of path constraint implication.
We also introduce and investigate two generalizations
of P.. One generalization, denoted by P, is defined by
including wildcards in path expressions. The other, de-
noted by PZ, represents paths by regular expressions.
We show that in the context of DM, the implication
and finite implication problems for P are also decid-
able. However, the implication and finite implication
problems for P} are undecidable in the context of DM.
This undecidability result shows that the determinism

condition of DM does not reduce the analysis of path
constraint implication to a trivial problem.

The rest of the paper is organized as follows. Sec-
tion 2 uses an example to illustrate how path constraints
can be used in query optimization. Section 3 reviews
the definition of P. constraints proposed in [11], and
introduces two extensions of P,, namely, P and P}.
Section 4 studies the implication and finite implication
problems for P,, P¥ and P} for the deterministic data
model. Finally, Section 5 identifies open problems and
directions for further work. A cubic-time algorithm
for testing implication and finite implication of P. con-
straints is given in an Appendix.

2 An example

To demonstrate applications of path constraints, let us
consider Figure 1, which collects information on em-
ployees and departments. It is an example of semistruc-
tured data represented in the deterministic data model.
In Figure 1, there are two edges emanating from root
node r, which are labeled emp and dept and connected
to nodes Emp and Dept, respectively. Edges emanating
from Emp are labeled with employee ID’s and connected
to vertices representing employees. An employee node
may have three edges emanating from it: an edge la-
beled manager and connected to his/her manager, an
edge labeled supervising that connects to a node from
which there are outgoing edges connected to employees
under his/her supervision, and an edge labeled name.
Similarly, there are vertices representing departments
that may have edges connected to employees. Observe
that Figure 1 is deterministic.

Path constraints. Typical path constraints on Fig-
ure 1 include:

YV (emp- _-manager(r, z) — emp- _(r, x)) (¢1)
YV (emp- - supervising - - (r, x) —
emp-_(r, z)) (¢2)
Va(emp-_ (r,) = Yy (manager(z, y) —
supervising - (y, 2))) ()

Here r is a constant denoting the root of the graph,
variables z and y range over vertices, and “_” is a “wild-
card” symbol, which matches any edge label. A path
in the graph is a sequence of edge labels, which can be
expressed as a logic formula a(z, y) that holds in the
graph if «a is a sequence of edge labels from vertex z
to y. For example, emp - el - manager can be expressed
as a logic formula, which holds in Figure 1. Path for-
mulas can be naturally generalized to include wildcards.
The path constraints above describe inclusion relations.
More specifically, ¢, states that if a node is reached from
the root r by following emp - _-manager, then it is also
reachable from r by following emp - _. It asserts that the
manager of any employee is also an employee that oc-
curs in the database. Similarly, ¢, states that if a node
is reached from r by following emp - _ - supervising: _,
then it is also reachable from r by following emp- _.
Constraint ¢3 states that for any employee z and for
any vy, if z is connected to y by a manager edge, then z
is reachable from y by following supervising-_. These
are constraints of P!”, one of the path constraint lan-
guages studied in this paper.

We generalize P by representing paths as regular
expressions. This generalization is denoted by P}. For
example, the following are constraints of P

Va(emp-_(r, x) = Yy (manager - manager*(x, y)

— supervising - - (y, x))) (1)
Va(emp-_(r, x) = Yy (supervising - _ (z, y)

— manager - manager*(y, z))) (¥2)

Here x is the Kleene star. These constraints describe
an inverse relationship between manager - manager™* and
supervising-_. More specifically, 1), asserts that for
any employee z and for any y, if y is reachable from z by
following one or more manager edges, then x is reach-
able from y by following path supervising._. Sim-
ilarly, - asserts that if y is reachable from z by fol-
lowing supervising-_, then z is reachable from y by
following one or more manager edges.

A subclass of P¥*, P., has been investigated in [11,
12, 13] for the graph model SM for semistructured data.
As opposed to P} constraints, path constraints of P,
contain neither wildcards nor the Kleene star. In the
deterministic data model, P, constraints express path
equalities. For example, the following can be described

by P. constraints:

emp - el - manager = emp-e2 (¢1)
dept -dl-emp-el = emp-el (p2)

Observe that the paths in the constraints above contain
neither wildcards nor the Kleene closure.

Semantic specification with path constraints.
The path constraints above describe certain typing in-
formation about the data. For example, abusing object-
oriented database terms, ¢ asserts that a manager of an
employee has an “employee type”, and in addition, is in
the “extent” of “class” employee. By using ¢4, it can be

shown that for any employee x and any v, if y is reach-
able from z by following zero or more manager edges,
then y also has an “employee type” and is in the “ex-
tent” of employee. A preliminary type system was pro-
posed in [10] for the deterministic data model, in which
the types of paths are defined by means of path con-
straints. This is a step towards unifying the (program-
ming language) notion of a type with the (database)
notion of a schema.

Query optimization with path constraints. To
illustrate how path constraints can be used in query
optimization, consider again the database represented
in Figure 1. Suppose, for example, we want to find the
name of the employee with ID el in department d1.
One may write the query as ()1 (in Lorel syntax [3]):

Q1 select X.name
from r.dept.dl.emp.el X

Given path constraint 5, the query ()1 can be rewritten
as Q:

Q' select X.name
from r.emp.el X

One can easily verify that ()1 and Q) are equivalent.

As another example, suppose we want to find the
names of the employees connected to Smith by one or
more manager edges. Without path constraints, one
would write the query as ()2 (in Lorel syntax):

Q-: select X.name
from r.emp.% X, X(.manager)+ Y
where Y.name = "Smith"

In Lorel, % denotes wildcard and (.manager)+ means
one or more occurrences of .manager. Given constraints
Y1, o, ¢1 and ¢a, we can rewrite Q2 as 0%, which finds
the names of the employees under the supervision of
Smith:

Qh: select X.name
from r.emp.% Y, Y.supervising.’ X
where Y.name = "Smith"

It can be verified that given those path constraints, Q-
and @) are equivalent. In addition, Q% is more efficient
than ()2 because it does not require the traversal of
sequences of manager edges. It should be mentioned
that to show ()2 and @), are equivalent, we need to verify
that certain constraints necessarily hold given that 1,
19, ¢1 and ¢, hold. That is, they are implied by %,
19, ¢1 and ¢o. In particular, we need to show that 3
below is implied by 91, 12, ¢1 and ¢s:

Vo (emp-_ -manager*(r,) = emp-_(r, z)) (¢3)

Related work. A more general deterministic data
model, DDM, was proposed in [10]. In DDM, edge
labels also have structure, and a number of database
operations may be obtained by manipulation of this
structure. In particular, annotations can be described

in this structure for the purpose of data provenance,
i.e., to keep track by what process some piece of data
got into the database. To simplify the discussion we do
not consider this general model here.

Path constraints have been studied in [4, 11, 12, 13].
The constraints of [4] have either the form p C ¢ or
p = q, where p and ¢ are regular expressions repre-
senting paths. These constraints were investigated for
the graph model SM for semistructured data. The de-
cidability of the implication problems for this form of
constraints was established in [4] in the context of SM.
Another path constraint language, P., was introduced
and studied in [11] for SM. It was shown there that
despite the simple syntax of P,, its associated implica-
tion and finite implication problems are undecidable in
the context of SM. The details of the proofs of these
undecidability results can be found in [13]. The in-
teraction between P, constraints and type systems was
investigated in [12]. However, none of these papers has
considered the deterministic data model. In addition,
path constraint languages P and P were not studied
in these papers.

Recently, the application of integrity constraints to
query optimization was also studied in [25]. Among
other things, [25] developed an equational theory for
query rewriting by using a certain form of constraints.

The connection between semistructured databases in
SM with P. constraints and object-oriented databases
has been studied in [12]. Object-oriented databases are
constrained by types, e.g., class types with single-valued
and set-valued attributes, whereas databases in SM are
in general free of these type constraints. These types
cannot be expressed as path constraints and vice versa.
As an example, it has been shown in [12] that there is a
P, constraint implication problem that is decidable in
PTIME in the context of SM, but that becomes unde-
cidable when an object-oriented type system is added.
On the other hand, there is a P, constraint implication
problem that is undecidable in the context of SM, but
becomes decidable in PTIME when an object-oriented
type system is imposed.

There is a natural analogy between the work on path
constraints and inclusion dependency theory developed
for relational databases. Path constraints specify inclu-
sions among certain sets of objects, and can be viewed
as a generalization of inclusion dependencies. Inclusion
dependencies have proven useful in semantic specifica-
tion and query optimization for relational databases.
In the same way, path constraints are important in a
variety of database contexts, ranging from semistruc-
tured data to object-oriented databases. It should be
mentioned that the path constraints considered in this
paper are not expressible in any class of dependencies
studied for relational databases, including inclusion and
tuple-generating dependencies [5]. See [2] for in-depth
presentations of dependency theories.

The results established on path constraint implica-
tion in this paper may find applications to other fields.

Indeed, if we view vertices in a graph as states and la-
beled edges as actions, then the deterministic graphs
considered here are in fact Kripke models studied in
deterministic propositional dynamic logic (DPDL. See,
e.g., [20, 28]), which is a powerful language for reasoning
about programs. These deterministic graphs may also
be viewed as feature structures studied in feature logics
[26]. It should be mentioned that DPDL and feature
logics are modal logics, in which our path constraints
are not expressible.

Description logics (see, e.g., [16]) reason about con-
cept subsumption, which can be expressed as inclusion
assertions similar to path constraints. There has been
work on specifying constraints on semistructured data
by means of description logics [15]. One of the most ex-
pressive description logics used in the database context
is ALCQT,.4 [16], which allows negation, conjunction,
disjunction, qualified universal and existential quantifi-
cation, qualified number restriction, and in addition,
provides constructs to form regular expressions such as
role union, role concatenation, transitive closure and
role identity. It is known that ALCQZ,., corresponds
to propositional dynamic logic (PDL) with converse and
graded modalities [16, 20]. We should remark here that
our path constraints are not expressible in ALCQOZ,.,.

3 Deterministic graphs and path constraints

In this section, we first give an abstraction of semistruc-
tured databases in DM in terms of first-order logic, and
then present three path constraint languages: FP., PY
and P;.

3.1 The deterministic data model

In the graph model SM, a database is represented as an
edge-labeled rooted directed graph [1, 8]. An abstrac-
tion of databases in SM has been given in [11] as (finite)
first-order logic structures of a relational signature

o= (r, E)

where r is a constant denoting the root and FE is a finite
set of binary relation symbols denoting the edge labels.

In the deterministic data model DM, a database is
represented as an edge-labeled rooted directed graph
with deterministic edge relations. That is, for any edge
label K and node a in the graph, there exists at most
one edge labeled K going out of a. Along the same lines
of the abstraction of databases in SM, we represent a
database in DM as a (finite) o-structure satisfying the
determinism condition:

/\ Veyz(K(z, y) NK(z, 2) >y = 2).

KeE
Such structures are called deterministic structures. A
deterministic structure G is specified by (|G|, r¥, E%),
where |G| is the set of nodes in G, r¢ is the root node,
and E“ is the set of binary relations on |G|, each of
which is named by a relation symbol of E.

3.2 Path constraint language P.

Next, we review the definition of P, constraints intro-
duced in [11]. To do this, we first present the notion of
paths.

A path is a sequence of edge labels. Formally, paths
are defined by the syntax:

pu=c¢€|K|K-p
Here € is the empty path, K € E, and - denotes path
concatenation. Paths defined above are the simplest

form of path expressions. We shall present more general
forms of path expressions shortly in this section.

A path p is said to be a prefiz of p if there exists 7,
such that p=p - 7.

We have seen many examples of paths in Section 2.
Among them are:

emp - el - manager
dept -dl -emp - el

A path can be expressed as a first-order logic formula
p(z,y) with two free variables x and y, which denote the
tail and head nodes of the path, respectively. For exam-
ple, the paths above can be described by the following
formulas:

Jz(emp(z, z) A Jw (el(z, w) A manager(w, y)))
Iz (dept(z, z) A Jw (d1(z, w) A Ju (emp(w, u) A

el(u, y))))

We write p(z,y) as p when the parameters x and y are
clear from the context.

By treating paths as logic formulas, we are able to
borrow the standard notion of models from first-order
logic [18]. Let G be a deterministic structure, p(z, y)
be a path formula and a, b be nodes in |G|. We use
G = p(a, b) to denote that p(a, b) holds in G, i.e., there
is a path p from a to b in G.

The length of path p, |p|, is defined by:

0 ifp=ce
ol = ¢ 1 if p=K
L+lo ifp=K-o

For example, |emp-el| = 2 and |dept - d1-emp-el| = 4.
By a straightforward induction on the lengths of

paths, it can be verified that deterministic graphs have
the following property.

Lemma 3.1: Let G be a deterministic structure. Then
for any path p and node a € |G|, there is at most one
node b such that G = p(a, b). L]

This lemma shows that in DM, any component of a
database can be uniquely identified by a path.

Path constraints of P, introduced in [11] are defined
in terms of path formulas.

Definition 3.1 [11]: A path constraint ¢ of P, is an
expression of either the forward form

Vz (a(r,z) = Vy (B(z,y) = v(z,v))),

or the backward form

Va(a(r,z) = Vy (B(z,y) = 1(y,2)))-

Here a, 3,~ are path formulas. Path « is called the pre-
fiz of o, denoted by pf(p). Paths 8 and v are denoted
by lt(p) and 7¢(p), respectively.]

For example, ¢; and s given in Section 2 can be
described by P, constraints.

A forward constraint of P, asserts that for any vertex
z that is reached from the root r by following path «
and for any vertex y that is reached from z by following
path 3, y is also reachable from z by following path ~.
Similarly, a backward P, constraint states that for any
z that is reached from r by following « and for any y
that is reached from x by following 3, x is also reachable
from y by following ~.

A proper subclass of P. was introduced and studied
in [4]:

Definition 3.2 [4]: A word constraint is an expression
of the form

YV (8(r,x) = v(r,z)),
where 3 and «y are path formulas. [

In other words, a word constraint is a forward con-
straint of P, with its prefix being the empty path e. It
has been shown in [11] that many P, constraints cannot
be expressed as word constraints or even by the more
general constraints given in [4].

Next, we describe implication and finite implication
of P, constraints in the context of the deterministic data
model. We assume the standard notion of model from
first-order logic [18]. Let G be a deterministic structure
and ¢ be a P, constraint. We use G |= ¢ to denote that
G satisfies ¢ (i.e., G is a model of ¢). Let ¥ be a finite
set of P, constraints. We use G |= ¥ to denote that G
satisfies ¥ (i.e., G is a model of ¥). That is, for every
pEX, Gl=o.

Let ¥ U {p} be a finite subset of P.. We use ¥ |= ¢
to denote that X implies ¢ in the context of DM . That
is, for every deterministic structure G, if G |= X, then
G = ¢. Similarly, we use ¥ |=; ¢ to denote that ¥
finitely implies . That is, for every finite deterministic
structure G, if G |= X, then G = .

In the context of DM, the implication problem for
P, is the problem to determine, given any finite subset
Y U{p} of P., whether ¥ |= ¢. Similarly, the finite im-
plication problem for P, is the problem of determining
whether ¥ =¢ ¢.

In the context of the graph model SM, the struc-
tures considered in the implication problems for P, are
o-structures, which are not necessarily deterministic. It
was shown in [11, 13] that in SM, the implication and
finite implication problems for P, are undecidable.

Theorem 3.2 [11]: In the context of SM, the im-
plication problem for P, is r.e. complete, and the finite
implication problem for P, is co-r.e. complete. [

In the next section, we shall show that this undecid-
ability result no longer holds in the context of DM.

3.3 Path constraint language P

Let us generalize the syntax of path expressions by in-
cluding the union operator + as follows:

wui=¢€|K|lww|lw+w

That is, we define path expressions to be regular expres-
sions which do not contain the Kleene closure. Let us
refer to such expressions as x-free reqular expressions.

Let p be a x-free regular expression and p be a path.
We use p € p to denote that p is in the regular language
generated by p.

We also treat a #-free regular expression p as a logic
formula p(z, y), where z and y are free variables. We
say that a deterministic structure G satisfies p(z, y),
denoted by G = p(z, y), if there exist path p € p and
nodes a, b € |G| such that G = p(a, b).

The following should be noted about x-free regular
expressions.

e The regular language generated by a *-free regular
expression is finite.

e Recall that the wildcard symbol “” matches any
edge label. We can express “_” as a x-free regular
expression. More specifically, let E, the finite set of
binary relation symbols in signature o, be enumer-
ated as Ky, Ks, ..., K,. Then “_” can be defined

as x-free regular expression:

Ky +Ky + ... + K,,.

For example, we have seen in Section 2 the follow-
ing path expressions that can be represented as x-free
regular expressions:

emp - _ - manager
emp _+ SUpervising - -

Using *-free regular expressions, we define P as
follows.

Definition 3.3: A constraint ¢ of P’ is an expression
of either the forward form:
Va (p(r,) = Vy(a(z, y) = s(z, y))),

or the backward form:

Va(p(r, z) = Vy(q(z, y) = s(y,))),

where p, g and s are *-free regular expressions, denoted
by pf(®), lt(¢) and rt(¢), respectively.]

For example, path constraints ¢;, ¢ and ¢3 given
in Section 2 are P constraints, but they are not in P,.

A deterministic structure G satisfies a constraint ¢
of P¥, denoted by G |= ¢, if the following condition is
satisfied:

e when ¢ is a forward constraint: for all a,b € |G|,
if there exist paths @ € p and # € ¢ such that
G [a(r%, a) A B(a, b), then there exists a path
v € s such that G = v(a, b);

e when ¢ is a backward constraint: for all a,b € |G|,
if there exist paths « € p and 8 € ¢ such that
G E a(r%, a) A B(a, b), then there exists v € s
such that G |= (b, a).

The implication and finite implication problems for
P are formalized in the same way as for P, as de-
scribed in Section 3.2.

Obviously, P, is properly contained in P;*. Thus the

corollary below follows immediately from Theorem 3.2.

Corollary 3.3: In the context of SM, the implication
and finite implication problems for P}’ are undecidable.
|

In the next section, we shall show that this undecid-
ability result also breaks down in the context of DM.

3.4 Path constraint language P

We next further generalize the syntax of path expres-
sions by including the Kleene closure x as follows:

e i=¢|Kl|e-elete]e”

That is, we define path expressions to be general regular
expressions. Recall that the wildcard symbol can be
expressed as a (x-free) regular expression. In Section 2,
we have seen the following path expressions that can be
represented as regular expressions:

manager - manager*
emp - _ - manager*

Let p be a regular expression and p be a path. As
in Section 3.3, we use p € p to denote that p is in
the regular language generated by p. Similarly, we also
treat p as a logic formula p(z, y), and define the notion
of G = p(z, y) for deterministic structure G.

Using regular expressions, we define P’ as follows.

Definition 3.4: A constraint ¢) of P} is an expression
of either the forward form:

Va (p(r, z) = Vy(q(z, y) = s(z, y))),

or the backward form:

Va(p(r, z) = Yy (q(z, y) = s(y, 7)),

where p, ¢ and s are regular expressions, denoted by
pf (), lt(y) and rt(), respectively.]

For example, 7, ¥, and w3 given in Section 2 are

P? constraints, but they are in neither P. nor PY.

As in Section 3.3, for a deterministic structure G and
a P} constraint ¢, we can define the notion of G |= 9.
Similarly, we can formalize the implication and finite

implication problems for P}.

For example, let ¥ = {41, 2, ¢1, p2}. Then the
question whether ¥ |= ¢3 (X =y 3) is an instance of
the (finite) implication problem for PY. In Section 2,
this implication is used in the proof of the equivalence

of the queries Q)2 and Q).
Clearly, P is a proper subset of P}. Therefore, by

Corollary 3.3, we have the following.

Corollary 3.4: In the context of SM, the implication
and finite implication problems for P’ are undecidable.
n

In the next section, we shall show that this undecid-
ability result still holds in the context of DM .

4 Path constraint implication

In this section, we study the implication problems as-
sociated with P, P* and P} for the deterministic data
model DM . More specifically, we show the following.

Theorem 4.1: In the context of DM, the implication
and finite implication problems for P, are finitely ax-
iomatizable and are decidable in cubic-time. [

Proposition 4.2: In the context of DM, the implica-
tion and finite implication problems for P are decid-

able. n

Theorem 4.3: In the context of DM, the implication
and finite implication problems for P} are undecidable.
n

In contrast to Theorem 3.2 and Corollary 3.3, Theo-
rem 4.1 and Proposition 4.2 show that in the context of
DM, the implication problems for P, and P are decid-
able. This demonstrates that the determinism condition
of DM may simplify reasoning about path constraints.
However, Theorem 4.3 shows that this determinism con-
dition does not trivialize the problem of path constraint
implication.

4.1 Decidability of P,

We prove Theorem 4.1 in two steps. We first present
a finite axiomatization for P, constraint implication in
the context of DM . That is, we give a finite set of in-
ference rules that is sound and complete for implication
and finite implication of P. constraints. We then show
that in the context of DM, there is a cubic-time algo-
rithm for testing implication and finite implication of
P_. constraints.

4.1.1 A finite axiomatization

It is desirable to develop a finite set of inference rules for
path constraints. Inference rules can be used not only
for generating symbolic proofs of implication, but also
for studying the essential properties of the constraints.
In general, the existence of a finite set of inference rules

is a stronger property than the existence of an algorithm
for testing implication.

Before we present a finite axiomatization for P,, we
first study basic properties of P. constraints in the con-
text of DM . While Lemma 4.6 given below holds in the
context of both SM and DM, Lemmas 4.4 and 4.5 hold
in the context of DM but not in SM. Their proofs re-
quire Lemma 3.1. We omit the proofs of these lemmas
due to the lack of space, but we encourage the reader
to consult [14].

Lemma 4.4: Let ¢ be a forward constraint of P,:

=V (alr, z) = Vy Bz, y) = v(z, y))),

and 9 be a word constraint:

Y=Vax(a-B(r,x) > a vy(r, x)).

Then for every deterministic structure G, G = ¢ iff
G = . n

Word constraints are described in Definition 3.2.
Lemma 4.5: Let ¢ be a backward constraint of P,:

=V (alr, z) = Vy(B(z, y) =y, ©))),
and 9 be a word constraint:
Y=Vz(alr, z) > a6 -v(r x)).
Then for every deterministic structure G, if it is given
that G = Jz (a - B(r,), then G E ¢ iff G = 1.]
Lemma 4.6: For every finite subset £ U {¢} of P,

Ly it Tu{3z(pf(e)-ltle)(r, 2))} F e,
Y= it BU{Fz(pf(e) - Uit(e)(r, 2)} e,
where pf(p) and lt(p) are described in Definition 3.1.

m

Based on Lemma 4.6, we extend P. by including
constraints of the existential form as follows:
P?=P.U{3xp(r,) | pis a path}.

Constraints of the existential form enable us to assert
the existence of paths. As pointed out by [23], this abil-
ity is important for specifying Web link characteristics.

For P¢, we consider a set, of inference rules, Z,, given

below. Note that the last four inference rules in Z,. are
sound in DM because of Lemmas 4.4 and 4.5.

o Reflexivity:

Vz (a(r,z) = a(r,z))

e Transitivity:

Vz (a(r,z) = B(r.z)) Vz (B(r,z) = y(r, 7))
Vo (a(r,z) = v(r,x))

e Right-congruence:

Va (a(r,x) = B(r, z))
Vo (a-y(r,z) = B-7(r,z))

e Empty-path:
dz e(r, x)
e Prefix:
Jz (Oé) ﬁ(r,w))
Jz a(r,)
e Entail:
Jz a(r,z) VY (a(r,z) = B(r,x))
3z B(r, x)
e Symmetry:
Jdz a(r,z) Vz (alr,z) = B(r,z))

Vo (B(r,z) = alr,z))

Forward-to-word:
Vz (a(r,z) = Vy (B(z,y) = v(z,y)))
Vr (- B(r,z) = a-y(r,z))
Word-to-forward:
Vr (- B(r,z) > a-y(r,z))
Vr (a(r,z) = Vy (B(z,y) = v(z,v)))
e Backward-to-word:

3z (a - f(r,z)) Va(alr,z) = Yy (Ble,y) = 1(y, 2)))
Ve (a(r,z) = a-3-y(r,)

e Word-to-backward:
Jz (a-B(r,z)) Vz(a(r,z) > a-B-y(rz))
Va (a(r,z) = Vy (B(z,y) = v(y,2)))

Let ¥ U {®} be a finite subset of Pf. We use ¥ k7, ¢
to denote that ¢ is provable from ¥ using Z.. That is,
there is an Z.-proof of ¢ from X.

The following theorem shows that in the context of
DM, 7. is indeed a finite axiomatization of P..

Theorem 4.7: In the context of DM, for every finite
subset £ U {¢} of P,

TEe iff TU{3z(
TE=re iff TU{32(p

fp) - lt(p)(r,
f(p) - 1) (r,

z))} k1. @,
o)}z

Proof sketch: By Lemma 4.6, we only need to show
that T U {3z (pf(p) - lt()(r, 2))} = ¢ if and only if

SU{3z(pf(e) - lt(p)(r,)} Fz. ¢

Soundness of Z. can be verified by induction on the
lengths of Z.-proofs. For the proof of completeness, it
suffices to show the following;:

Claim: There is a finite deterministic structure G such
that G =X U {3z (pf(p) - lt(p)(rY, z))}. In addition,
if G |= ¢, then SU{3z (pf(p) - 1t(p)(r, 7))} Fz. .
To see why this claim suffices, suppose it is given
that SU {3z (pf(p) - lt(e)(r, x)))} E ¢. By the claim,
GE=EXU{3z(pf(p)-lt(p)(r, x)))}. Therefore, we have
G |= ¢. In addition, since G is finite, if it is the case
where XU {3z (pf(p) - lt(¢)(r,)} = ¢, then we also
have G |= ¢. Thus again by the claim, we have that

SU{3z(pf(e)-lt(p)(r,)} F1. ¢. Space limitations
do not allow us to include the lengthy definition of G.
The interested reader should consult [14].]
As an immediate corollary of Theorem 4.7, in the
context of DM, the implication and finite implication
problems for P, coincide and are decidable.
In addition, it can be shown that Z. is also a finite

axiomatization of Pf, by using a proof similar to that
of Theorem 4.7.

Theorem 4.8: In the context of DM, for every finite
subset ¥ U {¢} of P¢, if p € P., then

Yo it TU{3z(f(e) - ltle)(r,)} Fz. o,
YEre it SU{Fz(pfp) - lt(e)(r,)} 1. .

Otherwise, i.e., when ¢ is an existential constraints,
Y= iff kg, o,
¥ ‘:f Y2 iff ¥ I_Ic . ™

In the context of SM, [4] has shown that the first
three rules of Z,, i.e., Reflexivity, Transitivity and Right-
congruence, are sound and complete for word constraint
implication. In the context of DM, however, these rules
are no longer complete. To illustrate this, let a be a
path and consider the following word constraints:

¢ = V(e
¢ = Va(a(r
By Lemma 3.1, it can be verified that ¢ |= ¢. However,

this implication cannot be derived by using these three
rules.

In the context of DM, the first seven rules of Z.
are sound and complete for word constraint implication.
More specifically, let Z,, be the set consisting of these
seven rules. Then we can show the following by using a
proof similar to that of Theorem 4.7.

z) = a(r, z))
x) = e(r, x))

Theorem 4.9: In the context of DM, for every finite
set £ U {¢} of word constraints,

Y= iff Tu{3z(lt(e)(r
ke iff TU{Ixt(e)(r

z))} bz, @,
)}z, ¢ m

4.1.2 A cubic-time algorithm

Based on Theorem 4.7, we can show the following:

Proposition 4.10: There exists an algorithm that,
given a finite subset ¥ of P, and paths «, 3, computes
a finite deterministic structure G in time O(n?), where
n is the length of ¥ and a - 3. The structure G has the
following property: there are nodes a,b € |G| such that

G = a(r%, a) A B(a, b), and moreover, for any path 7,

G=7v(a,b) it YU{3z(a-B(r,z))}Fz, Vo (alr,)
- Vy(ﬁ(y) = (@, 9))),

GE=~v(b,a) if YU{3z(a-B(r,z))}Fz, Vo (alr,)
- Vy(ﬂ(y) =y, 2)))-

An algorithm having the properties described in the
proposition is given in the Appendix. The algorithm
constructs the structure G. Each step of the construc-
tion corresponds to an application of some inference rule
in Z.. The algorithm has low complexity because, by
Lemma 3.1, every constraint in ¥ is used at most once
by the algorithm. We do not include the proof of this
proposition due to the lack of space. The interested
reader should see [14] for a detailed proof.

By Theorem 4.7, we can use this algorithm for test-
ing implication and finite implication of P, constraints
in the context of DM.

4.2 Decidability of P

We next prove Proposition 4.2. To establish the decid-
ability of the implication and finite implication prob-
lems for P.”, it suffices to give a finite model argument.
That is, it suffices to show the following claim.

Claim: Let ¥ U {¢} be a finite subset of P, and let
¢ = ANE A . If there is a deterministic structure G
such that G = ¢, then there is a finite deterministic
structure H such that H = ¢.

For if the claim holds, then the implication and finite
implication problems for P! coincide and are decidable.

To show the claim, assume that there is a determin-
istic structure G satisfying ¢. Recall that a constraint
1 of PY is of either the form

c

o Va (pf()(r,) = Vy (1Y) (x, y) = rt(P)(z, y)))

(i.e., the forward form), or the form

o Va(pf()(r,) = Vy (1Y) (2, y) = rt(P)(y,)))

(i.e., the backward form),

where pf(v), lt(y)) and rt(¢) are *-free regular expres-
sions, as described in Definition 3.3. Let

PEs(¢) = A{pf(¥) - 1t(), pf() - rt(y) | ¥ € T U {p},
1 is of the forward form}

U A{pf(¥) - 1t(y) - rt(y) | ¢ € TU{p},
1 is of the backward form},
Pts(¢) ={e | ois apath, p e PEs(¢), o € p},
CloPts(¢) = {p | 0 € Pts(¢), p < o}

Here ¢ € p means that path g is in the regular language
generated by x-free regular expression p, and p < g
stands for that path p is a prefix of path g. Let E,4 be
the set of edge labels appearing in some path in Pts(g).
Then we define H to be (|H|, !, Ef) such that

o |H|={a| a€lGl|, pe CloPts($), G [z p(r, a)},

o 7l =G,

o for all a,b € |H| and K € E, H = K(a, b) iff
K € E4 and G |= K(a, b).

It is easy to verify that H |= ¢ and H is deterministic,
since G has these properties. By Lemma 3.1, the size
of |H| is at most the cardinality of CloPts(¢$), which is

finite because the regular language generated by a x-free
regular expression is finite. This proves the claim. It
should be noted that E4 and CloPts(¢) are determined

by ¢ only.

4.3 Undecidability of P}

Next, we prove Theorem 4.3. We establish the undecid-
ability of the implication and finite implication prob-
lems for P’ by reduction from the word problem for
(finite) monoids. Before we give the proof, we first re-
view the word problem for (finite) monoids.

4.3.1 The word problem for (finite) monoids

Let ? be a finite alphabet and (7*, -, €) be the free
monoid generated by 7. An equation over 7 is a pair
(a, B) of strings in ?*.

Let ©® = {(Oélﬂl) ‘ ai,B; € 7%, 1 € [ln]} and a
test equation 6 be (o, 3). We use © = 0 (0 |=; 6)
to denote that for every (finite) monoid (M, o, id) and
every homomorphism h : ?* — M, if h(a;) = h(5;) for
each i € [1,n], then h(a) = h(B).

The word problem for (finite) monoids is the prob-
lem to determine, given any © and 6, whether O |= 6
(© = 0).

The following result is well-known (see, e.g., [2]).

Theorem 4.11: Both the word problem for monoids
and the word problem for finite monoids are undecid-
able. [

4.3.2 Reduction from the word problem

We next present an encoding of the word problem for (fi-
nite) monoids in terms of the (finite) implication prob-
lem for P} in the context of DM.

c

Let 7 be a finite alphabet and ©g be a finite set of
equations over 7. Without loss of generality, assume
79 C E, where E is the set of binary relation symbols
in signature o described in Section 3. Assume

70 = {K;|jellml Ki#K;ifi#j}
@0 = {(az,ﬁz) | aiaﬂi € ?8, 1€ [17n]}
Note here that each symbol in 7 is a binary relation
symbol in E. Therefore, every o in 7j can be repre-

sented as a path, also denoted by a. We use - to denote
the concatenation operator for both paths and strings.

Let eg be the regular expression defined by:
e0= (K1 +Ky+ ...+ Kp)"

We encode O in terms of a subset ¥ of P, which
includes the following: for each i € [1,n]

Y

Va (60(7‘, l‘) - Vy(az(ma y) - ﬂl($7 y)))a
Va (60(7“, CU) - Vy (ﬁz(wv y) - Oéi(ﬂ?, y)))

Let («, B) be a test equation, where a and (3 are arbi-
trary strings in 7§. We encode this test equation as

¢ =V(eor, z) = Vy(alz, y) = Bz, y)))-

It should be noted that in the encoding above, only
forward constraints of P} are used. In addition, for
each ¢ € ¥ U {p}, lt(¢) and rt(¢) are simply paths
rather than complex regular expressions, where [¢(1))

and rt(¢) are described in Definition 3.4.

The lemma below shows that the encoding above is
indeed a reduction from the word problem for (finite)
monoids. From this lemma and Theorem 4.11, Theo-
rem 4.3 follows immediately.

Lemma 4.12: In the context of DM,
@0 |: (aa /6) iff ¥ ‘: ®s
B0y (a, B) iff T =y .

(a)
(b)

Proof sketch: We give a proof sketch of (b). The
proof of (a) is similar and simpler. Owing to the space
limit, we omit the details of the lengthy proof, but we
encourage the interested reader to consult [14].

(if) Suppose that ©¢ W~y (o, 8). Then there exist a
finite monoid M and a homomorphism h : 7§ — M such
that h(a;) = h(B;) for i € [1,n], but h(a) # h(B). We
show that there exists a finite deterministic structure
G, such that G = ¥ and G £ .

To do this, we define an equivalence relation on ? §:

p=o iff h(p)=h(o).

For every string p € 73, let p be the equivalence class
of p with respect to a2, and let o(p) be a distinct node.
Then we define a structure G = (|G|, 7%, EY), such
that |G| = {o(p) | p € 7%} and the root r¥ = o().
The binary relations are populated in G such that for
each K € E and o(5),0(d) € |G|, G | K(0(7). 0(2)) iff
p+ K € g. Tt can be verified that G is indeed a finite
deterministic structure. In addition, G = X and G }~ ¢.
A property of ey used in the proof is that € € eg. That
is, the empty path € is in the language generated by the
regular expression eg.

(only if) Suppose that there is a finite deterministic
structure G such that G = ¥ and G = —¢. Then we
define a finite monoid (M, o, id) and a homomorphism
h:?% — M such that for every i € [1,n], h(a;) = h(5;),
but h(a) # h(B).

To do this, we define another equivalence relation ~
on 7§ as follows:

pr~eiff GlEValel(rz) = Vy(p(z,y) = olz,y))) A
Va(eo(r,z) = Vy (o(z,y) = p(2,y))).
For every p € 7§, let [p] denote the equivalence class of p
with respect to ~. Then we define M = {[p] | p € 7¢},
operator o by [p] o [9] = [p - 0], identity id = [e], and
h:?5 = Mbyh: pw [p]. It can be verified that
(M, o, [¢]) is a finite monoid, h is a homomorphism,

10

and in addition, for every i € [1,n], h(a;) = h(5;),
but h(a) # h(B). In the proof, we use the following
property of eq: for any p € 7§, eg - p C eg. That is,
the language generated by the regular expression eq - p
is contained in the language generated by eq. [

5 Conclusion

We have investigated path constraints for the determin-
istic data model DM . Three path constraint languages
have been considered: FP., P and P’. While P, was
studied for the graph model SM for semistructured
data [11, 13], P* and P have not appeared in any
literature. We have demonstrated how constraints of
these languages might be used for, among other things,
query optimization. We have also studied implication
problems associated with these constraint languages in
the context of DM. More specifically, we have shown
that in contrast to the undecidability result of [11, 13]
established for SM, the implication and finite implica-
tion problems for P, and P’ are decidable in the con-
text of DM. In particular, the implication problems
associated with P, are decidable in cubic-time and are
finitely axiomatizable. These results show that the de-
terminism condition of DM may simplify the analysis
of path constraint implication. However, we have also
shown that the implication and finite implication prob-
lems for P’ remain undecidable in the context of DM .
This shows that the determinism condition does not

trivialize the problem of path constraint implication.
A number of important questions are open.

First, a more general deterministic data model for
semistructured data, DDM, was proposed in [10], in
which edge labels may also have structure. A type
system for DDM is currently under development, in
which certain path constraints are embedded. A nat-
ural question here is: do the decidability and undecid-
ability results established here hold in DDM? This
question becomes more intriguing when types are con-
sidered. As shown in [12], adding a type to the data in
some cases simplifies reasoning about path constraints,
and in other cases makes it harder.

Second, to define a richer data model for semistruc-
tured data, one may want to replace the set of edge
labels with a set of logic formulas, which possesses a
decidable satisfiability problem. A question here is: in
this new setting, do the decidability results of this paper
still hold?

Third, can path constraints help in reasoning about
the equivalence of data representations?

Finally, how should path constraints be used in rea-
soning about the containment and equivalence of path
queries? What kind of automatic tools should be devel-
oped to achieve this?

Acknowledgements. We thank Victor Vianu for com-
ments and discussions.

References

[1]

2]
3]

[10]

[11]

S. Abiteboul. “Querying semi-structured data”.
In Proc. 6th Int’l. Conf. on Database Theory
(ICDT’97), 1997.

S. Abiteboul, R. Hull, and V. Vianu. Foundations
of Databases. Addison-Wesly, 1995.

S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. Weiner. “The lorel query language for semistruc-
tured data”. J. Digital Libraries, 1(1), 1997.

S. Abiteboul and V. Vianu. “Regular path queries
with constraints”. In Proc. 16th ACM Symp. on
Principles of Database Systems (PODS’97), 1997.

C. Beeri and M. Y. Vardi. “Formal systems for tu-
ple and equality generating dependencies”. SIAM
J. Comput., 13(1): 76 - 98, 1984.

T. Bray, C. Frankston, and A. Malhotra. “Docu-
ment Content Description for XML”. W3C Note
NOTE-dcd-19980731. Available as http://www.
w3.org/TR/NOTE-dcd.

T. Bray, J. Paoli, and C. M. Sperberg-McQueen.
“Extensible Markup Language (XML) 1.0”. W3C
Recommendation REC-xml-19980210. Available as
http://wuw. w3.org/TR/REC-xml.

P. Buneman. “Semistructured data”. Tutorial in
Proc. 16th ACM Symp. on Principles of Database
Systems (PODS’97), 1997.

P. Buneman, S. Davidson, G. Hillebrand, and D.
Suciu. “A query language and optimization tech-
niques for unstructured data”. In Proc. ACM SIG-
MOD Int’l. Conf. on Management of Data, 1996.

P. Buneman, A. Deutsch, and W. Tan. “A deter-
ministic model for semi-structured data”. In Proc.
Workshop on Query Processing for Semistructured
Data and Non-Standard Data Formats, 1999.

P. Buneman, W. Fan, and S. Weinstein. “Path con-
straints on semistructured and structured data”. In
Proc. 17th ACM Symp. on Principles of Database
Systems (PODS’98), 1998.

P. Buneman, W. Fan, and S. Weinstein. “Interac-
tion between path and type constraints”. In Proc.
18th ACM Symp. on Principles of Database Sys-
tems (PODS’99), 1999.

P. Buneman, W. Fan, and S. Weinstein. “Path con-
straints in semistructured databases”. To appear in

J. Comput. System Sci. (JCSS).

P. Buneman, W. Fan, and S. Weinstein. “Path
constraints on deterministic graphs”. Technical
report MS-CIS-98-33, Department of Computer
and Information Science, University of Pennsyl-
vania, 1998. Available as ftp://ftp.cis.upenn.
edu/pub/papers/db-research/tr9833.ps.gz.

11

[15]

[16]

[17]

D. Calvanese, G. De Giacomo, and M. Lenzerini.
“What can knowledge representation do for semi-
structured data?” In Proc. 15th National Conf. on
Artificial Intelligence (AAAI/TAAI’98), 1998.

D. Calvanese, G. De Giacomo, M. Lenzerini, and
D. Nardi. “Reasoning in expressive description log-
ics”. In A. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning. Elsevier, 1999.

A. Deutsch, M. Fernandez, D. Florescu, A. Levy,
and D. Suciu. “XML-QL: a query language for
XML”. W3C Note NOTE-xml-ql-19980819. Avail-
able as http://www.w3.org/TR/NOTE-xml-ql.

H. B. Enderton. A mathematical introduction to
logic. Academic Press, 1972.

M. Fuchs, M. Maloney, and A. Milowski. “Schema
for object-oriented XML”. W3C Note NOTE-SOX-
19980930. See http://www.w3.org/TR/NOTE-SOX.

D. Harel. “Dynamic logic”. In D. M. Gabbay and
F. Guenthner, editors, Handbook of Philosophical
Logic. 1I: Extensions of Classical Logic. D. Reidel
Publ. Co., 1984.

O. Lassila and R. R. Swick. “Resource Descrip-
tion Framework (RDF) model and syntax spec-
ification”. W3C Working Draft WD-rdf-syntax-
19981008. Available as http://wuw.w3.org/TR/
WD-rdf-syntax.

A. Layman, E. Jung, E. Maler, H. S. Thomp-
son, J. Paoli, J. Tigue, N. H. Mikula, and S.
De Rose. “XML-Data”. W3C Note NOTE-XML-
data-980105. See http://www.w3.org/TR/1998/
NOTE-XML-data.

E. Maler and S. De Rose. “XML Linking lan-
guage (XLink)”. W3C Working Draft WD-xlink-
19980303. See http://www.w3.org/TR/WD-x1ink.

A. O. Mendelzon, G. A. Mihaila, and T. Milo.
“Querying the World Wide Web”. J. Digital Li-
braries, 1(1), 1997.

L. Popa and V. Tannen. “An equational chase for
path-conjunctive queries, constraints, and views”.
In Proc. of 7th Int.’l Conf. on Database Theory
(ICDT’99), 1999.

W. C. Rounds. “Feature logics”. In J. van Benthem
and A. ter Meulen, editors, Handbook of Logic and
Language. Elsevier, 1997.

J. Thierry-Mieg and R. Durbin. “Syntactic defini-
tions for the ACEDB data base manager”. Tech-
nical Report MRC-LMB xx.92, MRC Laboratory
for Molecular Biology, Cambridge, CB2 2QH, UK,
1992.

M. Y. Vardi and P. Wolper. “Automata-theoretic
techniques for modal logic of programs”. J. Com-
put. System Sci. (JCSS), 32(2), 1986.

Appendix

The algorithm for testing implication and finite implication of P, constraints is shown in Table 1. The procedure
merge used in the algorithm is given in Table 2.

Algorithm

Input: a finite subset X of P, and paths «a, 3
Output: the structure G described in Proposition 4.10

1. Ey := the set of edge labels appearing in either o - 8 or some path in constraints of ¥;
2. Rules :=%;
3. G := (|G|, r¢, Ef), where
o |G| ={o(p) | p = a- B, o(p) is a distinct node},
o % =o(e),
) Eg is populated such that G = K(o(p), o(0)) iff 0 = p - K;;
4. repeat until no further change:
() ifVa (p(r,) = Yy (o(z, y) = ((z, y))) € L and there are 0,,0,., € |G| such that
G E p(r%, 0,) A o(op, 0,.,) then
(i) Rules := Rules \ {Vz (p(r, z) = Vy (o(z, y) = ((z, ¥)))};
(ii) for each £ - K < ¢ do
if there is no o € |G| such that G |= ¢ - K(o,, 0) then
(a) add to |G| a distinct node 0,.¢.x;
(b) add to Eg an edge labeled K from o,.¢ t0 0,.¢. K,
where 0,.¢ € |G| such that G = £(0,, 0p.¢);
(iii) merge(0p.q, 0p.¢);
(2)ifVa (p(r,) = Yy (o(z, y) = ((y,2))) € ¥ and there are 0,,0,., € |G| such that
G = p(r9, 0p) A 0(0p, 0p.5) then
(i) Rules := Rules \ {Vz (p(r,) = Yy (o(z, y) = ((y, ©)))};
(ii) for each £ - K < ¢ do
if there is no o € |G| such that G |= £ - K(0,.,, 0) then
(a) add to |G| a distinct node 0,.p.¢.k;
(b) add to E§ an edge labeled K from 0.6 t0 0p.g.6.K;
where 0,.,.¢ € |G| such that G |= £(0p.q, 0p.p-¢);
(iii) merge(op, 0p.g-);
5. output G.

Table 1: An algorithm for testing P, constraint implication in DM

procedure merge(a, b)

1. for each K € E4 do
if there is 0 € |G| such that G |= K (o, b) then
(1) delete from Eg the edge labeled K from o to b;
(2) add to Eg an edge labeled K from o to a;
2. for each K € Ey4 do
if there is 0, € |G| such that G = K (b, 0p) then
(1) delete from Ef the edge labeled K from b to o;
(2) add to E§ an edge labeled K from a to op;
(3) if there is o, € |G| such that G = K(a,0,) and o, # oy then
merge(oa, 0p);

3. |G| = G|\ {b};

Table 2: Procedure merge

12

