
Query Optimization for Semistructured Data using Path Constraintsin a Deterministic Data ModelPeter Buneman�University of Pennsylvaniapeter@central.cis.upenn.edu Wenfei FanyTemple Universityfan@joda.cis.temple.edu Scott WeinsteinzUniversity of Pennsylvaniaweinstein@linc.cis.upenn.eduAbstractPath constraints have been studied in [4, 11, 12, 13] forsemistructured data modeled as a rooted edge-labeleddirected graph. They have proven useful in the opti-mization of path queries. However, in this graph model,the implication problems associated with many naturalpath constraints are undecidable [11, 13]. A variant ofthe graph model, called the deterministic data model ,was recently proposed in [10]. In this model, data is rep-resented as a graph with deterministic edge relations,i.e., the edges emanating from any node in the graphhave distinct labels. The deterministic graph model ismore appropriate for representing, for example, ACeDB[27] databases and Web sites.This paper investigates path constraints for the de-terministic data model. It demonstrates the applicationof path constraints to, among other things, query opti-mization. Three classes of path constraints are consid-ered: the language Pc introduced in [11], an extensionof Pc, denoted by Pwc , by including wildcards in pathexpressions, and a generalization of Pwc , denoted by P �c ,by representing paths as regular expressions. The im-plication problems for these constraint languages arestudied in the context of the deterministic data model.It shows that in contrast to the undecidability resultof [11], the implication and �nite implication problemsfor Pc are decidable in cubic-time and are �nitely ax-iomatizable. Moreover, the implication problems aredecidable for Pwc . However, the implication problemsfor P �c are undecidable.1 IntroductionSemistructured data is usually modeled as an edge-labeled rooted directed graph [1, 8]. Let us refer to thisgraph model as the semistructured data model (SM).For data found in many applications, the graph is de-terministic, i.e., the edges emanating from each nodein the graph have distinct labels. For example, whenmodeling Web pages as a graph, a node stands for anHTML document and an edge represents a link withan HTML label from one document (source) to another�This work was partly supported by the Army Research O�ce(DAAH04-95-1-0169) and NSF Grant CCR92-16122.ySupported in part by Temple University.zSupported by NSF Grant CCR-9403447.

(target). It is reasonable to assume that the HTML la-bel uniquely identi�es the target document. Even if thisis not literally the case, one can achieve this by includ-ing the URL (Universal Resource Locator) of the targetdocument in the edge label. This yields a determinis-tic graph. As another example, consider ACeDB [27],which is a database management system popular withbiologists. A graph representing an ACeDB databaseis also deterministic. In general, any database with\exportable" data identities can be modeled as a de-terministic graph by including the identities in the edgelabels. Here by exportable identities we mean directlyobservable identities such as keys. Some relational andobject-oriented database management systems supportexportable identities. In particular, in the OEM model(see, e.g., [3]), there are exportable object identities. Tocapture this, we consider a data model for semistruc-tured data which is a variant of SM , referred to asthe deterministic data model (DM). In DM , data isrepresented as a deterministic, rooted, edge-labeled, di-rected graph. An important feature of DM is that inthis model, each component of a database is uniquelyidenti�ed by a path.A number of query languages (e.g., [3, 9, 24]) havebeen developed for semistructured data. The studyof semistructured data has also generated the designof query languages for XML (eXtensible Markup Lan-guage [7]) documents (e.g., [17]). In these languages,queries are described in terms of navigation paths. Tooptimize path queries, it often appears necessary to usestructural information about the data described by pathconstraints. Path constraints are capable of express-ing natural integrity constraints that are a fundamen-tal part of the semantics of the data, such as inclusiondependencies and inverse relationships. In traditionalstructured databases such as object-oriented databases,this semantic information is described in schemas. Un-like structured databases, semistructured data does nothave a schema, and path constraints are used to conveythe semantics of the data. The approach to queryingsemistructured data with path constraints was proposedin [4] and later studied in [11, 12, 13]. Several proposals(e.g., [6, 19, 21, 22]) for adding structure or type sys-tems to XML data also advocate the need for integrityconstraints that can be expressed as path constraints.To use path constraints in query optimization, it isimportant to be able to reason about them. That is,1

Emp

e3

manager manager

name

E3

e1

e2e1 d1 d2

D1 D2

name

"design"

namename

Dept

r
emp dept

e2

E2E1

"Joe" "Smith""Brady" e1

emp

e3

supervisingsupervisingFigure 1: An example semistructured database in DMwe need to settle the question of constraint implication:given that certain constraints are known to hold, doesit follow that some other constraint is necessarily satis-�ed? In the context of databases, only �nite instances(graphs) are considered, and constraint implication isreferred to as �nite implication. In the traditional logicframework, both in�nite and �nite instances (graphs)are permitted, and constraint implication is called un-restricted implication or simply implication. For thegraph model SM , it has been shown that the implica-tion problems associated with many natural integrityconstraints are undecidable. For example, the impli-cation problem for the simple constraint language Pcstudied in [11, 12, 13] is r.e. complete, and the �niteimplication problem for Pc is co-r.e. complete [11, 13].In addition, we have already studied the connectionbetween object-oriented databases and semistructureddatabases in SM with Pc constraints in [12]. The re-sults of [12] show that the connection is not simple.In this paper, we investigate path constraints for thedeterministic data model DM . We demonstrate appli-cations of path constraints to semantic speci�cation andquery optimization, and study the implication problemsassociated with path constraints. We show that in con-trast to the undecidability result of [11, 13], the implica-tion and �nite implication problems for Pc are decidablein cubic-time and are �nitely axiomatizable in the con-text of DM . That is, there is a �nite set of inferencerules that is sound and complete for implication and �-nite implication of Pc constraints, and in addition, thereis an algorithm for testing Pc constraint implication intime O(n3), where n is the length of constraints. Thisdemonstrates that the determinism condition of DMsimpli�es the analysis of path constraint implication.We also introduce and investigate two generalizationsof Pc. One generalization, denoted by Pwc , is de�ned byincluding wildcards in path expressions. The other, de-noted by P �c , represents paths by regular expressions.We show that in the context of DM , the implicationand �nite implication problems for Pwc are also decid-able. However, the implication and �nite implicationproblems for P �c are undecidable in the context of DM .This undecidability result shows that the determinism

condition of DM does not reduce the analysis of pathconstraint implication to a trivial problem.The rest of the paper is organized as follows. Sec-tion 2 uses an example to illustrate how path constraintscan be used in query optimization. Section 3 reviewsthe de�nition of Pc constraints proposed in [11], andintroduces two extensions of Pc, namely, Pwc and P �c .Section 4 studies the implication and �nite implicationproblems for Pc, Pwc and P �c for the deterministic datamodel. Finally, Section 5 identi�es open problems anddirections for further work. A cubic-time algorithmfor testing implication and �nite implication of Pc con-straints is given in an Appendix.2 An exampleTo demonstrate applications of path constraints, let usconsider Figure 1, which collects information on em-ployees and departments. It is an example of semistruc-tured data represented in the deterministic data model.In Figure 1, there are two edges emanating from rootnode r, which are labeled emp and dept and connectedto nodes Emp and Dept, respectively. Edges emanatingfrom Emp are labeled with employee ID's and connectedto vertices representing employees. An employee nodemay have three edges emanating from it: an edge la-beled manager and connected to his/her manager, anedge labeled supervising that connects to a node fromwhich there are outgoing edges connected to employeesunder his/her supervision, and an edge labeled name.Similarly, there are vertices representing departmentsthat may have edges connected to employees. Observethat Figure 1 is deterministic.Path constraints. Typical path constraints on Fig-ure 1 include:8x (emp � �manager(r; x)! emp � (r; x)) (�1)8x (emp � � supervising � (r; x)!emp � (r; x)) (�2)8x (emp � (r; x)! 8 y (manager(x; y)!supervising � (y; x))) (�3)2

Here r is a constant denoting the root of the graph,variables x and y range over vertices, and \ " is a \wild-card" symbol, which matches any edge label. A pathin the graph is a sequence of edge labels, which can beexpressed as a logic formula �(x; y) that holds in thegraph if � is a sequence of edge labels from vertex xto y. For example, emp � e1 � manager can be expressedas a logic formula, which holds in Figure 1. Path for-mulas can be naturally generalized to include wildcards.The path constraints above describe inclusion relations.More speci�cally, �1 states that if a node is reached fromthe root r by following emp � � manager, then it is alsoreachable from r by following emp � . It asserts that themanager of any employee is also an employee that oc-curs in the database. Similarly, �2 states that if a nodeis reached from r by following emp � � supervising � ,then it is also reachable from r by following emp � .Constraint �3 states that for any employee x and forany y, if x is connected to y by a manager edge, then xis reachable from y by following supervising � . Theseare constraints of Pwc , one of the path constraint lan-guages studied in this paper.We generalize Pwc by representing paths as regularexpressions. This generalization is denoted by P �c . Forexample, the following are constraints of P �c :8x (emp � (r; x)! 8 y (manager �manager�(x; y)! supervising � (y; x))) (1)8x (emp � (r; x)! 8 y (supervising � (x; y)! manager �manager�(y; x))) (2)Here � is the Kleene star. These constraints describean inverse relationship between manager � manager� andsupervising � . More speci�cally, 1 asserts that forany employee x and for any y, if y is reachable from x byfollowing one or more manager edges, then x is reach-able from y by following path supervising � . Sim-ilarly, 2 asserts that if y is reachable from x by fol-lowing supervising � , then x is reachable from y byfollowing one or more manager edges.A subclass of P �c , Pc, has been investigated in [11,12, 13] for the graph model SM for semistructured data.As opposed to P �c constraints, path constraints of Pccontain neither wildcards nor the Kleene star. In thedeterministic data model, Pc constraints express pathequalities. For example, the following can be describedby Pc constraints:emp � e1 �manager = emp � e2 ('1)dept � d1 � emp � e1 = emp � e1 ('2)Observe that the paths in the constraints above containneither wildcards nor the Kleene closure.Semantic speci�cation with path constraints.The path constraints above describe certain typing in-formation about the data. For example, abusing object-oriented database terms, �1 asserts that a manager of anemployee has an \employee type", and in addition, is inthe \extent" of \class" employee. By using �1, it can be

shown that for any employee x and any y, if y is reach-able from x by following zero or more manager edges,then y also has an \employee type" and is in the \ex-tent" of employee. A preliminary type system was pro-posed in [10] for the deterministic data model, in whichthe types of paths are de�ned by means of path con-straints. This is a step towards unifying the (program-ming language) notion of a type with the (database)notion of a schema.Query optimization with path constraints. Toillustrate how path constraints can be used in queryoptimization, consider again the database representedin Figure 1. Suppose, for example, we want to �nd thename of the employee with ID e1 in department d1.One may write the query as Q1 (in Lorel syntax [3]):Q1: select X.namefrom r.dept.d1.emp.e1 XGiven path constraint '2, the queryQ1 can be rewrittenas Q01:Q01: select X.namefrom r.emp.e1 XOne can easily verify that Q1 and Q01 are equivalent.As another example, suppose we want to �nd thenames of the employees connected to Smith by one ormore manager edges. Without path constraints, onewould write the query as Q2 (in Lorel syntax):Q2: select X.namefrom r.emp.% X, X(.manager)+ Ywhere Y.name = "Smith"In Lorel, % denotes wildcard and (.manager)+ meansone or more occurrences of .manager. Given constraints 1, 2, �1 and �2, we can rewrite Q2 as Q02, which �ndsthe names of the employees under the supervision ofSmith:Q02: select X.namefrom r.emp.% Y, Y.supervising.% Xwhere Y.name = "Smith"It can be veri�ed that given those path constraints, Q2and Q02 are equivalent. In addition, Q02 is more e�cientthan Q2 because it does not require the traversal ofsequences of manager edges. It should be mentionedthat to showQ2 andQ02 are equivalent, we need to verifythat certain constraints necessarily hold given that 1, 2, �1 and �2 hold. That is, they are implied by 1, 2, �1 and �2. In particular, we need to show that 3below is implied by 1, 2, �1 and �2:8x (emp � �manager�(r; x)! emp � (r; x)) (3)Related work. A more general deterministic datamodel, DDM , was proposed in [10]. In DDM , edgelabels also have structure, and a number of databaseoperations may be obtained by manipulation of thisstructure. In particular, annotations can be described3

in this structure for the purpose of data provenance,i.e., to keep track by what process some piece of datagot into the database. To simplify the discussion we donot consider this general model here.Path constraints have been studied in [4, 11, 12, 13].The constraints of [4] have either the form p � q orp = q, where p and q are regular expressions repre-senting paths. These constraints were investigated forthe graph model SM for semistructured data. The de-cidability of the implication problems for this form ofconstraints was established in [4] in the context of SM .Another path constraint language, Pc, was introducedand studied in [11] for SM . It was shown there thatdespite the simple syntax of Pc, its associated implica-tion and �nite implication problems are undecidable inthe context of SM . The details of the proofs of theseundecidability results can be found in [13]. The in-teraction between Pc constraints and type systems wasinvestigated in [12]. However, none of these papers hasconsidered the deterministic data model. In addition,path constraint languages Pwc and P �c were not studiedin these papers.Recently, the application of integrity constraints toquery optimization was also studied in [25]. Amongother things, [25] developed an equational theory forquery rewriting by using a certain form of constraints.The connection between semistructured databases inSM with Pc constraints and object-oriented databaseshas been studied in [12]. Object-oriented databases areconstrained by types, e.g., class types with single-valuedand set-valued attributes, whereas databases in SM arein general free of these type constraints. These typescannot be expressed as path constraints and vice versa.As an example, it has been shown in [12] that there is aPc constraint implication problem that is decidable inPTIME in the context of SM , but that becomes unde-cidable when an object-oriented type system is added.On the other hand, there is a Pc constraint implicationproblem that is undecidable in the context of SM , butbecomes decidable in PTIME when an object-orientedtype system is imposed.There is a natural analogy between the work on pathconstraints and inclusion dependency theory developedfor relational databases. Path constraints specify inclu-sions among certain sets of objects, and can be viewedas a generalization of inclusion dependencies. Inclusiondependencies have proven useful in semantic speci�ca-tion and query optimization for relational databases.In the same way, path constraints are important in avariety of database contexts, ranging from semistruc-tured data to object-oriented databases. It should bementioned that the path constraints considered in thispaper are not expressible in any class of dependenciesstudied for relational databases, including inclusion andtuple-generating dependencies [5]. See [2] for in-depthpresentations of dependency theories.The results established on path constraint implica-tion in this paper may �nd applications to other �elds.

Indeed, if we view vertices in a graph as states and la-beled edges as actions, then the deterministic graphsconsidered here are in fact Kripke models studied indeterministic propositional dynamic logic (DPDL. See,e.g., [20, 28]), which is a powerful language for reasoningabout programs. These deterministic graphs may alsobe viewed as feature structures studied in feature logics[26]. It should be mentioned that DPDL and featurelogics are modal logics, in which our path constraintsare not expressible.Description logics (see, e.g., [16]) reason about con-cept subsumption, which can be expressed as inclusionassertions similar to path constraints. There has beenwork on specifying constraints on semistructured databy means of description logics [15]. One of the most ex-pressive description logics used in the database contextis ALCQIreg [16], which allows negation, conjunction,disjunction, quali�ed universal and existential quanti�-cation, quali�ed number restriction, and in addition,provides constructs to form regular expressions such asrole union, role concatenation, transitive closure androle identity. It is known that ALCQIreg correspondsto propositional dynamic logic (PDL) with converse andgraded modalities [16, 20]. We should remark here thatour path constraints are not expressible in ALCQIreg .3 Deterministic graphs and path constraintsIn this section, we �rst give an abstraction of semistruc-tured databases in DM in terms of �rst-order logic, andthen present three path constraint languages: Pc, Pwcand P �c .3.1 The deterministic data modelIn the graph model SM , a database is represented as anedge-labeled rooted directed graph [1, 8]. An abstrac-tion of databases in SM has been given in [11] as (�nite)�rst-order logic structures of a relational signature� = (r; E);where r is a constant denoting the root and E is a �niteset of binary relation symbols denoting the edge labels.In the deterministic data model DM , a database isrepresented as an edge-labeled rooted directed graphwith deterministic edge relations. That is, for any edgelabel K and node a in the graph, there exists at mostone edge labeled K going out of a. Along the same linesof the abstraction of databases in SM , we represent adatabase in DM as a (�nite) �-structure satisfying thedeterminism condition:K̂2E8x y z (K(x; y) ^K(x; z)! y = z):Such structures are called deterministic structures . Adeterministic structure G is speci�ed by (jGj; rG; EG),where jGj is the set of nodes in G, rG is the root node,and EG is the set of binary relations on jGj, each ofwhich is named by a relation symbol of E.4

3.2 Path constraint language PcNext, we review the de�nition of Pc constraints intro-duced in [11]. To do this, we �rst present the notion ofpaths.A path is a sequence of edge labels. Formally, pathsare de�ned by the syntax:� ::= � j K j K � �Here � is the empty path, K 2 E, and � denotes pathconcatenation. Paths de�ned above are the simplestform of path expressions. We shall present more generalforms of path expressions shortly in this section.A path � is said to be a pre�x of % if there exists
,such that % = � �
.We have seen many examples of paths in Section 2.Among them are:emp � e1 �managerdept � d1 � emp � e1A path can be expressed as a �rst-order logic formula�(x; y) with two free variables x and y, which denote thetail and head nodes of the path, respectively. For exam-ple, the paths above can be described by the followingformulas:9 z (emp(x; z) ^ 9w (e1(z; w) ^manager(w; y)))9 z (dept(x; z) ^ 9w (d1(z; w) ^ 9u (emp(w; u) ^e1(u; y))))We write �(x; y) as � when the parameters x and y areclear from the context.By treating paths as logic formulas, we are able toborrow the standard notion of models from �rst-orderlogic [18]. Let G be a deterministic structure, �(x; y)be a path formula and a, b be nodes in jGj. We useG j= �(a; b) to denote that �(a; b) holds in G, i.e., thereis a path � from a to b in G.The length of path �, j�j, is de�ned by:j�j = 8<: 0 if � = �1 if � = K1 + j%j if � = K � %For example, jemp � e1j = 2 and jdept � d1 � emp � e1j= 4.By a straightforward induction on the lengths ofpaths, it can be veri�ed that deterministic graphs havethe following property.Lemma 3.1: Let G be a deterministic structure. Thenfor any path � and node a 2 jGj, there is at most onenode b such that G j= �(a; b).This lemma shows that in DM , any component of adatabase can be uniquely identi�ed by a path.Path constraints of Pc introduced in [11] are de�nedin terms of path formulas.De�nition 3.1 [11]: A path constraint ' of Pc is anexpression of either the forward form8x (�(r; x)! 8 y (�(x; y)!
(x; y)));

or the backward form8x (�(r; x)! 8 y (�(x; y)!
(y; x))):Here �; �;
 are path formulas. Path � is called the pre-�x of ', denoted by pf('). Paths � and
 are denotedby lt(') and rt('), respectively.For example, '1 and '2 given in Section 2 can bedescribed by Pc constraints.A forward constraint of Pc asserts that for any vertexx that is reached from the root r by following path �and for any vertex y that is reached from x by followingpath �, y is also reachable from x by following path
.Similarly, a backward Pc constraint states that for anyx that is reached from r by following � and for any ythat is reached from x by following �, x is also reachablefrom y by following
.A proper subclass of Pc was introduced and studiedin [4]:De�nition 3.2 [4]: A word constraint is an expressionof the form 8x (�(r; x)!
(r; x));where � and
 are path formulas.In other words, a word constraint is a forward con-straint of Pc with its pre�x being the empty path �. Ithas been shown in [11] that many Pc constraints cannotbe expressed as word constraints or even by the moregeneral constraints given in [4].Next, we describe implication and �nite implicationof Pc constraints in the context of the deterministic datamodel. We assume the standard notion of model from�rst-order logic [18]. Let G be a deterministic structureand ' be a Pc constraint. We use G j= ' to denote thatG satis�es ' (i.e., G is a model of '). Let � be a �niteset of Pc constraints. We use G j= � to denote that Gsatis�es � (i.e., G is a model of �). That is, for every� 2 �, G j= �.Let � [f'g be a �nite subset of Pc. We use � j= 'to denote that � implies ' in the context of DM . Thatis, for every deterministic structure G, if G j= �, thenG j= '. Similarly, we use � j=f ' to denote that ��nitely implies '. That is, for every �nite deterministicstructure G, if G j= �, then G j= '.In the context of DM , the implication problem forPc is the problem to determine, given any �nite subset�[f'g of Pc, whether � j= '. Similarly, the �nite im-plication problem for Pc is the problem of determiningwhether � j=f '.In the context of the graph model SM , the struc-tures considered in the implication problems for Pc are�-structures, which are not necessarily deterministic. Itwas shown in [11, 13] that in SM , the implication and�nite implication problems for Pc are undecidable.Theorem 3.2 [11]: In the context of SM , the im-plication problem for Pc is r.e. complete, and the �niteimplication problem for Pc is co-r.e. complete.5

In the next section, we shall show that this undecid-ability result no longer holds in the context of DM .3.3 Path constraint language PwcLet us generalize the syntax of path expressions by in-cluding the union operator + as follows:w ::= � j K j w � w j w + wThat is, we de�ne path expressions to be regular expres-sions which do not contain the Kleene closure. Let usrefer to such expressions as �-free regular expressions .Let p be a �-free regular expression and � be a path.We use � 2 p to denote that � is in the regular languagegenerated by p.We also treat a �-free regular expression p as a logicformula p(x; y), where x and y are free variables. Wesay that a deterministic structure G satis�es p(x; y),denoted by G j= p(x; y), if there exist path � 2 p andnodes a; b 2 jGj such that G j= �(a; b).The following should be noted about �-free regularexpressions.� The regular language generated by a �-free regularexpression is �nite.� Recall that the wildcard symbol \ " matches anyedge label. We can express \ " as a �-free regularexpression. More speci�cally, let E, the �nite set ofbinary relation symbols in signature �, be enumer-ated as K1; K2; :::; Kn. Then \ " can be de�nedas �-free regular expression:K1 +K2 + ::: + Kn:For example, we have seen in Section 2 the follow-ing path expressions that can be represented as �-freeregular expressions:emp � �manageremp � � supervising �Using �-free regular expressions, we de�ne Pwc asfollows.De�nition 3.3: A constraint � of Pwc is an expressionof either the forward form:8x (p(r; x)! 8 y (q(x; y)! s(x; y)));or the backward form:8x (p(r; x)! 8 y (q(x; y)! s(y; x)));where p, q and s are �-free regular expressions, denotedby pf(�), lt(�) and rt(�), respectively.For example, path constraints �1, �2 and �3 givenin Section 2 are Pwc constraints, but they are not in Pc.A deterministic structure G satis�es a constraint �of Pwc , denoted by G j= �, if the following condition issatis�ed:

� when � is a forward constraint: for all a; b 2 jGj,if there exist paths � 2 p and � 2 q such thatG j= �(rG; a) ^ �(a; b), then there exists a path
 2 s such that G j=
(a; b);� when � is a backward constraint: for all a; b 2 jGj,if there exist paths � 2 p and � 2 q such thatG j= �(rG; a) ^ �(a; b), then there exists
 2 ssuch that G j=
(b; a).The implication and �nite implication problems forPwc are formalized in the same way as for Pc, as de-scribed in Section 3.2.Obviously, Pc is properly contained in Pwc . Thus thecorollary below follows immediately from Theorem 3.2.Corollary 3.3: In the context of SM , the implicationand �nite implication problems for Pwc are undecidable.In the next section, we shall show that this undecid-ability result also breaks down in the context of DM .3.4 Path constraint language P �cWe next further generalize the syntax of path expres-sions by including the Kleene closure � as follows:e ::= � j K j e � e j e+ e j e�That is, we de�ne path expressions to be general regularexpressions. Recall that the wildcard symbol can beexpressed as a (�-free) regular expression. In Section 2,we have seen the following path expressions that can berepresented as regular expressions:manager �manager�emp � �manager�Let p be a regular expression and � be a path. Asin Section 3.3, we use � 2 p to denote that � is inthe regular language generated by p. Similarly, we alsotreat p as a logic formula p(x; y), and de�ne the notionof G j= p(x; y) for deterministic structure G.Using regular expressions, we de�ne P �c as follows.De�nition 3.4: A constraint of P �c is an expressionof either the forward form:8x (p(r; x)! 8 y (q(x; y)! s(x; y)));or the backward form:8x (p(r; x)! 8 y (q(x; y)! s(y; x)));where p, q and s are regular expressions, denoted bypf(), lt() and rt(), respectively.For example, 1, 2 and 3 given in Section 2 areP �c constraints, but they are in neither Pc nor Pwc .As in Section 3.3, for a deterministic structure G anda P �c constraint , we can de�ne the notion of G j= .Similarly, we can formalize the implication and �niteimplication problems for P �c .6

For example, let � = f 1; 2; �1; �2g. Then thequestion whether � j= 3 (� j=f 3) is an instance ofthe (�nite) implication problem for P �c . In Section 2,this implication is used in the proof of the equivalenceof the queries Q2 and Q02.Clearly, Pwc is a proper subset of P �c . Therefore, byCorollary 3.3, we have the following.Corollary 3.4: In the context of SM , the implicationand �nite implication problems for P �c are undecidable.In the next section, we shall show that this undecid-ability result still holds in the context of DM .4 Path constraint implicationIn this section, we study the implication problems as-sociated with Pc, Pwc and P �c for the deterministic datamodel DM . More speci�cally, we show the following.Theorem 4.1: In the context of DM , the implicationand �nite implication problems for Pc are �nitely ax-iomatizable and are decidable in cubic-time.Proposition 4.2: In the context of DM , the implica-tion and �nite implication problems for Pwc are decid-able.Theorem 4.3: In the context of DM , the implicationand �nite implication problems for P �c are undecidable.In contrast to Theorem 3.2 and Corollary 3.3, Theo-rem 4.1 and Proposition 4.2 show that in the context ofDM , the implication problems for Pc and Pwc are decid-able. This demonstrates that the determinism conditionof DM may simplify reasoning about path constraints.However, Theorem 4.3 shows that this determinism con-dition does not trivialize the problem of path constraintimplication.4.1 Decidability of PcWe prove Theorem 4.1 in two steps. We �rst presenta �nite axiomatization for Pc constraint implication inthe context of DM . That is, we give a �nite set of in-ference rules that is sound and complete for implicationand �nite implication of Pc constraints. We then showthat in the context of DM , there is a cubic-time algo-rithm for testing implication and �nite implication ofPc constraints.4.1.1 A �nite axiomatizationIt is desirable to develop a �nite set of inference rules forpath constraints. Inference rules can be used not onlyfor generating symbolic proofs of implication, but alsofor studying the essential properties of the constraints.In general, the existence of a �nite set of inference rules

is a stronger property than the existence of an algorithmfor testing implication.Before we present a �nite axiomatization for Pc, we�rst study basic properties of Pc constraints in the con-text of DM . While Lemma 4.6 given below holds in thecontext of both SM and DM , Lemmas 4.4 and 4.5 holdin the context of DM but not in SM . Their proofs re-quire Lemma 3.1. We omit the proofs of these lemmasdue to the lack of space, but we encourage the readerto consult [14].Lemma 4.4: Let ' be a forward constraint of Pc:' = 8x (�(r; x)! 8 y (�(x; y)!
(x; y)));and be a word constraint: = 8x (� � �(r; x)! � �
(r; x)):Then for every deterministic structure G, G j= ' i�G j= .Word constraints are described in De�nition 3.2.Lemma 4.5: Let ' be a backward constraint of Pc:' = 8x (�(r; x)! 8 y (�(x; y)!
(y; x)));and be a word constraint: = 8x (�(r; x)! � � � �
(r; x)):Then for every deterministic structure G, if it is giventhat G j= 9x (� � �(r; x)), then G j= ' i� G j= .Lemma 4.6: For every �nite subset � [f'g of Pc,� j= ' i� � [f9x (pf(') � lt(')(r; x))g j= ';� j=f ' i� � [f9x (pf(') � lt(')(r; x))g j=f ';where pf(') and lt(') are described in De�nition 3.1.Based on Lemma 4.6, we extend Pc by includingconstraints of the existential form as follows:P ec = Pc [f9x �(r; x) j � is a pathg:Constraints of the existential form enable us to assertthe existence of paths. As pointed out by [23], this abil-ity is important for specifying Web link characteristics.For P ec , we consider a set of inference rules, Ic, givenbelow. Note that the last four inference rules in Ic aresound in DM because of Lemmas 4.4 and 4.5.� Re
exivity: 8x (�(r; x) ! �(r; x))� Transitivity:8x (�(r; x) ! �(r; x)) 8x (�(r; x)!
(r; x))8x (�(r; x) !
(r; x))� Right-congruence:8x (�(r; x) ! �(r; x))8x (� �
(r; x)! � �
(r; x))7

� Empty-path: 9x �(r; x)� Pre�x: 9x (� � �(r; x))9x �(r; x)� Entail: 9x �(r; x) 8x (�(r; x) ! �(r; x))9x �(r; x)� Symmetry:9x �(r; x) 8x (�(r; x) ! �(r; x))8x (�(r; x) ! �(r; x))� Forward-to-word:8x (�(r; x) ! 8y (�(x; y)!
(x; y)))8x (� � �(r; x)! � �
(r; x))� Word-to-forward:8x (� � �(r; x)! � �
(r; x))8x (�(r; x) ! 8y (�(x; y)!
(x; y)))� Backward-to-word:9x (� � �(r; x)) 8x (�(r; x)! 8y (�(x; y)!
(y; x)))8x (�(r; x) ! � � � �
(r; x))� Word-to-backward:9x (� � �(r; x)) 8x (�(r; x) ! � � � �
(r; x))8x (�(r; x) ! 8y (�(x; y)!
(y; x)))Let � [f'g be a �nite subset of P ec . We use � `Ic 'to denote that ' is provable from � using Ic. That is,there is an Ic-proof of ' from �.The following theorem shows that in the context ofDM , Ic is indeed a �nite axiomatization of Pc.Theorem 4.7: In the context of DM , for every �nitesubset � [f'g of Pc,� j= ' i� � [f9x (pf(') � lt(')(r; x))g `Ic ';� j=f ' i� � [f9x (pf(') � lt(')(r; x))g `Ic ':Proof sketch: By Lemma 4.6, we only need to showthat � [f9x (pf(') � lt(')(r; x))g j= ' if and only if� [f9x (pf(') � lt(')(r; x))g `Ic '.Soundness of Ic can be veri�ed by induction on thelengths of Ic-proofs. For the proof of completeness, itsu�ces to show the following:Claim: There is a �nite deterministic structure G suchthat G j= � [f9x (pf(') � lt(')(rG; x))g. In addition,if G j= ', then � [f9x (pf(') � lt(')(r; x)))g `Ic '.To see why this claim su�ces, suppose it is giventhat � [f9x (pf(') � lt(')(r; x)))g j= '. By the claim,G j= �[f9x (pf(') � lt(')(r; x)))g. Therefore, we haveG j= '. In addition, since G is �nite, if it is the casewhere �[f9x (pf(') � lt(')(r; x))g j=f ', then we alsohave G j= '. Thus again by the claim, we have that

� [f9x (pf(') � lt(')(r; x))g `Ic '. Space limitationsdo not allow us to include the lengthy de�nition of G.The interested reader should consult [14].As an immediate corollary of Theorem 4.7, in thecontext of DM , the implication and �nite implicationproblems for Pc coincide and are decidable.In addition, it can be shown that Ic is also a �niteaxiomatization of P ec , by using a proof similar to thatof Theorem 4.7.Theorem 4.8: In the context of DM , for every �nitesubset � [f'g of P ec , if ' 2 Pc, then� j= ' i� � [f9x (pf(') � lt(')(r; x))g `Ic ';� j=f ' i� � [f9x (pf(') � lt(')(r; x))g `Ic ':Otherwise, i.e., when ' is an existential constraints,� j= ' i� � `Ic ';� j=f ' i� � `Ic ':In the context of SM , [4] has shown that the �rstthree rules of Ic, i.e., Re
exivity, Transitivity and Right-congruence, are sound and complete for word constraintimplication. In the context of DM , however, these rulesare no longer complete. To illustrate this, let � be apath and consider the following word constraints:' = 8x (�(r; x)! �(r; x))� = 8x (�(r; x)! �(r; x))By Lemma 3.1, it can be veri�ed that ' j= �. However,this implication cannot be derived by using these threerules.In the context of DM , the �rst seven rules of Icare sound and complete for word constraint implication.More speci�cally, let Iw be the set consisting of theseseven rules. Then we can show the following by using aproof similar to that of Theorem 4.7.Theorem 4.9: In the context of DM , for every �niteset � [f'g of word constraints,� j= ' i� � [f9x (lt(')(r; x))g `Iw ';� j=f ' i� � [f9x (lt(')(r; x))g `Iw ':4.1.2 A cubic-time algorithmBased on Theorem 4.7, we can show the following:Proposition 4.10: There exists an algorithm that,given a �nite subset � of Pc and paths �, �, computesa �nite deterministic structure G in time O(n3), wheren is the length of � and � � �. The structure G has thefollowing property: there are nodes a; b 2 jGj such thatG j= �(rG; a) ^ �(a; b), and moreover, for any path
,G j=
(a; b) i� � [f9x (� � �(r; x))g `Ic 8x (�(r; x)! 8 y (�(x; y)!
(x; y)));G j=
(b; a) i� � [f9x (� � �(r; x))g `Ic 8x (�(r; x)! 8 y (�(x; y)!
(y; x))):8

An algorithm having the properties described in theproposition is given in the Appendix. The algorithmconstructs the structure G. Each step of the construc-tion corresponds to an application of some inference rulein Ic. The algorithm has low complexity because, byLemma 3.1, every constraint in � is used at most onceby the algorithm. We do not include the proof of thisproposition due to the lack of space. The interestedreader should see [14] for a detailed proof.By Theorem 4.7, we can use this algorithm for test-ing implication and �nite implication of Pc constraintsin the context of DM .4.2 Decidability of PwcWe next prove Proposition 4.2. To establish the decid-ability of the implication and �nite implication prob-lems for Pwc , it su�ces to give a �nite model argument.That is, it su�ces to show the following claim.Claim: Let � [f'g be a �nite subset of Pwc , and let� = V� ^ :'. If there is a deterministic structure Gsuch that G j= �, then there is a �nite deterministicstructure H such that H j= �.For if the claim holds, then the implication and �niteimplication problems for Pwc coincide and are decidable.To show the claim, assume that there is a determin-istic structure G satisfying �. Recall that a constraint of Pwc is of either the form� 8x (pf()(r; x) ! 8 y (lt()(x; y) ! rt()(x; y)))(i.e., the forward form), or the form� 8x (pf()(r; x) ! 8 y (lt()(x; y) ! rt()(y; x)))(i.e., the backward form),where pf(), lt() and rt() are �-free regular expres-sions, as described in De�nition 3.3. LetPEs(�)= fpf() � lt(); pf() � rt() j 2 � [f'g; is of the forward formg[fpf() � lt() � rt() j 2 � [f'g; is of the backward formg,Pts(�) = f% j % is a path; p 2 PEs(�); % 2 pg,CloP ts(�) = f� j % 2 Pts(�); � � %g:Here % 2 p means that path % is in the regular languagegenerated by �-free regular expression p, and � � %stands for that path � is a pre�x of path %. Let E� bethe set of edge labels appearing in some path in Pts(�).Then we de�ne H to be (jH j; rH ; EH) such that� jH j = fa j a 2 jGj; � 2 CloP ts(�); G j= �(rG; a)g,� rH = rG,� for all a; b 2 jH j and K 2 E, H j= K(a; b) i�K 2 E� and G j= K(a; b).It is easy to verify that H j= � and H is deterministic,since G has these properties. By Lemma 3.1, the sizeof jH j is at most the cardinality of CloP ts(�), which is

�nite because the regular language generated by a �-freeregular expression is �nite. This proves the claim. Itshould be noted that E� and CloP ts(�) are determinedby � only.4.3 Undecidability of P �cNext, we prove Theorem 4.3. We establish the undecid-ability of the implication and �nite implication prob-lems for P �c by reduction from the word problem for(�nite) monoids. Before we give the proof, we �rst re-view the word problem for (�nite) monoids.4.3.1 The word problem for (�nite) monoidsLet � be a �nite alphabet and (��; �; �) be the freemonoid generated by �. An equation over � is a pair(�; �) of strings in ��.Let � = f(�i; �i) j �i; �i 2 ��; i 2 [1; n]g and atest equation � be (�; �). We use � j= � (� j=f �)to denote that for every (�nite) monoid (M; �; id) andevery homomorphism h : �� ! M , if h(�i) = h(�i) foreach i 2 [1; n], then h(�) = h(�).The word problem for (�nite) monoids is the prob-lem to determine, given any � and �, whether � j= �(� j=f �).The following result is well-known (see, e.g., [2]).Theorem 4.11: Both the word problem for monoidsand the word problem for �nite monoids are undecid-able.4.3.2 Reduction from the word problemWe next present an encoding of the word problem for (�-nite) monoids in terms of the (�nite) implication prob-lem for P �c in the context of DM .Let �0 be a �nite alphabet and �0 be a �nite set ofequations over �0. Without loss of generality, assume�0 � E, where E is the set of binary relation symbolsin signature � described in Section 3. Assume�0 = fKj j j 2 [1;m]; Ki 6= Kj if i 6= jg;�0 = f(�i; �i) j �i; �i 2 ��0; i 2 [1; n]g:Note here that each symbol in �0 is a binary relationsymbol in E. Therefore, every � in ��0 can be repre-sented as a path, also denoted by �. We use � to denotethe concatenation operator for both paths and strings.Let e0 be the regular expression de�ned by:e0 = (K1 +K2 + : : :+Km)�We encode �0 in terms of a subset � of P �c , whichincludes the following: for each i 2 [1; n],8x (e0(r; x)! 8 y (�i(x; y)! �i(x; y)));8x (e0(r; x)! 8 y (�i(x; y)! �i(x; y))):9

Let (�; �) be a test equation, where � and � are arbi-trary strings in ��0. We encode this test equation as' = 8x (e0(r; x)! 8 y (�(x; y)! �(x; y))):It should be noted that in the encoding above, onlyforward constraints of P �c are used. In addition, foreach 2 � [f'g, lt() and rt() are simply pathsrather than complex regular expressions, where lt()and rt() are described in De�nition 3.4.The lemma below shows that the encoding above isindeed a reduction from the word problem for (�nite)monoids. From this lemma and Theorem 4.11, Theo-rem 4.3 follows immediately.Lemma 4.12: In the context of DM ,�0 j= (�; �) i� � j= ', (a)�0 j=f (�; �) i� � j=f '. (b)Proof sketch: We give a proof sketch of (b). Theproof of (a) is similar and simpler. Owing to the spacelimit, we omit the details of the lengthy proof, but weencourage the interested reader to consult [14].(if) Suppose that �0 6j=f (�; �). Then there exist a�nite monoidM and a homomorphism h : ��0 !M suchthat h(�i) = h(�i) for i 2 [1; n], but h(�) 6= h(�). Weshow that there exists a �nite deterministic structureG, such that G j= � and G 6j= '.To do this, we de�ne an equivalence relation on ��0:� � % i� h(�) = h(%):For every string � 2 ��0, let b� be the equivalence classof � with respect to �, and let o(b�) be a distinct node.Then we de�ne a structure G = (jGj; rG; EG), suchthat jGj = fo(b�) j � 2 ��0g and the root rG = o(b�).The binary relations are populated in G such that foreach K 2 E and o(b�); o(b%) 2 jGj, G j= K(o(b�); o(b%)) i�� � K 2 b%. It can be veri�ed that G is indeed a �nitedeterministic structure. In addition, G j= � andG 6j= '.A property of e0 used in the proof is that � 2 e0. Thatis, the empty path � is in the language generated by theregular expression e0.(only if) Suppose that there is a �nite deterministicstructure G such that G j= � and G j= :'. Then wede�ne a �nite monoid (M; �; id) and a homomorphismh : ��0 !M such that for every i 2 [1; n], h(�i) = h(�i),but h(�) 6= h(�).To do this, we de�ne another equivalence relation �on ��0 as follows:� � % i� G j= 8x(e0(r; x)! 8 y (�(x; y)! %(x; y))) ^8x (e0(r; x)! 8 y (%(x; y)! �(x; y))):For every � 2 ��0, let [�] denote the equivalence class of �with respect to �. Then we de�ne M = f[�] j � 2 ��0g,operator � by [�] � [%] = [� � %], identity id = [�], andh : ��0 ! M by h : � 7! [�]. It can be veri�ed that(M; �; [�]) is a �nite monoid, h is a homomorphism,

and in addition, for every i 2 [1; n], h(�i) = h(�i),but h(�) 6= h(�). In the proof, we use the followingproperty of e0: for any � 2 ��0, e0 � � � e0. That is,the language generated by the regular expression e0 � �is contained in the language generated by e0.5 ConclusionWe have investigated path constraints for the determin-istic data model DM . Three path constraint languageshave been considered: Pc, Pwc and P �c . While Pc wasstudied for the graph model SM for semistructureddata [11, 13], Pwc and P �c have not appeared in anyliterature. We have demonstrated how constraints ofthese languages might be used for, among other things,query optimization. We have also studied implicationproblems associated with these constraint languages inthe context of DM . More speci�cally, we have shownthat in contrast to the undecidability result of [11, 13]established for SM , the implication and �nite implica-tion problems for Pc and Pwc are decidable in the con-text of DM . In particular, the implication problemsassociated with Pc are decidable in cubic-time and are�nitely axiomatizable. These results show that the de-terminism condition of DM may simplify the analysisof path constraint implication. However, we have alsoshown that the implication and �nite implication prob-lems for P �c remain undecidable in the context of DM .This shows that the determinism condition does nottrivialize the problem of path constraint implication.A number of important questions are open.First, a more general deterministic data model forsemistructured data, DDM , was proposed in [10], inwhich edge labels may also have structure. A typesystem for DDM is currently under development, inwhich certain path constraints are embedded. A nat-ural question here is: do the decidability and undecid-ability results established here hold in DDM? Thisquestion becomes more intriguing when types are con-sidered. As shown in [12], adding a type to the data insome cases simpli�es reasoning about path constraints,and in other cases makes it harder.Second, to de�ne a richer data model for semistruc-tured data, one may want to replace the set of edgelabels with a set of logic formulas, which possesses adecidable satis�ability problem. A question here is: inthis new setting, do the decidability results of this paperstill hold?Third, can path constraints help in reasoning aboutthe equivalence of data representations?Finally, how should path constraints be used in rea-soning about the containment and equivalence of pathqueries? What kind of automatic tools should be devel-oped to achieve this?Acknowledgements. We thank Victor Vianu for com-ments and discussions.10

References[1] S. Abiteboul. \Querying semi-structured data".In Proc. 6th Int'l. Conf. on Database Theory(ICDT'97), 1997.[2] S. Abiteboul, R. Hull, and V. Vianu. Foundationsof Databases . Addison-Wesly, 1995.[3] S. Abiteboul, D. Quass, J. McHugh, J. Widom, andJ. Weiner. \The lorel query language for semistruc-tured data". J. Digital Libraries , 1(1), 1997.[4] S. Abiteboul and V. Vianu. \Regular path querieswith constraints". In Proc. 16th ACM Symp. onPrinciples of Database Systems (PODS'97), 1997.[5] C. Beeri and M. Y. Vardi. \Formal systems for tu-ple and equality generating dependencies". SIAMJ. Comput., 13(1): 76 - 98, 1984.[6] T. Bray, C. Frankston, and A. Malhotra. \Docu-ment Content Description for XML". W3C NoteNOTE-dcd-19980731. Available as http://www.w3.org/TR/NOTE-dcd.[7] T. Bray, J. Paoli, and C. M. Sperberg-McQueen.\Extensible Markup Language (XML) 1.0". W3CRecommendation REC-xml-19980210. Available ashttp://www. w3.org/TR/REC-xml.[8] P. Buneman. \Semistructured data". Tutorial inProc. 16th ACM Symp. on Principles of DatabaseSystems (PODS'97), 1997.[9] P. Buneman, S. Davidson, G. Hillebrand, and D.Suciu. \A query language and optimization tech-niques for unstructured data". In Proc. ACM SIG-MOD Int'l. Conf. on Management of Data, 1996.[10] P. Buneman, A. Deutsch, and W. Tan. \A deter-ministic model for semi-structured data". In Proc.Workshop on Query Processing for SemistructuredData and Non-Standard Data Formats , 1999.[11] P. Buneman, W. Fan, and S. Weinstein. \Path con-straints on semistructured and structured data". InProc. 17th ACM Symp. on Principles of DatabaseSystems (PODS'98), 1998.[12] P. Buneman, W. Fan, and S. Weinstein. \Interac-tion between path and type constraints". In Proc.18th ACM Symp. on Principles of Database Sys-tems (PODS'99), 1999.[13] P. Buneman, W. Fan, and S. Weinstein. \Path con-straints in semistructured databases". To appear inJ. Comput. System Sci. (JCSS).[14] P. Buneman, W. Fan, and S. Weinstein. \Pathconstraints on deterministic graphs". Technicalreport MS-CIS-98-33, Department of Computerand Information Science, University of Pennsyl-vania, 1998. Available as ftp://ftp.cis.upenn.edu/pub/papers/db-research/tr9833.ps.gz.

[15] D. Calvanese, G. De Giacomo, and M. Lenzerini.\What can knowledge representation do for semi-structured data?" In Proc. 15th National Conf. onArti�cial Intelligence (AAAI/IAAI'98), 1998.[16] D. Calvanese, G. De Giacomo, M. Lenzerini, andD. Nardi. \Reasoning in expressive description log-ics". In A. Robinson and A. Voronkov, editors,Handbook of Automated Reasoning . Elsevier, 1999.[17] A. Deutsch, M. Fernandez, D. Florescu, A. Levy,and D. Suciu. \XML-QL: a query language forXML". W3C Note NOTE-xml-ql-19980819. Avail-able as http://www.w3.org/TR/NOTE-xml-ql.[18] H. B. Enderton. A mathematical introduction tologic. Academic Press, 1972.[19] M. Fuchs, M. Maloney, and A. Milowski. \Schemafor object-oriented XML". W3C Note NOTE-SOX-19980930. See http://www.w3.org/TR/NOTE-SOX.[20] D. Harel. \Dynamic logic". In D. M. Gabbay andF. Guenthner, editors, Handbook of PhilosophicalLogic. II: Extensions of Classical Logic. D. ReidelPubl. Co., 1984.[21] O. Lassila and R. R. Swick. \Resource Descrip-tion Framework (RDF) model and syntax spec-i�cation". W3C Working Draft WD-rdf-syntax-19981008. Available as http://www.w3.org/TR/WD-rdf-syntax.[22] A. Layman, E. Jung, E. Maler, H. S. Thomp-son, J. Paoli, J. Tigue, N. H. Mikula, and S.De Rose. \XML-Data". W3C Note NOTE-XML-data-980105. See http://www.w3.org/TR/1998/NOTE-XML-data.[23] E. Maler and S. De Rose. \XML Linking lan-guage (XLink)". W3C Working Draft WD-xlink-19980303. See http://www.w3.org/TR/WD-xlink.[24] A. O. Mendelzon, G. A. Mihaila, and T. Milo.\Querying the World Wide Web". J. Digital Li-braries , 1(1), 1997.[25] L. Popa and V. Tannen. \An equational chase forpath-conjunctive queries, constraints, and views".In Proc. of 7th Int.'l Conf. on Database Theory(ICDT'99), 1999.[26] W. C. Rounds. \Feature logics". In J. van Benthemand A. ter Meulen, editors, Handbook of Logic andLanguage. Elsevier, 1997.[27] J. Thierry-Mieg and R. Durbin. \Syntactic de�ni-tions for the ACEDB data base manager". Tech-nical Report MRC-LMB xx.92, MRC Laboratoryfor Molecular Biology, Cambridge, CB2 2QH, UK,1992.[28] M. Y. Vardi and P. Wolper. \Automata-theoretictechniques for modal logic of programs". J. Com-put. System Sci. (JCSS), 32(2), 1986.11

AppendixThe algorithm for testing implication and �nite implication of Pc constraints is shown in Table 1. The proceduremerge used in the algorithm is given in Table 2.AlgorithmInput: a �nite subset � of Pc and paths �, �Output: the structure G described in Proposition 4.101. E� := the set of edge labels appearing in either � � � or some path in constraints of �;2. Rules := �;3. G := (jGj; rG; EG�), where� jGj = fo(�) j � � � � �; o(�) is a distinct nodeg,� rG = o(�),� EG� is populated such that G j= K(o(�); o(%)) i� % = � �K;4. repeat until no further change:(1) if 8x (�(r; x)! 8 y (%(x; y)! �(x; y))) 2 � and there are o�; o��% 2 jGj such thatG j= �(rG; o�) ^ %(o�; o��%) then(i) Rules := Rules n f8x (�(r; x)! 8 y (%(x; y)! �(x; y)))g;(ii) for each � �K � � doif there is no o 2 jGj such that G j= � �K(o�; o) then(a) add to jGj a distinct node o����K ;(b) add to EG� an edge labeled K from o��� to o����K ,where o��� 2 jGj such that G j= �(o�; o���);(iii) merge(o��%; o���);(2) if 8x (�(r; x)! 8 y (%(x; y)! �(y; x))) 2 � and there are o�; o��% 2 jGj such thatG j= �(rG; o�) ^ %(o�; o��%) then(i) Rules := Rules n f8x (�(r; x)! 8 y (%(x; y)! �(y; x)))g;(ii) for each � �K � � doif there is no o 2 jGj such that G j= � �K(o��%; o) then(a) add to jGj a distinct node o��%���K ;(b) add to EG� an edge labeled K from o��%�� to o��%���K ,where o��%�� 2 jGj such that G j= �(o��%; o��%��);(iii) merge(o�; o��%��);5. output G. Table 1: An algorithm for testing Pc constraint implication in DMprocedure merge(a; b)1. for each K 2 E� doif there is o 2 jGj such that G j= K(o; b) then(1) delete from EG� the edge labeled K from o to b;(2) add to EG� an edge labeled K from o to a;2. for each K 2 E� doif there is ob 2 jGj such that G j= K(b; ob) then(1) delete from EG� the edge labeled K from b to ob;(2) add to EG� an edge labeled K from a to ob;(3) if there is oa 2 jGj such that G j= K(a; oa) and oa 6= ob thenmerge(oa; ob);3. jGj := jGj n fbg; Table 2: Procedure merge12

