
Union Types for Semistructured DataPeter Buneman Benjamin PierceUniversity of PennsylvaniaDept. of Computer & Information Science200 South 33rd StreetPhiladelphia, PA 19104-6389, USAfpeter,bcpierceg@cis.upenn.eduTechnical report MS-CIS-99-09Corrected VersionJuly 26, 1999AbstractSemistructured databases are treated as dynamically typed: they come equipped with no independentschema or type system to constrain the data. Query languages that are designed for semistructureddata, even when used with structured data, typically ignore any type information that may be present.The consequences of this are what one would expect from using a dynamic type system with complexdata: fewer guarantees on the correctness of applications. For example, a query that would cause a typeerror in a statically typed query language will return the empty set when applied to a semistructuredrepresentation of the same data.Much semistructured data originates in structured data. A semistructured representation is usefulwhen one wants to add data that does not conform to the original type or when one wants to combinesources of di�erent types. However, the deviations from the prescribed types are often minor, and webelieve that a better strategy than throwing away all type information is to preserve as much of it aspossible. We describe a system of untagged union types that can accommodate variations in structurewhile still allowing a degree of static type checking.A novelty of this system is that it involves non-trivial equivalences among types, arising from a law ofdistributivity for records and unions: a value may be introduced with one type (e.g., a record containinga union) and used at another type (a union of records). We describe programming and query languageconstructs for dealing with such types, prove the soundness of the type system, and develop algorithmsfor subtyping and typechecking.1 IntroductionAlthough semistructured data has, by de�nition, no schema, there are many cases in which the data obviouslypossesses some structure, even if it has mild deviations from that structure. Moreover it typically has thisstructure because it is derived from sources that have structure. In the process of annotating data orcombining data from di�erent sources one needs to accommodate the irregularities that are introduced bythese processes. Because there is no way of describing \mildly irregular" structure, current approachesstart by ignoring the structure completely, treating the data as some dynamically typed object such as alabelled graph and then, perhaps, attempting to recover some structure by a variety of pattern matchingand data mining techniques [NAM97, Ali99]. The purpose of this structure recovery is typically to provideoptimization techniques for query evaluation or e�cient storage storage structures, and it is partial. It is1



not intended as a technique for preserving the integrity of data or for any kind of static type-checking ofapplications.When data originates from some structured source, it is desirable to preserve that structure if at all possible.The typical cases in which one cannot require rigid conformance to a schema arise when one wants toannotate or modify the database with unanticipated structure or when one merges two databases with slightdi�erences in structure. Rather than forgetting the original type and resorting to a completely dynamicallytype, we believe a more disciplined approach to maintaining type information is appropriate. We proposehere a type system that can \degrade" gracefully if sources are added with variations in structure, whilepreserving the common structure of the sources where it exists.The advantages of this approach include:� The ability to check the correctness of programs and queries on semistructured data. Current semistruc-tured query languages [BDHS96, AQM+96, DFF+] have no way of providing type errors { they typicallyreturn the empty answer on data whose type does not conform to the type assumed by the query.� The ability to create data at one type and query it at another (equivalent) type. This is a naturalconsequence of using a 
exible type system for semistructured data.� New query language constructs that permit the e�cient implementation of \case" expressions andincrease the expressive power of a OQL-style query languages.As an example, biological databases often have a structure that can be expressed naturally using a com-bination of tuples, records, and collection types. They are typically cast in special-purpose data formats,and there are groups of related databases, each expressed in some format that is a mild variation on someoriginal format. These formats have an intended type, which could be expressed in a number of notations.For example a source (source1) could have typeset[ id : Int ,description : Str ,bibl : set[ title : Str , authors : list[name : Str , address : Str ], year : Int . . . ],. . . ]A second source (source2) might yield a closely related structure:set[ id : Int ,description : Str ,bibl : set[ title : Str , authors : list[fn : Str , ln : Str , address : Str ], year : Int . . . ],. . . ]This di�ers only in the way in which author names are represented. (This example is �ctional, but not farremoved from what happens in practice.)The usual solution to this problem in conventional programming languages is to represent the union of thesources using some form of tagged union type:set(h tag1 : [ id : Int ; : : : ]; tag2 : [ id : Int ; : : : ] i):The di�culty with this solution is that a program such asfor each x in source1 do print(x:description) (1)that worked on source1 must now be modi�ed to 2



foreach x in source1 union source2 docase x ofh tag1 = y1 i ) print(y1:description)j h tag2 = y2 i ) print(y2:description)in order to work on the union of the sources, even though the two branches of the case statement containidentical code! This is also true for the (few) database query languages that deal with tagged union types[BLS+94].Contrast this with a typical semi-structured query:select [ description = d ; title = t ]where [ description = d ; bibl = [Title = t ] ] source1 (2)This query works by pattern matching based on the (dynamically determined) structure of the data. Thusthe same query works equally well against either of the two sources, and hence also against their union1.The drawback of this approach, however, is that incorrect queries { for example, queries that use a �eld thatdoes not exist in either source { yield the empty set rather than an error.In this paper we de�ne a system that combines the advantages of both approaches, based on a system oftype-safe untagged union types. As a �rst example, consider the two forms of the author �eld in the typesabove. We may write the union of these types as:[name : Str ; address : Str ] _ [ ln : Str ; fn : Str ; address : Str ]It is intuitively obvious that an address can always be extracted from a value of such a type. To express thisformally, we begin by writing a multi-�eld record type [l1 : T1; l2 : T2; : : :] as a product of single-�eld recordtypes: [l1 : T1]� [l2 : T2]� : : :. In this more basic form, the union type above is:([name: Str ]� [ address : Str ]) _ ([ ln: Str ]� [ fn : Str ]� [ address : Str ])We now invoke a distributivity law that allows us to treat[a : Ta]� ([b : Tb] _ [c : Tc]) and ([a : Ta]� [b : Tb]) _ ([a : Ta]� [c : Tc])as equivalent types. Using this, the union type above rewrites to:([name: Str ] _ [ fn : Str � ln: Str ])� [ address : Str ]In this form, it is evident that the the selection of the address �eld is an allowable operation.Type-equivalences like this distributivity rule allow us to introduce a value at one type and operate onit another type. Under this system both the program (1) and the query (2) above will type-check whenextended to the union of the two sources. On the other hand, queries that reference a �eld that is not ineither source will fail to type check.Some care is needed in designing the operations for manipulating values of union types. Usually, the in-terrogation operation for records is �eld selection and the corresponding operation for unions is a caseexpression. However it is not enough simply to use these two operations. Consider the type ([a1 : T1] _ [b1 :U1]) � : : :� ([an : Tn] _ [bn : Un]). The form of this type warrants neither selecting a �eld nor using a caseexpression. We can, if we want, use distributivity to rewrite it into a disjunct of products, but the size of this1One could also achieve the same e�ect through the use of inheritance rather than union types in some object-orientedlanguage. This would involve the introduction of named classes with explicit subclass assertions. As we shall shortly see, thenumber of possible classes is exponential in the size of the type.3



disjunct is exponential in n and so, presumably, would be the corresponding case expression. We propose,instead, an extended pattern matching syntax that allows us to operate on the type in its original, compact,form.More sophisticated pattern matching operations may be useful additions even to existing semistructuredquery languages. Consider the problem of writing a query that produces a uniform output from a singlesource that contains two representations of names:( select [ description = d ;name = n ]where [ description = d ; bibl = [ author = [name = n ] ] ] source )union( select [ description = d ;name = string-concat(f; l) ]where [ description = d ; bibl = [ author = [ ln = l ; fn = f ] ] ] source )This is the only method known to the authors of expressing this query in current semistructured querylanguages. It suggests an ine�cient execution model and may not have the intended semantics when, forexample, the source is a list and one wants to preserve the order. Thus some enhancement to the syntax isdesirable.This paper develops a type system based on untagged union types along with operations to construct anddeconstruct these types. In particular, we de�ne a syntax of patterns that may be used both for an extendedform of case expression and as an extension to existing query languages for semi-structured data. We shouldremark that we cannot capture all aspects of semistructured query languages. For example, we have nothingthat corresponds to \regular path expressions" [BDHS96, AQM+96]. However, we believe that for mostexamples of \mildly" semistructured data { especially the forms that arise from the integration of typeddata sources { a language such as proposed here will be adequate. Our main technical contribution is a proofof the decidabiliity of subtyping for this type system (which is complicated by the non-trivial equivalencesinvolving union and record types).To our knowledge, untagged union types never been formalized in the context of database programminglanguages. Tagged union types have been suggested in several papers on data models [AH87, CM94] buthave had minimal impact on the design of query languages. CPL [BLS+94], for example, can match on onlyone tag of a tagged union, and this is one of the few languages that makes use of union types. Patternmatching has been recently exploited in languages for semi-structured data and XML [BDHS96, DFF+]. Inthe programming languages and type theory communities, on the other hand, untagged union types have beenstudied extensively from a theoretical perspective [Pie91, BDCd95, Hay91, Dam94, DCdP96, etc.], but theinteractions of unions with higher-order function types have been shown to lead to signi�cant complexities;the present system provides only a very limited form of function types (like most database query languages),and remains reasonably straightforward. .Section 2 develops our language for programming with record and union types, including pattern matchingprimitives that can be used in both case expressions and query languages. Section 3 describes the systemformally and demonstrates the decidability of subtyping and type equivalence. Proofs will be provided inthe full paper. Section 4 o�ers concluding remarks.2 Programming with Union TypesIn this section we shall develop a syntax for the new programming constructs that are needed to deal withunion types. The presentation is informal for the moment { more precise de�nitions appear in Section 3.We start with operations on records and extend these to work with unions of records; we then deal withoperations on sets. Taken in conjunction with operations on records, these operations are enough to de�nea simple query language. We also look at operations on more general union types and give examples of a\typecase" operation. 4



2.1 Record formationJust as we de�ned a record type [ l1 : T1; : : : ; ln : Tn ] as the product [ l1 : T1 ]� : : :� [ ln : Tn ] of elementaryor \singleton" record types, we can de�ne a record value as the disjoint concatenation of singleton records.The operations for creating records are the empty record [ ], the singleton record [ l = e ] (where e is anexpression), and the disjoint concatenation of records e#e. (Actually, we also allow multi-�eld record valuesof the form [ l1 = e1; : : : ; ln = en ], as this makes the operational semantics easier to state.)2.2 Case expressionsRecords are decomposed through the use of case expressions. These allow us to take alternative actionsbased on the structure of values. We shall also be able to use components of the syntax of case expressionsin the development of matching constructs for query languages. The idea in developing a relatively complexsyntax for the body of case expressions is that the structure of the body can be made to match the expectedstructure of the type of the value on which it is operating. There should be no need to \
atten" the typeinto disjunctive normal form and write a much larger case expression at that type.We start with a simple example:case e of [ fn = f :Str ; ln = l :Str ]) string-concat(f; l)j [name = n:Str ]) nThis matches the result of evaluating e to one of two record types. If the result is a record with fn andln �elds, the variables f and l are bound and the right-hand side of the �rst clause is evaluated. If the�rst pattern does not match, the second clause is tried. This case expression will work provided e has type[ fn: Str ; ln : Str ] _ [name : Str ].We should note that pattern matching introduces identi�ers such as l; f; n in this example, and we shall makea short-sighted assumption that identi�ers are introduced when they are associated with a type (x : T ). Thisignores the possibility of type inference. See [BLS+94] for a more sophisticated syntax for introducingidenti�ers in patterns.Field selection is given by a one-clause case expression: case e of [ l = x :T ]) x.We shall also allow case expressions to dispatch on the run-time type of an argument:case e of x :Int ) xj y :set(Int)) sum(y)This will typecheck when e : Int _ set(Int)The clauses of a case expression have the form p) e, where p is a pattern that introduces (binds) identi�erswhich may occur free in the expression e. Thus each clause de�nes a function. Two or more functions canbe combined by writing p1 ) e1 j p2 ) e2 j : : : to form another function. The e�ect of the case expressioncase e of f is to apply this function to the result of evaluating e.Now suppose we want to extract information from a value of type([name: Str ] _ [ ln: Str ; fn : Str ])� [ age : Int ] (2)The age �eld may be extracted using �eld selection using a one-clause case expression as described above.However information from the left-hand component cannot be extracted by extending this case expression.What we need is need something that will turn a multi-clause function back into a pattern that binds a newidenti�er. We propose the syntax x as f , in which f is a multi-clause function. In the evaluation of x as f ,f is applied to the appropriate structure and x is bound to the result.5



case e ofx as ([ fn = f :Str ; ln = l :Str ]) string-concat(f; l) j [name = n:Str ]) n)# [ age = a:Int ]) [name = x ; age = a+ 1 ]could be applied to an expression e of type (2) above. Note the use of # to combine two patterns so thatthey match on a product type. This symbol is used to concatenate patterns in the same way that it is usedto concatenate record values.There are some useful extensions to case expressions and pattern matching that we shall brie
y mentionhere but omit in the formal development (they are essentially syntactic sugar). The �rst is the addition ofa \fall-through" or else branch of a case expression. The pattern else matches any value that has not beenmatched in a previous clause. Most programming languages have an analogous construct.Such branches are particularly useful if we allow constants in patterns. For examplecase e of [name = n:Str ; age = 21 ]) ej else) : : :Here only tuples with a speci�c value for age are matched. Tuples with a di�erent value will be matched inthe else clause. Note that patterns bind variables, and that if one allows constants in patterns, one wantsto discriminate between those variables that are used as constants and those that are bound in the pattern.CPL [BLS+94] uses a special marker to 
ag bound variables. In that language [name = n; age = na ] is apattern in which a is bound and n is treated as a constant { it is bound in some outer scope. This extendedsyntax of patterns is especially convenient when used in query languages for sets.2.3 SetsWe shall follow the approach to collection types given in [BNTW95]. It is known that both relational andcomplex-object languages can be expressed using this formalism. The operations for forming sets are feg(singleton set) and e union e (set union).2 For \iterating" over a set we use the formcollect e where p  e0.Here, e and e0 are both expressions of set type, and p is a pattern as described above. The meaning of thisis (informally) Sf�(e) j �(p) 2 e0g, in which � is a substitution that binds the variables of p to match anelement of e0.These operations, taken in conjunction with the record operations described above and an equality operation,may be used as the basis of practical query languages. Conditionals and booleans may be added, but theycan also be simulated with case expressions and some appropriately chosen constants.Unlike typed systems with tagged unions, in our system there is no formation operation directly associatedwith the union type. However we may want to introduce operators such as \relaxed set-union," which takestwo sets of type set(t1) and set(t2) and returns a set of type set(t1 _ t2).2.4 ExamplesWe conclude this section with some remarks on high-level query languages. A typical form of a query thatmakes use of pattern matching is:2The present system does not include fg (empty set). It can be added, at the cost of a slight extension to the type system;see Section 4. 6



select ewhere p1  e1;p2  e2;: : :conditionHere the pi are patterns and the expressions e1; : : : ; ei have set types. Variables introduced in pattern pimay be used in expression ej and (as constants) in pattern pj where j > i. They may also be used in theexpression e and the condition, which is simply a boolean expression. This query form can be implementedusing the operations described in the previous section.As an example, here is a query based on the example types in the introduction. We make use of the syntaxof patterns as developed for case expressions, but here we are using them to match on elements of one ormore input sets.select [ description = d ; authName = a ; year = y ]where [ description = d :Str ; bibl = b:BT ] source1 union source2;[ authors = aa :AT ; year = y :Int ] b;a as ([ fn = f :Str ; ln = l :Str ]) string-concat(f; l) j [name = n:Str ]) n) aa ;y > 1991Note that we have assumed a \relaxed" union to combine the two sources. In the interests of consistencywith the formal development, we have also inserted all types for identi�ers, so AT and BT are names forthe appropriate fragments of the expected source type. In many cases such types can be inferred.Here are two examples that show the use of paterns in matching on types rather than record structures.Examples of this kind are commomly used to illustrate the need for semistructured data.select xwhere x as (s : set(Num)) average(s) j r : Num ) r)  sourceselect swhere s as (n : Str ) n j [ fn = f :Str ; ln = l :Str ]) string-concat(f; l)) source 0In the �rst case we have a set source that may contain both numbers and sets of numbers. In the secondcase we have a set that may contain both base types and record types. Both of these can be staticallytype-checked. If, for example, in the �rst query, s has type set(Str), the query would not type-check.To demonstrate the proposed syntax for the use of functions in patterns, here is one last (slightly contrived)example. We want to calculate the mass of a solid object that is either rectangular or a sphere. Each measureof length can be either integer or real. The type is[ density : Real ]�( [ intRadius : Int ] _ [ realRadius : Real ]_( ([ intHeight : Int ] _ [ realHeight : Real ])�([ intWidth : Int ] _ [ realWidth : Real ])�([ intDepth: Int ] _ [ realDepth : Real ]) ) )7



The following case expression makes use of matching based on both unions and products of record structures.Note that the structure of the expression follows that of the type. It would be possible to write an equivalentcase expression for the disjunctive normal form for the type and avoid the use of the form x asf , but suchan expression would be much larger than the one given here.case e of[ density = d :Real ]#v as( r as ([ intRadius = ir :Int ]) 
oat(ir ) j [ realRadius = rr :Real ]) rr)) r��3)j( h as ([ intHeight = ih :Int ]) 
oat(ih) j [ realHeight = rh :Real ]) rh)#w as ([ intWidth = iw :Int ]) 
oat(iw) j [ realWidth = rw :Real ]) rw)#d as ([ intDepth = id :Int ]) 
oat(id) j [ realDepth = rd :Real ]) rd)) h � w � d)) d � v3 Formal DevelopmentWith the foregoing intuitions and examples in mind, we now proceed to the formal de�nition of our language,its type system, and its operational semantics. Along the way, we establish fundamental properties such asrun-time safety and the decidability of subtyping and type-checking.3.1 TypesWe develop a type system that is based on conventional complex object types, those that are constructedfrom the base types with record (tuple) and set constructors. As described in the introduction, the recordconstructors are [ ], the empty record type, [ l : t ], the singleton record type, and R � R, the disjointconcatenation of two records types. (By disjoint we mean that the two record types have no �eld names incommon.) Thus a conventional record type [ l1 : T1; : : : ; ln : Tn ] is shorthand for [ l1 : Y1 ] � : : :� [ ln : Tn ].To this we add an untagged union type T _ T . We also assume a single base type B and a set type set(T ).Other collection types such as lists and multisets would behave similarly,The syntax of types is described by the following grammar:T ::= B base type[ ] empty record type[ l : T ] labeling (single-�eld record type)T1 � T2 record type concatenationT1 _ T2 union typeset(T ) set type3.2 KindingWe have already noted that certain operations on types are restricted. For example, we cannot take theproduct of two record types with a common �eld name. This in turn means that any operation on recordswhose typing rules make improper use of a type constructor is also illegal. In order to control the formation8



of types we introduce a system of kinds. This consists of the kind of all types, Type, and a subkind Rcd(L),which is the kind of all record types whose labels are included in the label set L.K ::= Type kind of all typesRcd(L) kind of record types with (at most) labels LThe kinding relation is de�ned as follows: B 2 Type (K-Base)[ ] 2 Rcd(fg) (K-Empty)T 2 Type[ l : T ] 2 Rcd(flg) (K-Field)S 2 Rcd(L1) T 2 Rcd(L2) L1 \ L2 = ;S � T 2 Rcd(L1 [ L2) (K-Rcd)S 2 K T 2 KS _ T 2 K (K-Union)T 2 Typeset(T ) 2 Type (K-Set)T 2 Rcd(L1)T 2 Rcd(L1 [ L2) (K-Subsumption-1)T 2 Rcd(L)T 2 Type (K-Subsumption-2)There are two important consequences of these rules. First, record kinds extend to the union type. Forexample, ([A : t ] � [B : t ]) � ([C : t ] _ [D : t ]) has kind Rcd(fA;B;C;Dg). Second, the kinding rulesrequire the labels in a concatenation of two record types to be disjoint. (However the union type constructoris not limited in the same way; Int _ Str and Int _ [a : Str ] are well-kinded types.)3.3 SubtypingAs usual, the subtype relation written S <: T captures a principle of \safe substitutibility": any element ofS may safely be used in a context expecting an element of T .For sets and records, the subtyping rules are the standard ones: set(S) <: set(T ) if S <: T (e.g., a set ofemployees can be used as a set of people), and a record type S is a subtype of a record type T if S hasmore �elds than T and the types of the common �elds in S are subtypes of the corresponding �elds in T .This e�ect is actually achieved by the combination of several rules below. This \exploded presentation" ofrecord subtyping corresponds to our presentation of record types in terms of separate empty set, singleton,and concatenation constructors.For union types, the subtyping rules are a little more interesting. First, we axiomatize the fact that S _ Tis the least upper bound of S and T { that is, S _ T is above both S and T , and everything that is aboveboth S and T is also above their union (rules S-Union-UB and S-Union-L below). We then have two rules(S-Dist-Rcd and S-Dist-Field) showing how union distributes over records.9



Formally, the subtype relation is the least relation on well-kinded types closed under the following rules.T <: T (S-Refl)R <: S S <: TR <: T (S-Trans)[ l : T ] <: [ ] (S-Rcd-FE)S � T <: S (S-Rcd-RE)S � T <: T � S (S-Rcd-Comm)S � (T � U) <: (S � T ) � U (S-Rcd-Assoc)S <: S � [ ] (S-Rcd-Ident)S <: T[ l : S ] <: [ l : T ] (S-Rcd-DF)S1 <: T1 S2 <: T2S1 � S2 <: T1 � T2 (S-Rcd-DR)S <: Tset(S) <: set(T ) (S-Set)R <: T S <: TR _ S <: T (S-Union-L)Si <: S1 _ S2 (S-Union-UB)R � (S _ T ) <: (R � S) _ (R � T ) (S-Dist-Rcd)[ l : S _ T ] <: [ l : S ] _ [ l : T ] (S-Dist-Field)Note that we restrict the subtype relation to well-kinded types: S is never a subtype of T if either S or Tis ill-kinded. (The typing rules will be careful only to \call" the subtype relation on types that are alreadyknown to be well kinded.)If both S <: T and T <: S, we say that S and T are equivalent and write S � T . Note, for example, that thedistributive laws S-Dist-Rcd and S-Dist-Field are actually equivalences: the other directions follow fromthe laws for union (plus transitivity). Also, note the absence of the \other" distributivity law for unions andrecords: P _ (Q�R) � (P _Q)� (P _R). This law doesn't make sense here, because it violates the kindingconstraint that products of record types can only be formed if the two types have disjoint label sets.The subtype relation includes explicit rules for associativity and commutativity of the operator �. Also, itis easy to check that the associativity, commutativity and idempotence of _ follow directly from the rulesgiven. We shall take advantage of this 
uidity in the following by writing both records and unions in acompound, n-ary form:[ l1 : T1; : : : ; ln : Tn ] def= [ l1 : T1 ] � � � � � [ ln : Tn ]W(T1; : : : ; Tn) def= T1 _ � � � _ Tn 10



(In the �rst line, n may be 0|we allow empty records|but in the second, it must be positive|for brevity,we do not allow \empty unions" in the present system. See Section 4.)We often write compound unions using a simple comprehension notation. For example,_(A�B j A 2 A1_A2_ : : :_Am and B 2 B1_B2_ : : :_Bn)denotesA1�B1 _ A1�B2 _ : : : _ A1�Bn _ A2�B1 _ : : : _ Am�Bn:3.4 Properties of SubtypingFor proving properties of the subtype relation, it is convenient to work with types in a more constrainedsyntactic form:3.4.1 De�nition: The sets of normal (N) and simple (A) types are de�ned as follows:N ::= W(A1; : : : ; An)A ::= B[ l1 : A1; : : : ; ln : An ]set(N)Intuitively, a simple type is one in which unions only appear (immediately) inside of the set constructor; anormal type is a union of simple types. Note that every simple type is also normal. �The restricted form of normal and simple types can be exploited to give a much simpler subtyping relation,written S <:T , in terms of the following \macro rules":B <:B (SA-Base)N <:Mset(N) <:set(M) (SA-Set)fk1; : : : ; kmg � fl1; : : : ; lng for all ki 2 fk1; : : : ; kmg, Aki <:Bki[ l1 : Al1 ; : : : lm : Alm ] <: [ k1 : Bk1 ; : : : ; km : Bkm ] (SA-Rcd)8i � m: 9j � n: Ai <:BjW(A1; : : : ; Am) <:W(B1; : : : ; Bn) (SN-Union)3.4.2 Fact: N <:M is decidable. �Proof: The macro rules can be read as a pair of algorithms, one for subtyping between simple types and onefor subtyping between normal types. Both of these algorithms are syntax directed and obviously terminateon all inputs (all recursive calls reduce the size of the inputs). �3.4.3 Lemma: N <:N , for all N . �3.4.4 Lemma: If N <:M and M <:L then N <:L. �11



Proof: By induction on the total size of L;M;N . First suppose that all of L;M;N are simple. Theinduction hypothesis is immediately satis�ed for SA-Base and SA-Set. For SA-Rcd use the transitivityof set inclusion and induction on the appropriate subterms.If at least one of L;M;N is (non-trivially) normal, use the transitivity of the functional relationship expressedby the SN-Union rule and induction on the appropriate subterms. �To transfer the property of decidability from <: to <:, we �rst show how any type may be converted to anequivalent type in disjunctive normal form.3.4.5 De�nition: The disjunctive normal form (dnf) of a type T is de�ned as follows:dnf(B) = Bdnf([ ]) = [ ]dnf(P � Q) = W(Ai � Bj j Ai 2 dnf(P ); Bj 2 dnf(Q)) (a)dnf([ l : P ]) = W([ l : Ai ] j Ai 2 dnf(P )) (b)dnf(P _ Q) = dnf(P ) _ dnf(Q) (c)dnf(set(P )) = set(dnf(P )) (d) �3.4.6 Fact: dnf(P ) � P . �3.4.7 Fact: dnf(P ) is a normal type, for every type P . �3.4.8 Fact: N <:M implies N <:M �3.4.9 Lemma: S <: T i� dnf(S) <:dnf(T ) �Proof: (() By 3.4.6 we have derivations of S <: dnf(S) and dnf(T ) <: T , and by 3.4.8 we have a derivationof dnf(S) <: dnf(T ). Use transitivity to build a derivation of S <: T .()) By induction on the height of the derivation of S <: T . We consider the �nal rule in the derivation. Byinduction we assume we can build a derivation of the normal forms for the antecedents, and now we considerall possible �nal rules.We start with the axioms.(S-Refl) By re
exivity of <: (3.4.3).(S-Rcd-FE) dnf([ l : T ]) = [ l : dnf(T ) ], and [ l : dnf(T ]) <: [ ] by SA-Rcd.(S-Rcd-RE) dnf(S � T ) = W(Si � Tj j Si 2 dnf(S); Tj 2 dnf(T )). Now dnf(Si) � dnf(Tj) <: dnf(Si) bySA-Rcd, and the result follows from SN-Union.(S-Rcd-Comm) If dnf(S) and dnf(T ) are simple then dnf(S) � dnf(T ) <:dnf(T ) � dnf(S) by SA-Rcd. Ifnot, use SN-Union �rst.(S-Rcd-Assoc) As for S-Rcd-Comm.(S-Rcd-Ident) As for S-Rcd-Comm.(S-Union-UB) By SN-Union.(S-Dist-Rcd) dnf(R � (S _ T )) = W(Ri � Uj j Ri 2 dnf(R); Uj 2 dnf(S _ T ))= W(Ri � Sj j Ri 2 dnf(R); Uj 2 dnf(S)) _W(Ri � Tk j Ri 2 dnf(R); Tk 2 dnf(T ))= dnf((R � S) _ (R � T ))12



(S-Dist-Field) dnf([ l : S _ T ]) = W([ l : Ui ] j Ui 2 dnf(S _ T ))= W([ l : Si ] j Si 2 dnf(S)) _ W([ l : Ti ] j Ti 2 dnf(T ))= dnf([ l : S ]) _ dnf([ l : T ])= dnf([ l : S ] _ [ l : T ])Now for the inference rules. The premises for all the rules are of the form S <: T and our inductive hypothesisis that for the premises of the �nal rule we have obtained a derivation using SA-* and SN-Union rules of thecorresponding dnf(S) <:dnf(T ) Without loss of generality we may assume that the �nal rule in the derivationof each such premise is SN-Union. We examine the remaining inference rules.(S-Trans) By Lemma 3.4.4.(S-Rcd-DF) Since dnf(S) <: dnf(T ) was derived by SN-Union we know that for each Ai 2 dnf(S) thereis a Bj 2 dnf(T ) such that Ai <: Bj . Therefore, for each such Ai, we may use SA-Rcd to derive[ l : Ai ] <: [ l : Bj ]. These derivations may be combined using SN-Union to obtain a derivation ofdnf([ l : S ]) <:dnf([ l : T ]).(S-Rcd-DR) For each A1i1 2 dnf(S1) and each A2i2 2 dnf(S2) there exist B1j1 2 dnf(T1) and B2j2 2 dnf(T2)such that we have a derivations of A1i1 <:B1j1 and A2i2 <:B2j2 . For each such pair we can therefore use SA-Rcd to derive A1i1 � A2i2 <:B1j1 � B2j2 and then use SN-Union to derive dnf(S1 � S2) <:dnf(T1 � T2).(S-Set) Immediate, by SA-Set.(S-Union-L) For each Ai 2 dnf(R) there is a Cj 2 dnf(T ) such that Ai <:Cj and for each Bk 2 dnf(S)there is a Cl 2 dnf(T ) such that Bk <:Cl. From these dnf(R _ S) <: dnf(T ) can be derived directlyusing SN-Union. �3.4.10 Theorem: The subtype relation is decidable. �Proof: Immediate from Lemmas 3.4.9 and 3.4.2. �We do not yet have any results on the complexity of checking subtyping (or equivalence). (The proof strategywe have adopted here leads to an algorithm with running time exponential in the size of its inputs.)The structured form of the macro rules can be used to derive several inversion properties, which will beuseful later in reasoning about the typing relation.3.4.11 Corollary: If S <: set(T1), then S = set(S1), with S1 <: T1. �3.4.12 Corollary: If W <: U , withW = [ l1 :W1 ] � : : : � [ lm :Wm ] � : : : � [ ln :Wn ]U = [ l1 : U1 ] � : : : � [ lm : Um ];then Wk <: Uk for each k � m. �Proof: From the de�nition of disjunctive normal forms, we know that dnf(W ) = W([ l1 : Wi1 ] � : : : �[ lm : Wim ] � : : : � [ ln : Win ] j Wi1 : : :Wim : : :Win 2 dnf(W1) : : : dnf(Wm) : : : dnf(Wn)) and dnf(U) =W([ l1 : Uj1 ] � : : : � [ lm : Ujm ] j Uj1 : : : Ujm 2 dnf(U1) : : : dnf(Um)). By SN-Union,for each Ai = [ l1 :Wi1 ] � : : : � [ lm :Wim ] � : : : � [ ln :Win ] 2 dnf(W )there is some Bj = [ l1 : Uj1 ] � : : : � [ lm : Ujm ] 2 dnf(U)with Ai <:Bj : 13



This derivation must be an instance of Sa-Rcd, with Wik <:Ujk . In other words, for each Wik 2 dnf(Wk)there is some Ujk 2 dnf(Uk) with Wik <: Ujk . By SN-Union, dnf(Wk) <: dnf(Uk). The desired result,Wk <: Uk now follows by Lemma 3.4.9. �3.4.13 Corollary: If S is a simple type and S <: T1 _ T2, then either S <: T1 or else S <: T2. �3.5 TermsThe sets of programs, functions, and patterns are described by the following grammar:e ::= b base valuex variable[ l1 = e1; : : : ; ln = en ] record constructione1 # e2 record concatenationcase e of f pattern matchingf e1; : : : ; en g sete1 union e2 union of setscollect e1 where p e2 set comprehensionp ::= x : T variable pattern (typecase)[ l1 = p1; : : : ; ln = pn ] record patternp1 # p2 pattern concatenationx as f function nested in patternf ::= p) e base functionf1 j f2 compound function3.6 TypingThe typing rules are quite standard.Expressions (� ` e 2 T ) � ` b 2 B (T-Base)� ` x 2 �(x) (T-Var)� ` ei 2 Ti all the li are distinct� ` [ l1 = e1; : : : ; ln = en ] 2 [ l1 : T1 ] � � � � � [ ln : Tn ] (T-Rcd)� ` e1 2 T1 � ` e2 2 T2 T1 � T2 2 K� ` e1 # e2 2 T1 � T2 (T-Concat)� ` f 2 S!T � ` e 2 R R <: S� ` case e of f 2 T (T-Case)� ` ei 2 Ti for each i n � 1� ` f e1; : : : ; en g 2 set(T1 _ � � � _ Tn) (T-Set)� ` e1 2 set(T1) � ` e2 2 set(T2)� ` e1 union e2 2 set(T1 _ T2) (T-Union)14



� ` e2 2 set(S) � ` p 2 U ) �0 S <: U�; �0 ` e1 2 set(T )� ` collect e1 where p e2 2 set(T ) (T-Collect)Functions (� ` f 2 S!T ) � ` p 2 S ) �0 �;�0 ` e 2 T� ` p) e 2 S!T (TF-Pat)� ` f1 2 S1!T1 � ` f2 2 S2!T2� ` f1 j f2 2 S1 _ S2!T1 _ T2 (TF-Alt)Patterns (� ` p 2 T ) �0) T 2 K� ` x : T 2 T ) x : T (TP-Var)� ` pi 2 Ti ) �0i the �0i all have disjoint domains� ` [ l1 = p1; : : : ; ln = pn ] 2 [ l1 : T1 ] � � � � � [ ln : Tn ]) �01; : : : ;�0n (TP-Rcd)� ` p1 2 [ k1 : S1; : : : ; km : Sm ]) �01 � ` p2 2 [ l1 : T1; : : : ; ln : Tn ]) �02fk1; : : : ; kmg \ fl1; : : : ; lng = ; �01 and �02 have disjoint domains� ` p1 # p2 2 [ k1 : S1; : : : ; km : Sm; l1 : T1; : : : ; ln : Tn ]) �01;�02 (TP-Concat)� ` f 2 S!T� ` x as f 2 S ) x : T (TP-As)3.7 Properties of Typing3.7.1 Proposition: The typing relation is decidable. �Proof: Immediate from the decidability of subtyping and the syntax-directedness of the typing rules. �3.7.2 De�nition: A substitution � is a �nite function from variables to terms. We say that a substitution� satis�es a context �, written � j= �, if they have the same domain and, for each x in their commondomain, we have ` �(x) 2 Sx for some Sx with Sx <: �(x). �3.7.3 De�nition: We say that a typing context � re�nes another context �0, written � <: �0, if theirdomains are the same and, for each x 2 dom(�), we have �(x) <: �0(x). �3.7.4 Fact [Narrowing]: If � ` e 2 T and � <: �0, then �0 ` e 2 T . �3.7.5 Lemma [Substitution preserves typing]:1. If � j= � and �;� ` e 2 Q then � ` �(e) 2 P , for some P <: Q.2. If � j= � and �;� ` f 2 S ! Q then � ` �(f) 2 S ! P , for some P <: Q.3. If � j= � and �;� ` p 2 U ) �0 then � ` �(p) 2 U ) �00, for some �00 <: �. �15



Proof: By simultaneous induction on derivations. The arguments are all straightforward, using previouslyestablished facts. (For the second property, note that substitution into a pattern only a�ects functions thatmay be embedded in the pattern, since all other variables mentioned in the pattern are binding occurrences.Moreover, by our conventions about names of bound variables, we must assume that the variables bound inan expression, function, or pattern are distinct from those de�ned by �.) �3.8 EvaluationThe operational semantics of our language is again quite standard: we de�ne a relation e + v, read \(closed)expression e evaluates to result v," by a collection of syntax-directed rules embodying a simple abstractmachine.3.8.1 De�nition: We will use the metavariables v and w to range over values { closed expressions notinvolving case, union, concatenation, or collect.v ::= b[ l1 = v1; : : : ; ln = vn ]f v1; : : : ; vn gWe write �v as shorthand for a set of values v1; :::; vn. �3.8.2 De�nition: A substitution � is a �nite function from variables to values. When �1 and �2 havedisjoint domains, we write �1 + �2 for their combination. �Reduction (e + v, for closed terms e) b + b (E-Base)ei + vi for each i[ l1 = e1; : : : ; ln = en ] + [ l1 = v1; : : : ; ln = vn ] (E-Rcd)e1 + [ l1 = v1; : : : ; lm = vm ] e2 + [ j1 = w1; : : : ; jn = wn ]fl1; : : : ; lmg \ fj1; : : : ; jng = ;e1 # e2 + [ l1 = v1; : : : ; lm = vm; j1 = w1; : : : ; jn = wn ] (E-Concat)e + v match(v; f)) v0case f of e + v0 (E-Case)ei + vi for each if e1; : : : ; en g + f v1; : : : ; vn g (E-Set)e1 + f �v1 g e2 + f �v2 ge1 union e2 + f �v1 [ �v2 g (E-Union)e2 + f v1; : : : ; vn gfor each i, match(vi; p)) �i and �i(e1) + f �wi gcollect e1 where p e2 + f �w1 [ � � � [ �wn g (E-Collect)Function matching (match(v; f)) v0) 16



match(v; p)) � �(e) + v0match(v; p) e)) v0 (EF-Pat)match(v; f1)) v0match(v; f1 j f2)) v0 (EF-Alt1):(match(v; f1)) match(v; f2)) v0match(v; f1 j f2)) v0 (EF-Alt2)Matching (match(v; p)) �) ` v 2 S S <: Tmatch(v; x : T )) x = v (EP-Var)match(vi; pi)) �i the �i have disjoint domainsmatch([ l1 = v1; : : : ; lm = vm; : : : ; ln = vn ]; [ l1 = p1; : : : ; lm = pm ])) �1 + : : : + �m (EP-Rcd)match(v; p1)) �1 match(v; p2)) �2 �1 and �2 have disjoint domainsmatch(v; p1 # p2)) �1 + �2 (EP-Concat)match(v; f)) v0match(v; x as f)) x = v0 (EP-As)3.9 Properties of Evaluation3.9.1 Fact: If v is a value and ` v 2 V , then V is a simple type. �3.9.2 Theorem [Subject reduction]:1. If e + v` e 2 Q;then ` v 2 VV <: Q:2. If match(v; f)) v0` f 2 U!V` v 2 WW <: U;then ` v0 2 XX <: V:3. If match(v; p)) �` v 2 W` p 2 U ) �W <: U;then � j= �. �Proof: By simultaneous induction on evaluation derivations.1. Straightforward, using part (2) of the induction hypothesis for the interesting case (E-Case).2. Consider the �nal rule in the given derivation. 17



Case EF-Pat: f = p) ematch(v; p)) ��(e) + v0From ` f 2 U!V , we know ` p 2 U ) � and � ` e 2 V . By part (3) of the induction hypothesis,� j= �. By Lemma 3.7.5, ` �(e) 2 V . Now, by the induction hypothesis, ` v0 2 X and X <: V , asrequired.Case EF-Alt1: f = f1 j f2match(v; f1)) v0From rule TF-Alt, we see that ` f1 2 U1!V1 and ` f2 2 U2!V2, with U = U1 _ U2 and V = V1 _ V2.The induction hypothesis yields ` v0 2 X with X <: V1, from which the result follows immediately byS-Union.Case EF-Alt2: f = f1 j f2:(match(v; f1))match(v; f2)) v0Similar.3. Consider the �nal rule in the given derivation.Case EP-Var: p = (x : T )` v 2 SS <: T� = (x = v)� = (x : T )Immediate.Case EP-Rcd: v = [ l1 = v1; : : : ; lm = vm; : : : ; ln = vn ]p = [ l1 = p1; : : : ; lm = pm ]match(vi; pi)) �i� = �1 + : : : + � +mFrom T-Rcd, we have W = [ l1 : W1 ] � : : : � [ ln : Wn ] and ` vi 2 Wi for each i. Similarly, byTP-Rcd, we have U = [ l1 : U1 ] � : : : � [ lm : Wm ] with ` pi 2 Ui ) �i. Finally, by Corollary 3.4.12,we see that Wi <: Ui. Now, by the induction hypothesis, �i j= �i for each i. But this means that� j= �, as required.Case EP-Concat: p = p1 # p2match(v; p1)) �1 match(v; p2)) �2�1 and �2 have disjoint domains� = �1 + � + 2By TP-Concat, we have U = [ k1 : S1; : : : ; km : Sm; l1 : T1; : : : ; ln : Tn ] with ` p1 2 [ k1 : S1; : : : ; km :Sm ] ) �1 and ` p2 2 [ l1 : T1; : : : ; ln : Tn ] ) �2. Since U <: [ k1 : S1; : : : ; km : Sm ] and U <: [ l1 :T1; : : : ; ln : Tn ] by the subtyping laws, transitivity of subtyping gives us W <: [ k1 : S1; : : : ; km : Sm ]and W <: [ l1 : T1; : : : ; ln : Tn ]. Now, by the induction hypothesis, �1 j= �1 and �2 j= �2. But thismeans that � j= �, as required.Case EP-As: p = x) fmatch(v; f)) v0� = (x = v0)By TP-As, ` f 2 U!V and � = (x : V ). By part (2) of the induction hypothesis, ` v0 2 X for someX <: V . So (x = v0) j= (x : V ) by the de�nition of satisfaction. �3.9.3 Theorem [Safety]: 18



1. If ` e 2 T , then e + v for some v. (That is, the evaluation of a closed, well-typed expression cannotlead to a match-failure or otherwise \get stuck.")2. If ` f 2 S ! T and ` v 2 R <: S, then match(v; f)) v0 with ` v0 2 T 0 <: T .3. If ` p 2 U ) �0 and ` v 2 S <: U , then match(v; p)) � with �0 j= �. �Proof: Straightforward induction on derivations. �4 ConclusionsWe have described a type system that may be of use in checking programs or queries that apply to semistruc-tured data. Unlike other approaches to the problem, it is a \relaxed" version of a conventional system thatcan handle the kinds of irregular types that occur in semistructurd data.Although we have established the basic properties of the type system, a good deal of work remains to bedone. First, there are some extensions that we do not see as problematic. These include:� Both strict and relaxed set-union operations. (In the former case the two types are constrained to beequivalent.) Similarly, one can imagine strict and relaxed case expressions.� Equality. Both \absolute" equality and \equality at type T" �t with this scheme.� A ? (\bottom") type { the null-ary case of union types. An immediate application is in the typingrule T-Set for set formation, where we can remove the side condition n � 1 to allow formation of theempty set: f ; g 2 ?.� Additional base types such as booleans and operations such as set �ltering.� A > (\top") type. Such a type would be completely dynamic and would be analyzed by typecaseexpressions. One could also add type inspection primitives along the lines described for Amber [Carrk]� An \otherwise" or \fall-through" branch in case expressions.A number of more signi�cant problems also remain to be addressed.� Complexity. The obvious method of checking whether two types are equivalent or whether one is asubtype of the other involves �rst reducing both to disjunctive normal form. As we have observed, thisprocess may be exponential in the size of the two type expressions. We conjecture that equivalence(and subtyping) can be checked faster, but we have not been able to show this.Even if these problems turn out to be intractable in general, it does not necessarily mean that thisapproach to typing semistructured data is pointless. Type inference in ML, for example, is known tobe exponential [KTU94], yet the forms of ML programs that are the cause of this complexity neveroccur in practice. Here, it may be the case that types that types that only have \small" di�erenceswill not give rise to expensive transformations.� Recursive types. The proof of the decidability of subtyping (3.4.10) works by induction on thederivation tree of a type, which is closely related to the structure of the type. We do not know whetherthe same result holds in the presence of recursive types.� Relationship with other typing schemes. There may be some relationship between the typingscheme proposed here and those mentioned earlier [NAM97, Ali99] that work by inferring structure fromsemi-structured data. Simulation, for example, gives rise to something like a subtyping relationship[BDFS97]; but it is not clear what would give rise to union types.19
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