A Basis for Interactive Schema Merging *

P. Buneman, S. Davidson, A. Kosky and M. Vanlnwegen
Department of Computer and Information Sciences
University of Pennsylvania

Philadelphia, PA 19104-6389

Abstract

We present a technique for merging the schemas of
heterogeneous databases that generalizes to several dif-
ferent data models, and show how it can be used in an
interactive program that merges Entity-Relationship
diagrams. Given a collection of schemas to be merged,
the user asserts the correspondence between entities
and relationships in the various schemas by defining
“isa” relations between them. These assertions are
then considered to be elementary schemas, and are
combined with the elementary schemas in the merge.
Since the method defines the merge to be the join in an
information ordering on schemas, it ts a commutative
and associative operation, which means that the merge
1s defined independent of the order in which schemas
are presented. We briefly describe a prototype interac-
tive schema merging tool that has been built on these
principles.

Keywords: schemas, merging, semantic data models,
entity-relationship data models, inheritance

1 Introduction

Schema merging is the problem of taking several
database schemas and combining them into a single
user view. This problem may arise either in the initial
design phase of a large database application, or as an
afterthought to provide integrated access to a collec-
tion of previously existing databases. In the former
application, several teams of designers may be given
the specification of different subsets of the database
application, and asked to construct sub-schemas in a
common model that meet the specifications. The sub-
schemas are then to be combined into a single global

*This research was supported in part by ARO DAALO03-89-
C-0031PRIME and NSF IRI 8610617, as well as by a grant from
the UK SERC at Imperial College, London.

schema. In doing so, competing design insights and in-
terpretations of the teams must be mediated to form
a coherent schema (see [1]). For example, there may
be conflicts of name, either homonyms or synonyms;
conflicts of scale, where the underlying domains of
a commonly named attribute are not the same, al-
though there may be a simple translation function be-
tween the domains; structural conflicts, an example
of which is when an entity in one schema is consid-
ered to be an attribute of another entity in another
schema; and different levels of abstraction, in which
one schema presents more detailed information than
another. The problem of providing integrated access
to a collection of previously existing databases must
resolve the same types of conflict, and additionally
perform some sort of translation from potentially dif-
ferent underlying database models to a common inter-
mediary model.

Various approaches to schema merging have been
proposed; see [2] for a survey. These vary from sets
of tools for manipulating two schemas into some form
of consistency ([3, 4]), to algorithms which take two
schemas together with some constraints and produce a
merged schema. In practice a method that lies some-
where between these two extremes is usually desirable:
a certain amount of user intervention is inevitable,
though, once any conflicts have been resolved and the
correspondences between the various elements of some
database schemas have been identified, it is helpful to
have an automated merging algorithm, especially for
large schemas.

In this paper, we address the problem of what
meaning or semantics the merging process should
have, and describe a merging tool based on this se-
mantics. We develop a simple and general characteri-
zation of database schemas that allows us to define the
merged schema in terms of the informational content
of the schemas being merged. Using an information
ordering on schemas, we define the merge of a col-
lection of schemas to be their least upper bound (or
join): The merge takes the union of all information

stored in the database schemas, and, wherever possi-
ble, forms a schema presenting this but no additional
information. User interaction is incorporated into the
process by allowing the user to specify an integration
schema which captures the relationship between struc-
tures in the various schemas; the integration schema
is then combined with the elementary schemas in the
merge. Since the method defines the merge to be the
join of the elementary and integration schemas, it is
a commutative and associative operation. That is,
the merge is defined independent of the order in which
schemas are presented. Therefore, whether a collec-
tion of N schemas is integrated in a one-shot or it-
erative n-ary merge, or as a succession of ladder or
balanced binary merges [5] is irrelevant since the out-
come will be the same.

For an example of the importance of these math-
ematical properties we cite Navathe et al[6], who
working in the context of the “Entity-Category-
Relationship” model, discuss an interactive merging
process which is “phased”. They also suggest that
each phase should be carefully controlled by the user,
who supplies assertions about the components of the
schemas to be merged. In this framework there are
two reasons for a merging operation with clean math-
ematical properties: first, the semantics of a database
schema can be extremely complicated, and there is
every chance that a user assertion will prove incor-
rect. To “undo” the effect of an assertion it is highly
desirable to have a process that depends only on the
set of assertions, and not on the order in which they
were presented. Associativity and commutativity (and
idempotence) guarantee this. Lack of associativity
leads to situations in which the only sensible way to
undo a previous assertion is to “back out” of all the
changes that were made since that assertion.

The second reason is one of simplicity; in the
method we propose here, assertions that connect
schemas may themselves be regarded as “elementary”
schemas. The merging process now has a much simpler
description: take the input schemas, together with the
user assertions and merge everything. To elaborate on
these points let us briefly look at some examples drawn
from the Entity-Relationship model.

The process described in [6] starts from user-
supplied assertions about the object classes (the enti-
ties and their sub-classes) and, once this has been com-
pleted, proceeds to integration of the relationships.
Finding the correct assertions is a delicate matter,
and an incorrect choice can have a dramatic result
on the merged schema. Figure 1 (a modification of
an example in [6]) shows an example of a merge. Fig-

ure 2 shows a similar example — the correspondences
between the names of entities and relationships are
identical — but the result is different. To un-

CompSci Course
Student
Grad Course
Student
Student Course

/ \

CompSci| | rad
Student Student

Figure 1: An example merge

CompSci- Course
Student

Grad 1 @
Student

Course

CompSci| | Grad

Student Student

Teaching Course

Fellow

Figure 2: Another similar example

derstand that both results are possible, consider a
simple “object-oriented” semantics which associates
with each entity or relationship X, a set [X] of “real-
world” instances of X, with each edge from relation-
ship R to entity-set E, a function in [R] — [E], and
with each specialization (between entities or relation-
ships) X; = X3, an inclusion [X;] C [X2]. In fig-
ure 1, while we expect that [Course;] = [Courses]

it is not the case that [Enroll;] = [Enroll;]. By
contrast, in figure 2, it is reasonable to assert that
[Assists;] = [Assistss]. Another way of understand-
ing this difference is to consider how the component
databases could have been produced as views of a hy-
pothetical database. The real-world sets associated
with the entities and relationships are preserved in
the views, so that in figure 2 [Assists;] = [Assists]
and [Graduate Student;] = [Graduate Student]. In
figure 1, the best we can say is that the real-world set
[Enroll;] is some subset of [Enroll].

Note that assertions about the equivalence of real-
world sets can be represented by schema fragments.
Containment between real-world sets are represented
by specialization arrows, and identification of enti-
ties or relationships could be represented by dou-
ble specializations, so that in example two, the fact
that [Assists;] = [Assistss] could be represented by
the two elementary schemas Assists; = Assistsy and
Assistss = Assists.

These examples demonstrate the problems of iden-
tifying entities or relationships because of their names.
If we make such an identification then figure 2 repre-
sents the correct merge, and this is what our method
will do. However a case can be made that similar
names indicate only that the real-world sets overlap, in
which case some alternative strategy must be adopted.
A “lower” merge, which yields the results of figure 1,
is discussed in [7, 8]. We do not address the ques-
tion of resolving naming conflicts, since the problem
seems to be inherently ad hoc in nature, nor do we
address the problem of structural conflicts, although
the simplicity of our model may eliminate many of
these conflicts. Furthermore, since the merge takes
the union of all information stored in the database
schemas, the problem of different levels of abstraction
is also addressed to some extent.

The remainder of this paper is organized as follows:
Sections 2 and 3 describe the model and merging tech-
nique. In section 4 we describe a prototype schema
merging tool implementing the method. Section 5 de-
scribes how our model can be thought of as “subsum-
ing” other data-models, such as the relational, func-
tional and ER models, and shows in what sense the
merging process respects the original model.

2 The Model

In order to define a merging operation we need first
to formulate a data model. The model we shall work
with is explained in detail in [7, 8]; we briefly moti-
vate it and review it here. Data models are generally

graphical structures consisting of nodes and edges. For
example, the ER model, in its basic form, has three
node shapes (for Attribute domains, Entities and Re-
lationships). We shall refer to these nodes — whatever
their shape — as classes. The edges in the ER model
are subject to certain restrictions and are often, but
not always, labeled. We shall allow our edges, which
we call arrows to connect arbitrary classes, and they
will always be labeled. We shall also include special-
1zation relations between classes in our model.

Formally, we assume universal sets A of classes and
L of arrow labels. A database schema then consists of
a triple (C,&,8) where C C AN are the classes of the
schema, & C Cx L xC is the set of labeled arrow edges,
and Sis a partial order (that is a transitive, reflexive
and antisymmetric relation) on C. If we have an edge
(p,a,q) € & then we write p -2 ¢ and say that “p
has an a-arrow of class ¢”. If a pair of classes (p, ¢) is
in the relation & then we write p = ¢, and say that
“p is a specialization of ¢” (the idea here is that p is
a more specific class than ¢, so that every instance of
p can also be considered to be an instance of ¢). In
addition we require that £ and Ssatisfy the following
axioms:

1. If p = g and p — r then ¢ = r.

2. If ¢ =% s and p = ¢ then there is an r € C such
that » = s and p — r.

The first constraint here says that any particular class
can have at most one a-arrow for any arrow label a,
so that, for example, a class Person could not have
a name-arrow of class str and another name-arrow of
class int. The second restriction says that arrows are,
in some sense, preserved by specialization, so that, if p
is a specialization of ¢ and ¢ has an a-arrow of class s,
then p also has an a-arrow with class at least as specific
as s. These axioms are equivalent to those given for
functional schemas in [4] and also in [3] (though the
latter used unlabeled arrows).

Let us consider the ER diagram of a University
Business Office database shown in figure 3. The di-
agram indicates that there are two ways of classify-
ing University Employees (UE): as research employees
(Res_UE) or as academic employees (Ac_UE). Teach-
ing Fellows (TF) are classified exclusively as academic
employees (indicated by TF=Ac_UE), while Research
Fellows RF are classified exclusively as research em-
ployees (indicated by RF—-Res UE). Faculty mem-
bers, however, are classified as both research and
academic employees (indicated by Faculty—-Res UE
and Faculty—>-Ac UE). While there is a single bud-
get item from which academic employees are paid, re-

held by

P
Support line item Grants
supports
Faculty ¥ Res_UE

RF

UE

Ac_UE

N/

(Id#: SS;

TF

Figure 3: Business Office ER Diagram

search funds are provided by grants held by faculty
members (indicated by the relationships Holds and
Supports). Much detail has been omitted; in partic-
ular, we have omitted almost all attributes of entities
and relationships to avoid cluttering the diagram.

The corresponding database schema for the Busi-
ness Office, in our model is shown in figure 4, where
single arrows are used to indicate edges in £ and dou-
ble arrows are used to represent pairs in S (double
arrows implied by the transitivity and reflexivity of &
are omitted).

We can use our model to represent the schemas of
a number of other data models. We have already seen
how we can interpret an entity-relationship schema
as a schema in our model: basicly the ER-model can
be considered to be a restriction of our model where
the set of classes, C, is stratified into three sets, Cg,
Cg and Cp, corresponding to relationships, entity-
sets and attribute domains respectively, and arrows
are restricted so that they can only go from classes
in one set to classes in the next. Similarly the re-

lational data model can be thought of as stratifying
the classes of our model into two sets: relations and
domains. We will discuss such restrictions in more
detail in section 5, and will show that the merging
process described in the next section respects these
restrictions. By a less constrained process we can de-
scribe instances of the functional model [9, 4, 3]. The
graphs are also general enough to represent databases
with higher order relationships (that is, relationships
between relationships), and complex data structures
(such as circular definitions of entities and relation-
ships): features that are commonly found in object-
oriented data models. Consequently, despite its ap-
parent simplicity, our model does in some sense sub-
sume a number of established data-models, and by
investigating the problem of schema merging for this
model we can understand how to merge schemas in
these other models. However, as it stands, the model
is not sophisticated enough to represent the variants
and set-valued attributes occurring in certain models
such as those proposed in [10] and [11], and would

Holds held by
\ Grants
J Support S{ne_‘i'tem
supports

Facultyp———

Res UE

SS#

Figure 4: Business Office Schema

require further extensions to do so.

3 The Method

When merging a collection of schemas our first task
must be to decide on the correspondences between
the classes and arrows of the various schemas. These
correspondences are inherently dependent on the real-
world interpretation of the schemas, and so must be
determined by the designer of the system before the
merge can proceed. Although there is scope for the use
of various sophisticated tools to help the designer iden-
tify such correspondences, we take the simplistic ap-
proach that two classes occurring in different schemas
correspond to the same real world class of objects if
and only if they have the same class name, regardless
of whether or not they have the same arrows. For ex-
ample, if one schema has a class GS with arrow edges
Id#, Name and Status, and another schema has a class
GS with arrow edges Name, Address and Telephone,
then the merging process will collapse them into a sin-
gle class with name GS and arrow edges Id#, Name,
Status, Address, and Telephone. In addition we al-
low the designer of a system to assert that a class,
p, in one schema is a specialization or subclass of an-
other class, ¢, in a second schema, that is p = ¢ in
the merged schema, by adding an “atomic” schema
p = q to the collection of schemas being merged.

The philosophy we adopt is that the merge of a col-
lection of schemas is a schema which presents all the
information of the schemas being merged, but no ad-
ditional information. Hence the merge is the “least
upper bound” of the database schemas under some
sort of information ordering. Recall that, in addition
to defining a view of a database, a database schema
expresses certain requirements on the structure of the
information stored in the database. When we say that
one database schema presents more information than
another, we mean that any instance of the first schema
could be considered to be an instance of the second
one. The first schema must, therefore, dictate that
any database instances must contain at least all the
information necessary in order to be an instance of
the second schema. It is clear that, were we to con-
struct an ordering on schemas which represented the
fact that one schema contained more information than
another, it should be a partial ordering on schemas,
and the binary merge of two schemas would be their
least upper bound, or join, under this ordering. This
ties in well with our intuition that a binary merging
operator on schemas should be associative, commuta-
tive and idempotent.

It turns out that the first constraint on schemas in
section 2, which requires that each a-arrow out of p has
a unique class, significantly complicates finding such
an ordering (see [7] for more details). We therefore ini-

tially weaken our definition of database schemas, and
define an information ordering on these weak schemas
in which least upper bounds exist and are associa-
tive. The weak schema merge is then defined to be
the least upper bound in this ordering. Since the weak
schema merge is not guaranteed to meet all conditions
on proper schemas (as we will henceforth refer to the
schemas defined in section 2), we must then convert
the weak schema merge to a proper schema by intro-
ducing new classes for a-arrows out of each node that
violates the first constraint on proper schemas.

We start by discussing the weak schema merge,
and then describe how to convert a weak schema to a
proper schema.

3.1 Weak Schemas

A weak schema is a schema in which we no longer
require that, for any arrow label a, a class p can have
at most one a-arrow (condition 1 of proper schemas),
but instead require the weaker condition that, for any
class p and arrow label a, and any two distinct classes
g and r, if p — g and p —— r, then ¢ and r may not
be specializations of one another. Formally, a weak
schema over NV, L is a triple (C,£,S) where C C N
is a set of classes, § is a partial order on C, and £ is a
subset of C x £ x C satisfying

WI1. If p—= g and p —— r and ¢ = r then ¢ = r.

W2. If p = ¢ and ¢ — 7 then there is an s € C
such that s = r and p — s.

for alla € £ and p,q,7r € C.
The ordering on weak schemas is defined in the ob-
vious way: Given two weak schemas G, = (C1,&1,81)

and G = (C2, &2, S2), we write G1 C G4 iff
1. C4 - Cs

2. If p =451 ¢ then there is an r € Cy such that
p——yrand r =>4 q

3. 51 C 8o

That is, every class in G appears in G, for every a-
arrow in G; there is a corresponding arrow, with at
least as specific a class, in G5, and every specialization
edge in G appears in G,.

It is clear that C is a partial order on weak schemas;
it also has a property on least upper bounds described
in the following proposition.

Proposition 3.1 For any weak schemas G and G,
if there exists a weak schema G' such that G1 C G’
and G2 T G’ then there is a least such weak schema

Gi1UG,.

Proof:
Given weak schemas G; and (G5 as above, define

G=(C,ES8)by

C = CUCy
S = (S1USy)
E = {pLqe(€CxLxC)

|(E|T’€C : (r;a,Q)EglUSQ/\r:p)
ANVr,seC -p=rANs=>q
/\(T,G,S)E(c,‘l ng implies q:s)}

(where (81 U S82)* denotes the transitive closure of
(81US82), and & subtracts edges from £1;UE5 necessary
to make condition W1 hold, and adds those necessary
for condition W2 to hold). To complete the proof we
must show that, if G is a weak schema, then G; C G
and Go C G, and that, if there is a weak schema G’
such that G; C G’ and Go C G’, then G is indeed a
weak schema and G C G'. Details can be found in [7].
n

We can characterize those collections of schemas
that are bounded above, and therefore have a least
upper bound, by means of a simple restriction on their
specialization relations. We say a finite collection of
weak schemas, G1,...,G,, satisfying this restriction
is compatible. Consequently we have, for any finite
compatible collection of proper schemas, G1,...,G,,
there exists a weak schema merge G = |_|?:1 G;. Fur-
thermore, since the binary least upper bound operator
defined in the proof of proposition 3.1 is associative
and commutative, we can repeatedly apply it to pairs
of schemas in a collection in order to get the merge of
the entire collection.

Advisor
facult victim
Faculty GS
Id#
UId#

Figure 5: Department Office Schema

For example, suppose that we gain access to the
Departmental Office schema shown in figure 5, which
represents the advising relationship between Faculty
and Graduate Students (GS), who are identified by
their university id number (UId#). Since this schema

Holds held by
Grants
P
Sup orts”ﬁf/’/r

ine_item

supports

Facult}ﬁ::::::ﬁ;:R,es_UE:§§§§§§§§§§§§h
3
N)

Id#

> SS#

Figure 7: Weak Schema Merge of Departmental Office, Business Office and Integration Schemas

F

Figure 6: Integration Schema

contains information in common with the Business Of-
fice schema of figure 4, we decide to merge the two
schemas. We know that there are no naming conflicts
between the two schemas, although at first glance it
might seem that the Id# label might be a candidate
for renaming. However, we happen to know that a
graduate student’s university id number is their so-
cial security number unless they do not have one, in
which case a unique internal number is assigned. We
also know that every teaching fellow is a graduate
student, and that every research fellow is a gradu-
ate student; these constraints are specified in the in-
tegration schema shown in figure 6. Taking the weak
schema merge of the Departmental and Business Of-
fice schemas, together with the integration schema, we
get the schema shown in figure 7.

Note that to avoid cluttering the figure we have
omitted the Id#-arrows from Res UE, Ac UE and
Faculty to SS#. Also note that the merged schema
is not proper since there is no canonical class for the
Id#-arrow of RF or TF.

3.2 Building proper schemas from weak
schemas

Having found the weak schema merge, G, of a col-
lection of schemas, we must then find some way of
introducing implicit classes into G in order to make
it into a proper schema. What we need to find is a
proper schema, G, such that if there are any proper
schemas greater than G then G is such a schema. The
algorithm to do this basically works by looking for vi-
olations of condition 1 of proper schemas, and correct-
ing them by introducing new implicit classes. That is,
if an a-arrow for some class p in the merged schema
has more than one class, an implicit class labeled with
all the names of the classes of the a-arrow is created.
S is then augmented to indicate that the implicit class
is a specialization of all classes of a-arrows out of p,
and the a-arrows from p in & are replaced by a single
a-arrow from p to the new implicit class. An implicit
class may also inherit a-arrows with more than one
class from the classes with which it is labeled, in which

case the process must be repeated. Since the deriva-
tion of the implicit class is contained in its name, this
information can be used in subsequent merges to en-
sure associativity.

Details of the algorithm can be found in [7]; al-
though it looks slightly complicated it is well specified
and easily automated.

For example, to convert the weak schema in fig-
ure 7 to a proper schema, we would introduce
the implicit class {UId#,SS#}, and augment 8
with {UId#,SS#} — Uld#, {UIld#,SS5#} —
SS#, and replacing the Id#-arrows from TF and
RF in & by TF 4% {UId#,5S5#} and RF 1a¥
{UId#,S55#}.

Of course, not every merge of a collection of com-
patible schemas makes sense. That is, the new classes
introduced may have no correspondence to anything
in the real world. To capture this semantic aspect of
our model, we would need to introduce a “consistency
relationship” on C, and require that, for every pair of
classes p and ¢ in the label of an implicit class, (p, ¢) is
in the consistency relationship. If this condition were
violated, the schemas would be inconsistent, and G
would not exist. Note that checking consistency would
be very efficient, since it just requires examining the
consistency relationship. However, while the idea is
interesting, it is beyond the scope of this paper. Suf-
fice it to say that if the merge of G1,...,G, fails, ei-
ther because G1,...,G, are incompatible, or because
they are inconsistent, the merge should not proceed,
and the user must re-assess the assumptions that were
made to describe the schemas.

4 An Implementation

To demonstrate the feasibility of our approach, we
have developed a prototype. The program, called
Xmerg, uses an X Window System interface for cre-
ating, displaying, and manipulating schema graphs.
When Xmerg is invoked, one sees three major areas
on the screen. On the left is a control panel with vari-
ous buttons that are used to create and do operations
on schemas. On the bottom is a long thin window in
which messages to the user are printed out. Occupy-
ing the main area of the program’s display is a large
rectangle (the canvas) in which the schema graphs are
drawn.

For simplicity in drawing the graphs, the special-
ization edges are drawn with dotted lines (rather than
with double lines), and the arrowheads are replaced
by small squares. In order to avoid clutter on the

screen specialization edges implied by the transitivity
of the specialization relation, and arrows implied by
the second constraint on proper and weak schemas,
are not drawn. In figure 8 Xmerg is shown with the
Departmental Office, Business Office, and Integration
schemas drawn in this manner.

4.1 Using Xmerg

The user creates schemas (here a schema is a con-
nected component of the graph) using the class, spe-
ctalization, and attribute (used for drawing arrows)
buttons. For the class and atiribute operations, a pop-
up box appears in which one types the name of the
class or label of the arrow.

The move button allows the user to move a schema
to a new place.

The merge button begins the process of merging.
The user selects all the schemas that will be merged
(by clicking on one class from each) and then clicks on
the merge button again to execute the operation. The
merged weak schema is computed and converted to
a proper schema by adding implicit classes and their
associated edges, and then a version of this proper
schema, omitting the specialization edges and arrows
implied by transitivity of the specialization relation
and the second constraint on schemas respectively, is
displayed on the screen and is available for further
manipulation.

The check operation checks to see if all the schemas
on the canvas (with omitted arrows reinstated) are
proper schemas. Two things could go wrong: the spe-
cialization relationship could fail to be antisymmetric
(that is, following specialization edges there is a loop
in the graph) or some class might have multiple a-
arrows for some label a.

The save operation allows the user to save all the
information on the canvas into a file. The read re-
trieves all information from a file created with the save
command, replacing anything that was already on the
canvas.

The quit operation, when selected while another op-
eration is in session (that is, while the user is expected
to click the mouse on the canvas to complete or con-
tinue an operation) will cancel that operation. If there
is no operation in session, the program will be killed.

In figure 9, the merged version of the Univer-
sity Schemas is shown as computed and displayed by
Xmerg.

Note that the merged schema looks more or less like
what you would get if you moved around the graphs to
place the same-named classes on top of one another.
This is in fact just what has happened. Two schemas

Figure 8: University Schemas as they would appear in Xmerg

are merged by finding a class they have in common
and moving the second schema so that the two classes
coincide. Then for each class in the second schema
that has a class of the same name in the first schema,
edges going to and from the class in the second schema
are reassigned to go to and from the corresponding
class in the first schema.

4.2 Fixes and Additions

The program as it currently stands is intended
merely for experimental and demonstration purposes,
rather than as a serious tool for schema merging. In
order to make such a tool we would extend the user
interface with a number of features in order to make it
easier to draw and modify schemas. In addition some
mechanism for recording which classes of a schema
were introduced as implicit classes and how they arose
would be required, which would allow further merges
to be done on the merged schema.

Most of the schemas we have been working with are
“toy”, as found throughout this paper. To make the
tool useful for larger schemas, we will have to use a
sophisticated graph layout tool or adapt Xmerg to do
much fancier graphical manipulations. For example,

it would be useful to be able to handle more than one
edge between two classes, to have a more sophisticated
method of drawing the merged schema than approx-
imately the way the component schemas are drawn,
to allow users to zoom in or out on portions of the
schema graph, and to scroll over a schema graph.

5 Meta-schemas

We demonstrated in Section 2 that ER schemas can
be embedded in our model in a natural way. We then
went on in Section 3 to find a way of determining the
merge of a collection of schemas whenever it exists.
In order for this conversion-and-merging process to be
useful for ER schemas, we must show that the schema
resulting from such a merge can also be considered to
be an embedding of an ER schema. We could then
reverse the conversion process in order to find an ER
schema which is the merge of our original collection of
ER schemas.

Compared to our model, the most significant re-
striction in the ER model is that classes are stratified
into three disjoint sets: entity sets, relationships and

Figure 9: Merged University Schemas

base types. Furthermore, specialization relationships
are constrained so that they may only occur between
classes in the same stratum, and the arrows of a class
belonging to one stratum must have classes in the next
stratum.

In this section we will look at the problem of impos-
ing such constraints on schemas, and will show that
these constraints are in some sense preserved by our
merging process. While ER-like models always divide
clagsses up into three distinct strata and only allow
arrows to go from one stratum to the next, we will
present a more general form of constraint, which we
will call a meta-schema, which divides the classes into
any number of distinct sets and then imposes restric-
tions on which arrows may go from classes in each set
to classes in each other set.

A meta-schema over classes A and arrow labels
L consists of a pairwise disjoint collection of sets of
classes, {C; | i € I}, such that N' = [J;¢;Ci, and a
collection of sets of labels {£; ; | ¢, j € I} such that, for
each i € I, the collection of sets of labels {£; ; | j € I}
is pairwise disjoint.

A schema G = (C,€&,8) is said to satisfy a meta-
schema ({C; | i € I},{L;; |i,j € I})iff

1. If p=—= q € S then p € C; and ¢ € C; for some
1€ 1

2.Ifp—qgeEthenpel,qeCjandac Ly
for some 4,5 € I.

for all @ € £ and p,q € C.

So the classes are divided into the sets {C; }, and two
classes can only be related by a specialization relation
if they belong to the same set, and, in addition, any
class in a set C; can only have an a-arrow with a class
in the set C; if @ is in the set of labels £; ;.

For example, the schema shown in figure 4 satisfies
the meta-schema given by taking I = {0, 1,2} and

Co = {ss#}
C; = {Faculty, Res UE, AcUE, RF, TF}
C2 = {Holds, Supports}

Lio = {Ia#}

L2171 = {PI, heldby, supports, line_item}

and £; ; = 0 for all other ¢,j € I. In general any
ER-structure will translate to a schema satisfying a
meta-schema of the form found in figure 10.

Suppose we have meta-schema M and a consis-
tent collection of proper schemas, G1,...,G,, collec-
tively satisfying M. We would like to show that, if
g = |_|?:1 G;, then G is a proper schema satisfying M.
Of course this is not quite true since G may contain
additional classes not in C, however we do get the fol-
lowing theorem:

Theorem 5.1 If M = ({C; | i€ I},{Li; | 1,j €
I}) is a meta-schema over N and L, and G1,...,Gp
s a consistent collection of proper schemas collectively

Relations

Roles

Y

Entity-sets Attributes

Attributes

Y

A

Base-types

Figure 10: A meta-schema for ER-structures

satisfying M such that G is the merge of Gy,...,Gp,

then G satisfies the meta-schema M = ({C; | i €
IV, {LCi; | i,j € I}) where

foriel.

Proof: Omitted. See [7] for details. L]
For example, figures 4 and 5 collectively satisfy the
following meta-schema M:

Co = {ss#, urd}
C; = {Faculty, Res UE, Ac_UE, RF,
TF, GS}
C, = {Holds, Supports, Advisor}
Lio = {Ia#}
L21 = {PI, held by, supports,

line_item, faculty, victim}

and their proper schema merge G satisfies M with Cj
augmented by the implicit class {SS#, UId#}.

It follows that if we use meta-schemas to constrain
the schemas we are merging we can expect similar con-
straints to apply to the merge of those schemas.

6 Conclusions

Using a simple but general formalism, we have char-
acterized the weak schema merge of a collection of
schemas as their least upper bound. The merge of
these schemas is then defined by translating the weak
schema merge into a proper schema. The transla-
tion introduces new “implicit” classes as required, and
identifies their origin in their name. By keeping track
of the implicit classes introduced into our schemas we

can ensure that our merging process is associative and
commutative. Consequently, the integration schema
created by the user may treated as a collection of as-
sertions about the relationships between the elemen-
tary schemas. Although not discussed in detail in this
paper, the “real-world” validity of an implicit class
can be efficiently checked by consulting a consistency
relationship between the classes from which the im-
plicit class was formed; if an implicit class is created
which violates the consistency relationship, either the
elementary schemas are inconsistent or the integration
schema is incorrect. In either case, the merge cannot
take place and the error is reported to the user.

The problem of finding an upper bound on the num-
ber of implicit classes that are introduced in a merge
remains open: there may be pathological examples
where the number of implicit classes is exponential
in the size of the schemas being merged, though we
have not succeeded in creating such an example. In
the examples used in existing work on the problem of
schema merging, where implicit classes are introduced
but not studied in detail or properly understood, the
number of implicit classes is generally small. This fact,
together with our own difficulty in finding realistic ex-
amples of merges where the number of implicit classes
introduced is excessively large, leads us to believe that
this will not be a problem in practice.

While the model introduced here is quite basic and
lacks many of the features that adorn other data-
models, it is easy to extend both the model and the
merging process to incorporate such features. For ex-
ample, in [8], we discuss how the model can be ex-
tended with keys and how these can be used to rep-
resent certain kinds of cardinality constraint; while, in
[7] we show how set valued and null valued attributes
can be represented.

The approach presented in this paper can be gener-
alized to describe the merge in a number of other data
models by representing schemas in other data mod-
els as “restricted” instances of schemas in our general
model (¢.e. stratifying classes in terms of their mean-
ing in other models), and finding their proper schema
merge. Our merge was shown in section 5 to “preserve
strata”, guaranteeing that the result will an instance
of the original model.

While implicit classes can be used to detect conflicts
of scale, structural conflicts are more difficult. For ex-
ample, an attribute in one schema may look like an
entity in another schema, or a many-one relationship
may be a single arrow in one schema but introduce a
relationship node in another schema. In these cases,
the merge will not “resolve” the differences but will

present both interpretations. To force an integration,
we need some kind of “normal form”; this is an area
for future research. It is also worth noting that since
the merge takes the union of all information stored in
the database schemas, the problem of different levels
of abstraction is also addressed to some extent. How-
ever, since null values may be introduced with this in-
terpretation, a query language for such a system must
be able to handle incomplete information. In a par-
allel effort, we have developed such a query language
[12], and are examining ways of using it as an inference
system behind an SQL-like language.

In section 4 we described a prototype implementa-
tion of our merging operation. While a considerable
amount of work would be required to make this into
a serious tool, it nevertheless goes some way towards
demonstrating the feasibility of our approach. The
merging operation itself was extremely easy to imple-
ment since it is so well specified; an efficient imple-
mentation took a matter of days to develop. Since
the method can easily be applied to many other data-
models, it should also be straightforward to extend
various existing database design tools with any merg-
ing facilities based on our method.

References

[1] S. Ceri and G. Pelagatti, Distributed Databases:
Principles and Systems. McGraw Hill, 1984.

[2] C. Batini, M. Lenzerini, and S. Navathe, “A Com-
parative Analysis of Methodologies for Database
Schema Integration,” ACM Computing Surveys,
vol. 18, pp. 323-364, December 1986.

[3] A. Motro, “Superviews: Virtual Integration of
Multiple Databases,” IEEFE Transactions on Soft-
ware Engineering, vol. SE-13, pp. 785-798, July
1987.

[4] J. Smith, P. Bernstein, U. Dayal, N. Goodman,
T. Landers, K. Lin, and E. Wong, “Multibase—
Integrating Heterogeneous Distributed Database
Systems,” in Proceedings of AFIPS, pp. 487-499,
1981.

[5] M. Ozsu and P. Valduriez, Principles of Dis-
tributed Database Systems, ch. Distributed Mul-
tidatabase Systems, pp. 425-456. Prentice Hall,
1991.

[6] S. Navathe, R. Elmasri, and J. Larson, “Inte-
grating User Views in Database Designs,” IEEE
Computer, pp. 50-62, January 1986.

[7]

(8]

[10]

[11]

[12]

A. Kosky, “Modeling and Merging Database
Schemas,” Tech. Rep. MS-CIS-91-65, University
of Pennsylvania, 1991.

P. Buneman, S. Davidson, and A. Kosky, “The-
oretical Aspects of Schema Merging,” To appear
in EDBT ’92. Available as a Technical Report,
University of Pennsylvania.

D. Shipman, “The Functional Data Model and
the Data Language DAPLEX,” ACM Transac-
tions on Database Systems, vol. 6, pp. 140-173,
March 1981.

R. Hull and R. King, “Semantic Database Model-
ing: Survey, Applications, and Research Issues,”
ACM Computing Surveys, vol. 19, pp. 201-260,
September 1987.

A. Ohori, “Semantics of Types for Database Ob-
jects,” Theoretical Computer Science, vol. 76,

pp. 53-91, 1990.

P. Buneman, S. Davidson, and A. Watters,
“Federated Approximations for Heterogeneous
Databases,” in A Newsletter of the Computer So-
ciety of IEEE, pp. 27-34, August 1989.

