
Data Structures and Data Types for Object-Oriented Databases∗

Val Breazu-Tannen, Peter Buneman and Atsushi Ohori†

1 Introduction

The possibility of finding a static type system for object-oriented programming languages was initiated
by Cardelli [Car88, CW85] who showed that it is possible to express the polymorphic nature of functions
such as

fun age(x) = thisyear - x.year of birth

which may be regarded as a method of the “class” of record values that contain a numeric age field. It
is possible both to integrate this form of record polymorphism with the parametric (universal) polymor-
phism and also to express a number of object-oriented programming paradigms by combining higher-
order functions with field selection. Since then a number of alternative schemes [Wan87, Sta88, OB88,
JM88, Rem89, HP91] have been developed that include the possibility of type inference and the use
of abstract types [OB89]. The extent to which these typing schemes give a satisfactory account of all
aspects of object-oriented languages remains an open question, and it may therefore be premature to
complicate the picture by introducing database concepts. Nevertheless, if we are to treat databases of
any kind (object- oriented or otherwise) properly in typed programming languages there are certain
issues that must be resolved, and it is these that we shall briefly investigate in this paper.

Unlike the languages associated with the relational data model which have simple and more or less
coincident operational and denotational semantics, the authors know of no equivalent formulation of an
object-oriented data model. While several papers, e.g. [ABD+89] describe certain desiderata of object-
oriented databases, a consensus has yet to emerge on a formalism for an object-oriented data model,
nor is there yet an adequate explanation of what is fundamentally new about such a model. The issues
we discuss in this paper are relevant to object-oriented databases because they are of general concern
in languages [Sch77, ABC+83, ACO85] that integrate database structures with their type systems, and
object-oriented databases surely fall into this category.

We shall be mainly concerned with operations on records and some “bulk” data type such as sets.
Any database programming language [AB87] must surely be capable of expressing a function such as

fun wealthy(S) = select x.Name
from x <- S
where x.Sal >= 100,000

The syntax here is taken from Machiavelli [OBBT89], but very similar definitions are to be found in
object-oriented languages such as O2 [LRV88]. We would like a type system to express exactly what
is required of the argument S in order for the function wealthy to be well defined. S contains records
(perhaps objects) with appropriate properties. S must be a set (or some other bulk type such as a bag
or list.) Finally we must allow that in some databases S may be heterogeneous: the individual records
may not all have the same structure. These three demands on a programming language are the issues
we discuss in this paper.

∗ Published in IEEE Data Engineering bulletin, Spetial issue on Theoretical Foundations of Object-
Oriented Database Systems 14(2):23–27, June 1991
† Authors addresses: Buneman and Breazu-Tannen, Department of Computer and Information Science, University of

Pennsylvania, Philadelphia, PA 19104-6389, USA; Ohori, Kansai Laboratory, OKI Electric Industry, Crystal Tower, 1-2-27
Shiromi, Chuo-ku, Osaka 540, Japan.

Breazu-Tannen was partially supported by grants ONR NOOO-14-88-K-0634,NSF CCR-90-57570. Buneman was par-
tially supported by grants ONR NOOO-14-88-K- 0634,NSF IRI-86-10617 and by a UK SERC visiting fellowship at Imperial
College, London.

1



2 Operations on records

In [OBBT89] the function wealthy is given the type

{[(’a) Name:’b, Sal:num]} -> {’b}

The ’a and ’b are type variables and may, subject to restrictions discussed below, be instantiated by
any type. The notation {’b} describes the type of sets of values of type ’b, and the notation [(’a)
Name:’b, Sal:num] describes the restriction that an instance of ’a must be a record type that contains
the fields Name : σ and Sal:num where σ is any instance of ’b. For example

{[Name:string, Sal:num, Weight:num]} -> {string}
{[Name:[First:string, Last:string], Sal:num]} -> {[First:string, Last:string]}

are legal instantiations of the type of wealthy.
Using such a syntax it is not only possible to express the exact polymorphic type of a function like

wealthy; it is possible to infer a type by means of an extension of ML’s type inference system. If the
only operations on records were record formation and field selection, the necessary techniques are now
well established (in fact the approaches given in [Wan87, Sta88, OB88, JM88, Rem89] would agree.) The
differences arise when we add operations that extend or combine records, and this is where databases
place an unusual demand on the type system. An operation common in databases is to join two records
on consistent information. For example [Name=’Joe’, Age=21] and [Name=’Joe’, Sal=30,000] join
to form [Name=’Joe’, Age=21, Sal=30,000]. On the other hand there is no type that can be given
to the join of [Id=1234] and [Id=’A123’]. This join can be extended to sets of records i.e. relations,
and in fact to arbitrary structures on which equality is provided, to define the natural join of complex
objects [Oho90b]. It is arguable that natural join is needed in a database programming language, but
even if it is not, a very similar typing rule is needed for the intersection of heterogeneous sets (see below).

There is a well-known result [Mil78] that underlies the polymorphic type system of ML that every
expression has a principal type scheme, i.e. every possible ground type for an expression can be obtained
by instantiating the type variables of its principal type. If we add the typing rules for record formation
and field selection:

(record)
A¤e1 : τ1, . . . , A¤en : τn

A¤[l1=e1,. . .,ln=en] : [l1 : τ1, . . . , ln : τn]
(dot)

A¤e : [. . . , l : τ, . . .]
A¤e.l : τ

we retain the principal typing property [Oho90a]. However, the rule for join is unusual in that it can
only be used provided a ”side condition” is satisfied:

(join)
A¤e1 : δ1 A¤e2 : δ2

A¤join(e1, e2) : δ
if δ = δ1 t δ2

The requirement that any ground type also satisfy the side conditions means that we need to relax
the notion of the principal typing property to include these conditions; nevertheless it is still decidable
whether a given expression has a type, and by suitably delaying the checks for satisfaction, the process
of type inference can be made efficient and to operate interactively.

3 Operations on sets

The operations of the relational algebra suggest one way in which operations on sets may be added to a
programming language. While these are adequate for a large number of database applications, there are
a number of useful operations, such as transitive closure of a binary relation, that cannot be expressed
with the relational algebra alone. Moreover, there is no way of expressing the cardinality, sum, or other
aggregate operations on a set. Relational query languages provide these as special operations, but there
is no general way to construct new aggregate operations.

The problem is this: the relational algebra provides us with an adequate set of operations for mapping
sets of tuples (records) into sets of tuples, but provides us with no way of moving outside this domain;
we cannot expect the relational algebra to produce a set of sets or an integer. One could get rounds this
by adding a choose operator, which picks arbitrarily an element of a set, and using general recursion
to program functions mapping sets to other types. However, choose introduces a nondeterministic

2



semantics, and makes it difficult to ensure that our programs are well-behaved. A better approach,
we claim, is to use structural recursion as the general technique for carrying sets into other structures.
As opposed to general recursion, which most of the times requires destructors like choose, this form
of programming works by matching arguments against data type constructors. One form of structural
recursion on sets is given by the combinator Φ which takes E : β , F : α → β and U : β × β → β to
the unique Φ(E,F, U) : {α} → β satisfying

Φ(E, F, U)(∅) = E
Φ(E, F, U({x}) = F (x)
Φ(E, F, U)(s1 ∪ s2) = U(Φ(E, F,U)(s1), Φ(E, F, U)(s2))

provided that on the range of Φ(E,F, U), U is associative and E is an identity for U (a monoid struc-
ture), and moreover that U is commutative and idempotent. This is similar to the pump operator of
FAD [BBKV88] and the hom operator of Machiavelli [OBBT89], except that in those languages the
requirement of idempotence is dropped and the requirement that the sets s1, s2 be disjoint in the third
clause is added. Pump and hom have a natural denotational semantics, but their operational semantics
is contrived. The evaluator must evaluate sets eagerly and then do time consuming dynamic tests for
equality of values. Of course, this rules out working with sets of functions for example. Even for sets
of, say, integers, mapping a function over a disjoint union may yield a non-disjoint one, which fed into
hom would yield a run-time error. One would like to obtain statically an assurance that the program
goes through, but it seems that only a few very simple programs can be shown correct in this sense. On
the other hand pump and hom can be implemented in Φ style, by converting sets to bags and then doing
structural recursion on those.

Appropriate uses of Φ are, for example, Φ∪(F ) = Φ(∅, F,∪) and Φ∧(P ) = Φ(true, P,∧) where
F : α → {γ} and P : α → bool . Using these, we can construct the following functions on sets:

map f = Φ∪(λx.{fx})
pairwith s x = map (λy.(x, y)) s
cartprod(s1, s2) = Φ∪(pairwith s2)(s1)
powerset = Φ({∅} , λx.{∅} ∪ {{x}} , λ(s1, s2). map ∪ cartprod(s1, s2))

(checking the commutative-idempotent monoid requirement for the use of Φ in the last definition is quite
interesting).

The denotational and operational semantics as well as an appropriate logic for reasoning about
programs that compute with structural recursion over bulk data types such as lists, bags and sets is
studied in [BS91], where transformations to other presentations of these datatypes are also given. In
[BBN91], it is shown how to compute transitive closure efficiently with structural recursion, and it is noted
that relational algebra can be characterized using restricted forms of structural recursion: the expressions
of relational algebra are semantically equivalent to precisely those expressions that can be constructed
using the structural recursors Φ∪ and Φ∧ together with elementary operations (concatenation, projection
and conditionals) on tuples.

4 Heterogeneous collections

The ability to deal with heterogeneous collections is claimed [Str87] as an important feature of object-
oriented programming, and we believe it is of special importance in object-oriented databases, where it
appears to be the only way to reconcile two natural views of inheritance [BO90]. Before looking at this
issue we should remark that we have so far been working in a framework of typed languages. These are
languages in which the only meaningful expressions are those that have a (declared or inferred) type. In
such a language 3 + "cat" is not a program because it has no type. Compare this with the situation
in “dynamically typed” languages in which such expressions can be evaluated, but may yield run-time
type errors. In any persistent programming language [AB87] it is desirable, for safety, to maintain a
structure that describes the type of a database along with the database. However, in order to reason
about these external types in a typed language requires some extra apparatus.

The need for this is seen in any language that has some form of subtype rule in conjunction with
a bulk data type such as lists. If l is an expression of type list(Person) and e is an expression of

3



type Employee, the expression cons(e, l) that “inserts” e into l also has, because of the subtype rule,
list(Person). The expression head(cons(e, l)) now has type Person, and we have “lost” some of the
structure of e; more generally we can no longer use the equation e = head(cons(e, l)) to reason about
our programs. In [BO90] we have proposed an extension of the dynamic types [ACPP89] in which values
in a programming language are “views” that express the partial type of some completely typed object.

The way we achieve this is to incorporate into our type system a distinction between the type of an
object and its kind. In object-oriented terminology the former specifies the class of an object and hence
its exact structure, while the latter specifies that certain methods are available. In order to incorporate
assertions on kinds of objects in the type system, we introduce a new form of assertion e : P(κ) denoting
that e has the kind κ. For example, e:P(<Name:string, Age:num>) means that at least Name and Age
fields are available on e. <Name:string, Age:num> describes a kind, which we can think of as a set of
types – the set of record types that contain Name:string and Age:num components.

Kinds are most useful in conjunction with heterogeneous collections, which may not have a uniform
type, but may have a useful kind. For example, e:{P(<Name:string, Age:num>)} means that e is a
set of records, each of which has at least a Name and Age field, and therefore queries involving only
selection of these fields are legitimate. To construct such a heterogeneous collections of uniform kind,
an operation filter κ (S) is defined which selects all the elements of S which have the fields specified
by κ and makes those fields available, i.e. filter κ (S):{P(k)}.

An advantage of this approach is that it reconciles the database “isa” hierarchies (with extent in-
clusion) with the hierarchies of object-oriented languages (with method sharing.) To show this, let us
assume that the following names have been given for kinds:

PersKind for <Name:string, Address:string>
EmpKind for <Name:string, Address:string, Sal:num>

Also suppose that DB is a set of type {P(any)}. The meaning of any is the set of all possible types, so
that we initially have no information about the structure of members of this set.

Since kinds denote sets of types, they can be ordered by set inclusion. In particular, Empkind is a
“sub-kind” of PersKind. ¿From this, the inclusion filter EmpKind (S) ⊆ filter PersKind (S) will
always hold for any heterogeneous set S. This means that the “data model” (inclusion) inheritance is
derived as a static property from an ordering on kinds rather than being something that must be achieved
by the explicit association of extents with classes with dynamic maintenance of extents. Moreover,
object-oriented (method sharing) inheritance is also derived from a polymorphic type of a method. For
example, the type inference method we have described in section 2 guarantees that any polymorphic
function applicable to P(PersKind) is also applicable to P(EmpKind). Thus, we achieve the desired
coupling of the two forms of is-a in a static type system.

5 Conclusions

We have attempted to show that typed languages are a natural medium for many aspects of database
programming languages. There are certain topics such as object identity, abstract types, views (and the
interaction between these) that require further investigation. However we are confident that these can
be resolved and that object-oriented databases will be best understood in the same framework of typed
languages.

References

[AB87] M.P. Atkinson and O.P. Buneman. Types and persistence in database programming languages.
ACM Computing Surveys, June 1987.

[ABC+83] M.P. Atkinson, P.J. Bailey, K.J. Chisholm, W.P. Cockshott, and R. Morrison. An approach
to persistent programming. Computer Journal, 26(4), 1983.

[ABD+89] M.P. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrick, D. Maier, and S. Zdonik. The object-
oriented database system manifesto. In Proc. First Deductive and Object-Oriented Database
Conference, 1989.

4



[ACO85] A. Albano, L. Cardelli, and R. Orsini. Galileo: A strongly typed, interactive conceptual
language. Transaction on Database Systems, 10:230–260, 1985.

[ACPP89] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically-typed
language. In Proc. ACM Symp. on Principles of Programming Languages, 1989.

[BBKV88] F. Bancilhon, T. Briggs, S. Khoshafian, and P. Valduriez. FAD, a powerful and simple
database language. In Proc. Intl. Conf. on Very Large Data Bases, pages 97–105, 1988.

[BBN91] V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural Recursion as a Query Language.
Unpublished Manuscript, University of Pennsylvania, 1991.

[BO90] P. Buneman and A. Ohori. A type system that reconcile classes and extents. Technical report,
University of Pennsylvania, 1990.

[BS91] V. Breazu-Tannen and R. Subrahmanyam. Logical and Computational Aspects of Program-
ming with Sets/Bags/Lists. To appear in Proc. International Conference on Automata, Lan-
guages and Programming (ICALP), 1991.

[Car88] L. Cardelli. A semantics of multiple inheritance. Information and Computation, 76:138–164,
1988.

[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism.
Computing Surveys, 17(4):471–522, 1985.

[HP91] R. Harper and B. Pierce. A record calculus based on symmetric concatenation. In Proc. ACM
Symp. on Principles of Programming Languages, 1991.

[JM88] L. A. Jategaonkar and J.C. Mitchell. ML with extended pattern matching and subtypes. In
Proc. ACM Conference on LISP and Functional Programming, pages 198–211, 1988.

[LRV88] C. Lecluse, P. Richard, and F. Velez. O2, an object-oriented data model. In Proc. ACM
SIGMOD Conference, pages 424–434, 1988.

[Mil78] R. Milner. A theory of type polymorphism in programming. Journal of Computer and System
Sciences, 17:348–375, 1978.

[OB88] A. Ohori and P. Buneman. Type inference in a database programming language. In Proc.
ACM Conference on LISP and Functional Programming, pages 174–183, 1988.

[OB89] A. Ohori and P. Buneman. Static type inference for parametric classes. In Proc. ACM OOPSLA
Conference, pages 445–456, 1989.

[OBBT89] A. Ohori, P. Buneman, and V. Breazu-Tannen. Database programming in Machiavelli – a
polymorphic language with static type inference. In Proc. ACM SIGMOD conference, pages
46–57, 1989.

[Oho90a] A. Ohori. Extending polymorphism to records and variants. Technical Report, University of
Glasgow, 1990.

[Oho90b] A. Ohori. Semantics of types for database objects. Theoretical Computer Science, 76:53–91,
1990.

[Rem89] D. Remy. Typechecking records and variants in a natural extension of ML. In Proc. ACM
Symp. on Principles of Programming Languages, 1989.

[Sch77] J.W. Schmidt. Some high level language constructs for data of type relation. Transactions on
Database Systems, 5(2), 1977.

[Sta88] R. Stansifer. Type inference with subtypes. In Proc. ACM Symposium on Principles of Pro-
gramming Languages, pages 88–97, 1988.

[Str87] B. Stroustrup. The C++ programming language. Addison-Wesley, 1987.

5



[Wan87] M. Wand. Complete type inference for simple objects. In Proc. Symposium on Logic in Com-
puter Science, pages 37–44, 1987.

6


