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1 Introduction

In the 1985 National Academy of Sciences report, “Models for Biomedical Research: A New
Perspective,” Morowitz et al [9] argue that biological research had reached a point where “new
generalizations and higher order biological laws are being approached but may be obscured
by the simple mass of data.” The authors go on to propose the creation of a “Matrix of
Biological Knowledge” (now called the Biomatrix) in which data, information and knowledge
are structured and stored to provide an integrated view of biology. During the intervening ten
years, the rate at which data has been generated has, if anything, exceeded the expectations
of that report, but fortunately the data is mostly available online, overcoming at least one of
the major hurdles in creating the Biomatrix.

However, despite substantial efforts at creating unified databases for genomic data (see for
example [25]), we have to ask in what sense the ultimate goal of the creating the Biomatrix
as a unified database for biological knowledge is attainable. We see a number of very serious
obstacles to this:

o As new experimental techniques are developed and as “new generalizations and ... laws”
are discovered, radical changes to the structure (schema) of the database are required.
Coping with the evolution of structure is a major challenge to database and knowledge
base technology.

e The scope of such a database is unclear. Even if it were possible, for example, to construct
a satisfactory database for genomic data, this represents only a fraction of biological data.

*This research was supported in part by DOE DE-FG02-94-ER-61923, NSF BIR94-02292 PRIME, ARO
AASERT DAAHO04-93-G0129, and ARPA N00014-94-1-1086.
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And even if a complete Biomatrix could be developed, how would this relate to other,
non-biological, data sources?

e The problem of scale is horrendous. How are small databases associated with individual
research groups to be tied in with the structure of some large integrated database? The
administrative problems alone appear unsurmountable.

Thus, while the Biomatrix calls for a massive integration of data on a huge scale in both
volume and complexity, significant technical challenges still remain for the smaller scale data
integration problems that arise frequently within bioinformatics. The problem of integration
has several components, not all of which have been met by current database technology. First,
there is a collection of inter-related data in heterogeneous data sources that are connected over
the internet. Some of these data sources are “standard databases” with well understood query
interfaces (e.g. relational databases and to some extent object-oriented databases). Others
are in data exchange/interchange formats with more restricted, navigational interfaces (e.g.
ACeDB and Entrez). Still others are in flat files with some structure that can be parsed to
retrieve data (e.g. ASN.1 exchange format data and GenBank flat files). In addition, certain
application programs such as BLAST and FASTA can be viewed as a kind of data source query
that ideally should be merged with more traditional queries. Second, an increasing number
of users wish to perform complex, “bulk” queries against distributed data. Until recently
many users have been happy merely to browse through data sources, finding related data in a
rather haphazard manner. While some users will continue to be satisfied with special-purpose
analysis packages or GUIs, or will only want browsing capabilities, advanced analysis and data
source interrogation capabilities require more powerful query facilities. Furthermore, users’
expectations of how fast data should be retrieved have risen with technological advances in
networking. Ultimately the query interface should be supported using a high-level, well-defined
language that is capable of optimizing ad-hoc queries to provide answers in a timely manner.
Third, updates to data are strictly locally controlled. It is doubtful that resource maintainers
will relinquish local autonomy and allow enough flexibility in the transactional capabilities of
their systems to implement global updates; the current mode of operation are informal update
paths throughout a federation of data sources.

Various approaches to integration are appearing throughout the bioinformatics community and
it is unlikely that there will be a single satisfactory strategy. In this report, we examine the
technical challenges to integration, critique the available tools and resources, and compare the
cost and advantages of various methodologies. We begin by analyzing the basic steps in strict
and complete integration: 1) transformation of the various schemas to a common data model;
2) matching of semantically related schema objects; 3) schema integration; 4) transformation
of data to the federated database on demand; and 5) matching of semantically equivalent
data. Some progress has been made on generic problems such as (1) and (3) within the wider
database community, but issues of semantics (steps (2) and (5)) have only been dealt with any
degree of success by domain experts within the biological community. We then look at the
solution space of integration strategies as defined by two axes, the “tightness” of federation and
the “degree” of instantiation, discuss where various solutions fall on this plane, and examine
their cost and advantages/disadvantages. Finally, we examine technical challenges that are not
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adequately addressed by these approaches, but are essential elements of a long-term solution:
managing optimizations to provide timely response, and dealing with updates at both the
instance and schema level.

2 Steps in Integration

The objective of integration is to make data distributed over a number of distinct, heteroge-
neous databases accessible via a single interface. Having constructed this interface, the system
must be capable of efficiently executing queries and of reacting to changes in the underlying
resources, whether they be updates to the schema or to the data. The cost of integration
therefore has two components: the cost of initially constructing the interface, and the cost of
maintaining it. This section focuses on the first component, construction of the single database
interface; the other component will be discussed in later sections.

Rather than discussing integration in the abstract, we present a simple example to make the
steps concrete.
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Figure 1: Schemas for YAC/STS and YAC/Alu-PCR databases

Example 1: Figure 1 shows the schemas of two databases representing YAC/STS and
YAC/Alu-PCR physical mapping data.® The first schema has two classes: YAC and Alu-PCR.

!The graphical notation used here is inspired by [1].
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The YAC class has two attributes: id, representing the unique ID of a YAC, and pos-alupcr-
hit, a set-valued attribute (indicated by the “star” node on the edge) denoting YACs positive
by hybridization to an AluPCR probe. The Alu-PCR class has three attributes representing
its unique ID, the set of YACs for which it is positive (pos-yac-hit), and the particular YAC
which served as the source for generating the AluPCR probe.

The second schema also has two classes, this time YAC and STS. The YAC class has attributes
representing its unique ID and positive experimental hits with STSs, an analog of the YAC
and Alu-PCR relationship. The STS class has four attributes representing its unique 1D, the
YACs for which it is positive, and the “left” and “right” ends of the YAC insert junction used
to obtain sequence for PCR primer selection. (“Left” and “right” are arbitrary designations

here.)

Suppose we want to combine these two databases into a single database containing information
about both STS and AluPCR results. A suitable schema is shown in figure 2, where the
“plus” node indicates a variant. Variant types are common in programming languages as
“discriminated unions” where they are used to express the possibility that a data item may take
on one of a number of mutually exclusive forms. They occur frequently in these examples, but
they are not properly represented in database management systems — even in object oriented
systems. In this example the YAC classes from both the source databases are mapped to
a single class YAC in the target database. The pos-alupcr-hit and pos-sts-hit attributes of
the YAC classes are mapped to a single attribute pos-probe-hit which takes a value that
is either an Alu-PCR or an STS, depending on the type of experiment. A more difficult
mapping involves simplifying the representations for Alu-PCR and STS probe source. Rather
than having different relationships for the two types of probes, a new relationship, source, is
introduced that maps the probe to its YAC source. This is sufficient to specify the source of an
Alu-PCR probe, but for the STS probes, a new string attribute, primer-set-end, is added that
indicates which YAC-insert junction was used to develop the STS. Note that this is a more
general representation than the original STS source information. To resolve this difference in
representation a straightforward embedding of data will not be sufficient; we will need to do
some more sophisticated structural transformations on the data.

From this example, the general task of database integration can be seen to consist of five
conceptual tasks:

e Data model transformation

e Semantic schema matching

e Schema integration

Data transformation

Semantic data matching

We expand on what we mean by each of these.
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Figure 2: An integrated schema of YAC/STS and YAC/Alu-PCR results.

Data model transformation. Bearing in mind that we are extracting portions of the
underlying databases for integration, the first step in integration is to represent each of the
underlying schemas in a common model. Obviously, this transformation should preserve the
relevant information. Furthermore, it should be sufficiently simple and expressive to allow
data to be represented in multiple ways so that conflicts between alternative representations
can be resolved. Thus the common data model must be at least as expressive as any of the
individual data models. It is, of course, possible to represent almost any data structure within
the relational data model with sufficiently elaborate encoding. By “expressive” we mean a data
model in which the transformation is natural and obvious. For example, we might want to
modify the schema for a YAC/STS experiment result as shown in figure 3 prior to integrating
it with the YAC/Alu-PCR database, and the common model must be able to support both
representations.

Various models have been used for the common data model, ranging from relational and ex-
tended entity-relationship models to semantic, functional, and object-oriented models. In [27]
the various requirements on a model for transforming heterogeneous databases are examined,
and the authors conclude that a model supporting complex data-structures (sets, records and
variants), object-identity and specialization and generalization relations between object classes
is desirable.

By and large, the transformation between models is a purely syntactic process, however there
are interesting questions about information loss and equivalence of representation.

Semantic schema matching: Before schemas can be merged, the correspondences among
concepts with semantic overlap must be established across the participating data sources. This
is typically done by resolving names between the schemas (whether homonyms or synonyms),
or creating specializations and generalizations of concepts to show similarities among terms.
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Figure 3: A modified schema for a YAC/STS experiment results

For example, in the YAC-Probe-Source example, we determined that there is a natural corre-
spondence between YAC/STS and YAC/Alu-PCR experiments; however, a different approach
to integration than the one we proposed might determine that Alu-PCR and STS experiments
are both specializations of some superclass of YAC/probe experiments.

Semantic matching at the schema level remains one of the thorniest problem in data source
integration. Unfortunately, there are no proven technologies to automate this process, which
currently demands a labor intensive effort on the part of domain experts. Nonetheless, the
process can be facilitated by improving the level of annotation of the participating databases
and establishing standardized thesauri of biological concepts (see working group reports for
MIMBD94). If done correctly, these steps in themselves may create a foundation for automated
methods of semantic matching.

Schema integration: Having determined similarities between concepts in the underlying
schemas, a common global schema is created from the underlying schemas. This may be as
simple as taking the union of the underlying schemas, or may require further modifications of
representation in the underlying schemas and in the integrated schema itself.

First, concepts that overlap semantically are frequently represented in different ways in dif-
ferent schemas since the specifics of concept representation typically depend on application
requirements. Thus, before correspondences can be established between schemas it may be
necessary to resolve conflicts of representation in the underlying schemas.

Returning to the YAC-Probe-Source example, it is necessary to perform a structural modifi-
cation on the database of YAC/STSs to replace the two STS primer source attributes with a
single source attribute, sts-source, and the string-valued attribute primer-set-end as previously
described. This yields an intermediate database with the schema shown in Figure 3.

Second, the way in which the integrated database itself will be used may be radically different
from the ways in which the underlying databases were designed and it may therefore be nec-
essary to add, modify or delete concepts. As an example, it may be necessary to add explicit
linking tables between concepts from different schemas that are related at some level.
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Continuing with the YAC-Probe-Source example, the integration is fairly simple: We merely
have to associate the classes and attributes of the two source databases with those in the
integrated database, so that the YAC classes and id attributes, and also the Alu-PCR and

STS attributes, are associated.

Data transformation: In structurally transforming the schemas, it is important to keep in
mind that these changes must eventually be reflected in terms of the data in the underlying
databases. Although it would seem that this should follow directly from the structural schema
modifications, there are in general many possible interpretations of a schema modification.
For example, in a data model supporting classes of objects and optional attributes of classes,
suppose we changed an attribute of an existing class from being optional to being required.
There are a number of ways that such a schema modification can be reflected on the underlying
data: we could insert a default value for the attribute wherever it is omitted, or we could simply
delete any objects from the class for which the attribute is missing. It is therefore important
that the meaning of the schema modification be represented explicitly as a data transformation.
See [17] for more details on database transformations.

Semantic data matching: Semantic matching at the data level is, if anything, more difficult
than semantic schema matching, having the least formal methodological support and requiring
the most domain knowledge. In semantic data matching, the relationships between data items
that are equivalent across data sources or are attributes of one another are made explicit.
Finding which protein sequence entries in PIR or loci in GDB correspond to nucleic acid
sequence entries in GenBank are prime examples of semantic data matching. As with semantic
schema matching, the creation of links between semantically related data items can be greatly
aided by a comprehensive thesaurus of terms accompanying highly structured data sources.
Often though, the formation of links across data sources at the data level requires deep domain
knowledge and the use of heuristic techniques to “guess” at the links. Surprisingly, considerable
progress has been made in this area as evidenced by the abstracts in this year’s meeting
[20]. We attribute the rapid pace in creating linking tables for biological data sources to the
pragmatic approaches taken by bioinformatics systems developers in attacking integration at
its most fundamental level; many of the day-to-day questions biologists pose can be answered
when linking tables are available regardless of the completeness of the rest of the integration
process.

3 Dimensions of Integration

A number of examples of integrated databases within the biological community have emerged
over the past few years. These solutions can be roughly classified as points in a plane defined
by two axes: 1. Loosely to tightly federated; 2. Instantiation to virtual (view).
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Degree of Federation. The first axis deals primarily with how many of the tasks of DB
integration have been performed, and in how much detail. A tightly federated database is one in
which the schemas have been transformed into a common model, and as much semantic schema
matching and schema integration has been performed as possible. Data transformations and
semantic data matching has also been performed. In a loosely federated database, there is a
common data model but the integrated schema may be nothing more than the union of the
underlying schemas. Furthermore, while there is a common language for querying against the
federation the user may have to be aware of where the data is coming from since no naming
conflicts have been resolved.

The advantages of a tight federation from the user’s point of view are numerous, basically
addressing all end-user and application developer desiderata: a single data representation
(schema) uniting all relevant data sources enormously reduces the task of navigating the se-
mantic tar pits of the multiple databases; and the system presents a single, uniform query
language for the software developer and end-user upon which simple views and graphical in-
terfaces can easily be built. The disadvantages are that it is very costly to build, requiring
all of the steps of integration (the most costly of which are the semantic schema and data
matching steps), and it is costly to maintain. Every time a schema evolves (which happens
quite rapidly in the context of biological databases), the integration must be modified. An-
other disadvantage is that it is inflexible. As mentioned earlier, the representation of concepts
within a database depends on their intended usage. Thus providing different views may involve
writing several different transformations of the underlying data sources.

Instantiated versus View. The second axis deals with whether there exists a physical
copy of the integrated database, or whether the integration describes how to translate queries
against a view into queries against the underlying data sources.

The advantages to an instantiated implementation is that system performance will, in general,
be much better than is possible under a distributed environment. First of all, query optimiza-
tion can be performed locally (assuming the system is a good one); second, inter-data source
communication time will be eliminated. System reliability should also be significantly higher
since there are fewer dependencies on network connectivity and the individual data sources
(again, assuming that the integrated system is reliable). It is also less costly to implement any
inter-database constraints that have been determined in the integration [26, 30]. The disad-
vantages of an instantiated implementation is not just the initial cost, but even more the cost
of maintenance. Every time an update is made in one of the underlying databases it must be
reflected in the integrated instance. This may involve a complex query resulting in an update
rather than just a simple update, if the integrated schema is complex. This is related to the
problem of optimizing queries against views involving joins, and whether a “materialized view”
is cost effective [31]; this will be discussed in more detail in section 5.

Before discussing particular approaches that have been taken, it is important to distinguish
between ezamples (or solutions) and methodology. That is, an example can be implemented
using a particular methodology and be “tightly integrated and instantiated”; however, it may
be possible to use that same methodology and implement a “loosely integrated and view”
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solution. The more flexible a methodology is within this solution space, the more useful it
will be since it will admit a greater range of solutions. It is also typically the case that
a methodology which admits a tightly integrated solution can also be used to implement a
loosely integrated solution, and that one which admits a view implementation can also be used
to implement an instantiated implementation — but not vice versa. Thus a methodology for
tightly integrated views is extremely flexible.

Much of the research within the database community has been to develop methodologies for
performing one or more of the integration tasks. For example, Multibase [11] is a methodology
for implementing view integrations, and suggests a limited family of schema transformations
for integrating schemas. The underlying model is functional, and the query language is Daplex.
A solution using Multibase could range from fairly loose to very tight integration, but always
a view implementation. Furthermore, since there is no discussion in [11] of the first step
of integration, translation from a given model into the functional model, it is immediately
applicable only for functional databases which support Daplex.

The federated architecture suggested in [14] and later in [18] is a methodology which always
yields a loosely federated system with a view implementation for relational systems. The
focus in [14] is on how to gain and grant access permissions for data in a distributed system,
while that in [18] is how to extend an SQL-like language to facilitate expressions over multiple
sources with common names. There also exist a variety of methodologies which address only
the schema transformation and integration aspects of integration [22, 24, 7, 28, 4]. Techniques
that address primarily implementing schema transformations can be found in [22, 3, 21, 28, 2].
A discussion of transformations between ER-model and the relational model can be found in

19].

Before turning to examples of integration of biological databases, we should also remark that
the cost of integration is also influenced by whether it is an autonomous or cooperative integra-
tion effort. Database researchers generally assume that each of the individual data sources in
a federation are developing autonomously; however, cooperative development, where individ-
ual data sources agree on the structure of overlapping schema fragments, a common thesaurus
and unique identifiers linked across sources, can substantially reduce the barriers to integration
even if heterogeneous data models are chosen. If the developers further agree on a common
data model, then the cost of integration can be almost fully absorbed into the implementa-
tion and maintenance cost of the individual data sources. While the issue of “autonomous
versus cooperative” strategies addresses a sociological rather than technical barrier, it pro-
vides an important mechanism for practical data source coordination and integration that can
substantially affect the overall cost of integration.

4 Sample Solutions and Cost

Tight /Materialized/Autonomous Integration: The Integrated Genome Database (IGD)
developed by Ritter [25] represents the most demanding approach to integration: it is an exam-
ple of a tightly federated, fully materialized database, where each of the twenty or so individual
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resources is fully autonomous with respect to the integration. IGD uses an ACeDB schema
and front-end. The underlying database can either be in the ACeDB management system or
(as we understand it) in Sybase.

IGD has been favorably received. It provides a common schema for the underlying databases, a
popular graphical user interface (ACeDB), and the ACeDB query facility. Since most updates
to ACeDB databases are through text files rather than through the transaction management
systems expected in full blown DBMSs, daily bulk updates are efficient because little constraint
checking is enforced.

The integration physically resides at one site, can be queried without remote database accesses
and thus should provide rapid access to data. However, one can imagine a scenario in which
queries against a virtual IGD schema are translated into queries against the underlying data
sources from which IGD was constructed.

Several issues concerning the long-term viability of IGD in its present form arise. First, I[GD
may well be pushing ACeDB past its design limits with respect to the database size and perfor-
mance. Anecdotal evidence suggests that ACeDB databases approaching 1GB are unreliable
and require subverting the generality of the system name space to be implemented. The second
and more pressing issue is the overall cost of system maintenance. It is not clear what tools
have been built in the IGD project to cope with schema and data evolution. At this point in
time, molecular biology databases are modest in size and bulk reloads of whole database are
feasible. This will not be true in the future where incremental uploads will be unavoidable. At
that point, issues of schema evolution, data level maintenance and linking table maintenance
become paramount. While these issues are by no means restricted to IGD, we are not sure
how IGD plans to address these problems.

Tight /View/Cooperative Integration: GDB, GSDB and TIGR have proposed a coop-
erative federation using a homogeneous DBMS environment, Sybase. While we do not know
the details of this collaboration, we assume that an effort will be made to coordinate schema
design; that linking tables will be maintained relating data instances across the cooperation;
and that updates while primary updates will be performed locally at each site, dependencies
at other sites will be immediately updated.

The advantages of this controlled environment are obvious: shared schemas, a homogeneous,
industrial strength DBMS capable of distributed queries, common name spaces and identifiers,
cooperatively developed linking tables, and both local and distributed updates. However,
while this solution is perfectly reasonable for a small-scale cooperative effort, it does nothing
to address the larger problem of data source integration. Further, it is not clear how far this
top-down approach can scale. Imagine trying to integrate the twenty data sources available in
IGD by a cooperative approach.

Loose/Partial Views/Autonomous Integration: The CPL/Kleisli system [6] supports
ad hoc queries over heterogeneous, distributed databases. This system could easily be inserted
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at many points in the space of integration possibilities. To date, however, it has been used
to integrate autonomous, read-only resources through trans-database user-views (mediators).
In this mode, CPL/Kleisli offers the following advantages: a uniform interface to heteroge-
neous systems; inexpensive construction and relatively inexpensive maintenance of complex
queries across multiple database; uniform treatment of heterogeneous resources and databank
analysis algorithms (e.g., BLAST); optimization of distributed queries including parallelism
and lazy evaluation; a rich type system necessary for integrating heterogeneous resources; and
modularization of data drivers for access to distributed resources.

However, there is a significant practical drawback to this mediator style of integration. Recent
experiments with the CPL system have shown that the existing network system is too fragile
and too slow to permit adequate response times for many reasonable distributed queries. This
of course depends strongly on the particular resource being accessed; bulk queries against
the Entrez server are intolerable while those against relational database systems are fast,
robust and can be parallelized for significant performance improvements. Furthermore, while
updates to individual underlying systems can be executed within the CPL-Morphase system
[10], updates at a global level is currently not supported.

Links/Views/Autonomous Integration: Several examples of link driven federations now
exist. Among them are SRS [12], the Genera system developed by Letovsky, the ExPASy
WWW server by Bairoch and Genome Net. The interface basically allows a set of data
sources to be browsed by casual end-user; users execute single data source retrievals and then
hop to another data source via Web links. While these have proven to be an initial boon to
biologists they do not scale well, as they do not provide “machine access” to the underlying
data sources. It is also not clear whether the “point and navigate” style of access really
constitutes an interface, since the functionality is extremely limited. Such an interface is also
extremely inefficient and does not support bulk queries.

5 New Technical Challenges

There are several new technical challenges that need to be addressed. Many lie with the central
concern of querying the federation; others lie in the yet unexplored concern of updating the
federation.

New Technical Challenges with Querying. The fundamental challenge with querying is
to develop an appropriate data model for the federation. Within the current environment of
scientific databases, the data types are complex — for example, ASN.1 has arbitrarily embedded
records, sets, lists and variants. Other formats include arrays. Although it is possible to
map these into a much simpler type system, say relational, a simpler representation loses the
“intuition” and often the semantics of the original representation For example, mapping a list
of strings into a relation will lose positional information. One could represent it as a set of
of pairs representing the string and its position within the list, however the representation is
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not as intuitive and translation of list operations unnatural. Current commercial products and
many research prototypes use an extremely simple type systems (e.g. are mainly for relational
databases) and are not appropriate.

Another technical challenge is to “add value” to existing query interfaces. Although some
biological data sources have sophisticated access techniques and implement projections as well
as selections of data, others do not, such as ASN.1 and ACeDB. For example, while Entrez
queries allow the selection of a complex value from an ASN.1 source, they do not allow any
pruning or field selection from that value. Although such pruning could be done to an ASN.1
value after it has been retrieved by the federation server, it is much less expensive in terms of
communication costs to prune at the level of the ASN.1 driver, i.e. the interface that translates
from ASN.1 values into values of whatever model is being used for the federation. Placing this
software at the ASN.1 server would significantly reduce the amount of data transmitted over
the network.

Crucial to the success of any system that deals with large amounts of data, and probably the
most difficult challenge for querying, is the ability to perform optimizations. For example, the
relational model took a number of years to hit the commercial market and gain widespread
acceptance because performance was an initial problem. Optimization techniques within this
model that were subsequently developed include [29]: algebraic rewrite rules, such as those that
push “restrictive” operators (i.e. selections and projections) close to base relations, and the
translation of selections followed by a cartesian product into a join; various data placement
strategies, such as clustering, and the development of indexing, such as B-trees and hash
structures; optimization of selections to use indices where appropriate; various optimizations
of joins, such as blocked nested-loop join [16] and hashed-loop joins [23]. While many of these
optimizations fall outside of the semantics of the model itself, the existence of algebraic rewrite
rule simplifies the process enormously since commutativity of various “positive” operators
(cartesian product and union) is assured.

Optimizations are even more important in a distributed environment due to the latency and
unreliability of communication as well as the varied capabilities of the data servers, and there-
fore admit more possibilities. Examples of the types of optimizations possible in such an
environment follow:

1. The ability to use rewrite rules in whatever high-level query language is adopted for
the federation can dramatically improve performance if operations are pushed down to
the source databases whenever possible. For example, if the federation language were
SQL, and R and S were two relations at the same (relational) data source, it would be
significantly more efficient to execute the join of R and S, R x S, completely at the
data source than to first retrieve R, then retrieve S and then compute the join at the
federation server.

Within the CPL query system developed by our group [6] the following query retrieves
all known DNA sequences on chromosome [22].

define Loci22 == {[locus_symbol= x, genbank_ref= y]|
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[locus_symbol=\x,locus_id=\a, ...]
<— GDB_Tab(“locus”),
[genbank_ref=\y,object_id=a,object_class_key=1, ...]
<— GDB_Tab( “object_genbank_eref”),
[loc_cyto_chrom_num="22", locus_cyto_location_id=a,
...] <— GDB_Tab(“locus_cyto_location”)};

As written, the query first accesses the locus table in GDB via the call GDB_Tab( “locus™).
For each tuple in the table, it then pulls out entries in object_genbank_ref whose object_id
field matches the locus_id field of the locus tuple (indicated by GDB_Tab( “object_genbank_ref”)
and the reuse of variable a). It then pulls out entries in locus_cyto_location whose lo-
cus_cyto_location_id field matches the locus_id field of the locus tuple. Using rewrite rules
for CPL, this inefficient query which accesses GDB multiple times is automatically con-
verted into a single (more complex) access against GDB:

define GDB ==
Open-Sybase( [server="GDB" ,user="cbil”,
password="“bogus” 1);

define Loci22 ==
GDB( [query=
“select locus_symbol, genbank_ref
from locus, object_genbank_ref, locus_cyto_location
where locus.locus_id = locus_cyto_location_id
and locus.locus_id = object_genbank_eref.object_id
and object_class_key =1
and loc_cyto_chrom_num = 22" "1);

. The ability to implement various join strategies at the federation server, for joins that
are distributed (i.e. cannot be pushed down to a single data server). There has been
quite a bit of research on semi-join strategies within the (non-heterogeneous) distributed
database community [8]. The problem becomes even more interesting when the capabili-
ties of the data servers themselves are also taken into consideration. Taking the example
of computing R X S where R and S are at different data sources, if R is very small (a few
tuples), S is very big and has indexing capabilities, it would cost effective to send each
join value of R to the server containing S since communication costs would be reduced.
However, if the server containing S didn’t have indexing capabilities the whole relation
S would have to be retrieved.

3. The ability to exploit parallelism at the data servers. Taking the R x S example again,

rather than sending join values of R to the server containing S sequentially, we can
exploit the fact that many data servers can handle several requests simultaneously and
send the join values in parallel.

. The ability to exploit redundancy within the federation. There is frequently more than
one data source containing the same information. For example, IGD contains complete
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replications of about 20 important databases. For a query that accesses data within one
of these databases, it might be useful to be able to fire off queries in parallel against
IGD and the original data source, and take whichever one responds first. Or it might
be possible to poll each of the servers to determine their load and network conditions,
and send the query to whichever server seems to be the most available. Additionally, the
capabilities of the servers could be taken into account, and the server with the greatest
capability for answering the query could be chosen. For example, an ASN.1 server might
provide faster response to a query than a Sybase server; however, if projection was
important in the query one might prefer the Sybase server.

New Technical Challenges with Data-Level Updates: In centralized or (homogeneous)
distributed databases, updates are traditionally handled by enclosing them within transac-
tions. Transactions give a number of “guarantees”, named the ACID properties: 1) Atomicity:
a transaction is either executed in entirety, or not at all; 2) Consistency: transactions preserve
database consistency, i.e. transform an initially consistent database state into another consis-
tent database state; 3) Isolation: transactions are isolated from one another, i.e. the updates
of an uncommitted transaction cannot be observed by another transaction; 4) Durability: the
effects of a transaction persist despite system crashes. However, due to the dramatic variation
in update capabilities of the underlying data servers, notably the ability to enter a “prepared-
to-commit” state, it is impossible to enforce this strong a notion of correctness for updates
within a view federation [5]. For example, Sybase servers have a (relatively) strict implementa-
tion of transactions, while ACeDB servers require single-user, sequential modifications to the
database file.

However, it is likely that one would like to state a number of integrity constraints that must hold
for the federation. For example, an integrity constraint could be used to state that replicated or
derived data is not contradictory, or at least that updates to replicated data are current within
some window of time. Other integrity constraints might be used to state that information is
not duplicated or that referential integrity holds (e.g. all genbank_ref within GDB occur within
some GenBank entry). We need to formulate the requirements of updating within federations
of molecular biology databases, and develop/adapt approaches to specifying and enforcing such
constraints. Advances in this area are being made in the database community [13], and need
to be extended to our environment.

Updating within an instantiated integrated database also poses problems: As the underlying
data sources are updated, the “view” or instantiation must also be updated. Rather than
recomputing the view each time an update occurs, one should minimize the amount of work
necessary to make the view current and only update the part that actually depends on the
update. Although much work has been done on the view maintenance problem in the database
community, updating an integrated repository is significantly more complicated since the un-
derlying data sources presumably do not understand view management and know the relevant
view definitions to propagate updates as they occur. Thus the integrated source may have to
perform distributed computations to compute the correct update; however, due to the lack of
transaction management at a global level, it may not be possible to get temporally consistent
data and the integrated source may compute an incorrect view (see [31] for details). Again,
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we need to formulate requirements and develop techniques to correctly update instantiated
integrated databases.

New Technical Challenges with Structural Updates: It is well known that the schemas
of databases within the domain of molecular biology evolve extremely rapidly in response to
changing experimental techniques and requirements, perhaps as often as 2 or 3 times per year.
This poses a number of problems with maintaining view definitions and existing applications,
since it is difficult to determine how the schema transformations, or structural updates, affect
these (frequently complex) definitions. It is therefore useful to be able to capture schema trans-
formations in a high-level declarative language so that they can be easily modified. Further-
more, capturing integrity constraints in a common paradigm potentially gives us a mechanism
for checking the correctness, or information preservation, of such transformations [21, 15, 17].

6 Conclusions

Some of the goals of the Biomatrix have been accomplished. There exist some linking ta-
bles relating objects in different databases, a first step in semantic integration. There exist
some physical integrations of important overlapping biological databases. There exist tools for
querying and transforming data in heterogeneous data sources that are currently being used
within some centers. There is ongoing work on resolving data conflicts.

However, there remain many technical and organizational challenges which were alluded to in
this report. Are there strategies for helping with semantic schema matching? Are there general
strategies for resolving data conflicts? What data-types should be included in the common
data model? What are the natural operations over those types? What are useful optimizations
for queries over in a language based on this type? What are useful source and network specific
optimizations for distributed queries over heterogeneous data sources? How should updates
be modeled in a distributed Biomatrix, and how should they be implemented?
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