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Abstract
A new definition of complex objects is introduced which provides a denotation for incomplete tuples
as well as partially described sets. Set values are “sandwiched” between “complete” and “consistent”
descriptions (representing the Smyth and Hoare powerdomains respectively), allowing the maximal values
to be arbitrary subsets of maximal elements in the domain of the set. We also examine the use of rules

in defining queries over such objects.

1 Introduction

A characteristic of “complex-object” [1, 2] databases and “higher-order” relations [3, 4] is that the components
of tuples are not restricted to taking only atomic values, but may be other tuples or even sets of tuples. A
second property of complex objects and related information structures is that there is a natural ordering
on the domain of values with an associated algebra [5, 6, 7]. For example, in Bancilhon and Khoshafian’s

ordering on tuples [1]
[Name=>']. Doe'] C [Name=>"]. Doe'; Age=>21]
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since the first tuple is not defined on Age. More generally, if V is a partially ordered domain of values and
L is a set of labels, then a tuple is a function in £ — V, and the ordering on tuples is the ordering on the
function space:

2] g ity = vl e Etl(l) g tz(l)



Since the domain of values can also contain sets, we need to extend this ordering to sets of values. In [1],
two subsets A and B of the same domain are ordered by

AC' B=Vaec A3be BaLb.

and this ordering is inductively extended to order “complex objects” which are hierarchical structures con-
taining both tuples and sets. In contrast, in an attempt to find a data type for natural join, [8] uses the
ordering

AC'B=Vbe BIa€ Aal b,

Both of these orderings are well-known in the study of the semantics of concurrency and non-determinism;
C! and T are respectively called the Smyth and Hoare powerdomains [9]. To make C" and C! orderings as
opposed to a pre-ordering, A and B must be restricted to be co-chains. S is a co-chain in a domain D if
any pair of elements in S is incomparable, i.e. if z,y € S and z J y then z = y. Observe that the maximal
elements of Cf and " are respectively the empty set ({}) and the set of all maximal elements of D.

Unfortunately, if one wants to assign a reasonable semantics to sets of values neither of these orderings
in isolation is satisfactory since their maximal elements are uninteresting. [10], in formalizing incomplete
information, describes the semantics of a tuple such as [Name=>"J. Doe’; Age=>_] as {[Name=>"J. Doe';Age=>i]
| ¢ € I } where I is the set of all possible (total) values for Age. More generally, if D is a partially ordered
space, we can define the denotation of a tuple z, [z], as {y | y is maximal in D and y > z }. However, if
we extend this simple-minded notion of semantics to tuples involving sets of values, the denotation of the
tuple [Name=>'"J. Doe’; Children=>{"John', 'Mike'}] would, using the Hoare powerdomain, be a tuple with all
possible children, and, using the Smyth powerdomain, be a tuple with no children. Clearly, neither of these
is acceptable; we need a domain in which the maximal elements are subsets of the maximal elements of D.

In this paper, we use the Hoare and Smyth powerdomains together to place outer and inner bounds on
— or to “sandwich” — subsets of the maximal elements of D. A sandwich is then a pair of co-chains in D.
Sandwiches are ordered by how well they describe subsets of the maximal elements of D, , i.e., a better
sandwich will describe fewer subsets. Using sandwiches, we will be able to develop a fixed-point semantics
for queries in a richer domain: one which allows us to describe both approximate queries and incomplete
information.

2 The Sandwich ordering

We would like the spaces we are using to be rich enough to describe recursive record structures. For this
purpose, the appropriate definition of a domain is an w-algebraic consistently complete partial order [11],
and most of the results we will give apply to such domains. However, since all our examples will be of finite,
non-recursive structures, the only important property of a domain is that it is a partially ordered space D
such that the greatest lower bound of any nonempty subset X of D, NX, exists. When two or more members
of D have an upper bound, we call them consistent.

Given a domain D, let C(D) denote the co-chains on D . A sandwichin D is a pair (A4, B) with A, B € C(D)
such that 3S CD.AC! S and B S.

Let S(D) denote the sandwiches on D. We can define an ordering on S(D) by (A1, B1) T (Az, By) =
A1 Eﬁ Az and Bl Eb Bz.

Prop 1 (8(D),C%) is a domain.

The most important property of S(D) for our purposes is that the maximal elements correspond to
subsets of maximal elements of D; more formally, using To#(D) for the set of maximal or total elements in

D

bl

Prop 2 The mazimal elements of S(D) are pairs (T,T) where T C Tot(D).



From our previous definition of meaning, the denotation of a sandwich is given by [(A4, B)] = {(T,T)|T €
Tot(D), AC! T and B C’ T}. We can think of A and B as being complete and consistent information about
some T € Toy(D). When (T,T) € [(A, B)], we shall say that (A, B) approzimates T.

For example, suppose we are seeking to approximate the set of students T" who are interested in the study
of databases. If we know they all took Database 1, then the list of all last names of students who registered
for Database 1 would be a complete approximation A for T

Last Name
Johnson
Pierce
Taylor
Cooper
Emerson
Billings

Note that this is an over-approximation of 7' since these students are not necessarily interested in databases.
However, any student who ¢s interested in databases must be described by this set (albeit incompletely).

We may additionally happen to know the names of a few interested students. Thus, from memory we
can construct a consistent description B for T

First Name | Last Name
Ella Taylor
Burt -

- Pierce

Note that this is an under-approximation since it does not necessarily describe everything in 7'.
These two approximations together form a sandwich approximation (A, B) to the set of total descriptions
T. Two examples of totally defined sets of names that are approximated by (A, B) are:

First Name | Last Name -

First Name | Last Name
Ella Taylor

Ella Taylor
Burt Cooper

. . Burt Johnson
Liza Pierce .
. Fred Pierce

Burt Plerce Wayne Cooper
Elvira Johnson Y P

However, the following would not be described by (A, B) since it is not completely described by A, even
though it is consistent with B:

First Name | Last Name
Ella Taylor
Burt Elliot
Larry Pierce

Unfortunately, the domain of sandwiches lacks a property that is enjoyed by the domain of partial tuples:
Two elements of S(D) may denote the same subset of Tof(D). A domain D is descriptive if, for any z € D,
z = Mz]. If V is descriptive, the domain £ — V is descriptive, but any domain with a top element fails
to be descriptive. Moreover, our domain of sandwiches also fails to be descriptive even though its maximal
elements are the structures we want to approximate. Fortunately, there is a canonical element that denotes
[S], which we now show how to compute.

For any domain D and ¢ € D, define the “promotion” of # Prm(xz) = M[z]. Prm is a monotone increasing
idempotent function D — D (a closure). The fixpoints of such a function must form a M closed subset of D.
An important property of Prm is given by

Prop 3 Prm((Prm(z)Uy) = Prm(z Uy)



which will be useful in computing the result of an “approximate query”.
In the domain of sandwiches S(D), it is readily shown that

Prm(A,B) = (A,M{aUbla € A and a U b exists |b € B})

Note that since (A, B) is a sandwich, we know that for each b € B there is at least one a € A such that a
and b are consistent.
For example, if the following two relations form a sandwich that approximates T',

First Name | Last Name First Name | Last Name

Ella Taylor - Taylor

Burt Cooper Burt Johnson

- Pierce Fred -

- Johnson - Cooper
then the following “promoted” sandwich will also approximate 7"

First Name | Last Name First Name | Last Name

Ella Taylor Ella Taylor

Burt Cooper Burt Johnson

- Pierce Fred -

- Johnson Burt Cooper

When the underlying domain D on which we construct sandwiches is the domain of tuples ordered as
suggested in the introduction, the least upper bound L9? of two sandwiches (A1, By), (A2, By) is (if it exists)
(A1 M As, By My Bsz), where X is the natural join and My is the null join (the maximal elements of
B; U By) [3]. Furthermore, if (C1,Cy) and (Cq, Cq) are both “exact” sandwiches (i.e., each of C; and C4q
provide complete and consistent information about some set), the sandwiches themselves are consistent when
C4 and Cy have a lossless join.

3 Extended Complex Objects

We first introduce a notation which is, roughly speaking, an extension of the notation in [1] that describes
sandwiches as opposed to sets. We assume the existence of a set £ of labels.

(a) Atomic values such as 1,2,3,... (integers); "John', "Jane',... (strings); true, false (booleans) are complex

objects.

(b) If 01,04, ...,0, are complex objects and Iy, la,...,l, € L are distinct labels then [l1=01; l2=0s;...;
l,=0,] is a complex object. Objects of this form are tuples.

(c¢) If Ay, As,...,Apn, By, Ba, ..., By are complex objects then, subject to the consistency restrictions de-
scribed below, ({A1, Aa, ..., An}, {B1, Ba, ..., Bn}) is a complex object. Objects of this form are sand-
wiches.

(d) If By, Ba, ..., By, are complex objects, (_, {Bi1, B2, ..., By }) is a complex object.

Rule (d) is necessary because we need a method of describing sandwiches in which there are no complete
constraints.

When the two components of a sandwich are identical it is said to be an “exact” approximation, and
we will use one component to describe it. Thus instead of ({A1, A, ..., An}, {A1, A2, ..., An}) we will use
{A1, Ay, ..., A,}. Using this notation, a database is a tuple of relations which are exact approximations.
For example, the following is a database with one relation People, the tuples of which have approximate
information for Children:



[ People= { [ Name=>"J.Doe'; Children=> ( {'Jane' 'Paul’ 'Ann'}, {{Ann'} )],
[ Name='S.Dee’; Children=(_,{'Paul'}) ]} ]

An ordering on complex objects, 9, is obtained from the following rules:
(a) OC° O if O is atomic.

(b) If O =[l1=>01; 12=03;...; 1,=>0,] and O' =[l\=0"; l,=0%;...; I'! =0"], then O C° O’ if for all
I(1C k C n), there is a I/(1 C i C n) such that I/ = I, and O, C°° O

(¢) If O = (A,B) and O' = (A’, B') then O C9° O’ if for all @ € A there exists a a’ € A’ such that
a £ ¢; and for all ¥’ € B’ there exists a b € B such that b 9% b'.

(d) IfO = (_,B)and O' = (_, B'), then O C9 O’ if for all ' € B’ there exists a b € B such that b C° ¥’
Also if O = (_, B) and O’ = (4, B) then O C°® O’ if for all ' € B’ there exists a b € B such that
b9 B

To make this definition of a sandwich consistent with the one given in the previous section, we introduce
the following constraint: (A, B) is a legal sandwich iff A and B are co-chains and (with respect to CO?)
there is a set C such that for all ¢ € C there is an a € A for which a C9 ¢, and for all b € B there is a
¢ € C for which b C9 ¢. Because of this constraint, the definition of an object and of the ordering C©? are
interdependent. To give absolutely precise definitions would require induction on the objects (or a fixpoint
construction for recursive records).

Under this ordering

(_, { [Fn="John'], [Fn='Jane’;Ln="Doe'], [Ln="Jones'] })
—Ob
({ [Ln='Do¢’], [Ln="Jones'], [Fn=>"Mary';Ln=>"Jones'] },
{ [Fn='John';Ln=>"Doe’], [Fn=>'Jane';Ln=>"Doe’], [Fn=-'Mary’; Ln=>"Jones’] })

Furthermore, if O denotes the set of all objects,
Prop 4 (0,C°) is a domain

In an object in which all sandwiches are “exact” approximations, the notation here — but not the semantics
— agrees with that in [1]. For example,

(_{[Fn="John'],[Fn='Jane';Ln="'Doe’], [Ln="Jones'] })
COb
({[Fn="John';Ln="Doe'], [Fn="'Jane';Ln="'Doe’], [Fn="'Mary';Ln="'Jones']})

In order to constrain the space of objects so that maximal elements are meaningful structures, we intro-
duce the notion of a type whose syntax is given by the following rules:

(a) Base types such as int (integer), string (character string), and bool (boolean) are types.

(b) If 7,79, ..., 7 are types and ly,ls, ...l € L then l; : 7y;ly : o5 .51, : 7, is a type. Such types are tuple
types.

(c) If 7 is a type, {7} is a type. These are sandwich types.
If O is an object and 7 is a type, O is a total object of type 7 (written O : 1) if one of the following holds:

(a) O is an atomic value, 7 is a base type and O € 7 (strictly [O] € [7]). Examples: 3 : int, 'J. Doe’:string.

(b) O =[li=01;15=0,, ... [,=0,)], 7 = [i=7; b=, ..., Lh=>m],and O; : (1 C i C n)



(¢) O=({01,04,...,0,},{01,02, ...,0,}) (i.e., O is an exact approximation), 7 = {r'}, and O; : 7'(1 C

iCn), a
For example,
[Persons={[Fn:string, Ln: string, Children:{string}]};

is a type and

[ Persons=> {[Fn="John';Ln="'Doe’; Children=> {'Sally’, "Sue'} I;
[Fn='Mary';Ln="'Brown’; Children= {'Peter’, '"James'} ]| } ]

is an object of that type. Note that sandwiches of an object of some type are necessarily exact.
If O: 7 and O' £9° O then we say O' is a partial object of type 7 (written O’ <: 7).

Prop 5 If O1 <: 7 and O3 <: 7 and Oy and Oy are consistent, then (O, yo?s 0s) <: 1

The notion of a type has been introduced because we do not want tuples to be able to grow in an
unbounded fashion, ¢.e., we do not want every attribute to be applicable to every tuple.

4 Rules and monotone functions

We now look at some applications of these more general domains and how we may use rules to define both
consistent and complete approximations for some query. The syntax for rules follows the syntax for complex
objects except that we shall later want to place some restrictions on their form to guarantee monotonicity.

We shall also divide rules into two classes: necessary rules, and sufficient rules that correspond to the two
halves of the sandwich ordering C! (the complete side), and C" (the consistent side). We will not discuss here
the use of negation to derive complete information from consistent information, or vice versa. For another
discussion of the connection between powerdomains and modalities see [12].

In the following we use a slightly abused notation for convenience and readability, writing

AZ*Oand BC' O
for an sandwich O = (A’, B') and sets of objects A and B, meaning respectively

(4,{}) 3% (4",) and (_, B)E”" (L, B)

—

We will also use a containment notation to extract field values from records, for example if
[A=X; B=Y] C [B=1; C=John]

then we must have X = and Y = 1. Additionally, we will only consider ‘canonical sandwiches’ in the
following discussion — those for which (A, B) = Prm((A, B)).
Suppose we have a database O of type

[ CS4: {[Name : string; Phone : string; Section : in{]};
CS5: {[Name : string; Room : siring; Section : in{]}
GS: {[Name : string; Degree : string]} UE: {[Name : string; Sal : ini]}]

containing information on all university employees (UE), all graduate students (GS) and all the teachers of
courses CS5 and CS4. All of the values for CS5, CS4, UE, and GS will be sandwiches, and need not be
maximal descriptions.

Further suppose that we wish to derive from this information the best possible description for the set
of teaching fellows (TF) — in particular we would like to know their names, phone numbers and salaries.



Although we do not explicitly have information on the target set TF we can use our knowledge of its
relationship to the other information to derive an approximation for TF.
Before deriving the description we must first adjoin to the database a type for the TF sandwich to the
existing database:
[TF : {[Name : string; Phone : string; Sal : int]}]

Once the type is established we may use necessary and sufficient rules to determine an approximation for the
TF set. It is interesting to note that the rules for this particular example corresponds to an is-a hierarchy
among the datasets:

(TF is-a GS) and (TF is-a UE) and (CS4 is-a TF) and (CS5 is-a TF).

The following paragraphs shows expressions for these rules and explain their semantics.
For instance we might know that all the teachers of CS4 are known to be teaching fellows, which we
represent by the following sufficient rule:

[TF={[Name=X; Phone=Y]}] : — [CS{={[Name=X; Phone=Y]}]

Intuitively this rule should be read as follows: “a person is known to be a TF if that person is known to
be a teacher of CS4.” Formally this rule can be translated into an inference function f which generates a
consistent description of TF’s from the consistent description of CS4. This f can be given by the following
definition:

X0 [TF= max {[Name=>X; Phone=Y]|[CS{=C] C O and {E} C’ C and [Name=X; Phone=Y] C E}]

This function has the important property of monotonicity — it produces better inferences given better ev-
idence. We consider this property to be a basic requirement for any form of inference system over partial
information.

We then use the function f to find a least point O; satisfying:

0; J°° f(0y) and O; I°" O.

The resulting Oy is the effect of applying the above rule to the database O. Oy is guaranteed to be unique
since f is monotone.

In a similar fashion we might know that all teachers of CS5 are known to be teaching fellows, which
would be expressed in the following rule:

[TF={[Name=X]}] : — [CS5={[Name=X]}].

This rule in turn should be read: “A person is known to be a teaching fellow ¢f that person is known to be
a teacher of CS5.” And the monotone inference function f’ for this rule would be expressed as

AO.[TF= max {[Name=X] | [CS5=C] C O and {E} C’ Cand [Name=X] C E}].

Note that the sufficient rules may introduce new elements to the consistent description of the target set TF,
but cannot eliminate existing elements.

The necessary rules have a similar syntax, but a radically different meaning and effect. If, for example,
we know that all teaching fellows are graduate students we could express this fact in the following necessary
rule:

[TF={[Name=X]}] —: [GS={[Name=X]}]

which should be read: “a person is possibly a teaching fellow only if that person is possibly a graduate
student.” This inference rule would also give rise to a function g, monotone in C%, that produces a
complete description for the TF set given a complete description for GS. Using lambda notation we express
g as follows:

AO.[TF= min {[Name=X] | [GS=G] C O and {E} ' G and [Name=X] C E}]



As in the sufficient rules we can now define O, to be the least object satisfying
0, 3°% 4(0,) and O, Z°° O.

And we consider O, to be the effect of applying the above rule to the database O.
Similarly if we know that all teaching fellows are university employees then we can express this information
in the following rule

[TF={[Name=X; Sal=Y]}] — : [UE={[Name=X; Sal=Y]}]
which in turn would generate a monotone inference function g’ defined as
AO.[TF= min{[Name=X; Sal=Y] | [UE=U] C O and {E} 2" U and [Name=X; Sal=Y] C E}].

Notice that necessary rules can eliminate existing possibilities but cannot introduce anything that was not
possible before.
The effect of these rules taken together will be the least Og that is an upper bound in T for

{f(OR)¢ f/(OR)r g(OR)J gI(OR)a O}

if it exists. Note that the evidence in the database may contradict the rules — for instance a teacher of CSH
who is not a graduate student would be anomalous. If such an anomaly exists any attempt to compute Og
will yield an inadmissible sandwich. We regard the ability to detect anomalies to be major advantage of our
system.

However, if no anomalies arise the TF component of this Ogr will be the best correct estimate we can
find for the target set of teaching fellows with the information given. Note that a partial description for the
TF sets may provide an exact answer for some queries — for instance the set of TF’s with low grades may
be exactly delineated by the estimate.

Clearly the examples given above are quite simple. We will need additional constructs for more interesting
examples. For instance suppose we wanted to say “we know that Y loves X if we know that X is a child of
Y,” within a database O of type

[ Persons: { [ Name: string, Children: {string}, Loves: {string} |} ].

In this situation we need some way to carry over additional information about the parent Y that is not
explicitly mentioned in the statement of the rule. To solve this problem we introduce the tag notation —
and express the rule as follows:

[persons={Y — [loves={X}|}] : — [persons={Y—[children={X}]}]
This can be translated into the following monotone function k over objects

XO. [persons=> max{ Y U [loves=L] | [persons=P] C O and {Y} C* P and
[children=C] C Y and L = max{X | {X} C’" C}}]

Notice that this is an example of a rule for which k(O) L9 O does not necessarily yield the fixed point Oy.
The analogous necessary rule would be

[persons={Y — [loves={X}|}] —: [persons={Y—[children={X}]}]

This rule states the implausible assumption that the only things persons might love are their children. The
associated monotone function A can be expressed as

AO. [persons=>min{ Y U°° [loves=L] | [persons=>P]C O and {Y'} J' P and
[children=C] C Y and L = min{X | {X} 3" C}}]



It may be possible to define recursive types and self referencing complex objects using such a notation
(see [13]).

Another important type of rule we have not yet shown is one where a variable occurs twice on the right
hand side. For example we may want to insist that a possible grandparent-child relationship must be linked
by a possible parent. In an appropriately typed database this rule could be expressed by:

[GO={[G=X; C=Y]}] — ¢ [PC={[P=X; C=2Z], [P=Z; C=Y]}]

For necessary rules this notation provides no difficulties and the above example translates into the monotone
inference function:

0. [GC=min{ [G=X;C=Y]|[PC=R]C O and {E;, F»} J* R and
[P=X;C=Z]C E; and [P=Z; C=Y] C Eq}]

However, consider the corresponding sufficient rule which insists that a known grandparent-child rela-
tionship must have a known parent linking them:

[GC={[G=X;C=Y]}] = [PC=>{[P=X;C=Z],[P=Z; C=Y]}]
Along with its seemingly meaningful inference function h'[B.

X0. [GC=max{ [G=X;C=Y]|[PC=R]C O and {E;,E;} C" R and
[P=X;C=Z]C E; and [P=Z; C=Y] C Eq ]

Although this characterization seems reasonable it turns out that kA’ produces unacceptable inferences. For
example, consider the following databases O and O, where both contain an exact description for the parent
child relationship PC:

O = [ PC= { [ P= [Firsi=Fred] ; C= [First=>John] |, [ P= [First=>John] ; C= [First=Ella] ] } ]
O’ =[ PC= { | P= [Firsi=Fred] ; C= [First=John;Last=Smith]],
[ P= [First=John;Last=>Wayne] ; C= [First=>Ella] ] } ]

Under these circumstances the given sufficient rule would derive the following consistent descriptions for GC:
W (0" = W(0) =] GC= { [ G= [First=> Fred] C= [Firsi= Ella] ] } ]

Thus to prevent the unification of incompatible values we might propose the function h” (analogous to
the approach taken in [1]) defined as follows:

A\0. [GC=max{ [G=X;C=Y]|[PC=R]C O and {E;,E2} C" R and
[P=X;C=7,] C By and [P=74; C=Y] C Ey andZ = 7, U°" Z; is defined}]

But under this definition h" is is not an acceptible inference function since A”(0) = h'(O) and
W'(0") = [GC={}]
These calculations demonstrate that A’ is not monotone, since
0 C° O’ but A”(0) Z°° K"(0)

The way to correct this situation is to insist that sufficient rules only unify mazimal values. Thus the
following definition for A’ will be monotone:

X0. [GC=max{ [G=X;C=Y]|[PC=R]C O and {E;,E;} C’ R and
[P=X;C=Z]C E; and [P=7; C=Y] C Es and Z is maximal}]

And in the problematic example given above we now have h/(0) = h'(O’) = [GC={}], which conforms to
the monotonicity requirement.

10
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