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1 INTRODUCTIONPath inclusion constraints have been studied by Abite-boul and Vianu in [5] for semistructured databases. Insemistructured databases, the data is unconstrained byany type system or schema and typically has an irregu-lar structure [2, 12]. The study of semistructured datahas generated the development of new data models andquery languages (e.g., [4, 14, 23, 33, 34]) appropriateto this form of data representation, which already ex-ists in certain scienti�c data formats. Recently, XML(eXtensible Markup Language [11]) has emerged as astandard for data exchange on the World Wide Web.While a schema may be imposed on an XML document,it is not required, and XML data is usefully treatedas semistructured data [20]. Certain kinds of integrityconstraints found in object-oriented databases are alsocommon in semistructured databases. Some of thesecan be expressed as path constraints introduced in [5].To illustrate the kinds of constraints that we want tocapture, let us �rst investigate the constraints that arecommonly placed on object-oriented databases. Con-1



sider the following object-oriented schema (expressedin O2 [6]):class studentfName: string;Taking: set(course);gclass coursefCName: string;Enrolled: set(student);gStudents: set(student);Courses: set(course);in which we assume that the declarations Studentsand Courses de�ne (persistent) entry points into thedatabase. As it stands, this declaration does notprovide full information about the intended structure.Given such a database one would often expect the fol-lowing informally stated constraints to hold:(a) 8 s 2 Students 8 c 2 s:Taking (c 2 Courses)(b) 8 c 2 Courses 8 s 2 c:Enrolled (s 2 Students)That is, any course taken by a student must be a coursethat occurs in the database extent of courses, and anystudent enrolled in a course must be a student thatsimilarly occurs in the database. We shall call suchconstraints extent constraints. It should be noted thatthere is a natural analogy between extent constraintsand (unary) inclusion dependencies developed for rela-tional databases.We might also expect an inverse relationship to holdbetween Taking and Enrolled. Object-oriented data-bases di�er in the ways they enable one to state and en-force extent constraints and inverse relationships. Com-pare, for example, O2 [6] and ObjectStore [30].Let us develop a more formal notation for describingsuch constraints. In our object-oriented database thereare two sets of objects, Students and Courses. We ex-press this in semistructured data by building a graphwith a root node r and a node for each object. Edgesconnect the root to these object nodes, and these edgesare labeled either Students or Courses. Edges emanat-ing from these nodes indicate attributes or relationshipswith other objects and are appropriately labeled. Forexample, a node representing a student object has a sin-gle Name edge connected to a string node, and multipleTaking edges connected to course nodes. See Figure 1for an example of such a graph.
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Figure 1: Representation of a student/course databaseUsing this representation of data we can examinecertain kinds of constraints.Extent Constraints. By taking edge labels as binarypredicates, constraints of the form (a) and (b) abovecan be stated as:8 c (9 s (Students(r; s) ^ Taking(s; c))! Courses(r; c))8 s (9 c (Courses(r; c) ^ Enrolled(c; s))! Students(r; s))Here r is a constant denoting the root node, and vari-ables c, s range over vertices. The �rst constraint abovestates that any vertex that is reached from the rootby following a Students edge followed by a Takingedge can also be reached from the root by following aCourses edge. Similarly, the second asserts that anyvertex that is reached from the root by following aCourses edge followed by an Enrolled edge can alsobe reached from the root by following a Students edge.These constraints are examples of \word constraints"studied in [5]; the implication problems for word con-straints were shown to be decidable in semistructureddatabases there. Also studied in [5] was a form of con-straints in which paths are represented by regular ex-pressions. We do not consider this general form of con-straints here.Inverse Constraints. These are common in object-oriented databases [17]. With respect to our stu-dent/course schema, the inverse relationship betweenTaking and Enrolled is expressed as:8 s (Students(r; s)!8 c (Taking(s; c)! Enrolled(c; s)))8 c (Courses(r; c)!8 s (Enrolled(c; s)! Taking(s; c)))The �rst constraint above states that for any student s2



and any c, if c is reachable from s by following a Takingedge, then s is also reachable from c by following anEnrolled edge. Similarly, the second constraint assertsthat for any course c and any s, if s is reachable from cby following an Enrolled edge, then c is also reachablefrom s by following a Taking edge. Such constraintscannot be expressed as word constraints or even by themore general path constraints given in [5].Local Database Constraints. In database integra-tion it is sometimes desirable to make one database acomponent of another database, or to build a \databaseof databases". Suppose, for example, we want to bringtogether a number of student/course databases as de-scribed above. We might write something like:class School-DBfDB-identifier: string;Students:set(student); // as defined aboveCourses: set(course); // as defined abovegSchools: set(School-DB);Now we may want certain constraints to hold on com-ponents of this database. For example, the \extent con-straints" and \inverse constraints" described above nowhold on each member of the Schools set. Here we referto a component database such as a member of the setSchools as a local database and its constraints as localdatabase constraints . Extending our graph representa-tion by adding Schools edges from a new root node tothe roots of local databases, the local extent and inverseconstraints are:8 d (Schools(r; d)! 8c (9 s (Students(d; s)^Taking(s; c))! Courses(d; c)))8 d (Schools(r; d)! 8 s (9 c (Courses(d; c)^Enrolled(c; s))! Students(d; s)))8 s (9 d (Schools(r; d) ^ Students(d; s))!8c (Taking(s; c)! Enrolled(c; s)))8 c (9 d (Schools(r; d) ^ Courses(d; c)) !8s (Enrolled(c; s)! Taking(s; c)))Again, these cannot be stated as word constraints orby the more general constraints of [5].These considerations give rise to the questionwhether there is a natural generalization of the con-straints of [5] which will capture these slightly morecomplicated forms. Here we consider a class of pathconstraints, Pc, of either the form8x (�(r; x)! 8 y (�(x; y)! (x; y)));

or the form8x (�(r; x)! 8 y (�(x; y)! (y; x)));where �(x; y) (�(x; y), (x; y)) represents a path, i.e.,a sequence of edge labels, from node x to node y. Asdemonstrated above, �(x; y) can be expressed as a �rst-order logic formula with two free variables x and y bytreating edge labels as binary predicates. The path con-straint language Pc is a mild generalization of the classof word constraints studied in [5].This class of path constraints can be used to ex-press all the integrity constraints we have so far encoun-tered. These constraints are not only a fundamentalpart of the semantics of the data, but are also impor-tant in query optimization. They have proven useful ina variety of database contexts, ranging from semistruc-tured data such as data on the World Wide Web and inXML documents, to structured data as found in object-oriented databases. In particular, among the numerousproposals for adding structure or semantics to XMLdocuments, several [10, 26, 31, 32] advocate the needfor these integrity constraints. In standard databasesystems, integrity constraints are typically expressed aspart of the schema, but in semistructured data thereis no explicit schema and path constraints provide anatural alternative.To illustrate how these constraints might be used inquery optimization, consider again the student/coursedatabase given in Figure 1. Suppose, for example, wewant to �nd the names of all the courses enrolled bystudents who are taking the course \Chem3". Withoutthe inverse and extent constraints described above, onewould write the query as Q1 (in OQL syntax [17]):Q1 select distinct c.CNamefrom Courses c,c.Enrolled s,s.Taking c'where c'.CName = "Chem3"Given these inverse and extent constraints, one canshow that Q1 is equivalent to Q2 given below:Q2 select distinct c.CNamefrom Courses c',c'.Enrolled s,s.Taking cwhere c'.CName = "Chem3"In other words, given these constraints, one can rewriteQ1 to Q2. In most cases, Q2 is more e�cient thanQ1. Indeed, Q2 complies with the familiar optimiza-tion principle originating in relational database theory:performing selections as early as possible.3



To take advantage of path constraints, it is impor-tant to be able to reason about them. This gives riseto the question of logical implication, the most impor-tant theoretical question in connection with path con-straints. In general, we may know that a set of pathconstraints is satis�ed by a database. The question oflogical implication is: what other path constraints arenecessarily satis�ed by the database? To see why logicalimplication is important, consider the queries Q1 andQ2 against the student/course database given above.To show that Q1 can be rewritten to Q2, the follow-ing constraints of Pc are also needed in addition to thegiven inverse and extent constraints:8 s (9 c0 (Courses(r; c0) ^Enrolled(c0; s)) !8 c (Taking(s; c)! Enrolled(c; s)))8 c (9 c0 (Courses(r; c0) ^ 9 s (Enrolled(c0; s) ^Taking(s; c)))! Courses(r; c))To use these constraints, we need to show that they nec-essarily hold if the given extent and inverse constraintshold. That is, they are implied by the given path con-straints.There are two forms of implication problems associ-ated with path constraints. Databases are usually con-sidered to be �nite. Logical implication is called �niteimplication for the case in which only �nite database in-stances are permitted. It is also interesting to considerlogical implication in the traditional logic framework inwhich in�nite instances are also allowed. Logical im-plication is called unrestricted implication, or simplyimplication, for the case in which both �nite databaseinstances and in�nite instances are permitted.In the remainder of the paper, we investigate theimplication and �nite implication problems associatedwith path constraints of Pc in the context of semistruc-tured data. Surprisingly, the implication problems forthis mild generalization of word constraints are unde-cidable, whereas the implication problems for word con-straints are decidable in PTIME [5]. However, certainrestricted cases are decidable, and these cases are suf-�cient to express at least the constraints we have de-scribed above.Related work. There is a natural analogy between thework on path constraints and inclusion dependency the-ory developed for relational databases (see, e.g., [3] foran in-depth presentation of inclusion dependency the-ory). Path constraints specify inclusions among certainsets of objects, and can be viewed as a generalizationof inclusion dependencies. Inclusion dependencies haveproven useful in semantic speci�cation and query op-timization for relational databases. In the same way,

path constraints are important in a variety of databasecontexts, ranging from semistructured data to object-oriented databases.Another form of constraints de�ned in terms of nav-igation paths, called path functional dependencies , hasbeen studied by Weddell, et al. [8, 29]. These con-straints di�er signi�cantly from the path constraintsinvestigated here because they are a generalization offunctional dependencies for a restricted type system,while Pc constraints can be viewed as a generalizationof inclusion dependencies for both semistructured andstructured databases.Closer to the work reported here is the path inclu-sion constraint language introduced and investigated byAbiteboul and Vianu in [5]. A constraint in this lan-guage is an expression of the form p � q or p = q, wherep and q are regular expressions representing paths. Inparticular, if p and q are simply paths, i.e., sequences ofedge labels, the constraint is called a word constraint .Such a constraint expresses the inclusion or equality re-lation between the two sets of nodes reachable along pand q. The decidability of the implication problems forthis language was established for semistructured datain [5]. In addition, it was also shown there that wordconstraint implication is decidable in PTIME. This con-straint language di�ers from the constraint language Pcin expressive power. On the one hand, the language of[5] allows a more general form of path expressions thanPc. On the other hand, it cannot express inverse and lo-cal database constraints, whereas these constraints areexpressible in Pc.Recently, the application of integrity constraints toquery optimization was also studied by Popa and Tan-nen in [35]. Among other things, [35] developed anequational theory for query rewriting by using a cer-tain form of constraints. Semantic optimization hasalso been investigated for semistructured databases in[13, 24] and for structured databases in [18, 19, 25].Another issue is the interaction between path con-straints and types. Structured data, e.g., data in object-oriented databases, is constrained by a schema, in whichboth types and integrity constraints are speci�ed. Inaddition, although the XML standard itself does not re-quire any type system, a number of proposals [10, 26, 32]have been developed that roughly correspond to datade�nition languages. These allow one to constrain thestructure of XML data by imposing a type on it. Theseand other proposals (e.g., [31]) also advocate the needfor integrity constraints, which can be expressed as pathconstraints. The type system or schema de�nition mayalso be viewed as imposing a constraint on the data. Itis a constraint of a di�erent form. That is, type con-4



straints cannot be expressed as path constraints andvice versa. In structured data and possibly in XMLdocuments both forms of constraints are present, andtherefore, we need to understand the interaction be-tween them. In general we can no longer expect resultsdeveloped for semistructured data to hold when a typeis imposed on the data. In other words, the imposi-tion of a type can alter the computational complexity ofthe path constraint implication problem in unexpectedways. Indeed, in [16] we have shown that adding atype system may in some cases simplify the analysis ofpath constraint implication, and in other cases makeit harder. More speci�cally, some decidability resultson path constraint implication developed for semistruc-tured data break down when some type system is added,and on the other hand, some undecidability results onuntyped data also collapse when some type constraintis imposed. This issue was �rst addressed in [15] andthen treated in detail in [16].Organization. The remainder of the paper is orga-nized as follows. Section 2 formally presents our pathconstraint language Pc. Section 3 establishes the un-decidability of the implication and �nite implicationproblems associated with Pc in the context of semistruc-tured databases. Section 4 identi�es several fragmentsof Pc, and shows that the implication and �nite impli-cation problems for each of these fragments are decid-able in semistructured databases. It also demonstratesthat these fragments su�ce to express many importantintegrity constraints such as extent, inverse and localdatabase constraints. Finally, Section 5 summarizes ourresults.2 PATH CONSTRAINTSIn this section, we �rst present an abstraction ofsemistructured databases in terms of �rst-order logic,and then de�ne paths and path constraints of Pc.2.1 Semistructured DatabasesSemistructured data is usually represented as an edge-labeled (rooted) directed graph, e.g., in UnQL [14] andin OEM [4, 34]. See [2, 12] for surveys of semistructureddata models. Along the same lines, here we use anabstraction of semistructured databases as (�nite) �rst-order logic structures of a relational signature� = (r; E);where r is a constant denoting the root and E is a �niteset of binary relation symbols denoting the edge labels.

We specify a �-structure G by giving (jGj; rG; EG),where� jGj is a set called the universe (domain) of G, andelements of jGj are called the nodes (vertices) ofG;� rG is a distinguished element of jGj, called the rootnode of G;� EG is a �nite set of binary relations on jGj, eachof which is named by a relation symbol of E. Forany K 2 E, we write KG for the relation in Gnamed by K.Structure G can be naturally depicted as a rooted edge-labeled directed graph with jGj as the set of vertices,EG the set of labeled edges and rG the root. For anyK 2 E and a; b 2 jGj, there is an edge labeled K froma to b in the graph if and only if (a; b) 2 KG.It should be mentioned that we do not assume thereachability of all nodes from the root in a �-structure(graph). However, none of our results or proofs area�ected if reachability is enforced.2.2 PathsA path, i.e., a sequence of labels, can be represented as alogic formula with two free variables. More speci�cally,a path is a �rst-order logic formula �(x; y) of one of thefollowing forms:� x = y, denoted by �(x; y) and called an empty path;� K(x; y), where K 2 E; or� 9z(K(x; z) ^ �(z; y)), where K 2 E and �(z; y) isa path.Here the free variables x and y denote the tail and headnodes of the path, respectively. We write �(x; y) as �when the parameters x and y are clear from the context.In particular, we may replace free variable x or y byr, where r is the constant denoting the root given insignature �. That is, we use �(r; y) or �(x; r) to denotea path from or to the root.We have seen many examples of paths in Section 1.Among them are:9 z (Students(x; z) ^ Taking(z; y))9 z (Courses(x; z)^9w (Enrolled(z; w) ^ Taking(w; y)))5



The concatenation of paths �(x; z) and �(z; y), de-noted by �(x; z) � �(z; y) or simply � � �(x; y), is thepath� �(x; y), if � = �;� 9 z (K(x; z) ^ �(z; y)), if � = K for some K 2 E;� 9u (K(x; u)^(�0(u; z) ��(z; y))), if �(x; z) is of theform 9u (K(x; u)^ �0(u; z)), where K 2 E and �0is a path.For example, the paths above can be written as:Students � Taking(x; y)Courses �Enrolled � Taking(x; y)We use (�)m to denote the m-time concatenationsof �, de�ned by:(�)m = � � if m = 0� � (�)m�1 otherwiseA path � is said to be a proper pre�x of %, denotedby � �p %, i� there exists a path � such that � 6= � and% = � � �. A path � is said to be a pre�x of %, denotedby � �p %, i� � �p % or � = %. Similarly, � is said to bea su�x of %, denoted by � �s %, i� there exists � suchthat % = � � �.For example, the path Courses � Enrolled � Takinghas the following pre�xes: the empty path �, Courses,Courses � Enrolled and itself. Its su�xes include �,Taking, Enrolled � Taking and itself.The length of path �, j�j, is de�ned by:j�j = ( 0 if � = �1 if � = K1 + j�j if � = K � �For example, jCourses � Enrolled � Takingj = 3 andjStudents � Takingj = 2.In particular, a path of the form �(r; x) or �(x; r),i.e., a path from or to the root, can be expressed as a�rst-order logic formula with at most two distinct vari-ables. For example, the pathStudents � Taking �Enrolled � Taking(r; x)can be expressed as:9 y (Taking(y; x) ^ 9x (Enrolled(x; y) ^9 y (Taking(y; x) ^ Students(r; y))))Observe that this logic formula uses only two distinctvariables. In general, a path �(x; y) can be expressedas a �rst-order logic formula with at most three distinctvariables.

2.3 Path Constraint Language PcBy using path formulas, the path constraint languagePc is formalized as follows.De�nition 2.1: A path constraint ' is an expressionof either the forward form8x (�(r; x)! 8 y (�(x; y)! (x; y)));or the backward form8x (�(r; x)! 8 y (�(x; y)! (y; x)));where �; �;  are paths, called the pre�x , left tail andright tail of ', and denoted by pf('), lt(') and rt('),respectively.A path constraint is called a forward constraint if itis of the forward form, and is called a backward con-straint if it is of the backward form.The set of all path constraints is denoted by Pc.For example, all the path constraints we have seenin Section 1 are Pc constraints. Among these, the ex-tent and local extent constraints are examples of for-ward constraints, while the inverse and local inverseconstraints are backward constraints. By using pathconcatenation \�", we may represent these constraintsin a simpler form. For example, the extent constraintsgiven in Section 1 can be rewritten as:8 c (Students � Taking(r; c)! Courses(r; c))8 s (Courses �Enrolled(r; s)! Students(r; s))A forward constraint of Pc asserts that for any vertexx that is reached from the root r by following path �and for any vertex y that is reached from x by followingpath �, y is also reachable from x by following path .Similarly, a backward Pc constraint states that for anyx that is reached from r by following � and for any ythat is reached from x by following �, x is also reachablefrom y by following .As demonstrated in Section 1, path constraints of Pcare capable of expressing, among other things, extent,inverse and local database constraints.Next, we identify several special subclasses of Pc.We call a path constraint ' of Pc a simple (path)constraint if pf(') = �. That is, the pre�x of ' is anempty path. More speci�cally, ' is of either the form8 y (�(r; y)! (r; y));or the form 8 y (�(r; y)! (y; r)):6



The set of all simple path constraints is denoted by Ps.A proper subclass of simple path constraints, calledword constraints , was introduced and investigated in[5]. A word constraint can be represented as8 y (�(r; y)! (r; y));where � and  are paths. The set of all word constraintsis denoted by Pw.In other words, a word constraint is a simple forwardpath constraint of Pc. As demonstrated in Section 1,extent constraints can be expressed as word constraints.However, inverse and local database constraints are notexpressible in Pw.We borrow the standard notions of model and im-plication from �rst-order logic [22].Let G be a �-structure and ' a Pc constraint. Weuse G j= ' to denote that G satis�es ' (i.e., G is amodel of '). Let � be a set of Pc constraints. We useG j= � to denote that G satis�es � (i.e., G is a modelof �). That is, for every � 2 �, G j= �.Let �[f'g be a �nite subset of Pc. We use � j= ' todenote that � implies '. That is, for every �-structureG, if G j= �, then G j= '. Similarly, we use � j=f 'to denote that � �nitely implies '. That is, for every�nite �-structure G, if G j= �, then G j= '.In the context of semistructured databases, the im-plication problem for Pc is the problem of determining,given any �nite subset � [ f'g of Pc, whether � j= '.Similarly, the �nite implication problem for Pc is theproblem of determining, given any �nite subset �[f'gof Pc, whether � j=f '.As observed by [5], every word constraint (in fact,every simple path constraint) can be expressed by a sen-tence in two-variable �rst-order logic (FO2), the frag-ment of �rst-order logic consisting of all relational sen-tences with at most two distinct variables. Recently,Gr�adel, Kolaitis and Vardi [27] have shown that thesatis�ability problem for FO2 is NEXPTIME-completeby establishing that any satis�able FO2 sentence has amodel of size exponential in the length of the sentence.The decidability of the implication and �nite implica-tion problems for word constraints follows immediately.In fact, [5] directly established (without reference tothe embedding into FO2) that the implication and �-nite implication problems for word constraints are inPTIME.In contrast to word constraints, many path con-straints of Pc are not expressible in FO2.Example 2.1: Consider the structures G and G0 givenin Figure 2. It is easy to verify, using the 2-pebble
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Figure 2: Structures distinguishable by PcEhrenfeucht-Fra��ss�e style game [7, 21, 28], that G andG0 are equivalent in FO2. However, G and G0 are dis-tinguished by the path constraint' = 8x (K(r; x)! 8 y (K(x; y)! K �K(x; y)));because G j= ' but G0 6j= '. This shows that ' is notexpressible in FO2.The central technical problems investigated in thispaper are the implication and �nite implication prob-lems for Pc, and fragments thereof, in the context ofsemistructured databases.3 UNDECIDABLE IMPLICATION PROBLEMSIn this section, we show that despite the simple syntaxof Pc, the implication and �nite implication problemsfor Pc are undecidable in the context of semistructureddatabases.Theorem 3.1: The implication problem for Pc is r.e.complete, and the �nite implication problem for Pc isco-r.e. complete.In fact, these undecidability results also hold for twoproper subclasses of Pc. One of the subclasses, Pf , isthe set of all the constraints of Pc having the forwardform. The other, P+, is the setf' j ' 2 Pc; lt(') 6= �; rt(') 6= �g;where lt(') and rt(') are described in De�nition 2.1.The set P+ is the largest subset of Pc without equality.For P+ and Pf we have the following theorems, fromwhich Theorem 3.1 follows immediately.Theorem 3.2: The implication problem for P+ is r.e.complete, and the �nite implication problem for P+ isco-r.e. complete.Theorem 3.3: The implication problem for Pf is r.e.7



complete, and the �nite implication problem for Pf isco-r.e. complete.To prove Theorem 3.2, we consider the satis�abilityand �nite satis�ability problems corresponding to Pfconstraint implication. First recall the following.Let X be a recursive class of logic sentences. Thesatis�ability problem for X is the problem of determin-ing, given any  2 X , whether  has a model. The�nite satis�ability problem for X is to determine, givenany  2 X , whether  has a �nite model.The (�nite) implication problem for Pf correspondsto the (�nite) satis�ability problem for the following set:S(P+) = f^� ^ :' j ' 2 P+; � � P+; � is �niteg:More speci�cally, to prove Theorem 3.2, it su�ces toshow that the satis�ability problem for S(P+) is co-r.e.complete and the �nite satis�ability problem for S(P+)is r.e. complete. The idea of the proof is to show thatthere exists a conservative reduction from the set ofall �rst-order logic sentences to S(P+). To do this, weestablish a reduction from the halting problem for two-register machines.Along the same lines, to prove Theorem 3.3 we con-sider the setS(Pf ) = f^� ^ :' j ' 2 Pf ; � � Pf ; � is �niteg:We show that there exists a conservative reduction fromthe set of all �rst-order logic sentences to S(Pf ). Again,this is established by reduction from the halting prob-lem for two-register machines.We prove Theorems 3.2 and 3.3 in Sections 3.2 and3.3, respectively. Before we present these proofs, we�rst recall the de�nitions of conservative reductions andtwo-register machines (2-RMs. See, e.g., [1, 9]).3.1 Conservative Reduction and 2-RMWe �rst review the notion of conservative reductions.To do so, we borrow the following notations from [1, 9].Let X be a class of sentences. We write N(X) forthe set of all unsatis�able sentences in X , i.e.,N(X) = f j  2 X;  does not have a modelg;and F (X) for the set of all �nitely satis�able sentencesin X , i.e.,F (X) = f j  2 X;  has a �nite modelg:We write FO for the set of all �rst-order sentences.Conservative reductions are de�ned as follows.

De�nition 3.1 [9]: Let X and Y be recursive classesof sentences. A conservative reduction from X to Y is arecursive function f : X ! Y such that for any  2 X ,�  is satis�able i� f( ) is satis�able; and�  is �nitely satis�able i� f( ) is �nitely satis�able.A recursive class of sentences X is said to be a con-servative reduction class if there exists a conservativereduction from FO to X .Recall that the satis�ability problem for FO is wellknown to be co-r.e. complete, and the �nite satis�a-bility problem for FO is r.e. complete. Hence, if a re-cursive class of sentences X is a conservative reductionclass, then,� the satis�ability problem forX is co-r.e. complete;and� the �nite satis�ability problem for X is r.e. com-plete.As a result, to show Theorems 3.2 and 3.3, it su�ces toshow that S(P+) and S(Pf ) are conservative reductionclasses.To show that a recursive subset X of FO is a con-servative reduction class, it su�ces to reduce N(FO)and F (FO) to N(X) and F (X), respectively. This isdescribed by the notion of semi-conservative reductions.De�nition 3.2 [9]: Let X and Y be recursive classesof sentences. A semi-conservative reduction from X toY is a recursive function f : X ! Y such that� f(N(X)) � N(Y ); and� f(F (X)) � F (Y ).Lemma 3.4 [9]: If there exists a semi-conservativereduction from FO to a recursive subset X of FO, thenX is a conservative reduction class.Hence, to show Theorems 3.2 and 3.3, it su�ces toestablish the existence of semi-conservative reductionsfrom FO to S(P+) and S(Pf ).We shall proceed to construct the semi-conservativereductions by making use of the halting problem fortwo-register machines. Before we present the construc-tion, we �rst review the notion of two-register machines.A two-register machine (2-RM) M has two registersregister1; register2, and is programmed by a numberedsequence I0; I1; :::; Il of instructions. Each register con-tains a natural number. An instantaneous description8



(ID) of M is (i;m; n), where i 2 [0; l], m and n arenatural numbers. It indicates that M is ready to exe-cute instruction Ii (or at \state i") with register1 andregister2 containing m and n, respectively.An instruction Ii ofM can be either an addition or asubtraction, which de�nes a relation !M between IDs,described as follows:� addition: (i; rg; j), where rg is either register1 orregister2, and 0 � i; j � l. Its semantics is: atstate i, M adds 1 to the content of rg, and thengoes to state j. Accordingly:(i;m; n)!M � (j;m+ 1; n) if rg = register1(j;m; n+ 1) otherwise� subtraction: (i; rg; j; k), here rg is either register1or register2, and 0 � i; j; k � l. Its semantics is:at state i, M tests whether the content of rg is0, and if it is, then goes to state j; otherwise Msubtracts 1 from the content of rg and goes to thestate k. Accordingly:(i;m; n)!M 8>>>>>>>><>>>>>>>>:
(j; 0; n) if rg = register1and m = 0(k;m� 1; n) if rg = register1and m 6= 0(j;m; 0) if rg = register2and n = 0(k;m; n� 1) if rg = register2and n 6= 0The relation !M can be understood as a set ofrewrite rules for IDs. We use )M to denote the re-exive and transitive closure of !M . The relation ofM-reachability C )M D holds just in case M , startedfrom ID C, reaches ID D by application of zero or more!M rules.A two-register machine may halt at some states.Without loss of generality, one can assume that a halt-ing state has zeros in both registers. That is, haltingIDs have the form (i; 0; 0), where i is a halting stateand 0 � i � l.Recall the following well-known result.Lemma 3.5 [36]: There exists an e�ective partialprocedure by which, given a sentence in FO, we cantest whether it has no model, a �nite model, or onlyin�nite models. The procedure terminates in the �rsttwo cases, but does not terminate in the last case.We �xML to be a 2-RM with the following behavior(the existence of such a machine follows from the resultjust quoted. See [1, 9] for further discussion). The 2-RM ML has two halting states: (1; 0; 0) and (2; 0; 0).

For each  2 FO, let m( ) be an appropriate encodingof  (a natural number) and C( ) be the ID (0;m( ); 0)of ML. Started from C( ),� ML halts at (1, 0, 0) i�  is not satis�able; and� ML halts at (2, 0, 0) i�  has a �nite model.In other words, ML has the following property: fori = 1; 2, letHML;i = f j  2 FO; C( ))ML (i; 0; 0)g:Then HML;1 is N(FO) and HML;2 is F (FO).If we can encode the description and computationsof this 2-RM in terms of path constraints, we can trans-form certain decision problems regarding FO sentencesto the problems for path constraints. More speci�cally,the idea of the proof of Theorem 3.2 is to encode thedescription and computations ofML in terms of P+ con-straints. Using this encoding, we are able to de�ne arecursive function f : FO ! S(P+) such that for each 2 FO,1. if  2 HML;1, then f( ) is not satis�able; and2. if  2 HML;2, then f( ) has a �nite model.That is, f is a semi-conservative reduction from FO toS(P+).We can prove Theorem 3.3 along the same lines.3.2 Implication Problems for P+Next, we prove Theorem 3.2. It su�ces to show thatS(P+) is a conservative reduction class. By Lemma 3.4,to establish the conservative reduction class propertyfor S(P+), it is su�cient to show that there is a semi-conservative reduction from FO to S(P+).We establish the existence of the semi-conservativereduction by reduction from the halting problem for2-RMs. To do this, we �rst present an encoding of 2-RMs in terms of constraints in P+, and then prove areduction property of the encoding. Using this reduc-tion property, we de�ne a semi-conservative reductionfrom FO to S(P+).3.2.1 EncodingWe encode the IDs, the contents of the registers and theinstructions of a 2-RM in terms of P+ constraints.Let M be a 2-RM. Assume that M is programmedby I0; I1; : : : ; Il:9



Without loss of generality, we also assume that the setE of binary relation symbols in signature � includes:� predicates encoding the states of M :{ K0;K1; :::;Kl,{ K�0 ;K�1 ; :::;K�l ;� predicates encoding the contents of the registers:{ R+1 ; R�1 : to encode the successor and prede-cessor of the content of register1;{ R+2 ; R�2 : to encode the successor and prede-cessor of the content of register2;{ E01; E�01: to indicate that register1 is 0;{ E02; E�02: to indicate that register2 is 0;� predicates distinguishing register1 from register2and identifying the root r:{ L1; L�1 : to identify register1;{ L2; L�2 : to identify register2; and{ Lr: to identify the root r.We should remark that all these predicates are bi-nary. Using these predicates, we intend to constructstructures of the form shown in Figure 3 (E�01, E�02, L�1 ,L�2 , R�1 , R�2 , K�i edges are omitted in the graph). Fig-ure 3 illustrates the encoding of the 2-RMM . It has (atleast) two chains from the root node rt. One starts withan edge labeled E01 followed by a sequence of R+1 edges.The nodes in the chain are denoted by natural numbersand intend to represent the contents of register1 of M .The R+1 edges can be viewed as the successor relationon the contents of register1. In addition, there are R�1edges (not shown in the graph), which form the inverserelation of R+1 edges and can be viewed as the predeces-sor relation on the contents of register1. The E01 edgeindicates that register1 has 0. There is also an E�01edge (not shown in the graph), which is the inverse ofE01. To each node in the chain there is an edge labeledL1 from the root rt. These L1 edges are used to iden-tify register1. There are also L�1 edges (not shown inthe graph), which are the inverse of L1 edges. Similarly,the other chain starts with an edge labeled E02 followedby a sequence of R+2 edges. It encodes the contents ofregister2. Moreover, for each i 2 [0; l], there are Kiedges from the nodes in the chain encoding register1to the nodes in the chain representing register2. Forexample, as shown in Figure 3, there is a Ki edge fromm to n0. This indicates that an ID of M is (i; m; n).For the ease of encoding, we also have K�i edges (notshown in the graph), which form the inverse relation of
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Figure 3: A structure depicting 2-RM encodingKi edges. Finally, there is an edge labeled Lr from rtto rt, which is used to identify the root.The above requirements on the structure encodingthe computations of the 2-RM M can be expressed byP+ constraints. We should remark here that we neednot require the structure to consist of only these twochains. Indeed, the structure may have many suchchains and others. To prove our results, it su�ces thatour structure has at least two chains with the propertiesmentioned above.We now present the encoding of M in terms of P+constraints.IDs. We encode each ID C = (i;m; n) of M by 'C :8x (L1(r; x)!8 y ((R�1 )m � E�01 � E02 � (R+2 )n(x; y)! Ki(x; y)));where (�)m stands for the m-time concatenations of�, as de�ned in Section 2. It should be noted that'C is a forward constraint in P+ with pf('C) = L1,lt('C) = (R�1 )m � E�01 � E02 � (R+2 )n, and rt('C) = Ki,where pf , lt and rt are described in De�nition 2.1.Observe that we require the contents of register1and register2 to be encoded in a single path lt('C).This leads to a lack of symmetry in the treatment ofthe two registers in the encoding. In particular, thecontent of register1, encoded as (R�1 )m, is a pre�x oflt('C), and the content of register2, encoded as (R+2 )n,is a su�x of lt('C).10



Registers. We encode the contents of the registers by�N , which is the conjunction of the constraints of P+given below.� Successor, predecessor:�1 = 8x (L1(r; x)! 8 y (R+1 (x; y)! R�1 (y; x)))�2 = 8x (L1(r; x)! 8 y (R�1 (x; y)! R+1 (y; x)))�3 = 8x (L2(r; x)! 8 y (R+2 (x; y)! R�2 (y; x)))�4 = 8x (L2(r; x)! 8 y (R�2 (x; y)! R+2 (y; x)))�5 = 8x (L1(r; x)! R+1 � L�1 (x; r))�6 = 8x (L2(r; x)! R+2 � L�2 (x; r))These are backward constraints. Constraints �1and �2 (resp. �3 and �4) specify that R+1 andR�1 (resp. R+2 and R�2 ) are inverse to each other.Constraints �5 and �6 assert that the contents ofregister1 and register2 always have successors.� Register identi�cation:�7 = 8x (L1 � R+1 (r; x)! L1(r; x))�8 = 8x (L1 � R�1 (r; x)! L1(r; x))�9 = 8x (L2 � R+2 (r; x)! L2(r; x))�10 = 8x (L2 � R�2 (r; x)! L2(r; x))These are simple forward constraints. They ensurethat for each node coding a content of register1,there is always an edge labeled L1 from the root toit. Similarly, for any node representing a contentof register2, there is an edge labeled L2 from theroot to it.� States: for i 2 [0; l],�i11 = 8x (L1(r; x)! 8 y (Ki(x; y)! K�i (y; x)))�i12 = 8x (L2(r; x)! 8 y (K�i (x; y)! Ki(y; x)))These are backward constraints. They assert thatthere is an inverse relationship between Ki andK�i for each i 2 [0; l].� Zeros:�13 = 8x (L1(r; x)! 8 y (E�01(x; y)! E01(y; x)))�14 = 8x (L1 � E�01(r; x)! Lr(r; x))�15 = 8x (Lr �E01(r; x)! E01(r; x))�16 = 8x (L1 � E�01 �E02(r; x)! E02(r; x))�17 = 8x (E01(r; x)! L1(r; x))�18 = 8x (E02(r; x)! L2(r; x))Constraints �13, �14 and �15 assert that if there isan edge labeled L1 from the root to a node a anda has an outgoing edge labeled E�01, then there is

an edge labeled E01 from the root to a. Constraint�16 ensures that if there exists a path L1 �E�01 �E02from the root to a node b, then there is an E02edge from the root to b. Constraint �17 statesthat there is an edge labeled L1 from the root toa node coding 0 in register1. Similarly, �18 statesthat there is an edge labeled L2 from the root toa node coding 0 in register2.It should be mentioned that the constraints givenabove enforce stronger properties than necessary. Someof these constraints are not used in the proofs of ourresults. We retain these constraints to simply the con-structions below.Instructions. For each i 2 [0; l], we encode the instruc-tion Ii by �Ii given below. Constraint �Ii describes therelation !M presented in Section 3.1.� Addition:For (i; register1; j), �Ii is�ia1 = 8x (L1(r; x)!8 y (R�1 �Ki(x; y)! Kj(x; y))):For (i; register2; j), �Ii is�ia2 = 8x (L1(r; x)!8 y (Ki � R+2 (x; y)! Kj(x; y))):Note that �ia1 and �ia2 are forward constraints.� Subtraction:For (i; register1; j; k), �Ii is �is1 = �is1;0 ^ �is1;n ,where�is1;0 = 8x (E01(r; x) ! 8 y (Ki(x; y)! Kj(x; y)));�is1;n = 8x (L1(r; x)!8 y (R+1 �Ki(x; y)! Kk(x; y))).Note that �is1;0 and �is1;n are forward constraints.For (i; register2; j; k), �Ii is �is2 = �is2;0 ^ �is2;n ,where�is2;0 = 8x (E02(r; x) ! 8 y (K�i (x; y)! Kj(y; x))),�is2;n = 8x (L1(r; x)!8 y (Ki � R�2 (x; y)! Kk(x; y))).Here �is2;0 is a backward constraint and �is2;n is aforward constraint.The encoding of the program of M is �M = l̂i=0�Ii .Clearly, �M is a conjunction of path constraints in P+.11



Using the encoding given above, we are able to ex-press the M -reachability problem C )M D as a logicalimplication problem for P+ constraints. More speci�-cally, we show that the encoding above has the followingreduction property.Proposition 3.6: For all IDs C and D of M ,C )M D i� �N ^ �M ^ 'C ! 'D is valid:Proof: The proof consists of two parts.(1) Assume C )M D. We show that for each model Gof �N ^ �M ^ 'C , G j= 'D. To show this, it su�cesto show that for each natural number t and each ID C 0of M , if C 0 is reached by M in t steps starting from C(denoted by C )tM C 0), then G j= 'C0 . We prove thisclaim by induction on t.Base case: If t = 0, then the claim holds since G j= 'C .Inductive step: Assume the claim for t.Suppose C )tM C1 !IiM C 0, where C1 = (i;m; n),and C1 !IiM C 0 means that C 0 is reached by executinginstruction Ii at C1. Then by the induction hypothesis,we have G j= 'C1 . That isG j=8x (L1(r; x)!8 y ((R�1 )m �E�01 � E02 � (R+2 )n(x; y)! Ki(x; y))):We argue by contradiction that the claim holds for t+1.Suppose G 6j= 'C0 . We show that this assumption leadsto a contradiction in each case of Ii, which has six casesin total.Case 1 : Ii = (i; register1; j). In this case, C 0 must be(j;m + 1; n). By the assumption, there are a; b 2 jGjsuch thatG j=L1(r; a) ^(R�1 )m+1 �E�01 � E02 � (R+2 )n(a; b) ^ :Kj(a; b).Thus there exists c 2 jGj, such thatG j= R�1 (a; c) ^ (R�1 )m � E�01 �E02 � (R+2 )n(c; b).By �8 in �N , G j= L1(r; c). Therefore, by G j= 'C1 ,G j= Ki(c; b). Hence G j= L1(r; a) ^R�1 (a; c) ^Ki(c; b).Thus by �ia1 in �M , we have that G j= Kj(a; b). Thiscontradicts the assumption.Case 2 : Ii = (i; register2; j). In this case, C 0 must be(j;m; n + 1). By the assumption, there are a; b 2 jGjsuch thatG j=L1(r; a) ^(R�1 )m �E�01 � E02 � (R+2 )n+1(a; b) ^ :Kj(a; b).Hence there exists c 2 jGj, such that

G j= (R�1 )m �E�01 � E02 � (R+2 )n(a; c) ^R+2 (c; b).By G j= 'C1 , we have G j= Ki(a; c). As a result, wehave G j= L1(r; a)^Ki(a; c)^R+2 (c; b). Thus by �ia2 in�M , G j= Kj(a; b). This contradicts the assumption.Case 3 : Ii = (i; register1; j; k) and m = 0. In this case,C 0 must be (j; 0; n). By the assumption, there exista; b 2 jGj, such thatG j= L1(r; a) ^ E�01 � E02 � (R+2 )n(a; b) ^ :Kj(a; b).Thus by G j= 'C1 , we have G j= Ki(a; b). In addition,there exists c 2 jGj, such that G j= L1(r; a) ^E�01(a; c).By �13; �14 and �15 in �N , we have G j= E01(r; a).Hence G j= E01(r; a) ^Ki(a; b). Thus by �is1;0 in �M ,we haveG j= Kj(a; b). This contradicts the assumption.Case 4 : Ii = (i; register1; j; k) and m = p+ 1. In thiscase, C 0 must be (k; p; n). By the assumption, thereexist a; b 2 jGj, such thatG j= L1(r; a)^(R�1 )p �E�01 �E02 �(R+2 )n(a; b)^:Kk(a; b):Hence by �5 in �N , there exists c 2 jGj, such thatG j= L1(r; a) ^ R+1 (a; c):By �7; �1 in �N , we have that G j= L1(r; c) ^R�1 (c; a).Hence G j= L1(r; c) ^ (R�1 )p+1 � E�01 � E02 � (R+2 )n(c; b).Thus by G j= 'C1 , we have G j= Ki(c; b). As a result,G j= L1(r; a)^R+1 (a; c)^Ki(c; b). Thus by �is1;n in �M ,G j= Kk(a; b). This contradicts the assumption.Case 5 : Ii = (i; register2; j; k) and n = 0. In this case,C 0 must be (j;m; 0). By the assumption, there exista; b 2 jGj, such thatG j= L1(r; a) ^ (R�1 )m �E�01 � E02(a; b) ^ :Kj(a; b):Thus by G j= 'C1 , we have G j= Ki(a; b). By �i11 in�N , G j= K�i (b; a). Moreover, there exist c; d 2 jGj,such that G j= (R�1 )m(a; d) ^ E�01(d; c) ^ E02(c; b). ByG j= L1(r; a) and �8 in �N , we have G j= L1(r; d).Thus by �16 in �N , we have G j= E02(r; b). As a result,G j= E02(r; b)^K�i (b; a). Thus by �is2;0 in �M , we haveG j= Kj(a; b). This contradicts the assumption.Case 6 : Ii = (i; register2; j; k) and n = p + 1. In thiscase, C 0 must be (k;m; p). By the assumption, thereexist a; b 2 jGj, such thatG j= L1(r; a)^(R�1 )m �E�01 �E02 �(R+2 )p(a; b)^:Kk(a; b):Hence there exist c; d 2 jGj, such thatG j= (R�1 )m(a; c) ^ E�01 �E02(c; d) ^ (R+2 )p(d; b):By �8 in �N , we have G j= L1(r; c). By �16 in �N ,G j= E02(r; d). By �18 in �N , G j= L2(r; d). By �9 in12



�N , G j= L2(r; b). Therefore, by �6 in �N , there existse 2 jGj, such that G j= R+2 (b; e). HenceG j= L1(r; a) ^ (R�1 )m �E�01 � E02 � (R+2 )p+1(a; e):By G j= 'C1 , we have G j= Ki(a; e). By �3 in �N andG j= R+2 (b; e), we have G j= R�2 (e; b). As a result, wehave G j= L1(r; a) ^Ki(a; e) ^ R�2 (e; b). Thus by �is2;nin �M , we have G j= Kk(a; b). This contradicts theassumption.Hence the claim holds for t+1 for all the cases of Ii.(2) Conversely, assume that C 6)M D. We show that�N ^ �M ^ 'C ! 'D is not valid. To show this, weconstruct a �-structure G such that G j= �N ^�M ^'Cand G j= :'D .The structure G has the form shown in Figure 3.It is de�ned as follows. The universe of G consists ofa distinguished node rt, which is the interpretation ofthe constant r in G, and two distinct in�nite chains ofnatural numbers. More speci�cally, let IN denote theset of all natural numbers, thenjGj = frtg [ IN [ fi0 j i 2 INg:The binary relations in G are populated as follows (thesuperscript G is omitted in the relation names):Lr = f(rt; rt)gE01 = f(rt; 0)gE�01 = f(0; rt)gE02 = f(rt; 00)gE�02 = f(00; rt)gL1 = f(rt; i) j i 2 INgL�1 = f(i; rt) j i 2 INgL2 = f(rt; i0) j i 2 INgL�2 = f(i0; rt) j i 2 INgR+1 = f(i; i+ 1) j i 2 INgR�1 = f(i+ 1; i) j i 2 INgR+2 = f(i0; (i+ 1)0) j i 2 INgR�2 = f((i+ 1)0; i0) j i 2 INgKi = f(m;n0) j C )M (i;m; n)gK�i = f(n0;m) j (m;n0) 2 KigIt is easy to verify the following. First, G j= �N .This is immediate from the construction of G. Second,G j= 'C ^ :'D , because C )M C, C 6)M D and bythe de�nition of Ki. Finally, G j= �M . To see this, �rstobserve the following simple facts.Fact 1 : G j= Ki(m;n0) i� C )M (i;m; n).Fact 2 : If C )M (i;m; n) !IiM C 0, then C )M C 0.Moreover, C 0 is determined by the relation !M de-scribed in Section 3.1.

Using these facts, we can verify that G j= �M bycontradiction. More speci�cally, suppose G 6j= �M .Then there is i 2 [0; l] such that G 6j= �Ii . Here Ii hassix cases. For each of these cases, the assumption con-tradicts the facts above. As an example, consider thecase in which Ii is (i; register1; j). Then there must bem;n0 2 jGj, such that G j= Ki(m;n0)^:Kj(m+1; n0).By Fact 1, C )M (i;m; n0). In addition, by Fact 2,we have C )M (j;m + 1; n0). Thus again by Fact 1,G j= Kj(m + 1; n0). This contradicts the assumption.The proofs for the other cases are similar.Therefore, if C 6)M D, then �N ^ �M ^ 'C ^ :'Dis satis�able.3.2.2 Semi-conservative reductionTaking advantage of the reduction property establishedabove, we de�ne a recursive function f : FO ! S(P+)by: f( ) 7! �N ^ �M ^ 'C( ) ^ :'(1;0;0);where C( ) is the ID (0;m( ); 0) of the 2-RMML withan appropriate encodingm( ) of  , as described in Sec-tion 3.1.The proposition below shows that f is indeed a semi-conservative reduction from FO to S(P+).Proposition 3.7: Let ML be the 2-RM described inSection 3.1. For each  2 FO,1.  2 HML;1 i� f( ) is not satis�able; and2. if  2 HML;2, then f( ) has a �nite model.Proof: Recall HML;1 = N(FO) and HML;2 = F (FO)from Section 3.1.(1) By Proposition 3.6, we have C( ))ML (1; 0; 0) i��N ^ �M ^ 'C( ) ! '(1;0;0) is valid. In other words,C( ))ML (1; 0; 0) i� �N ^�M ^ 'C( ) ^ :'(1;0;0) isnot satis�able. Since  2 HML;1 i� C( ))ML (1; 0; 0),we have that  2 HML;1 i� f( ) is not satis�able.(2) We show that if  2 HML;2, then f( ) has a �nitemodel.First note that if  2 HML;2, then the computationof ML with initial ID C( ) is �nite. Therefore, the setSIDC( ) = f(i;m; n) j C( ))ML (i;m; n)gis �nite. Hence there is a natural number p, such thatfor each (i;m; n) 2 SIDC( ), m+2 � p and n+ 2 � p.Now we construct a �nite �-structure H satisfying�N ^ �M ^ 'C( ) ^ :'(1;0;0). The universe of H has13
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Figure 4: The structure H in Proposition 3.72p+ 1 nodes. More speci�cally,jH j = frt; 1; 2; :::; pg [ f10; 20; :::; p0g;where rt is the interpretation of the constant r in H .The binary relations Lr; E01; E02; E�01; E�02;Ki andK�i inH are exactly the same as those in the �-structureG given in the proof of Proposition 3.6. The binary re-lations L1, L�1 , L2, L�2 , R+1 , R�1 , R+2 and R�2 are pop-ulated in H as follows (the superscript H is omitted inthe relation names):R+1 = f(i; i+ 1) j 0 � i < pg [ f(p; p)gR�1 = f(i+ 1; i) j 0 � i < pg [ f(p; p)gR+2 = f(i0; (i+ 1)0) j 0 � i < pg [ f(p0; p0)gR�2 = f((i+ 1)0; i0) j 0 � i < pg [ f(p0; p0)gL1 = f(rt; i) j 0 � i � pgL�1 = f(i; rt) j 0 � i � pgL2 = f(rt; i0) j 0 � i � pgL�2 = f(i0; rt) j 0 � i � pgSee Figure 4 for the structure H (E�01, E�02, L�1 , L�2 ,R�1 , R�2 , K�i edges are omitted in the graph). Note thatthe relations Ki and K�i in H are well-de�ned, since ifC( ))ML (i;m; n), then m < p� 1 and n < p� 1.We now show that H j= �N ^�M ^'C( )^:'(1;0;0).

First, by C( ) )ML C( ) and C( ) 6)ML (1; 0; 0),we have that H j= 'C( ) ^ :'(1;0;0).Second, it is easy to verify that H j= �N . It shouldbe mentioned that it is to ensure H j= �5 ^ �6 that werequire H j= R+1 (p; p) ^R+2 (p0; p0).Finally, we show that H j= �M . Since  2 HML;2,it is straightforward to verify the following simple fact.Fact 3: If C( ) )ML (i;m; n), then m < p � 1 andn < p� 1.In addition, Facts 1 and 2 given in the proof ofProposition 3.6 also hold here. Therefore, the argumentfor showing G j= �M in the proof of Proposition 3.6, to-gether with Fact 3 given above, proves H j= �M . Thisveri�es that the structure H is indeed a �nite model of�N ^ �M ^ 'C( ) ^ :'(1;0;0).As an immediate result of Lemma 3.4 and Propo-sition 3.7, we have the following corollary, from whichTheorem 3.2 follows immediately.Corollary 3.8: The set S(P+) is a conservative reduc-tion class.3.3 Implication Problems for PfWe next establish Theorem 3.3. As in the proof of The-orem 3.2, we show that the set S(Pf ) is a conservativereduction class. To do this, we �rst present an encod-ing of 2-RMs with constraints in Pf , and then de�ne asemi-conservative reduction from FO to S(Pf ).3.3.1 EncodingWe encode 2-RMs in terms of Pf constraints. Recallthat Pf allows the left tail and right tail of a constraintto be empty path �. In other words, equality is allowedin Pf .Let M be a 2-RM. Assume that the set E of binaryrelation symbols in signature � is the same as the onedescribed in Section 3.2.1, except that the predicatesLr and K�i for i 2 [0; l] are no longer required here. Wede�ne the encoding as follows.IDs. The encoding of each ID C ofM , 'C , is the sameas the one given in Section 3.2.1. Note that 'C is inPf .Registers. We encode the contents of the registers by�fN , which is the conjunction of the constraints of Pfgiven below.14



� Successor, predecessor:�1 = 8x (L1(r; x)! 8 y (R+1 � R�1 (x; y)! �(x; y)))�2 = 8x (L1(r; x)! 8 y (R�1 �R+1 (x; y)! �(x; y)))�3 = 8x (L2(r; x)! 8 y (R+2 � R�2 (x; y)! �(x; y)))�4 = 8x (L2(r; x)! 8 y (R�2 �R+2 (x; y)! �(x; y)))�5 = 8x (L1(r; x)! 8 y (�(x; y)! R+1 � R�1 (x; y)))�6 = 8x (L2(r; x)! 8 y (�(x; y)! R+2 � R�2 (x; y)))Constraints �1 and �2 (resp. �3 and �4) assert aninverse relationship betweenR+1 andR�1 (resp. R+2and R�2 ). It should be noted that since equality isallowed in Pf , �1 and �2 (resp. �3 and �4) enforcea node representing a content of register1 (resp.register2) to be unique. Constraints �5 and �6state that R+1 and R+2 edges form \in�nite" chains.� Register identi�cation: �7; �8; �9 and �10 are thesame as given in Section 3.2.1.� Zeros:�11 = 8x (L1 �E�01(r; x)! �(r; x))�12 = 8x (L1(r; x) !8 y (E�01(x; y)! E�01 �E01 � E�01(x; y)))�13 = 8x (L1(r; x) ! 8 y (E�01 � E01(x; y)! �(x; y)))�14 = 8x (L1 �E�01 � E02(r; x)! E02(r; x))�15 = 8x (E02(r; x)! 8 y (�(x; y)! E�02 �E02(x; y)))�16 = 8x (E02(r; x)! L2(r; x))Constraints �11, �12 and �13 assert that if there isan edge labeled L1 from the root to a node a anda has an outgoing E�01 edge, then there is an E01edge from the root to a. Constraint �14 states thatif there exists a path L1 �E�01 �E02 from the root toa node b, then there is an E02 edge from the rootto b. Constraint �15 asserts that if there is an E02edge from the root to a node c, then there existsa node d such that there is an E�02 edge from c tod and there is an E02 edge from d to c. Finally,�16 states that there is an edge labeled L2 fromthe root to a node representing 0 in register2.Instructions. The encoding of instruction Ii, �Ii , isthe same as the one given in Section 3.2.1, except thathere �is2;0 is8x (L1(r; x)! 8 y (Ki �E�02 � E02(x; y)! Kj(x; y))):The encoding of the program of M is �fM = l̂i=0�Ii .It is clear that �fM is a conjunction of constraints in Pf .Analogous to Proposition 3.6, we show that the en-coding above has the following reduction property.

Proposition 3.9: For all IDs C and D of M ,C )M D i� �fN ^�fM ^ 'C ! 'D is valid:Proof: The proof is similar to that of Proposition 3.6.(1) Assume that C )M D. We prove by induction onstep t that for each ID C 0 of M and each model G of�fN ^�fM ^'C , if C )tM C 0 then G j= 'C0 . This can beshown in basically the same way as for Proposition 3.6,except for the following cases in the inductive step.Case 3 : Ii = (i; register1; j; k) and m = 0. In this case,C 0 must be (j; 0; n). Suppose, for a contradiction, thatthere are a; b 2 jGj, such thatG j= L1(r; a) ^ E�01 � E02 � (R+2 )n(a; b) ^ :Kj(a; b):Then by G j= 'C1 , we have G j= Ki(a; b). In addition,there exists e 2 jGj, such that G j= L1(r; a) ^E�01(a; e).By �12 in �fN , there exist c; d 2 jGj, such thatG j= L1(r; a) ^ E�01(a; c) ^ E01(c; d):Thus by �13 in �fN , we have G j= �(a; d). As a result,G j= L1(r; a) ^ E�01(a; c) ^ E01(c; a). By �11 in �fN andG j= L1(r; a) ^ E�01(a; c), we have G j= �(r; c). ThusG j= E01(r; a). Hence G j= E01(r; a) ^ Ki(a; b). Thusby �is1;0 in �fM , we have G j= Kj(a; b). This contradictsthe assumption.Case 4 : Ii = (i; register1; j; k) and m = p+ 1. In thiscase, C 0 must be (k; p; n). Suppose, for a contradiction,that there exist a; b 2 jGj, such thatG j= L1(r; a)^(R�1 )p �E�01 �E02 �(R+2 )n(a; b)^:Kk(a; b):Then by �5 in �fN , there exists node c 2 jGj, such thatG j= L1(r; a) ^ R+1 (a; c) ^ R�1 (c; a). By �7 in �fN , wehave G j= L1(r; c) ^ R�1 (c; a). As a result,G j= L1(r; c) ^ (R�1 )p+1 � E�01 �E02 � (R+2 )n(c; b):Thus by G j= 'C1 , G j= Ki(c; b). Therefore, we havethat G j= L1(r; a) ^ R+1 (a; c) ^Ki(c; b). Thus by �is1;nin �fM , we have G j= Kk(a; b). This contradicts theassumption.Case 5 : Ii = (i; register2; j; k) and n = 0. In this case,C 0 must be (j;m; 0). Suppose, for a contradiction, thatthere exist a; b 2 jGj, such thatG j= L1(r; a) ^ (R�1 )m �E�01 � E02(a; b) ^ :Kj(a; b):Then by G j= 'C1 , we have G j= Ki(a; b). Moreover,there exist c; d 2 jGj, such thatG j= (R�1 )m(a; d) ^ E�01(d; c) ^E02(c; b):15



By G j= L1(r; a) and �8 in �fN , we have G j= L1(r; d).Thus by �14 in �fN , we have G j= E02(r; b). By �15 in�fN , there is e 2 jGj, such that G j= E�02(b; e)^E02(e; b).Hence G j= L1(r; a) ^ Ki(a; b) ^ E�02(b; e) ^ E02(e; b).Thus by �is2;0 in �fM , we have G j= Kj(a; b). Thiscontradicts the assumption.Case 6 : Ii = (i; register2; j; k) and n = p + 1. In thiscase, C 0 must be (k;m; p). Suppose, for a contradiction,that there exist a; b 2 jGj, such thatG j= L1(r; a)^(R�1 )m �E�01 �E02 �(R+2 )p(a; b)^:Kk(a; b):Then there exist c; d 2 jGj, such thatG j= (R�1 )m(a; c) ^ E�01 � E02(c; d) ^ (R+2 )p(d; b):By �8 in �fN , we have G j= L1(r; c). By �14 in �fN ,G j= E02(r; d). By �16 in �fN , G j= L2(r; d). By �9 in�fN , G j= L2(r; b). Therefore, by �6 in �fN , there existse 2 jGj, such that G j= R+2 (b; e) ^ R�2 (e; b). Therefore,G j= L1(r; a) ^ (R�1 )m �E�01 � E02 � (R+2 )p+1(a; e):By G j= 'C1 , G j= Ki(a; e). As a result, we have thatG j= L1(r; a)^Ki(a; e)^R�2 (e; b). Thus by �is2;n in �fM ,G j= Kk(a; b). This contradicts the assumption.(2) Conversely, assume that C 6)M D. It is easy to ver-ify that the �-structure G (without Lr and K�i edges)constructed in the proof of Proposition 3.6 is a modelof �fN ^ �fM ^ 'C ^ :'D .3.3.2 Semi-conservative reductionWe de�ne a recursive function g : FO ! S(Pf ) by:g( ) 7! �fN ^ �fM ^ 'C( ) ^ :'(1;0;0);where C( ) is the ID (0;m( ); 0) of the 2-RMML withan appropriate encodingm( ) of  , as described in Sec-tion 3.1.Proposition 3.10 below shows that the function g isindeed a semi-conservative reduction from FO to S(Pf ).Proposition 3.10: Let ML be the 2-RM described inSection 3.1. For each  2 FO,1.  2 HML;1 i� g( ) is not satis�able; and2. if  2 HML;2, then g( ) has a �nite model.Proof: The proof is similar to the proof of Proposi-tion 3.7, except that here in the structure H shown inFigure 4, there are no Lr and K�i edges.

From Proposition 3.10 and Lemma 3.4 follows thecorollary below. As a result, Theorem 3.3 follows.Corollary 3.11: The set S(Pf ) is a conservative re-duction class.4 DECIDABLE RESTRICTED IMPLICATIONThe undecidability results established in the last sec-tion suggest that we search for fragments of Pc whichpossess decidable implication problems, and yet retainsu�cient expressive power of the full language. Thissection identi�es several fragments of Pc which share thefollowing properties. First, they each properly containthe set of word constraints. Second, each of them failsto be included in two-variable �rst-order logic. Third,they allow the formulation of many interesting semanticrelations. And �nally, the implication and �nite impli-cation problems for each of them are decidable in thecontext of semistructured databases.We begin by introducing these fragments of Pc, andthen establish the decidability of their associated im-plication and �nite implication problems. Finally, weinvestigate a mild generalization of Pc, Pĉ .4.1 Decidable Fragments of PcWe describe three fragments of Pc and demonstratetheir expressive power.4.1.1 Pre�x restricted implication for PcThe implication problems for simple path constraints,which are known to be decidable, can be viewed as a re-stricted form of the implication problems for Pc. Morespeci�cally, the implication problems for Ps are the im-plication problems for Pc under the following restric-tion: in any �nite subset of Pc in the implication prob-lems, the pre�x of each constraint is the empty path.By replacing this pre�x restriction with a weakerone, we de�ne the pre�x restricted implication problemsfor Pc as follows.De�nition 4.1: A pre�x restricted subset of Pc is a�nite subset of Pc in which the pre�xes of all the con-straints have the same length.The pre�x restricted (�nite) implication problem forPc is the problem to determine, given any pre�x re-stricted subset � [ f'g of Pc, whether � j= ' (� j=f ').16



Obviously, the (�nite) implication problem for wordconstraints is a special case of the pre�x restricted (�-nite) implication problem for Pc. Moreover, in contrastto word constraint implication, pre�x restricted impli-cation cannot be stated in two-variable �rst-order logic(FO2). A convenient argument for this is that f'g,where ' is the constraint given in Example 2.1, is apre�x restricted subset of Pc. However, ' is not ex-pressible in FO2.Many cases of integrity constraint implication com-monly found in databases are instances of the pre�xrestricted implication problem for Pc. Among these areimplications for inverse constraints and local databaseconstraints. As an example, consider the set � con-sisting of the following local inverse constraints in theschool databases described in Section 1:8 s (Schools � Students(r; s)!8 c (Taking(s; c)! Enrolled(c; s)))8 c (Schools � Courses(r; c)!8 s (Enrolled(c; s)! Taking(s; c)))and the constraint ':8 s1 (Schools � Students(r; s1)!8 s2 (�(s1; s2)! Taking � Enrolled(s1; s2))):The question whether � j= ' (� j=f ') is an instanceof the pre�x restricted (�nite) implication problem forPc.4.1.2 Sublanguage P�Some cases of path constraint implication canvassedearlier are not instances of the pre�x restricted implica-tion. For example, recall the two extent constraints andthe two inverse constraints for student/course databasesgiven in Section 1:8 c (Students � Taking(r; c)! Courses(r; c))8 s (Courses �Enrolled(r; s)! Students(r; s))8 s (Students(r; s)!8 c (Taking(s; c)! Enrolled(c; s)))8 c (Courses(r; c)!8 s (Enrolled(c; s)! Taking(s; c)))The set consisting of these constraints is not a pre�xrestricted subset of Pc.The constraints in the last example, however, are inthe sublanguage P� of Pc de�ned below. Recall the no-tations lt(') and pf(') for a Pc constraint ' describedin De�nition 2.1.

De�nition 4.2: A �-restricted path constraint ' is aconstraint in Pc with jlt(')j � 1. That is, either lt(')is �, or lt(') = K for some K 2 E.The sublanguage P� is de�ned to be the class of Pcconstraints ' such that either jpf(')j = 0 or jlt(')j � 1.In other words, P� consists of all simple path constraintsand all �-restricted path constraints.The (�nite) implication problem for P� is the prob-lem of determining, given any �nite subset � [ f'g ofP� , whether � j= ' (� j=f ').Note that the class of word constraints is a propersubset of P� . In addition, not all constraints in P� areexpressible in FO2. Indeed, the constraint ' given inExample 2.1 is in P� , but is not in FO2.4.1.3 Extended implication for P�Recall the local extent constraints given in Section 1:8 d (Schools(r; d)!8 c (Students � Taking(d; c)! Courses(d; c)))8 d (Schools(r; d)!8 s (Courses � Enrolled(d; s)! Students(d; s)))Consider the set consisting of these local extent con-straints and the local inverse constraints given in Sec-tion 4.1.1. This set is neither a pre�x restricted sub-set of Pc nor a subset of P� . However, the constraintsin this set share the following property: all of themare constraints in student/course databases as shownin Figure 1 augmented with a common pre�x Schools.In general, when represented in a global environment,path constraints in a local database are augmented witha common pre�x. This example motivates the followingextension of P� .De�nition 4.3: Let � be a path and ' be a constraintin P� . The extension of ' with pre�x �, denoted by�('; �), is the constraint de�ned either by8x (� � pf(')(r; x)! 8 y (lt(')(x; y)! rt(')(x; y)))when ' is of the forward form, or by8x (� � pf(')(r; x)! 8 y (lt(')(x; y)! rt(')(y; x)))when ' is of the backward form. Here � is the pathconcatenation operator, and pf , lt and rt are de�ned inDe�nition 2.1.Let � be a path and � be a �nite subset of P� .The extension of � with pre�x � is the subset of Pcde�ned by f�('; �) j ' 2 �g. Such a set is called apre�x extended subset of P� .17



The extended (�nite) implication problem for P� isthe problem of determining, given any pre�x extendedsubset � [ f'g of P� , whether � j= ' (� j=f ').For instance, the set described in the last example isa pre�x extended subset of P� .Note that the (�nite) implication problem for P� is aspecial case of the extended (�nite) implication problemfor P� , namely, when the pre�x � described in De�ni-tion 4.3 is the empty path �. As an immediate result,implications of word constraints are special cases of ex-tended implications of P� constraints. In addition, ex-tended implications of P� constraints cannot be statedin FO2.4.2 Decidability of Pre�x Restricted ImplicationIn this section, we show the following:Theorem 4.1: The pre�x restricted implication and�nite implication problems for Pc are decidable.The idea of the proof is to show that the satis�abilityand �nite satis�ability problems for the set Sp:f^�^:' j �[f'g is a pre�x restricted subset of Pcgare decidable. That is, we show that it is decidable todetermine, given any  2 Sp, whether there is a (�nite)�-structure such that G j=  .To show that Sp possesses decidable satis�abilityproblems, let us recall the following notion from [9].De�nition 4.4 [9]: A class X of logic sentences hasthe small model property for satis�ability i� there existsa recursive function s such that for each  2 X , if  is satis�able, then  has a �nite model of size at mosts(j j), where j j stands for the length of  .If a class X of logic sentences has the small modelproperty, then the satis�ability and �nite satis�abilityproblems for X coincide and are decidable. In fact, forany  2 X , one can determine whether  is satis�able ins(j j)-space, where s is the recursive function describedin De�nition 4.4. Therefore, to show the decidability ofthe satis�ability and �nite satis�ability problems for Sp,it su�ces to establish the small model property for Sp.To do this, we use a path label criterion to characterizewhether a �-structure satis�es a sentence of Sp. Morespeci�cally, given a structure G and a sentence  of Sp,we label each node of G with paths in  . The pathlabel of G, LB(G; ), is the collection of the labels ofall the nodes in G. This path label has the followingproperties:

� for any �-structure H , if LB(H; ) = LB(G; ),then H j=  i� G j=  ; and� there is a �-structure H of size at most 2 2 2 j j ,such that LB(H; ) = LB(G; ).As a result, if  is satis�able, then it has a model ofsize at most 2 2 2 j j .We next de�ne the path labels and show that theyhave the properties described above.4.2.1 Path labelsLet G = (jGj; rG; EG) and  2 Sp, where  = V�^:'.To de�ne path labels, we need the following notations:Paths�( ) = fpf(�) j � 2 � [ f'ggPaths�( ) = flt(�) j � 2 � [ f'ggPaths+ ( ) = frt(�) j � 2 � [ f'g;� has the forward formgPaths� ( ) = f�rt(�) j � 2 � [ f'g;� has the backward formgPaths(�;)( ) = Paths�( ) [ Paths+ ( ) [ Paths� ( )Here the notation �� denotes the pair (�; �). We usethis notation merely to distinguish the occurrence ofa path as the right tail of a backward constraint asopposed to a forward constraint. The notations pf , ltand rt are described in De�nition 2.1.For each node a in jGj, we de�ne a path label usingpaths in Paths�( ) and Paths(�;)( ). This label con-sists of a pair of sets. Its �rst component is the set ofpaths in Paths�( ) from rG to a. That is,lb�(a;G;  ) = f� j � 2 Paths�( ); G j= �(rG; a)g:The second component is a collection of sets of paths inPaths(�;)( ). Each set consists of the paths betweenthe node a and some node in jGj. More speci�cally, foreach b 2 jGj, let:lbs�(a; b;G;  ) = f� j � 2 Paths�( ); G j= �(a; b)glbs(a; b;G;  ) = f� j � 2 Paths+ ( ); G j= �(a; b)g [f�� j � � 2 Paths� ( ); G j= �(b; a)gWe de�ne lbs(�;)(a; b;G;  ) to belbs�(a; b;G;  ) [ lbs(a; b;G;  ):The second component of the label is de�ned by:lb(�;)(a;G;  ) = flbs(�;)(a; b;G;  ) j b 2 jGjgMore precisely, we de�ne the label of node a in Gw.r.t.  , denoted by lb(a;G;  ) to be18



� (;; ;), if lb�(a;G;  ) = ;; or� (lb�(a;G;  ); lb(�;)(a;G;  )), otherwise.The label of G w.r.t.  is de�ned byLB(G; ) = flb(a;G;  ) j a 2 jGjg:Every label l 2 LB(G; ) is a pair of sets. We referto the �rst component of l as lb�(l), and the second aslb(�;)(l). In addition, we use the following notations:LB�(G; ) = flb�(l) j l 2 LB(G; )gLB(�;)(G; ) = flb(�;)(l) j l 2 LB(G; )gLet us examine the cardinality of LB(G; ). We usethe notation card(S) to denote the cardinality of a setS. It is easy to verify thatcard(Paths�( )) � j j,card(Paths(�;)( )) � j j.Note that for any l 2 LB(G; ), lb�(l) is a subset ofPaths�( ) and lb(�;)(l) is a subset of the power set ofPaths(�;)( ). Therefore,card(LB(G; )) � 2 j j+2 j j .In particular, if  involves simple constraints only, i.e.,�[f'g is a subset of Ps, then Paths�( ) = f�g. In thiscase, it is easy to verify that card(LB(G; )) is at most2. More speci�cally, LB(G; ) � f(;; ;); lb(rG; G;  )g.We shall use s�( ) to denote the pre�x length of '.That is, s�( ) = jpf(')j. Note that the pre�xes of allthe constraints in � [ f'g have the same length.The lemma below shows that LB(G; ) characterizeswhether G j=  . This lemma can be easily veri�ed bycontradiction.Lemma 4.2: For any �-structures G, H , and any sen-tence  2 Sp, if LB(G; ) = LB(H; ), then G j=  i�H j=  .4.2.2 The small model propertyNext, we establish the small model property for Sp. ByLemma 4.2, it su�ces to show the following.Proposition 4.3: For each �-structure G and eachsentence  in Sp, there is a �-structure H , such that1. the size of H is at most 2 2 2 j j ; and2. LB(H; ) = LB(G; ).

For if the proposition holds, then every satis�ablesentence  in Sp has a model of size at most 2 2 2 j j .That is, Sp has the small model property.The idea of the proof of Proposition 4.3 is as fol-lows. Let G be a �-structure and  a sentence in Sp.We �rst construct a graph G� that includes preciselyone node al representing lb�(l) for each l 2 LB(G; ).We then construct a graph Gl for each l 2 LB(G; ),such that the root of Gl represents lb(�;)(l). Finally,we glue to each node al the root of the correspondinggraph Gl. This yields the �-structure H described inProposition 4.3.The implementation of the idea requires two lemmasand the following notation.De�nition 4.5: Let G be a �-structure, m be a naturalnumber and a 2 jGj. The m-neighborhood of a in G isthe structure G(a) = (jG(a)j; rG(a); EG(a)), where� jG(a)j = fc j c 2 jGj; there is path �, j�j � mand either G j= �(a; c) or G j= �(c; a)g;� rG(a) = a; and� for all b; c 2 jG(a)j and anyK 2 E, G(a) j= K(b; c)i� G j= K(b; c).That is, G(a) is the restriction of G to jG(a)j with a asthe new root.Given a �-structure G and a sentence  in Sp, the�rst lemma below proves the existence of a �-structureG� which has the following properties.� LB�(G�;  ) = LB�(G; ). In addition, for eachl 2 LB(G; ), there is a distinguished node al injG�j such that lb�(al; G�;  ) = lb�(l).� For each a 2 jG�j, if lb�(a;G�;  ) 6= ;, then adoes not have any outgoing edge. That is, for eachK 2 E and b 2 jG�j, G� j= :K(a; b).We shall proceed to construct the �-structure H de-scribed in Proposition 4.3, such that in H , G� is thes�( )-neighborhood of rH . This will ensure thatLB�(H; ) = LB�(G; ):Lemma 4.4: For each �-structure G and  2 Sp, thereis a �-structure G� = (jG�j; rG� ; EG�), such that1. the size of G� is at most j j+ 2 j j+2 j j ;2. there is a subset L� of jG�j, such that19



(a) there exists a bijection f : LB(G; ) ! L�,such that lb�(l) = lb�(f(l); G�;  ) for eachlabel l 2 LB(G; ); and in addition, for everyK 2 E and b 2 jG�j, G� j= :K(f(l); b);(b) for each b 2 jG�j n L�, lb�(b;G�;  ) = ;.Proof: Let I�( ) = f� j % 2 Paths�( ); � �p %g.Here � �p % stands for that � is a proper pre�x of %, asde�ned in Section 2. We construct G� using LB(G; )and I�( ) as follows. For each � 2 I�( ), let a� be adistinguished node, and for each l 2 LB(G; ), let albe a distinguished node. Let� L� = fal j l 2 LB(G; )g;� jG�j = L� [ fa� j � 2 I�( )g;� rG� = � a� if s�( ) � 1alb(rG;G; ) otherwise;� for all a; b 2 jG�j and K 2 E, G� j= K(a; b) i�there exists � 2 I�( ), such that a = a� (i.e.,a 62 L�), and one of the following conditions issatis�ed:{ there exists % 2 I�( ), such that b = a% (i.e.,b 62 L�), and % = � �K; or{ there exists l 2 LB(G; ), such that b = al(i.e., b 2 L�), and there exists % 2 lb�(l),such that % = � �K.It should be noted that when s�( ) = 0, i.e., when  involves simple constraints only, I�( ) = ; and jG�jconsists of rG� and at most another node. This is be-cause in this case, LB(G; ) � f(;; ;); lb(rG; G;  )g.Here rG� represents the label of the root rG if G, i.e.,rG� = alb(rG;G; ). The other node, if it exists, is a(;;;).The structure G� is basically a rooted acyclic di-rected graph. It has the following properties.� The restriction of G� to fa� j � 2 I�( )g is a treeof height s�( ) � 1. For each node a� in the tree,there is a single path � from the root rG� to a�.� At level s�( ), there are card(LB(G; )) manynodes. Each of these nodes is uniquely markedwith a label in LB(G; ). In addition, it does nothave any outgoing edge, and all its incoming edgesare from leaves of the tree mentioned above.We now verify that G� indeed meets all the require-ments of the lemma.(1) The size of G�. Let size(A) denote the size of astructure A. It is easy to verify that

card(I�( )) � j j,card(L�) = card(LB(G; )).Therefore, size(G�) is at most j j+ 2 j j+2 j j . In par-ticular, when s�( ) = 0, size(G�) is at most 2.(2) Properties of L�. The bijection f from LB(G; )to L� can be de�ned by: l 7! al. To verify the otherproperties of L�, �rst observe the following:Claim: For any % 2 I�( ), j%j < s�( ) andf� j � is a path; G� j= �(rG� ; a%)g = f%g:This claim can be veri�ed by a straightforward induc-tion on j%j. By this claim and the de�nition of G�, it iseasy to verify the second statement of the lemma.The next lemma deals with LB(�;)(G; ). Morespeci�cally, given a label l in LB(G; ), it constructsa �-structure Gl = (jGlj; rGl ; EGl) such thatlb(�;)(rGl ; Gl;  ) = lb(�;)(l):We shall construct the structure H described in Propo-sition 4.3 such that for each l in LB(G; ), Gl is partof H , and moreover,lb(�;)(rGl ; H;  ) = lb(�;)(rGl ; Gl;  ):Lemma 4.5: Let G be a �-structure and  2 Sp. Foreach l 2 LB(G; ), there is a �-structure Gl, such that1. the size of Gl is at most 2 j j; and2. lb(�;)(rGl ; Gl;  ) = lb(�;)(l).Proof: We give a �ltration argument. Since l is inLB(G; ), there exists a 2 jGj such that lb(a;G;  ) = l.LetI+( ) = f� j % 2 Paths�( ) [ Paths+ ( ); � �p %g,I�( ) = f�� j � % 2 Paths� ( ); � �s %g,I( ) = I+( ) [ I�( ).Here � �p % (� �s %) means that � is a pre�x (su�x)of %, as de�ned in Section 2. It is easy to verify thatcard(I( )) � j j.We de�ne a function g from jGj to the power set ofI( ) such that for any b 2 jGj,g(b) 7! f� j � 2 I+( ); G j= �(a; b)g [f�� j � � 2 I�( ); G j= �(b; a)g.20



Clearly, the action of g induces an equivalence relation�on jGj: b � b0 i� g(b) = g(b0):We denote the equivalence class of b with respect to �as [b]. We proceed to construct a �-structure Gl whosenodes are these equivalence classes.� jGlj = f[b] j b 2 jGjg;� rGl = [a];� for each K 2 E and o1; o2 2 jGlj, Gl j= K(o1; o2)i� there exist b1; b2 2 jGj, such that [b1] = o1,[b2] = o2, and G j= K(b1; b2).Obviously, the size of Gl is no larger than the cardinal-ity of the power set of I( ), and therefore, is at most2 j j. In addition, it can be veri�ed by a straightfor-ward induction on j�j and j%j that for any � 2 I+( ),�% 2 I�( ) and b 2 jGj,G j= �(a; b) i� Gl j= �(rGl ; [b]),G j= %(b; a) i� Gl j= %([b]; rGl).From these follows that lb(�;)(rGl ; Gl;  ) = lb(�;)(l).Finally, we prove Proposition 4.3. As mentioned ear-lier, given a �-structure G and a sentence  in Sp, wede�ne the structureH described in Proposition 4.3 suchthat� the structure G� described in Lemma 4.4 is thes�( )-neighborhood of rH in H ;� for each l 2 LB(G; ), Gl in Lemma 4.5 is part ofH such that{ rGl = f(l), where f is the function speci�edin Lemma 4.4,{ lb(�;)(rGl ; H;  ) = lb(�;)(l), and{ lb�(rGl ; H;  ) = lb�(l).Proof of Proposition 4.3: Given a �-structure Gand  2 Sp, let G� be the �-structure speci�ed inLemma 4.4, and for each l 2 LB(G; ), let Gl be thestructure speci�ed in Lemma 4.5. Without loss of gen-erality, assume that jGlj \ jG�j = ; and jGlj \ jGl0 j = ;if l 6= l0. Using these, we now construct a �-structureH = (jH j; rH ; EH), as follows.� jH j = jG�j [ [l2LB(G; )(jGlj n frGlg);� rH = rG� ;
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Figure 5: The structure H in Proposition 4.3� For all a; b 2 jH j and each K 2 E, H j= K(a; b) i�one of the following conditions is satis�ed:{ a; b 2 jG�j and G� j= K(a; b);{ There are l 2 LB(G; ), a; b 2 jGlj such thatGl j= K(a; b);{ Let L� be the subset of jG�j and f be thefunction speci�ed in Lemma 4.4. For somel 2 LB(G; ),� a = f(l), b 2 jGlj and Gl j= K(rGl ; b); or� b = f(l), a 2 jGlj and Gl j= K(a; rGl); or� a = b = f(l) and Gl j= K(rGl ; rGl).Intuitively, H is built from G� and Gl's by identifyingf(l) with rGl for each l 2 LB(G; ). See Figure 5 forthe structure H .We now show that H is indeed the structure desired.(1) The size of H . Obviously, size(H) is no larger thansize(G�) + Xl2LB(G; )size(Gl)� card(LB(G; )):By Lemmas 4.4 and 4.5, it can be shown that size(H)is no larger than 2 2 2 j j . Note that when s�( ) = 0,size(H) is at most 2 j j.(2) LB(H; ) = LB(G; ). By Lemmas 4.4, 4.5 andthe de�nition of H , it is easy to verify the following:Claim: Let L� be the set and f the function speci�edin Lemma 4.4. They have the following properties.1. For each a 2 jH j n L�, lb(a;H;  ) = (;; ;).2. For each l 2 LB(G; ), lb(f(l); H;  ) = l.By the claim, LB(G; ) � LB(H; ). In addition, byLemma 4.4, f is a bijection between LB(G; ) and L�.Therefore, LB(H; ) = LB(G; ). It should be notedthat the proof of the claim uses the restriction on pre-�xes described in De�nition 4.1.21



4.3 Decidability of Implication Problems for P�We now establish the following:Theorem 4.6: The implication and �nite implicationproblems for P� are decidable.In the same way as in the proof of Theorem 4.1,we show Theorem 4.6 by establishing the small modelproperty for the set:S(P�) = f^� ^ :' j ' 2 P� ; � � P� ; � is �niteg:To do this, we give a �ltration argument. Given a sat-is�able sentence  in S(P�), we �nd the set of pathsin  and use a path labeling mechanism similar to theone employed in the proof of Theorem 4.1. More specif-ically, let G be a model of  . We use the paths in  to label each node of G, and therefore, obtain the labelof G with respect to  . The cardinality of this labelis determined only by j j, the length of  . We thenconstruct a �-structure H , such that H and G have thesame label with respect to  , and moreover, H j=  . Inaddition, each node of H has a unique path label. Thesize of H is, therefore, bounded by the cardinality ofthe label of G with respect to  , which is at most 2 j j.Thus the small model property is established.We �rst de�ne the path labels, called relative pathlabels . Using the path labels, we then establish thesmall model property for S(P�).4.3.1 Relative path labelsLet  be a satis�able sentence of S(P�), where  isV� ^ :'. We use the following to denote paths in  :Paths(�;�)( ) = fpf(�) j � 2 � [ f'gg [flt(�) j � 2 � [ f'g; � 2 PsgI(�;�)( ) = f� j % 2 Paths(�;�)( ); � �p %gI(') = � f� j � �p rt(')g if ' has forward formf� j � �s rt(')g if ' has backward formHere � �p % (� �s %) means that � is a pre�x (su�x)of %, as de�ned in Section 2.Let G be a model of  , G = (jGj; rG; EG), and (a; b)be a pair of nodes in jGj such thatG j= pf(')(r; a) ^ lt(')(a; b) ^ :rt(')(a; b)if ' is a forward constraint, andG j= pf(')(r; a) ^ lt(')(a; b) ^ :rt(')(b; a)if ' is a backward constraint. This pair is referred toas a witness of :' in G.

For each c 2 jGj, we label c with a pair. The �rstcomponent of the pair isls(�;�)(c;G;  ) = f� j � 2 I(�;�)( ); G j= �(rG; c)g:The second component, ls'(c; a;G;  ), is de�ned to be� f� j � 2 I('); G j= �(a; c)g if ' is a forward con-straint, and� f� j � 2 I('); G j= �(c; a)g if ' is a backward con-straint.The path label of node c in G relative to  and a isde�ned to be:ls(c;G;  ; a) = (ls(�;�)(c;G;  ); ls'(c; a;G;  ))The path label of G relative to  and a is de�ned to be:LS(G; ; a) = fls(c;G;  ; a) j c 2 jGjgWe now examine the cardinality of LS(G; ; a). It iseasy to verify that card(I(�;�)( )) + card(I(')) � j j.Note that for each c 2 jGj, ls(�;�)(c;G;  ) � I(�;�)( )and ls'(c; a;G;  ) � I('). Hence card(LS(G; ; a)) isat most 2 j j.The notion of relative path labels di�ers from theone described in Section 4.2.1 in the following respects.First, relative path labels are de�ned for models of sat-is�able sentences in S(P�), rather than for arbitrary�-structures. Second, the relative path label of a nodea in a structure involves only the paths between a andtwo �xed nodes in the structure, namely, the root nodeand a node in a witness of :', whereas the one givenin Section 4.2.1 contains paths connecting all pairs ofnodes in the structure. As a result, a relative path labelhas a much smaller cardinality. Third, a relative pathlabel does not characterize whether a �-structure is amodel of a sentence in S(P�), but based on it we areable to construct a �ltration argument to establish thesmall model property for S(P�).4.3.2 The small model propertyUsing relative path labels we show the following:Proposition 4.7: Every satis�able sentence  of S(P�)has a model of size at most 2 j j.Proof: Let  be a satis�able sentence in S(P�), where = V�^:', and �[f'g is a �nite subset of P� . Since is satis�able, there is a �-structure G = (jGj; rG; EG)such that G j=  . It follows that there exist a, b injGj such that (a; b) is a witness of :' in G. Consider22



LS(G; ; a). As in the proof of Lemma 4.5, we de�nean equivalence relation � on jGj by:b � b0 i� ls(b;G;  ; a) = ls(b0; G;  ; a):For each b 2 jGj we denote the equivalence class of bwith respect to � as [b]. By taking these equivalenceclasses as nodes, we proceed to construct a �-structureH as follows:� jH j = f[b] j b 2 jGjg;� rH = [rG];� for each K 2 E and o1; o2 2 jH j, H j= K(o1; o2)i� there exist b1; b2 2 jGj, such that [b1] = o1,[b2] = o2, and G j= K(b1; b2).We next show that H j=  , and moreover, the sizeof H is at most 2 j j.(1) The size of H . Since size(H) = card(LS(G; ; a)),size(H) is at most 2 j j.(2) H j=  . It su�ces to show the following claims.Claim 1: For any path � and c; d 2 jGj, if G j= �(c; d),then H j= �([c]; [d]).Claim 2: For each c 2 jGj,ls(c;G;  ; a) = ls([c]; H;  ; [a]):Claim 1 can be easily veri�ed by induction on j�j.Similarly, Claim 2 can be veri�ed by showing that forany � 2 I(�;�)( ), % 2 I(') and c 2 jGj,� 2 ls(�;�)(c;G;  ) i� � 2 ls(�;�)([c]; H;  ),% 2 ls'(c; a;G;  ) i� % 2 ls'([c]; [a]; H;  ).Again, these can be shown by induction on j�j and j%j.Using these claims, we prove H j=  as follows.We �rst show that H j= �. Suppose, for a contra-diction, that there exists � 2 � such that H j= :�.Without loss of generality, assume that � is a forwardconstraint (the argument for the backward case is anal-ogous). Then there exist c; d 2 jH j, such thatH j= pf(�)(rH ; c) ^ lt(�)(c; d) ^ :rt(�)(c; d):We have two cases to consider.Case 1: � is a simple constraint. That is, pf(�) = � andc = rH . In this case, we have lt(�) 2 ls(�;�)(d;H;  )and H j= :rt(�)(rH ; d). By the de�nition of H , thereexists d1 2 jGj, such that [d1] = d. By Claim 2,ls(d1; G;  ; a) = ls(d;H;  ; [a]). By the de�nition ofls, we have ls(�;�)(d1; G;  ) = ls(�;�)(d;H;  ). Hence

lt(�) 2 ls(�;�)(d1; G;  ). That is, G j= lt(�)(rG; d1).Since G j= �, we have that G j= rt(�)(rG ; d1). ByClaim 1, we have H j= rt(�)(rH ; d). This contradictsthe assumption.Case 2: � is a �-restricted constraint, i.e., jlt(�)j � 1.If jlt(�)j = 0, then c = d. Thus by the assumption,pf(�) 2 ls(�;�)(c;H;  ) and H j= :rt(�)(c; c). By thede�nition of H , there exists c1 2 jGj, such that [c1] = c.By Claim 2, ls(�;�)(c1; G;  ) = ls(�;�)(c;H;  ). Thuspf(�) 2 ls(�;�)(c1; G;  ). That is, G j= pf(�)(rG; c1).By G j= �, G j= rt(�)(c1; c1). Thus by Claim 1, wehave H j= rt(�)(c; c). This contradicts the assumption.If jlt(�)j = 1, then lt(�) = K for some K 2 E. Bythe assumption, we have pf(�) 2 ls(�;�)(c;H;  ) andH j= K(c; d) ^ :rt(�)(c; d). By the de�nition of H ,there exist c1; d1 2 jGj, such that [c1] = c, [d1] = dand moreover, G j= K(c1; d1). By Claim 2, we havethat ls(�;�)(c1; G;  ) = ls(�;�)(c;H;  ). As a result, wehave G j= pf(�)(rG; c1). By G j= �, G j= rt(�)(c1; d1).Thus by Claim 1, we have H j= rt(�)(c; d). Again, thiscontradicts the assumption.We next show that H j= :'. Since (a; b) is a witnessof :' in G, G j= pf(')(rG; a)^ lt(')(a; b). By Claim 1,H j= pf(')(rH ; [a]) ^ lt(')([a]; [b]):By Claim 2, ls'(b; a;G;  ) = ls'([b]; [a]; H;  ). Hencewhen ' is a forward constraint, by G j= :rt(')(a; b),we have that H j= :rt(')([a]; [b]); and when ' is abackward constraint, by G j= :rt(')(b; a), we have thatH j= :rt(')([b]; [a]). Therefore, H j= :'.4.4 Decidability of Extended Implication for P�Next, we prove the following:Theorem 4.8: The extended implication and �niteimplication problems for P� are decidable.We prove the theorem by reduction to the implica-tion problems for P� , whose decidability is establishedby Theorem 4.6.Let Pts be the set of all paths, and let Se(P�) bef^�^:' j �[f'g is a pre�x extended subset of P�g:Recall the set S(P�) de�ned in Section 4.3. We de�nethe pre�x extension function from S(P�) to Se(P�) tobe the mapping f : S(P�)� Pts! Se(P�), such thatf(^� ^ :'; �) 7! �̂2��(�; �) ^ :�('; �);23



where � is described in De�nition 4.3.To prove Theorem 4.8, it su�ces to show:Proposition 4.9: Let  be a sentence in S(P�), � apath, and f the pre�x extension function from S(P�)to Se(P�). Then1.  is satis�able i� f( ; �) is satis�able;2.  is �nitely satis�able i� f( ; �) is �nitely satis-�able. In addition, if  has a �nite model of sizeN , then f( ; �) has a model of size N + j�j.For if Proposition 4.9 holds, then Se(P�) has thesmall model property for satis�ability. More speci�-cally, given � 2 Se(P�), we can determine a path � and 2 S(P�) in linear time, such that � = f( ; �). In ad-dition, j�j � j j+ j�j. If � is satis�able, then by Propo-sition 4.9, so is  . By Proposition 4.7,  has a modelof size at most 2 j j. Thus again by Proposition 4.9, �has a model of size at most 2 j j+ j�j, which is no largerthan 2 j�j. Therefore, Se(P�) has the small model prop-erty and it follows that the extended implication and�nite implication problems for P� are decidable.Proof of Proposition 4.9: We only prove (2) of theproposition. The proof of (1) is similar.Let  = V� ^ :'. Note that if j�j = 0, thenf( ; �) =  . Obviously, the proposition holds in thiscase. Hence in the sequel, we assume that j�j � 1.Assume that  has a �nite modelG = (jGj; rG; EG).We show that f( ; �) has a model H = (jH j; rH ; EH),and moreover, the size of H , size(H), is size(G) + j�j.Let R� = f� j � is a path, � �p �g, where � �p �means that � is a proper pre�x of �. We construct Has follows. For each � 2 R�, let c� be a distinct nodewhich is not in jGj. Let� jH j = jGj [ fc� j � 2 R�g;� rH = c�;� For all a; b 2 jH j and each K 2 E, H j= K(a; b) i�one of the following conditions is satis�ed:{ there exists � 2 R�, such that a = c� andb = c��K and � �K 2 R�; or{ there exists � 2 R�, such that � = � �K anda = c� and b = rG; or{ a; b 2 jGj and G j= K(a; b).Obviously, size(H) = size(G) + j�j. In addition, it isstraightforward to verify that H j= f( ; �).

Conversely, suppose that f( ; �) has a �nite modelG = (jGj; rG; EG). We construct a �nite model of  .Without loss of generality, assume that ' is a for-ward constraint (the proof for the backward case is anal-ogous). Since G j= :�('; �), there exist a; b; c 2 jGj,such thatG j= �(rG; a) ^ pf(')(a; b) ^ lt(')(b; c) ^ :rt(')(b; c):Let m be the largest natural number in the followingset: fjpf(�)j + jlt(�)j + jrt(�)j j � 2 � [ f'gg. LetG(a) be the m-neighborhood of a in G, as described inDe�nition 4.5. Clearly, G(a) is a �nite �-structure. Wenext prove that G(a) j=  .We �rst show G(a) j= :'. By jpf(')j+ jlt(')j < mand jpf(')j+ jrt(')j < m, we have that b 2 jG(a)j andc 2 jG(a)j. Thus by the de�nition of G(a), we haveG(a) j= pf(')(a; b) ^ lt(')(b; c) ^ :rt(')(b; c):That is, G(a) j= :'.Second, we show by contradiction that for any � 2 �,G(a) j= �. Suppose that there exists � 2 � such thatG(a) j= :�. Without loss of generality, assume that �is a forward constraint (the proof for the backward caseis analogous). Then there exist d; e 2 jG(a)j such thatG(a) j= pf(�)(a; d) ^ lt(�)(d; e) ^ :rt(�)(d; e):Thus by the de�nition of G(a), we haveG j= �(rG; a) ^ pf(�)(a; d) ^ lt(�)(d; e) ^ :rt(�)(d; e):That is, G j= :�(�; �). This contradicts the assumptionthat G j= f( ; �).4.5 Conjunctive Path ConstraintsWe next show that the complexity results establishedabove also hold for an extension of path constraints.This extension is de�ned as follows.De�nition 4.6: A conjunctive path constraint � is anexpression of either the forward form8x (�̂2A�(r; x) ! 8 y (�̂2B�(x; y)! (x; y)));or the backward form8x (�̂2A�(r; x) ! 8 y (�̂2B�(x; y)! (y; x)));where A;B are non-empty �nite sets of paths, and aredenoted by pf(�) and lt(�), respectively. Here  is apath, denoted by rt(�). The set of all conjunctive pathconstraints is denoted by Pĉ .As an example, consider the following conjunctivepath constraints:24



8x (dept(r; x)! 8 y (ta(x; y) ! student(x; y)))8x (dept(r; x)! 8 y (ta(x; y) ! employee(x; y)))8x (dept(r; x)! 8 y ((student(x; y) ^ employee(x; y))! ta(x; y)))Abusing object-oriented database terms, these Pĉ con-straints assert:� TA of a department is a \subclass" of both Studentand Employee of the department; and� the \extent" of TA is the intersection of the \ex-tents" of Student and Employee.Obviously, Pc is a subclass of Pĉ . Therefore, thecorollary below follows from Theorem 3.1 immediately.Corollary 4.10: The implication problem for Pĉ isr.e. complete, and the �nite implication problem forPĉ is co-r.e. complete.Below we de�ne fragments of Pĉ analogous to thefragments of Pc discussed above.De�nition 4.7: A �nite subset � of Pĉ is called apre�x restricted subset of Pĉ i� for all �,  in �, all thepaths in pf(�) [ pf( ) have the same length.The pre�x restricted (�nite) implication problem forPĉ is the problem to determine, given any �nite pre�xrestricted subset � [ f�g of Pĉ , whether all the (�nite)models of � are also models of �.De�nition 4.8: A simple conjunctive path constraint� is a constraint of Pĉ with pf(�) = f�g.A �-restricted conjunctive path constraint � is a con-straint of Pĉ such that for each � 2 lt(�), j�j � 1.The sublanguage P�̂ is de�ned to be the class ofPĉ constraints � such that either for any � 2 pf(�),j�j = 0, or for any � 2 lt(�), j�j � 1. That is, Pĉ isthe set of all simple conjunctive path constraints andall �-restricted conjunctive path constraints.De�nition 4.9: Let � be a path and � be a constraintin P�̂ . The extension of � with pre�x �, denoted by�(�; �), is the constraint in Pĉ de�ned either by8x ( ^�2 pf(�)� � �(r; x)! 8 y ( ^� 2 lt(�)�(x; y)! rt(�)(x; y)))when � is of the forward form, or by8x ( ^�2 pf(�)� � �(r; x)! 8 y ( ^� 2 lt(�)�(x; y)! rt(�)(y; x)))

when � is of the backward form.Let � be a path and � a �nite subset of P�̂ . The ex-tension of � with pre�x � is the subset of Pĉ de�ned byf�(�; �) j � 2 �g. Such a set is called a pre�x extendedsubset of P�̂ .The extended (�nite) implication problem for P�̂ isthe problem of determining, given any pre�x extendedsubset � [ f�g of P�̂ , whether all the (�nite) modelsof � are also models of �.On semistructured data we have the following, whichare analogous to Theorems 4.1, 4.6 and 4.8.Theorem 4.11: The following problems are decidable:� The pre�x restricted implication and �nite impli-cation problems for Pĉ .� The implication and �nite implication problemsfor P�̂ .� The extended implication and �nite implicationproblems for P�̂ .With slight modi�cation, the proofs of Theorems 4.1,4.6 and 4.8 are applicable to Theorem 4.11.With thanks to an anonymous referee, we observethat the arguments for these theorems can even be usedto establish the decidability of certain extensions of thedecidable fragments of Pc and Pĉ . For example, theproof of Theorem 4.1 yields a stronger result: the sat-is�ability of any Boolean combination of constraints inpre�x restricted subsets of Pc is decidable. More specif-ically, let � be a a pre�x restricted subset of Pc. Wede�ne a set B(�) of logic sentences as follows:� � � B(�);� if ' 2 B(�), then so is :';� if ' and � are in B(�), then so are '^� and '_�.The (�nite) satis�ability problem for Boolean combi-nations of constraints in pre�x restricted subsets of Pcis the problem to determine, given any pre�x restrictedsubset � of Pc and any ' 2 B(�), whether ' has a(�nite) model.With slight modi�cation, the argument for Theo-rem 4.1 can be used to prove the following:Proposition 4.12: The satis�ability and �nite satis�a-bility problems for Boolean combinations of constraintsin pre�x restricted subsets of Pc are decidable.25



5 CONCLUSIONSWe have introduced a class of path constraints, Pc,and investigated its associated implication and �niteimplication problems. These path constraints capturemany natural integrity constraints that commonly arisein both structured and semistructured databases. Theyare not only a fundamental part of the semantics of thedata; they are also useful in query optimization. Theimportance of these constraints was also emphasized inseveral XML proposals (e.g., [10, 26, 31, 32]). Due tothe recent popularity of the World Wide Web and thesuccess of the XML standard [11], these constraints havefound a wide range of applications.In the context of semistructured data, we have shownthat, despite the simple syntax of the language Pc, itsassociated implication problem is r.e. complete and its�nite implication problem is co-r.e. complete. Theseresults are rather surprising since Pc is a mild gener-alization of word constraints introduced and studiedin [5], for which the implication and �nite implicationproblems are in PTIME. In light of these undecidabilityresults, we have also identi�ed several fragments of Pcwhich su�ce to express many interesting semantic re-lations such as extent, inverse and local database con-straints, and properly contain the class of word con-straints. We have established the decidability of theimplication and �nite implication problems associatedwith each of these fragments.Another issue of equal importance is the interac-tion between path and type constraints. Although theXML standard itself does not require any schema ortype system, a number of proposals have been devel-oped that allow one to constrain the structure of XMLdata by imposing a schema or a type constraint on it.These and other proposals also advocate the need forcertain integrity constraints, which can be expressedas Pc constraints. It is likely that future XML pro-posals will involve both forms of constraints, and it istherefore appropriate to understand the interaction be-tween them. It would be tempting to directly apply thecomplexity results developed for semistructured data totyped data. However, we have shown in [15, 16] thatpath constraints interact with type constraints. Morespeci�cally, a number of decidability and undecidabilityresults have been established there which demonstratethat adding a type system may in some cases simplifyreasoning about path constraints, and in other casesmake it harder. A full treatment of these results willappear in a future publication.
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