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AbstractIn semistructured data, the information that is normally as-sociated with a schema is contained within the data, which issometimes called \self-describing". In some forms of semi-structured data there is no separate schema, in others itexists but only places loose constraints on the data. Semi-structured data has recently emerged as an important topicof study for a variety of reasons. First, there are data sourcessuch as the Web, which we would like to treat as databasesbut which cannot be constrained by a schema. Second, itmay be desirable to have an extremely 
exible format fordata exchange between disparate databases. Third, evenwhen dealing with structured data, it may be helpful to viewit as semistructured for the purposes of browsing. This tu-torial will cover a number of issues surrounding such data:�nding a concise formulation, building a su�ciently expres-sive language for querying and transformation, and opti-mization problems.1 The motivationThe topic of semistructured data (also called unstructureddata) is relatively recent, and a tutorial on the topic maywell be premature. It represents, if anything, the conver-gence of a number of lines of thinking about new ways torepresent and query data that do not completely �t withconventional data models. The purpose of this tutorial isto to describe this motivation and to suggest areas in whichfurther research may be fruitful. For a similar exposition,the reader is referred to Serge Abiteboul's recent survey pa-per [1].The slides for this tutorial will be made available from asection of the Penn database home pagehttp://www.cis.upenn.edu/~db.�This work was partly supported by the Army Research O�ce(DAAH04-95-1-0169) and the National Science Foundation (CCR92-16122).

1.1 Some data really is unstructuredThe most obvious motivation comes from the need to bringnew forms of data into the ambit of conventional databasetechnology. Some of these, such as documents with struc-tured text [3, 2] and data formats [9, 17], while they maycall for increasingly expressive query languages and new op-timization techniques, only require mild extensions to theexisting notion of data models such as ODMG [13]. How-ever these extensions still require the prior imposition ofstructure on the data, and there are some forms of data forwhich this is genuinely di�cult.The most immediate example of data that cannot be con-strained by a schema is the World-Wide-Web. As databaseresearchers we would like to think of this as a database, butto what extent are database tools available for querying ormaintaining the web? Most web queries exploit informationretrieval techniques to retrieve individual pages from theircontents, but there is little available that allows us to usethe structure of the web in formulating queries, and sincethe web does not obviously conform to any standard datamodel, we need a method of describing its structure.Another example, little known to the database commu-nity but responsible for piquing the author's interest in thistopic, is the database management system ACeDB, whichis popular with biologists [36]. Super�cially it looks likean object-oriented database system, for it has a schemalanguage that resembles that of an object-oriented DBMS;but this schema imposes only loose constraints on the data.Moreover the relationship between data and schema is noteasily described in object-oriented terms, and there are struc-tures that are naturally expressed in ACeDB, such as trees ofarbitrary depth, that cannot be queried using conventionaltechniques.1.2 Data IntegrationA second motivation is that of data exchange and transfor-mation, which is the starting point for the Tsimmis project[33, 21] at Stanford. The rationale here is that none of theexisting data models is all-embracing, so that it is di�cultto build software that will easily convert between two dis-parate models. The Object Exchange Model (OEM) o�ersa highly 
exible data structure that may be used to cap-ture most kinds of data and provides a substrate in whichalmost any other data structure may be represented. In ef-fect, OEM is an internal data structure for exchange of databetween DBMSs, but having such a structure invites theidea of querying data in OEM format directly.
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Figure 1: An example movie database.1.3 BrowsingA �nal motivation is that of browsing. Generally speaking,a user cannot write a database query without knowledgeof the schema. However, schemas may have opaque termi-nology and the rationale for the design is often di�cult tounderstand. It may help in understanding the schema to beable to query data without full knowledge of the schema.For example the queries,� Where in the database is the string "Casablanca" tobe found?� Are there integers in the database greater than 216?� What objects in the database have an attribute namethat starts with "act"Such questions cannot be answered in any generic fashionby standard relational or object-oriented query languages.While languages have been proposed that allow schema anddata to be queried simultaneously [24] in the context ofrelational and object-oriented database systems, these lan-guages do not have the 
exibility to express complex con-straints on paths, and it is not clear how their implementa-tion will work on the structures described below.2 The ModelThe unifying idea in semi-structured data is the representa-tion of data as some kind of graph-like or tree-like structure.Although we shall allow cycles in the data, we shall gener-ally refer to these graphs as trees. The example in �gure 1 istaken from [10] in which the data model is formalized as anedge labeled graph. The structure is taken (with some inac-curacies) from a well-known web database [23] that providesa good example of semistructured data. There are severalthings to note about it. If one con�nes ones attention to theparts of the database below Movie edges, the data appearsfairly regular except that there are two ways of representinga cast. That is, the data does not quite �t with some re-lational or object-oriented presentation. Edges are labeled

both with data, of types such as int and string and possi-bly other base or external abstract types (video, audio etc.).Edges are also with names such as Movie and Title thatwould normally be used for attribute or class names. Weshall refer to such labels as symbols. Internally they are rep-resented as strings. Note that arrays may be represented bylabeling internal edges with integers. We can formulate thetype of this kind of labeled tree as:type label = int j string j ... j symboltype tree = set(label � tree)The �rst line describes a tagged union or variant, thesecond says that a tree is a set of label/tree pairs. The edgesout of nodes in our trees are assumed to be unordered.There are a number of variations on this basic model,and it is worth brie
y reviewing them. In [5] leaf nodesare labeled with data, internal nodes are not labeled withmeaningful data, and edges are labeled only with symbolstype base = int j string j...type tree = base j set(symbol � tree)The di�erences between the two models are minor andgive rise to minor di�erences in the query language. It iseasy to de�ne mappings in both directions.Another possibility is to allow labels on internal nodes,for example:type base = int j string j ... j symboltype tree = label � set(label � tree)The problem with using this representation directly isthat it makes the operation of taking the union of two treesdi�cult to de�ne. However, by introducing extra edges,this represaentation can be converted into one of the edge-labelled representations above.A �nal and more complex issue is that of object identity,by which we mean node labels { or possibly edge labels{ that, apart from an equality test, are not observable inthe query language. In OEM, object identities are used asnode labels and place-holders to de�ne trees. While object-identities provide an e�cient way to de�ne and test equality



within a database, they pose problems when comparing dataacross databases. See [10, 25, 32] discussions and relatedwork.It is straightforward to encode relational and object-oriented databases in this model, although in the latter caseone must take care to deal with the issue of object-identity.However, the coding is not unique, and the examples in[10] and [5] show some di�erences in how tuples of sets aretreated.The term \self describing" is often used to describe un-structured data. In each of the models we have described,the data is a tagged union type, and one can imagine a pro-gram whose behavior is dynamically determined by \switch-ing" on the type. For example, a program's behavior maybe altered by whether it �nds an integer or string as a label,and one would expect any language for dealing with semi-structured data to incorporate predicates that describe thetype of an edge or node. The situation is similar to thatin programming languages. Lisp and many interpreted andscripting languages are dynamically typed. Predicates areavailable to determine (at run time) type of a value or classof an object. Languages in the Algol tradition (Pascal, C,ML, Modula) are statically typed. Predicates are not neededto determine the type of a value because it is known from thesource code of the program and hence to the programmer.There is a good analogy between dynamic type systems andsemistructured data on one hand, and static type systemsand databases with schemas on the other3 Query LanguagesThere appear to be two general approaches to devising querylanguages for semistructured data. First, take SQL (or per-haps OQL[14, 13]) as a starting point and add enough \fea-tures" to perform a useful class of queries. The second ap-proach is to start from a language based on some formalnotion of computation on semistructured data then to mas-sage that language into acceptable syntax. It is remarkablethat the two approaches appear to end up with very similarlanguages.Let us start with the �rst approach to see what whatkinds of queries are useful. The following SQL-like syntaxsuggests itself:select Entry.Movie.Titlefrom DBwhere Entry.Movie.Director ...However the syntax does not make clear how much of thetwo paths Entry.Movie.Title and Entry.Movie.Directorare to be taken as the same. The solution is to introducevariables to indicate how paths or edges are to be tied to-gether. These variables can then be used in other expres-sions to form new structures. Label variables, tree variablesand possibly path variables are needed to express a reason-able set of queries.The next problem is that one wants to specify paths ofarbitrary length to �nd, for example, all the strings in thedatabase. This requires us to be able to express arbitrarypaths in our syntax. Even this is not enough. Consider theproblem of �nding whether "Allen" acted in "Casablanca".One might try this by searching for paths from a Movieedge down to an "Allen" edge, but one would not wantthis path to contain another Movie edge. These problemsindicate that one would like to have something like regularexpressions to constrain paths.

The \select" fragment of UnQL[10] and the Lorel querylanguage [5] solve these problems with very similar syntacticforms. Lorel, which is a component of the Lore project [27]requires a rich set of overloadings for its operators for deal-ing with comparisons of objects with values and of valueswith sets. These are avoided in UnQL by not having objectidentity and exploiting a simple form of pattern matching.Other languages that use a SQL-like syntax include a pre-cursor to Lorel [34], and WebSQL [29, 7] which contains anumber of constructs speci�c to web queries. A languagefor web site management is proposed in [18].Having asked what the surface syntax should look like,one wants to ask what the underlying computational strat-egy should be. Here there appear to be two principled strate-gies. The �rst is to model the graph as a relational databaseand then exploit a relational query language. In our labeledgraph model this is remarkably simple. We can take thedatabase as a large relation of type (node-id, label, node-id)and consider the expressive power of relational languageson this structure, but this apparently simple approach hasa number of complications:1. Our labels are drawn from a heterogeneous collectionof types, so it may be appropriate to use more thanone relation.2. If information also is held at nodes, one needs addi-tional relations to express this.3. The node identi�ers may only be used as temporarynode labels, and one may want to limit the way theycan appear in the output of the query. How they areused is related to the discussion of object identity.4. We are concerned with what is accessible from a given\root" by forward traversal of the edges, and one maywant to limit the languages appropriately.Some forms of unbounded search will require recursivequeries, i.e., a \graph datalog", and such languages are pro-posed in [26, 16] for the web and for hypertext. Theoreticaltreatments of queries that deal with computation on graphsor on the web appear in [6, 30]. It should also be mentionedthat this model of computation is used in [5, 15] as a startingpoint for optimization.The second strategy is adopted in the basis for UnQL[11, 10]. Here the starting point is that of structural recur-sion, and is an extension of a principle put forward in [12]that there are natural forms of computation associated withthe type. For semistructured data one starts with the natu-ral form of recursion associated with the recursive datatypeof labeled trees. However, some restrictions need to beplaced for such recursive programs to be well-de�ned: wewant them to be well-de�ned on graphs with cycles. Theserestrictions give rise to an algebra that can be viewed ashaving two components: a \horizontal" component that ex-presses computations across the edges of a given node (andfrom this, computations to a �xed depth from the root); anda \vertical" component that expresses computations that goto arbitrary depths in the graph. A property of this algebrais that, when restricted to input and output data that con-form to a relational (nested relational) schema, it expressesexactly the relational (nested relational) algebra. Hence anSQL-like language is a natural fragment of UnQL.The SQL or OQL like languages we have mentioned typ-ically bring information to the surface, but they are notcapable of performing complex or \deep" restructuring of



the data. Simple examples of such operations include delet-ing/collapsing edges with a certain property, relabeling edges,or performing local interchanges. Both \graph datalog" andUnQL are capable of various forms of restructuring. For ex-ample, in UnQL one can write a query that corrects theegregious error in the "Bacall" edge label. One can alsoperform a number of global restructuring functions such asdeleting edges with certain properties or adding new edgesto \short-circuit" various paths. The the relationship be-tween the restructuring possible in UnQL and what can bedone in \graph datalog" is not understood. Some simpleforms of restructuring are also present in a view de�nitionlanguage proposed in [4].4 Implementation and OptimizationsThis topic is very much in its infancy and again depends onthe underlying representation of the data. Moreover the op-timization prblems di�er depending on whether one is usinga semistructured model as an interface to existing data orone is building a data structure to represent semistructureddata directly [28]. In the former case the extensions of ex-isting techniques for optimization of object-oriented or re-lational query languages mentioned above may be exploitedtogether with the addition of path or text indices on labelsand strings. In the second case, disk layout and clustering,together with appropriate indexing, is also important.In [10] a large class of computations can be shown tobe translatable into a basic graph transformation techniquewhich, in turn, allows some simple optimizations. Also someof the basic optimizations of the relational algebra can beapplied to the \vertical" computations. In [35] it is shownhow an analysis of the query, combined with some segmen-tation of the graph into local \sites" can be used to decom-pose a query into independent, parallel sub-queries. In [5]and [15] extensions to optimization techniques for object-oriented query languages are exploited. In [19] a translationis speci�ed for a fragment UnQL into a an underlying rela-tional structure.5 Adding StructureOne of the main attractions of semistructured data is thatit is unconstrained. Nevertheless, it may be appropriateto impose (or to discover) some form of structure in thedata. In [8] a schema is de�ned as a graph whose edges arelabeled with predicates and the property of simulation isused to describe the relationship between data and schema.In [31, 22] the schema is also an edge labeled graph and thestronger relationship of automata equivalence is used. In[20] schemas are used for further optimization.Schemas are useful for browsing and for providing partialanswers to queries. They will also be needed for the passageback from semistructured to structured data, for which aricher notion of schema is necessary. This is an area inwhich much further work is needed.6 AcknowledgmentsI would like to thank Susan Davidson and Dan Suciu fortheir collaboration and for stimulating my interest in thisarea. I am greatly indebted to Serge Abiteboul for mostconstructive discussions on a number of issues.
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