
Interaction between Path and Type ConstraintsPeter Buneman�University of Pennsylvaniapeter@central.cis.upenn.edu Wenfei FanyUniversity of Pennsylvaniawfan@saul.cis.upenn.edu Scott WeinsteinzUniversity of Pennsylvaniaweinstein@linc.cis.upenn.eduAbstractXML [7], which is emerging as an important standardfor data exchange on the World-Wide Web, highlightsthe importance of semistructured data. Although theXML standard itself does not require any schema ortype system, a number of proposals [6, 17, 19] havebeen developed that roughly correspond to data de�ni-tion languages. These allow one to constrain the struc-ture of XML data by imposing a schema on it. Theseand other proposals also advocate the need for integrityconstraints, another form of constraints that should, forexample, be capable of expressing inclusion constraintsand inverse relationships. The latter have recently beenstudied as path constraints in the context of semistruc-tured data [4, 9]. It is likely that future XML proposalswill involve both forms of constraints, and it is there-fore appropriate to understand the interaction betweenthem.This paper investigates that interaction. In partic-ular it studies constraint implication problems, whichare important both in understanding the semantics oftype/constraint systems and in query optimization. Anumber of results on path constraint implication are es-tablished in the presence and absence of type systems.These results demonstrate that adding a type systemmay in some cases simplify reasoning about path con-straints and in other cases make it harder. For example,it is shown that there is a path constraint implicationproblem that is decidable in PTIME in the untyped con-text, but that becomes undecidable when a type systemis added. On the other hand, there is an implicationproblem that is undecidable in the untyped context,but becomes not only decidable in cubic time but also�nitely axiomatizable when a type system is imposed.1 IntroductionAmong the numerous proposals for adding structure orsemantics to XML documents [7], several [6, 17, 18, 19]advocate the need for integrity constraints. However,concrete proposals for constraint systems have yet to bedeveloped. Whether such constraints will be speci�edas extensions to existing type systems such as XML-Data [19], SOX [17], DCD [6], or whether they willbe added as independent constructs, is not yet clear,and, in all probability, they will be added in both ways.�This work was partly supported by the Army Research O�ce(DAAH04-95-1-0169) and NSF Grant CCR92-16122.ySupported by a graduate fellowship from the Institute for Re-search in Cognitive Science, University of Pennsylvania.zSupported by NSF Grant CCR-9403447.

XLink [21], for example, is independent of any type sys-tem and can express simple co-reference constraints. Itis therefore appropriate to study constraints and typesystems separately and to understand their interaction.Integrity constraints for semistructured data wereoriginally studied as path constraints in [4]. While theseconstraints could specify inclusions between paths, theywere not expressive enough to capture, say, inverse con-straints. Extensions were studied in [9] to overcome thislimitation. The central technical problem investigatedin these papers has been the question of constraint im-plication: given that certain constraints are known tohold, does it follow that some other constraint is nec-essarily satis�ed? A number of decidability and unde-cidability results were established in these papers forsemistructured data, i.e., data unconstrained by anytype system or schema. In this paper, we extend thework reported in [9] by investigating the interaction be-tween type systems and constraint systems. An inter-esting result presented here is that adding a type systemmay in some cases simplify the analysis of path con-straint implication and in other cases make it harder.On the one hand, we exhibit an implication problemassociated with path constraints that is undecidable inthe context of semistructured data, but that becomesdecidable in cubic-time when a (restricted) type sys-tem is added. On the other hand, we give an exampleof a constraint implication problem that is decidablein PTIME in the untyped context, but that becomesundecidable when a (generic) type system is imposed.The practical interest of these implication problems isaddressed in Section 2.An example. To cast the problem concretely, thestructure represented in Figure 1 describes an XMLdocument. It is an example of semistructured data andcould be expressed in a number of other data formats.In semistructured data models, data is represented as arooted, edge-labeled, directed graph [1, 8]. In Figure 1,vertices denote XML elements, and edges emanatingfrom those nodes indicate attributes and relationshipswith other elements. For example, an edge labeled bookfrom the root node r connects to a node representing abook element. This book node may have several authoredges connected to person nodes, and ref edges con-nected to other book nodes. It may also have edgeslabeled with ISBN, title and year.Typical path constraints on this graph describe aninverse relationship between author and wrote. Thiscan be expressed as:8x (book(r; x)! 8 y (author(x; y)! wrote(y; x)))8x (person(r; x)! 8 y (wrote(x; y)! author(y; x)))1

author author author author

ref

yearname SSN age

book

title ISBN ISBN

person book person

wrote wrote wrote wrote

book

ISBNSSN titlename

r

title

Figure 1: Representation of an XML documentHere r is a constant denoting the root of the graph,variables x and y range over vertices, and the predicatesdenote edge labels. A path in the graph is a sequence ofedge labels, which can be expressed as a formula �(x; y)denoting that � is a sequence of edge labels from vertexx to y. For example, book � author(r; x) is a path fromroot r to some vertex x in Figure 1. The �rst constraintabove states that for any book node x and any y, if xhas an author edge connected to y, then y must havea wrote edge connected to x. Similarly, the secondconstraint states that for any person node x and any y,if x has a wrote edge connected to y, then y must havean author edge connected to x.Note that we have introduced these constraints be-fore any mention of a type system. These are the kindof constraints that have been studied in [4, 9].In addition we may also want to impose a type on thedocument. For example, a type speci�ed in XML-Data[19] would be:<elementType id = "book"><attribute name="author" range="#person"/><attribute name="ref" range="#book"/><element type="#ISBN"/><element type="#title"/><element type="#year" occurs="optional"/></elementType><elementType id = "person"><attribute name="wrote" range= "#book"/><element type="#SSN"/><element type="#name"/><element type="#age" occurs="optional"/></elementType><elementType id = "title"><string/></elementType>...This type speci�es that a book node must have a titleedge connected to a string node, its author and refedges must connect to person and book nodes respec-tively, etc.Types also constrain the data, but in a very di�erentfashion. We are therefore interested in the interactionbetween these two forms of constraints.

Word and path constraints. A class of constraints,called word constraints , was introduced and studied in[4]. Referring to Figure 1, typical word constraints are:8x (book � author(r; x)! person(r; x))8x (person � wrote(r; x)! book(r; x))8x (book � ref(r; x)! book(r; x))Suppose Figure 1 represents a bibliography database atUniversity of Pennsylvania. Let us refer to this databaseas Penn-bib. Abusing object-oriented database terms,the word constraints above assert that an author ofa book in Penn-bib must be in the database \extent"of person in Penn-bib, a book written by a person inPenn-bib must occur in Penn-bib \extent" of book, etc.These are typical integrity constraints and were calledextent constraints in [9]. It was shown in [4] that inthe context of semistructured data, the implication and�nite implication problems for word constraints are de-cidable in PTIME.The class of path constraints studied in [9], Pc, isa mild generalization of word constraints. The inverseconstraints above are in Pc but are not word constraints.As another example, consider Penn-bib again. Thisdatabase may have links to external resources, such asbibliography databases at MIT and Warner. Call themMIT-bib andWarner-bib, respectively. These databasescan be viewed as components of Penn-bib, and there-fore, are called local databases of Penn-bib. In our graphrepresentation, this can be depicted by adding two edgesemanating from the root r of Penn-bib that are labeledwith MIT, Warner, and lead to MIT-bib and Warner-bib, respectively. It is natural to expect the constraintsgiven above to hold on these local databases. For ex-ample, the inverse constraints on MIT-bib include:8x (MIT � book(r; x)! 8 y (author(x; y)!wrote(y; x)))8x (MIT � person(r; x) ! 8 y (wrote(x; y) !author(y; x)))Constraints on local databases are called local databaseconstraints . Again, these are Pc constraints but arenot examples of word constraints. As demonstrated in[9], Pc constraints are capable of expressing natural in-tegrity constraints that are not only a fundamental partof the semantics of the data, but are also important inquery optimization. They are useful for, among otherthings, specifying and querying XML documents.2

In [9], it was shown that in the context of semistruc-tured data, the implication and �nite implication prob-lems for Pc are undecidable. However, several decidablefragments of Pc were identi�ed. Each of these fragmentsproperly contains the class of word constraints, and iscapable of expressing extent, inverse and local databaseconstraints.Also considered in [4] was a class of constraints inwhich paths are represented by regular expressions. Thedecidability of the implication problems for this generalconstraint language was established in [4] for semistruc-tured data. This constraint language di�ers from theconstraint language Pc of [9] in expressive power. Onthe one hand, the language of [4] allows a more generalform of path expressions than Pc. On the other hand, itcannot capture inverse and local database constraints,whereas these constraints are expressible in Pc. Indeed,the language of [4] is contained in L21!, the two vari-able fragment of the in�nitary language L1!, whereasPc expresses constraints which are not L21! de�nable,as observed in [9]. Since the constraint language Pc isneither included in L21! nor categorized as a quanti�erpre�x fragment of �rst-order logic, our results concern-ing the implication problems for Pc are orthogonal toclassical work on the decision problem for fragmentsof �rst-order logic (cf. [5]). In comparing the currentwork to [4], it should also be noted that [4] does not con-sider the question of logical implication in the contextof typed data. The aim of this paper is to explore theinteraction between type systems and simple integrityconstraints of Pc. We do not consider here constraintsde�ned in terms of regular expressions.Type systems. In this paper, we consider two object-oriented data models. One is a generic type system,referred to as M+. This model supports classes, sets,records and recursive data structures. It is similar tothose studied in [2, 3, 11]. The other model, M, is a re-striction ofM+. It supports classes, records and recur-sive data structures, but does not allow sets. Databasesof M are comparable to feature structures studied infeature logics [23].We use these models to demonstrate the impact ofdi�erent type constructs such as record and set on pathconstraint implication. One may want to study the in-teraction between path constraints and richer type sys-tems such as those studied in [6, 17, 19]. However, bythe results established in this paper, path constraintimplication will be undecidable in the context of thesemore general type systems.Constraints in object-oriented databases { a ret-rospective. While there has been considerable recentactivity [12, 13, 16, 22] in optimizing object-orientedqueries in the presence of constraints, there has, to ourknowledge, been almost no work on the formulation ofconstraints, let alone the study of the implication prob-lem. In [22] a rather general approach is taken: con-straints are represented as queries that are true, anda general framework for program optimization is usedto deal with both the optimization and the implicationproblem. In this setting, constraints are at least as ex-

pressive as �rst-order logic, and the issue of what classesof constraints have decidable implication problems isnot separated from the general optimization problem.Given the semistructured representation we haveadopted, we can cleanly separate typing issues fromother constraints. Consider the following ODL [11]speci�cation (loosely related to our previous example)which de�nes Book and Person classes:interface Book(extent book) (B1)f attribute String title;relationship set<Person> author (B2)inverse Person::wrote; (B3)ginterface Person(extent person) (P1)f attribute String name;relationship set<Book> wrote (P2)inverse Book::author ; (P3)gStrike out the extent and inverse declarations at linesB1, B3, P1, P3, and change relationship to attributeon lines B2 and P2. One is now left with a standardobject-oriented class/type declaration. In fact it is adeclaration that can be expressed directly in a languagesuch as C++ with type templates.We can consider the extent and inverse declara-tions as added constraints:� Extent constraints. For any book b, b:author is asubset of the extent person. Similarly, for any per-son p, p:wrote is a subset of extent book.� Inverse constraints. For any book b and for any pin b:author, b is a member of p:wrote. Similarly,for any person p and for any b in p:wrote, p is amember of b:author.Thus, if we consider a database instance to be a graph(such as Figure 1 suitably modi�ed) we can understandan ODL schema as imposing two kinds of constraints:(a) type constraints, which dictate the general structureof the graph, and (b) path constraints which dictateinclusions among certain sets of objects. We shouldremark that type constraints cannot be expressed aspath constraints and vice versa.From recent work [4, 9] on path constraints we havedeveloped a reasonable understanding { in the contextof semistructured (i.e. untyped) data { of the inter-esting decision problems for such constraints. Thereare useful restrictions of path constraints with a de-cidable implication problem. One might be temptedto think that the imposition of a type system, whichimposes some regularity on the data, would be to gen-erate new classes of path constraints with decidable im-plication problems. This may be the case. Howeverone of the main results of this paper is to establishthe possibly surprising result that the presence of typesactually complicates the implication problem for pathconstraints: there are decidable path constraint prob-lems that become undecidable in the presence of types.3

Moreover the type used in the construction of this resultis not particularly \pathological".Interaction. In Sections 4 and 5, we will show howimposing a schema on the data can alter the compu-tational complexity of the path constraint implicationproblem in unexpected ways. For orientation, we pro-vide intuitive background here. An implication problemfor a logical language L is determined by a collection ofstructures S which interpret that language. We say thata �nite set � of L sentences S-implies an L sentence 'just in case for every structure G 2 S, if G j= �, thenG j= '. Suppose we are given two classes of structuresS 0 � S, each interpreting L. In general, the compu-tational complexity of the S-implication problem for Lmay bear no obvious connection to the complexity of theS 0-implication problem for L. A justly famous exampleof this is given by the case where L is the collection ofall �rst-order sentences with a single binary relation andS and S 0 are the classes of all relational structures andall �nite relational structures respectively. Then, thecompleteness theorem for �rst-order logic and Church'sTheorem together tell us that the S-implication prob-lem for L is r.e.-complete, while Trahktenbrot's The-orem tells us that the S 0-implication problem for L isco-r.e.-complete (see, e.g., [5]). Note that in this exam-ple, S 0 is not �rst order de�nable over S.In Sections 4 and 5 we will study implication prob-lems for collections of path constraints which can berepresented as proper fragments L� of �rst-order logic.Again, let S be the collection of all structures. Whenwe consider the S-implication problem for L� in thecontext of a type constraint �, what we really meanis the S 00-implication problem for L� where S 00 is thecollection of structures in S which satisfy the type con-straint �. In Section 4, we will give examples wherethe S-implication problem for L� is undecidable, butthe S 00-implication problem for L� is decidable. Thissort of situation is quite familiar. For example, the S-implication problem for �rst-order logic is undecidable,but the S 00-implication problem for �rst-order logic isdecidable when S 00 is the collection of linear orderings(and this collection is determined by a �rst order \con-straint"). On the other hand, in Section 5, we exhibitsituations in which the S-implication problem for L� isdecidable, but the S 00-implication problem for L� is un-decidable. This possibility is perhaps a bit less familiar,namely the possibility that by imposing a restriction ona collection of structures we can turn a decidable impli-cation problem into an undecidable implication prob-lem. Indeed, in the context where L is the collection ofall �rst-order sentences and the restriction itself is �rstorder, this is clearly impossible, since in this case, theimplication problem for the restricted class is simplya special case of the unrestricted implication problem.But in the context of the interaction between path andtype constraints, this is precisely not the case. Namely,the type constraints we consider cannot be expressed inthe path constraint languages in question. We hope thisobservation will clarify the results of Section 5, whichexhibit a path constraint implication problem whichis decidable with respect to a collection of structures

S, but is undecidable with respect to the collection ofstructures G 2 S which satisfy a given type constraint�.Organization. The remainder of the paper is orga-nized as follows. Section 2 reviews the formal de�nitionof Pc constraints, and describes two (�nite) implica-tion problems associated with Pc constraints, namely,the (�nite) implication problem for Pc and the (�nite)implication problem for local extent constraints . Sec-tion 3 presents a semistructured data model and the twoobject-oriented models M+ and M. It also describestype constraints of M+ and M. Section 4 investigatesthe (�nite) implication problem for Pc in the context ofsemistructured data and in the object-oriented modelM. It �rst strengthens the undecidability result re-ported in [9] by showing that this problem is also unde-cidable on untyped data for a \small" fragment of Pc. Itthen shows that the undecidability result breaks downwhen the type system M is added. More precisely, itshows that in the context of M, the implication and �-nite implication problems for Pc are not only decidablein cubic-time but also �nitely axiomatizable. Section 5demonstrates that adding a type system does not neces-sarily \help" in constraint implication problems. Morespeci�cally, it shows that on untyped data, the (�nite)implication problem for local extent constraints is de-cidable in PTIME. However, when a type of M+ isimposed, this problem becomes undecidable. Finally,Section 6 brie
y describes other results established inthe full paper [10], and identi�es directions for furtherwork.2 Path constraintsWe �rst review the path constraint language Pc intro-duced in [9], and then describe two implication prob-lems associated with Pc constraints. In Sections 4 and5, we shall show that these problems have wildly dif-ferent complexities in the context of untyped data asopposed to typed data.2.1 Path constraint language PcThe vocabulary of the constraint language is speci�edby a relational signature� = (r; E);where r is a constant and E is a �nite set of binaryrelation symbols. A �-structure (jGj; rG; EG) can bedepicted as an edge-labeled, rooted, directed graph, inwhich jGj is the set of vertices, rG the root, and EG theset of labeled edges. For example, the graph in Figure 1can be viewed as such a structure (referred to as G0).A path is a �nite sequence of labels of E. Following[9], we de�ne a path to be a formula �(x; y) which hasone of the following forms:� x = y, denoted by �(x; y) and called the empty path;� 9z(K(x; z)^�(z; y)), where K 2 E and �(z; y) is apath.4

Here the free variables x and y denote the tail and headnodes of the path, respectively. Intuitively, if x andy are vertices in a �-structure G, �(x; y) is true in Gjust when y is reachable from x by following a sequenceof labeled edges �. We write �(x; y) as � when theparameters x and y are clear from the context.The concatenation of paths �(x; z) and �(z; y), de-noted by �(x; z) � �(z; y) or simply � � �, is the path� �(x; y), if � = �;� 9u (K(x; u)^ (�0(u; z) ��(z; y))), if �(x; z) is of theform 9u (K(x; u) ^ �0(u; z)).A path � is said to be a pre�x of �, denoted by� �p �, if there exists
, such that � = � �
.Referring to G0 given in Figure 1, there is node xsuch that person � wrote � ref(r; x) is true in G0. In�rst-order logic, this path can be expressed as9 y (person(r; y) ^ 9 z (wrote(y; z) ^ ref(z; x))):The pre�xes of this path are �, person, person � wroteand itself.Formally, Pc constraints can be de�ned as follows.De�nition 2.1 [9]: A path constraint ' is an expres-sion of either the forward form8x (�(r; x)! 8 y (�(x; y)!
(x; y)));or the backward form8x (�(r; x)! 8 y (�(x; y)!
(y; x))):Here �; �;
 are paths. The path � is called the pre�xof ', denoted by pf(').The set of all path constraints is denoted by Pc.A forward constraint of Pc asserts that for any vertexx that is reached from the root r by following path �and for any vertex y that is reached from x by followingpath �, y is also reachable from x by following path
.Similarly, a backward Pc constraint states that for anyx that is reached from r by following � and for any ythat is reached from x by following �, x is also reachablefrom y by following
.For example, all the integrity constraints encoun-tered in Section 1 are in Pc. These include extent, in-verse and local database constraints.A proper subclass of Pc was introduced and investi-gated in [4]:De�nition 2.2 [4]: A word constraint is an expressionof the form 8x (�(r; x)!
(r; x));where � and
 are paths. The set of all word constraintsis denoted by Pw.In other words, a word constraint is a forward con-straint of Pc with its pre�x being the empty path �. Forexample, the extent constraints given in Section 1 areword constraints, whereas the inverse and local databaseconstraints are not.

2.2 Implication problemsTo take advantage of path constraints, it is importantto be able to reason about them. This gives rise to thequestion of logical implication of path constraints. Ingeneral, we may know that a set of path constraints issatis�ed by a database. The question of logical impli-cation is: what other path constraints are necessarilysatis�ed by the database? As shown in [9], path con-straint implication is useful for, among other things,query optimization and constraint checking.Below we describe implication and �nite implicationof Pc constraints. These notions will be re�ned in dif-ferent database contexts in Section 3.We assume the standard notions of model and impli-cation from �rst-order logic [15]. Let G be a structureand ' be a Pc constraint. We use G j= ' to denote thatG satis�es ' (i.e., G is a model of '). Let � be a �niteset of Pc constraints. We use G j= � to denote that Gsatis�es � (i.e., G is a model of �). That is, for every� 2 �, G j= �.The implication problem for Pc is the problem todetermine, given any �nite subset �[f'g of Pc, whetherevery model of � also satis�es '. Similarly, the �niteimplication problem for Pc is the problem to determinewhether every �nite model of � also satis�es '.For example, let � be the set consisting of all the Pcconstraints given in Section 1, and '0 be the constraint8x (MIT (r; x)! 8 y (book � ref(x; y)! book(x; y))):The question whether every (�nite) model of � also sat-is�es '0 is an instance of the (�nite) implication prob-lem for Pc.In Section 4, we shall show that the implication and�nite implication problems for Pc are undecidable in thecontext of untyped data. In contrast, these problemsare not only decidable in cubic-time but also �nitely ax-iomatizable in the context of an object-oriented model.In light of this undecidability result on untyped data,we next consider a special case of Pc constraint im-plication, namely, (�nite) implication of local extentconstraints. To illustrate this, consider the databasePenn-bib described in Section 1. This database has lo-cal databases MIT-bib, Warner-bib, etc. Extent con-straints on these local databases are called local ex-tent constraints . For example, the following are extentconstraints on MIT-bib, and thus are local extent con-straints of Penn-bib:8x (MIT (r; x)! 8 y (book � author(x; y)! person(x; y)))8x (MIT (r; x)! 8 y (person � wrote(x; y)! book(x; y)))Suppose we want to know whether every model of theseconstraints also satis�es the constraint '0 given above,which is also a local extent constraint on MIT-bib. Inaddition, we consider this implication in the presenceof constraints on other local databases, such as the fol-lowing on Warner-bib:5

8x (Warner � book(r; x)! 8 y (author(x; y)! wrote(y; x)))8x (Warner � person(r; x)! 8 y (wrote(x; y)! author(y; x)))More precisely, let �0 be the set consisting of the twolocal extent constraints on MIT-bib and the two localconstraints on Warner-bib given above. We are inter-ested in whether every (�nite) model of �0 also satis�es'0.In general, when represented in a global environ-ment, constraints on a local database are augmentedwith a common pre�x. For example, the constraints onMIT-bib are represented with common pre�x MIT inPenn-bib. Thus we use the following notion to describelocal extent constraints.De�nition 2.3: Let � be a path and K a binary rela-tion symbol. A constraint ' of Pc is said to be boundedby � and K if it is of the form8x (� �K(r; x)! 8 y (�(x; y)!
(x; y)));where � 6= � and K 6�p � (i.e., K is not a pre�x of �).A subset � of Pc with pre�x bounded by � and Kis a �nite subset of Pc such that for each ' 2 �, ei-ther ' is bounded by � and K, or for some path �0,pf(') = � ��0 and K 6�p �0. In addition, if �0 = �, then' is of the form 8x (�(r; x) ! 8 y (�(x; y) ! K(x; y))).Here pf(') denotes the pre�x of ', as described in Def-inition 2.1.For example, �0 given above is a subset of Pc withpre�x bounded by the empty path � and binary rela-tion symbol MIT . In �0, the extent constraints onMIT-bib are bounded by � and MIT , whereas the con-straints on Warner-bib are not. Intuitively, let DB bea database and DBK be a local database connected toDB by path � � K. Constraints bounded by � and Kcan be viewed as local extent constraints on DBK . Asubset of Pc with pre�x bounded by � andK consists ofsuch local extent constraints and constraints on otherlocal databases connected to DB by some path � � �0,where K 6�p �0. It can be partitioned into �1 and �2,where �1 consists of local extent constraints on DBK ,and �2 contains constraints on other local databases.De�nition 2.4: The (�nite) implication problem forlocal extent constraints is the problem of determining,given any �nite subset �[f'g of Pc with pre�x boundedby � and K, where ' is a constraint bounded by � andK, whether every (�nite) model of � also satis�es '.For example, the question whether every (�nite)model of �0 also satis�es '0 is an instance of the (�nite)implication problem for local extent constraints. Notethat '0 is also bounded by � and MIT .In Section 5, we shall show that in the untyped con-text, constraints on other local databases (e.g., con-straints in �2) do not interact with implication and�nite implication of local extent constraints on DBK(e.g., constraints in �1). As a result, the implicationand �nite implication problems for local extent con-straints are decidable in PTIME in the context of

semistructured data. However, this may no longer betrue in the typed context. Indeed, these problems be-come undecidable in the context of an object-orientedmodel.3 Semistructured data vs structured dataIn this section, we consider semistructured data versusstructured data. More speci�cally, we investigate threemodels: a semistructured data model and two object-oriented models. For each of these models, we presentan abstraction of databases in terms of �rst-order logic.In Sections 4 and 5, we use these abstractions to studypath constraint implication in these models.3.1 Semistructured data modelSemistructured data is characterized as having no typeconstraints, irregular structure and missing schema [1,8]. That is, data whose structure is not constrained bya schema. Semistructured data is commonly found onthe World-Wide Web, in biological databases and afterdata integration. In particular, documents of XML [7]are usually viewed as semistructured data [14].As observed by [1, 8], semistructured data is bestmodeled as a rooted edge-labeled directed graph, un-constrained by any type system or schema. Along thesame lines, we use an abstraction of semistructureddatabases as (�nite) �-structures. Here � is a signatureof the form (r; E) as described in Section 2, in which rdenotes the root and E denotes the edge labels.Below we re�ne the notion of path constraint impli-cation in the context of semistructured data. We use� j= ' to denote that � implies '. That is, for every�-structure G, if G j= �, then G j= '. Similarly, we use� j=f ' to denote that � �nitely implies '. That is,for every �nite �-structure G, if G j= �, then G j= '.In the context of semistructured data, the (�nite)implication problem for Pc is the problem to determine,given any �nite subset � [f'g of Pc, whether � j= '(� j=f '). Similarly, the (�nite) implication problemfor local extent constraints can be formalized in the con-text of semistructured data.3.2 Object-oriented model M+Next, we consider structured data, by which we meandata constrained by a schema, such as data found forinstance in object-oriented databases. In addition, asmentioned in Section 1, there are applications in whichdata usually considered to be semistructured, such asXML data, is further constrained by a schema.We �rst study databases in a generic object-orientedmodel, M+. Similar to the models studied in [2, 3, 11],M+ supports classes, records, sets and recursive struc-tures. We characterize schemas inM+ in terms of typeconstraints. In Section 5, we investigate the interactionbetween these type constraints and path constraints.6

3.2.1 Schemas and instancesWe describe schemas and instances of M+ as follows.Assume a �xed countable set of labels, L, and a �xed�nite set of atomic types, B. Examples of atomic typesinclude int and string.Let C be some �nite set of classes. The set of typesover C, TypesC , is de�ned by the syntax:� ::= b j C j f�g j [l1 : �1; : : : ; ln : �n]where b 2 B, C 2 C, and li 2 L. The notations f�g and[l1 : �1; : : : ; ln : �n] represent set type and record type,respectively.A schema � inM+ is a triple (C; �; DBtype), where� C is a �nite set of classes,� � is a mapping: C ! TypesC such that for eachC 2 C, �(C) 62 B [C, and� DBtype 2 TypesC n (B [C).Here we assume that every database of a schema hasa unique (persistent) entry point, and DBtype in theschema speci�es the type of the entry point.Example 3.1: The XML document given in Figure 1can be speci�ed by a schema (C; �; DBtype) in M+ asfollows (optional sub-elements are speci�ed as sets):� C consists of Book and Person;� � maps Book and Person to record types:Person 7! [name : string; SSN : string; age : fintg;wrote : fBookg]Book 7! [title : string; ISBN : string; year : fintg;ref : fBookg; author : fPersong]� DBtype is [person : fPersong; book : fBookg].A database instance of schema � = (C; �; DBtype)is a triple I = (�; �; d), where� � is an oid (object identity) assignment that mapseach C 2 C to a �nite set of oids, �(C), such thatfor all C;C 0 2 C, �(C) \ �(C 0) = ; if C 6= C 0;� for each C 2 C, � maps each oid in �(C) to a valuein [[�(C)]]� , where[[b]]� = Db,[[C]]� = �(C),[[f�g]]� = fV j V � [[�]]�g,[[[l1 : �1; :::; ln : �n]]]� = f[l1 : v1; :::; ln : vn] jvi 2 [[�i]]� ; i 2 [1; n]g;here Db denotes the domain of atomic type b;� d is a value in [[DBtype]]�, which represents the(persistent) entry point into the database instance.The set of all database instances of � is denoted byI(�).

3.2.2 Type constraintsWe next present an abstraction of databases in M+.Structured data can be viewed as semistructured datafurther constrained by a schema. Along the same linesof the abstraction of semistructured data given above,we represent a structured database as a �rst-order logicstructure satisfying a certain type constraint. Sucha structure can also be depicted as an edge-labeled,rooted, directed graph, which has a certain \shape"speci�ed by the type constraint. This abstraction sim-pli�es the analysis of the interaction between path con-straints and the type system.To do this, we �rst de�ne the �rst-order signaturedetermined by a schema.Given a schema � = (C; �; DBtype), we de�ne theset of binary relation symbols , E(�), and the set ofunary relation symbols , T (�), as follows:� DBtype 2 T (�) and C � T (�);� For each � 2 T (�),{ if � = f� 0g (or for some C 2 C, �(C) = f� 0g),then � 0 is in T (�) and � is in E(�);{ if � = [l1 : �1; : : : ; ln : �n] (or for some classC 2 C, �(C) = [l1 : �1; : : : ; ln : �n]), then foreach i 2 [1; n], �i is in T (�) and li is in E(�).Note here we use the distinguished binary relation � todenote the set membership relation.The signature determined by schema � is�(�) = (r; E(�); T (�));where r is a constant symbol (denoting the root), E(�)is the �nite set of binary relation symbols (denoting theedge labels) and T (�) is the �nite set of unary relationsymbols (denoting the sorts or types) de�ned above.As an example, the signature determined by theschema given in Example 3.1 is (r; E; T), where� r is a constant, which in each instance (�; �; d) ofthe schema intends to name d;� E includes person, book, name, SSN , wrote, age,title, ISBN , year, ref , author and �;� T includes Person, Book, string, fintg, fstringg,fBookg, fPersong and DBtype.We represent an instance I of a schema � as a �(�)-structure G satisfying a certain type constraint. Morespeci�cally, let � = (C; �; DBtype), I = (�; �; d) andG = (jGj; rG; EG; TG). We use jGj, rG, EG and TG torepresent data entities, the entry point d, record labelsand set membership, and the types of the data entities,respectively. This structure must satisfy the type con-straint imposed by �, �(�), which speci�es restrictionson the edges going out of vertices of di�erent types.Based on the de�nition of database instances inM+,we give �(�) as follows.� Every element of jGj has a unique type in T (�). Inparticular, rG has DBtype.7

� If an element a of jGj has type � , then amust satisfythe constraint imposed by � :{ If � is an atomic type b, then a has no outgoingedge.{ If � = f� 0g, or � is a class type C and �(C) isf� 0g, then all the outgoing edges of a are labeledwith � and lead to elements of type � 0.In addition, if � = f� 0g, then for each b 2 jGjsuch that b also has type � , a = b i� for anyc 2 jGj, G j= �(a; c)$ �(b; c).{ If � = [l1 : �1; : : : ; ln : �n], or � is a class type Cand �(C) = [l1 : �1; : : : ; ln : �n], then a has ex-actly n outgoing edges. These edges are labeledwith l1, ..., ln, respectively. In addition, for eachi 2 [1; n], if G j= li(a; o) for some o 2 jGj, theno has type �i.Moreover, if � = [l1 : �1; : : : ; ln : �n], then foreach b 2 jGj having type � , a = b i� for anyi 2 [1; n] and c 2 jGj, G j= li(a; c)$ li(b; c).In general, for any node a in a graph representing a�(�)-structure, �(�) places restrictions on the numberof the edges going out of a, on the labels of these edges,and on the types of the nodes to which these edgesconnect.An abstract database of a schema � is a �nite �(�)-structure G such that G j= �(�). We denote the set ofall abstract databases of � by Uf (�). We use U(�) todenote the set of all �(�)-structures satisfying �(�).Because of the type constraint �(�), some sequencesof labels in E(�) are not paths in any structure ofU(�). We are not interested in these edge label se-quences. We will use Paths(�) to denote the set ofpaths over �. That is, for any sequence � of edge la-bels, � 2 Paths(�) i� there is G 2 U(�) such thatG j= 9x �(r; x). In addition, we assume that over anyschema � in M+, Pc constraints are de�ned in termsof paths in Paths(�).Path constraints of Pc can be naturally interpretedin database instances of a schema � in M+. That is,the notion \I j= '" can be de�ned for an instance I of� and a constraint ' of Pc (see [10] for detailed dis-cussions of this notion). Using this notion, the lemmabelow justi�es the abstraction of databases of M+ de-�ned above.Lemma 3.1: Let � be any schema in M+. For eachI in I(�), there is G 2 Uf (�), such thatfor any ' 2 Pc, I j= ' i� G j= '. (y)Similarly, for each G 2 Uf (�), there is I 2 I(�), suchthat (y) holds.In the typed context, path constraint implication isrestricted by a schema. More speci�cally, let � be aschema inM+ and �[f'g be a �nite subset of Pc. Weuse � j=� ' to denote that � implies ' over �. Thatis, for everyG 2 U(�), if G j= � then G j= '. Similarly,we use � j=(f;�) ' to denote that � �nitely implies 'over �. That is, for every G 2 Uf (�), if G j= � thenG j= '.

In the context of M+, the (�nite) implication prob-lem for Pc is the problem of determining, given any�nite subset � [f'g of Pc and any schema � in M+,whether � j=� ' (� j=(f;�) '). Similarly, the (�nite)implication problem for local extent constraints can alsobe formalized in the context of M+.3.3 Object-oriented model MWe also consider a restriction of M+, denoted by M.The model M supports classes, records and recursivestructures. However, it does not allow sets. In addition,a record in M consists of values of atomic types andoids only. More speci�cally, let C be some �nite set ofclasses. The set of types over C in M is de�ned by:t ::= b j C� ::= t j [l1 : t1; : : : ; ln : tn]where b 2 B, C 2 C, and li 2 L.The notions of schemas and instances in M can bede�ned in the same way as in M+. Databases of Mare comparable to feature structures [23], which haveproven useful for representing linguistic data.Given anM schema �, we de�ne E(�), T (�), �(�),and type constraint �(�) in the same way as in M+,except that set types are not considered here. Similarly,the notions of Uf (�), U(�) and Paths(�) can also bede�ned. Using Uf (�) and U(�), we can de�ne the im-plication and �nite implication problems for Pc and forlocal extent constraints in the context ofM in the sameway as in M+.4 Implication of Pc constraintsThis section shows that an undecidability result on pathconstraint implication established for semistructureddata collapses when a type of M is imposed on thedata. More speci�cally, we prove the following:Theorem 4.1: In the context of semistructured data,the implication and �nite implication problems for Pcare undecidable.Theorem 4.2: In the context of the object-orientedmodel M, the implication and �nite implication prob-lems for Pc are decidable in cubic-time and are �nitelyaxiomatizable.These theorems show that in some cases, adding atype system may simplify reasoning about path con-straints.4.1 Undecidability on untyped dataTheorem 4.1 was �rst shown in [9]. Here we strengthenthe result by identifying an undecidable fragment of Pc.This \small" fragment of Pc is an even milder general-ization of Pw, the class of word constraints introducedin [4] and described in Section 2.8

We present the fragment as follows. Recall E, the�nite set of binary relation symbols (edge labels) in sig-nature � de�ned in Section 2. Let K 2 E. For each 2 Pw, where = 8x (�(r; x)!
(r; x)), let�(; K) = 8x (K(r; x)! 8 y (�(x; y)!
(x; y))):The fragment is de�ned byPw(K) = Pw [f�(; K) j 2 Pwg:In the context of semistructured data, the (�nite)implication problem for Pw(K) is the problem to de-termine, given any �nite subset � [f'g of Pw(K),whether � j= ' (� j=f '). The theorem below estab-lishes the undecidability of these problems, from whichTheorem 4.1 follows immediately.Theorem 4.3: In the context of semistructured data,both the implication and �nite implication problems forPw(K) are undecidable.This undecidability result is rather surprising sincePw(K) generalizes Pw in such a mild way. As shown by[4], the implication and �nite implication problems forPw are decidable in PTIME.We prove Theorem 4.3 by reduction from the wordproblem for (�nite) monoids. Before we give the proof,we �rst review the word problem for (�nite) monoids.4.1.1 The word problem for (�nite) monoidsRecall the following notions from [2, 20].Let � be a �nite alphabet and (��; �; �) the freemonoid generated by �. An equation (over �) is a pair(�; �) of strings in ��.Let � = f(�i; �i) j �i; �i 2 ��; i 2 [1; n]g and atest equation � be (�; �). We use � j= � (� j=f �)to denote that for every (�nite) monoid (M; �; id) andevery homomorphism h : �� ! M , if h(�i) = h(�i) foreach i 2 [1; n], then h(�) = h(�).The word problem for (�nite) monoids is the prob-lem of determining, given � and �, whether � j= �(� j=f �).The following result is well-known (e.g., see [2, 20]).Theorem 4.4: Both the word problem for monoids andthe word problem for �nite monoids are undecidable.4.1.2 Reduction from the word problemWe encode the word problem for (�nite) monoids interms of the (�nite) implication problem for Pw(K).Let �0 be a �nite alphabet and �0 be a �nite set ofequations (over �0). Assume�0 = flj j j 2 [1;m]g;�0 = f(�i; �i) j �i; �i 2 ��0; i 2 [1; n]g;and a �rst-order logic signature�0 = (r; �0 [fKg);where K 62 �0, r is a constant symbol, and �0 [fKgis a set of binary relation symbols. Note here that each

letter in �0 is a binary relation symbol in �0. Thusevery � 2 ��0 can be represented as a path formula,also denoted by �. In addition, we use � to denote theconcatenation operator for both paths and strings.We encode �0 in terms of � � Pw(K), which con-sists of the following: for every j 2 [1;m],8x (�(r; x) ! K(r; x));8x (K � lj(r; x) ! K(r; x));and for each (�i; �i) 2 �0,8x (K(r; x) ! 8 y (�i(x; y)! �i(x; y)));8x (K(r; x) ! 8 y (�i(x; y)! �i(x; y))):Let (�; �) be a test equation over �0. We encode(�; �) as a pair of constraints in Pw:'(�;�) = 8x (�(r; x)! �(r; x))'(�;�) = 8x (�(r; x)! �(r; x))The lemma below shows that the encoding above isindeed a reduction from the word problem for (�nite)monoids. From this lemma and Theorem 4.4, Theo-rem 4.3 follows.Lemma 4.5: In the context of semistructured data, forall �; � 2 ��0,�0 j= (�; �) i� � j= '(�;�) ^ '(�;�), (a)�0 j=f (�; �) i� � j=f '(�;�) ^ '(�;�). (b)Proof sketch: We give a proof sketch of (b). We omitthe details of the lengthy proof due to the lack of space,but we encourage the reader to consult [10].(if) Suppose that �0 6j=f (�; �). Then there exist a�nite monoidM and a homomorphism h : ��0 !M suchthat for any i 2 [1; n], h(�i) = h(�i), but h(�) 6= h(�).We de�ne an equivalence relation on ��0 by:� � % i� h(�) = h(%):For every string � 2 ��0, let b� be the equivalence classof � with respect to �, and let o(b�) be a distinct node.Then we de�ne a �0-structure G = (jGj; rG; EG), suchthat jGj = fo(b�) j � 2 ��0g and the root rG = o(b�). Thebinary relations are populated in G as follows: for each� 2 ��0, let G j= K(o(b�); o(b�)), and for each j 2 [1;m],let G j= lj(o(b�); o(d� � lj)). The structure G is shown inFigure 2. It can be veri�ed that G is a �nite model ofV� ^ :'(�;�).(only if) Suppose that there is a �nite �0-structure Gsuch that G j= V� ^ (:'(�;�) _ :'(�;�)). Then wede�ne another equivalence relation on ��0 by:� � % i� G j= 8x(K(r; x)! 8 y (�(x; y)! %(x; y))) ^8x (K(r; x)! 8 y (%(x; y)! �(x; y))):For any � 2 ��0, let [�] be the equivalence class of �with respect to �. Then we de�ne M = f[�] j � 2 ��0g,operator � by [�] � [%] = [� � %], and h : ��0 ! M byh : � 7! [�]. It can be veri�ed that (M; �; [�]) is indeeda �nite monoid, h is a homomorphism, and in addition,for every i 2 [1; n], h(�i) = h(�i) but h(�) 6= h(�).9

α

K

K

KK

K K

K

K

α

K

K

KK

K K

K

l1 ln

l1 ln

lnl1

r

Figure 2: The structure G in the proof of Lemma 4.54.2 The collapse of the undecidability in MWe next show that in the context of the object-orientedmodel M, the undecidability result established aboveno longer holds.The collapse of the undecidability is due to the fol-lowing lemma, which can be proved by a straightfor-ward induction on the length of � and by using �(�).On untyped data, this lemma does not hold in general.Lemma 4.6: Let � be an arbitrary schema in M, andG 2 U(�). Then for every � in Paths(�), there is aunique o 2 jGj, such that G j= �(rG; o).Using Lemma 4.6, it is easy to verify the following.Lemma 4.7: Let � be a schema inM, ' be a forwardconstraint 8x (�(r; x) ! 8 y (�(x; y) !
(x; y))), and be a word constraint 8x (� � �(r; x) ! � �
(r; x)).Then for any G 2 U(�), G j= ' i� G j= .Lemma 4.8: Let � be a schema inM, ' be a backwardconstraint 8x (�(r; x) ! 8 y (�(x; y) !
(y; x))), and be a word constraint 8x (�(r; x) ! � � � �
(r; x)).Then for any G 2 U(�), G j= ' i� G j= .Based on Lemmas 4.7 and 4.8, we give a �nite ax-iomatization Ir of Pc constraint implication as follows:� Re
exivity: 8x (�(r; x) ! �(r; x))� Transitivity:8x (�(r; x) ! �(r; x)) 8x (�(r; x) !
(r; x))8x (�(r; x) !
(r; x))� Right-congruence:8x (�(r; x) ! �(r; x))8x (� �
(r; x)! � �
(r; x))� Commutativity:8x (�(r; x) ! �(r; x))8x (�(r; x) ! �(r; x))� Forward-to-word:8x (�(r; x) ! 8y (�(x; y)!
(x; y)))8x (� � �(r; x)! � �
(r; x))

� Word-to-forward:8x (� � �(r; x) ! � �
(r; x))8x (�(r; x)! 8y (�(x; y) !
(x; y)))� Backward-to-word:8x (�(r; x)! 8y (�(x; y) !
(y; x)))8x (�(r; x) ! � � � �
(r; x))� Word-to-backward:8x (�(r; x) ! � � � �
(r; x))8x (�(r; x)! 8y (�(x; y) !
(y; x)))The �rst three inference rules above were proposed in[4] and were shown to be complete for word constraintimplication in the context of untyped data. In contrast,these three rules are no longer complete for word con-straint implication in the context of M.Let �[f'g be a �nite subset of Pc. We use � `Ir 'to denote that ' is provable from � using Ir.Theorem 4.9: Let � be any schema in M. For every�nite subset � [f'g of Pc,� j=� ' i� � `Ir ';� j=(f;�) ' i� � `Ir ':As an immediate result, in the context ofM, the im-plication and �nite implication problems for Pc coincideand are decidable.A proof sketch of Theorem 4.9 is as follows. Sound-ness of Ir can be veri�ed by induction on the lengthsof Ir-proofs. For the proof of completeness, it su�cesto show the existence of G 2 Uf (�) such that G j= �and in addition, if G j= ' then � `Ir '. Owing to thespace limit, we omit the lengthy de�nition of G, but werecommend the interested reader see [10] for a detailedproof.Based on the axiomatization Ir, a cubic-time algo-rithm can be given for testing implication and �niteimplication of Pc constraints in the context of M. ByLemma 4.6, every constraint in � is applied at mostonce by the algorithm. It is because of this propertythat the algorithm has low complexity. Space limita-tions do not allow us to include the algorithm. Theinterested reader should consult [10].Theorem 4.2 follows from Theorem 4.9 and the ex-istence of the cubic-time algorithm.5 Implication of local extent constraintsIn light of Theorems 4.1 and 4.2, one is tempted to thinkthat adding structure will simplify reasoning about pathconstraints. However, this is not always the case. Thissection shows that a decidability result developed foruntyped data breaks down when a type of M+ is im-posed on the data.Theorem 5.1: In the context of semistructured data,the implication and �nite implication problems for localextent constraints are decidable in PTIME.Theorem 5.2: In the context of the object-orienteddata model M+, the implication and �nite implication10

problems for local extent constraints are undecidable.These theorems demonstrate that adding a type sys-tem may also make the analysis of path constraint im-plication more di�cult. This may seem counterintu-itive since at �rst glance, a type constraint appears toassert that the data has a regular structure and there-fore, simpli�es reasoning about path constraints. Thisappearance can be dispelled by noticing that the typeconstraint places restrictions on the structures consid-ered in implication problems in a di�erent way to pathconstraints. More speci�cally, let � [f'g be a �nitesubset of Pc. In the untyped context, we may be ableto �nd in PTIME a structureG such thatG j= V�^:'.However, when a schema � is imposed on the data, wemay have that G 62 U(�). That is, G is excluded fromthe set of structures considered in implication prob-lems because of the type constraint �(�) determinedby �. Worse still, �(�) may constrain the structure ofthe data in such a peculiar way that it is undecidablewhether there is H 2 U(�) such that H j= V� ^ :'.5.1 Decidability on untyped dataWe �rst show Theorem 5.1. The idea of the proof is byreduction to word constraint implication. It has beenshown in [4] that in the context of untyped data, theimplication and �nite implication problems for Pw aredecidable in PTIME.We �rst de�ne a function f that is used in the furtherconstruction of the reduction. Let � be a path and 'be a Pc constraint. Then f(�; ') is de�ned to be thePc constraint� 8x (� � �(r; x) ! 8 y (�(x; y) !
(x; y))), if ' isof the form 8x (�(r; x) ! 8 y (�(x; y) !
(x; y)))(i.e., a forward constraint); or� 8x (� � �(r; x) ! 8 y (�(x; y) !
(y; x))), if ' isof the form 8x (�(r; x) ! 8 y (�(x; y) !
(y; x)))(i.e., a backward constraint).Recall the de�nition of the (�nite) implication prob-lem for local extent constraints from De�nition 2.4. Let� [f'g be a �nite subset of Pc with pre�x boundedby path � and binary relation symbol K, where ' isalso bounded by � and K. By De�nition 2.3, � can bepartitioned into �K and �r:�K = f� j � 2 �; � is bounded by � and Kg;�r = � n�K :In addition, for each � 2 �K [f'g, � is a forwardconstraint and the pre�x of �, pf(�), is � �K. For each 2 �r, pf() is of the form � � �0, where �0 is a pathsuch that K 6�p �0, i.e., K is not a pre�x of �0.The reduction is de�ned in two steps. First, usingf and �, we de�ne a function g1 such that for every� 2 � [f'g, � = f(�; g1(�)). That is, g1 removes �from the pre�x of �. Let '1 = g1(') and�1K = fg1(�) j � 2 �Kg;�1r = fg1() j 2 �rg:

K

r
H

K

G
r

GFigure 3: The structure H in the proof of Lemma 5.3Second, using f and K, we de�ne another function g2such that for any � 2 �1K [f'1g, � = f(K; g2(�)).That is, g2 further removes K from the pre�x of �.Now let '2 be g2('1) and �2K = fg2(�) j � 2 �1Kg.Clearly, �2K � Pw and '2 2 Pw. The functions g1 andg2 establish a reduction:Lemma 5.3: In the context of semistructured data,� j= ' i� �1K [�1r j= '1 i� �2K j= '2, (a)� j=f ' i� �1K [�1r j=f '1 i� �2K j=f '2. (b)This lemma su�ces to show Theorem 5.1. For ifit holds, then the (�nite) implication problem for localextent constraints is reduced to the (�nite) implicationproblem for Pw. Note that given � and ', � and K canbe determined in linear-time. In addition, the functionsg1 and g2 are computable in linear-time. Therefore, thePTIME decidability of the (�nite) implication problemfor local extent constraints follows from the PTIME de-cidability of the (�nite) implication problem for Pw .Next, we give a proof sketch of Lemma 5.3 (b). Weomit the details of the proof due to the lack of space,but we suggest the reader consult [10].Proof sketch: We �rst show that � j=f ' if and only if�1K[�1r j=f '1. If V�1K^V�1r^:'1 has a �nite modelG1, then we construct a structure G by adding to G1 anew root rG and a path � from rG to rG1 . It is easy toverify that G is a �nite model of V�^:'. Conversely,suppose that V� ^ :' has a �nite model G. Assumethat ' is 8x (� � K(r; x) ! 8 y (�(x; y) !
(x; y))).Thus by G j= :', there are vertices a; b; c in G suchthat G j= �(rG; a) ^ K(a; b) ^ �(b; c) ^ :
(b; c). Weconstruct a structure G1 from G by letting a be the newroot. It can be veri�ed that G1 is indeed a �nite modelof V�1K ^V�1r ^ :'1.We next proceed to show that �1K [�1r j=f '1 if andonly if �2K j=f '2. The argument given above su�cesto show that if �2K j=f '2 then �1K [�1r j=f '1. Con-versely, assume that V�2K ^ :'2 has a �nite model G.Based onG, we construct a structureH as shown in Fig-ure 3. More speci�cally, let H be (jH j; rH ; EH), wherejH j = jGj[frHg, the root node rH is a new vertex whichis not in jGj, and EH = EG[fK(rH ; rH); K(rH ; rG)g.By De�nitions 2.3 and 2.4, it can be veri�ed that H isindeed a �nite model of V�1K ^V�1r ^ :'1.11

5.2 The breakdown of the decidability in M+Next, we show that the decidability result establishedabove breaks down in the context ofM+. More speci�-cally, we prove Theorem 5.2 by reduction from the wordproblem for (�nite) monoids.Recall �0 and �0 described in Section 4.1. Using �0,we de�ne an M+ schema �1 = (C; �; DBtype), where� C = fC;Cs; Clg,� � is de�ned by:C 7! [l1 : C; : : : ; lm : C]Cs 7! fCgCl 7! [a : C; b : Cs; K : Cl]where a; b;K 62 �0.� DBtype = [l : Cl], where l 62 �0.Note here that each letter in �0 is a record label ofC, and thus is in E(�1). Hence every � 2 ��0 can berepresented as a path formula, also denoted by �.We encode �0 in terms of a �nite set �, which con-sists of the following Pc constraints:1. 8x (l �K(r; x)! 8 y (a(x; y)! b � �(x; y)));2. for each j 2 [1;m],8x (l �K(r; x)! 8 y (b � � � lj(x; y)! b � �(x; y)));3. for each (�i; �i) 2 �0,8x (l � b � �(r; x)! 8 y (�i(x; y)! �i(x; y)));4. 8x (l(r; x)! 8 y (�(x; y)! K(x; y))).We encode a test equation (�; �) over �0 by the con-straint:'(�;�) = 8x (l �K(r; x)! 8 y (a ��(x; y)! a ��(x; y))):By De�nition 2.3, it is easy to see that � [f'(�;�)gis a subset of Pc with pre�x bounded by l and K. Morespeci�cally, this set can be partitioned into �r and �K :� �K consists of '(�;�) as well as those de�ned in (1)and (2). These constraints are bounded by l andK.� �r consists of the constraints speci�ed in (3) and(4), which are not bounded by l andK. In addition,for any � 2 �r, the pre�x of �, pf(�), is eitherl � b � � or l. In particular, if pf(�) = l, then � is theconstraint given in (4).The lemma below shows that this encoding is a re-duction from the word problem for (�nite) monoids.Theorem 5.2 follows from this lemma and Theorem 4.4.Lemma 5.4: In the context of M+, for all �; � 2 ��0,�0 j= (�; �) i� � j=�1 '(�;�), (a)�0 j=f (�; �) i� � j=(f;�1) '(�;�). (b)

*
*

*
*

*

K

r

a b

l

l1 ln

αFigure 4: The structure G in the proof of Lemma 5.4The proof of this lemma uses the following propertyof �1: For any G 2 U(�1), there are unique verticesol; oK in G such that G j= l(rG; ol) ^ K(ol; oK). Inaddition, if G j= �, then ol = oK . This holds due to thetype constraint �(�1). A structure satisfying �(�1)and � must have the form shown in Figure 4. Unlikein semistructured data, here � j=�1 '(�;�) is no longerequivalent to �K j=�1 '(�;�). That is, �r interactswith �K j=�1 '(�;�). We do not include the proof ofthis lemma due to the lack of space. The interestedreader should see [10] for a detailed proof.It should be mentioned that the proof of Theorem 5.1is not applicable here. Note that the structure H shownin Figure 3 is not in U(�1), because of type constraint�(�1).6 ConclusionTwo forms of constraints have been proposed separatelyfor specifying semantics of XML data, namely, type con-straints [6, 17, 19] and path constraints [4, 9]. In thispaper, we have investigated their interaction. We havedemonstrated that adding a type system may in somecases simplify the analysis of path constraint implica-tion, and in other cases make it harder. More speci�-cally, we have studied how Pc constraints introduced in[9] interact with two type systems. One of the type sys-tems, M+, is an object-oriented model similar to thosestudied in [2, 3, 11]. It supports classes, records andsets. The other, M, is a restriction of M+. On theone hand, we have shown that the implication and �-nite implication problems for Pc are undecidable in thecontext of semistructured data, but they become notonly decidable in cubic-time but also �nitely axiomati-zable when a type of M is added. On the other hand,we have also shown that the implication and �nite im-plication problems for local extent constraints, whichconstitute a fragment of Pc, are decidable in PTIME inthe untyped context. However, when a type of M+ isimposed, these problems become undecidable.Other results established in the full paper. Dueto the lack of space, several results reported in [10] arenot included in this paper. Below we mention some ofthem. We encourage the reader to consult [10].Recall Pw(K) described in Section 4.1. Similarly,12

(�nite) implication problem (�nite) implication problem (�nite) implication problemfor Pw(�) for local extent constraints for Pcsemistructured undecidable decidable (PTIME) undecidabledata modelobject-oriented decidable (cubic-time) decidable (cubic-time) decidable (cubic-time)model Mobject-oriented undecidable undecidable undecidablemodel M+object-oriented undecidable undecidable undecidablemodel M+f Table 1: The main results of the papergiven a path �, Pw(�) is de�ned to be a generalizationof the class of word constraints as follows. For each 2 Pw, where = 8x (�(r; x)!
(r; x)), let�(; �) = 8x (�(r; x)! 8 y (�(x; y)!
(x; y))):Then Pw(�) is de�ned byPw(�) = Pw [f�(; �) j 2 Pwg:Theorem 6.1: In the context of M+, the implicationand �nite implication problems for Pw(�) and therefore,for Pc, are undecidable.Another object-oriented model, M+f , was also stud-ied in [10]. This model is the same as M+ except thatit supports �nite sets instead of sets. The major dif-ference between M+ and M+f is described as follows.For any schema � in M+, the set of structures satis-fying the type constraint �(�), U(�), is de�nable in�rst-order logic. In contrast, for a schema � in M+f ,U(�) may not be �rst order de�nable. As a result, theequivalence of the implication problem and the �niteimplication problem for path constraints in M+f doesnot necessarily lead to the decidability of these prob-lems.It was shown in [10] that the results developed forM+ also hold for M+f . The proofs of some of theseresults, however, are quite di�erent from the analogousproofs for M+ for the reason mentioned above.Theorem 6.2: In the context of M+f , the implicationand �nite implication problems for Pw(�), for Pc, andfor local extent constraints are all undecidable.The main results of [10] are summarized in Table 1.Further research. It would be interesting to studythe interaction between path constraints and less stricttype systems such as the object relational data model.To include path constraints in XML documents tospecify the semantics of the data, it is important tohave a path constraint syntax that conforms to XMLand XML DTD [7]. In [10], we o�ered a preliminaryproposal. To describe in this syntax external links suchas those studied in [21], much more remains to be done.

Acknowledgements. We thank Leonid Libkin, ValTannen and Victor Vianu for valuable comments anddiscussions.References[1] S. Abiteboul. \Querying semi-structured data".In Proc. 6th Int'l. Conf. on Database Theory(ICDT'97), 1997.[2] S. Abiteboul, R. Hull, and V. Vianu. Foundationsof Databases . Addison-Wesly, 1995.[3] S. Abiteboul and P. C. Kanellakis. \Object iden-tity as a query primitive". In Proc. ACM SIGMODInt'l. Conf. on Management of Data, 1989.[4] S. Abiteboul and V. Vianu. \Regular path querieswith constraints". In Proc. 16th ACM Symp. onPrinciples of Database Systems (PODS'97), 1997.[5] E. B�orger, E. Gr�adel, and Y. Gurevich. The clas-sical decision problem. Springer, 1997.[6] T. Bray, C. Frankston, and A. Malhotra. \Docu-ment Content Description for XML". W3C NoteNOTE-dcd-19980731. Available as http://www.w3.org/TR/NOTE-dcd.[7] T. Bray, J. Paoli and C. M. Sperberg-McQueen.\Extensible Markup Language (XML) 1.0". W3CRecommendation REC-xml-19980210. Available ashttp://www.w3.org/REC-xml.[8] P. Buneman. \Semistructured data". Tutorial inProc. 16th ACM Symp. on Principles of DatabaseSystems (PODS'97), 1997.[9] P. Buneman, W. Fan, and S. Weinstein. \Path con-straints on semistructured and structured data". InProc. 17th ACM Symp. on Principles of DatabaseSystems (PODS'98), 1998.[10] P. Buneman, W. Fan and S. Weinstein. \Interac-tion between path and type constraints". Techni-cal report MS-CIS-98-16, Department of Computerand Information Science, University of Pennsyl-vania, 1998. Available as ftp://ftp.cis.upenn.edu/pub/papers/db-research/tr9816.ps.gz.13

[11] R. G. G. Cattell (ed.). The object-oriented stan-dard: ODMG-93 (Release 1.2). Morgan Kauf-mann, San Mateo, California, 1996.[12] U. S. Chakravarthy, J. Grant, and J. Minker.\Foundations of semantic query optimization fordeductive databases". In J. Minker, editor, Foun-dations of Deductive Databases and Logic Program-ming . Morgan Kaufmann, San Mateo, California,1988.[13] S. Cluet and C. Delobel. \A general frameworkfor the optimization of object-oriented queries". InProc. ACM SIGMOD Int'l. Conf. on Managementof Data, 1992.[14] A. Deutsch, M. Fernandez, D. Florescu, A. Levy,and D. Suciu. \XML-QL: a query language forXML". W3C Note NOTE-xml-ql-19980819. Avail-able as http:// www.w3.org/TR/NOTE-xml-ql.[15] H. B. Enderton. A mathematical introduction tologic. Academic Press, 1972.[16] D. Florescu, L. Raschid, and P. Valduriez. \Amethodology for query reformulation in CIS us-ing semantic knowledge". Special issue on FormalMethods in Cooperative Information Systems , Vol.5(4), 1996.[17] M. Fuchs, M. Maloney, and A. Milowski. \Schemafor object-oriented XML". W3C Note NOTE-SOX-19980930. See http://www.w3.org/TR/NOTE-SOX.[18] O. Lassila and R. R. Swick. \Resource Descrip-tion Framework (RDF) model and syntax spec-i�cation". W3C Working Draft WD-rdf-syntax-19981008. Available as http://www.w3.org/TR/WD-rdf-syntax.[19] A. Layman, E. Jung, E. Maler, H. S. Thomp-son, J. Paoli, J. Tigue, N. H. Mikula, and S.De Rose. \XML-Data". W3C Note NOTE-XML-data-980105. See http://www.w3.org/TR/1998/NOTE-XML-data.[20] H. R. Lewis and C. H. Papadimitriou. Elements ofthe theory of computation. Prentice-Hall, 1981.[21] E. Maler and S. De Rose. \XML Linking lan-guage (XLink)". W3C Working Draft WD-xlink-19980303. See http://www.w3.org/TR/WD-xlink.[22] L. Popa and V. Tannen. \An equational chase forpath-conjunctive queries, constraints, and views".In Proc. of 7th Int.'l Conf. on Database Theory(ICDT'99), 1999.[23] W. C. Rounds. \Feature logics". In J. van Benthemand A. ter Meulen, editors, Handbook of Logic andLanguage. Elsevier, 1997.
14

