Constraints for Semistructured Data and XML

Wenfei Fan
Temple University

Peter Buneman
University of Pennsylvania

peter@cis.upenn.edu fan@Qcis.temple.edu

Abstract

Integrity constraints play a fundamental role in
database design. We review initial work on the expres-
sion of integrity constraints for semistructured data and
XML.

1 Introduction

Semistructured data is often described as “schema-less”
or “self-describing”. What these terms mean is that no
pre-imposed schema or type system is needed for the
interpretation of semistructured data, which is usually
understood as some form of labeled graph. In XML
terminology we start only with the notion that a doc-
ument is “well-formed”. This is a very weak condition
on the syntax of XML, which only guarantees that the
data can be represented by a labelled tree. This view
of data immediately invites the question: what does it
mean to impose structure on semistructured data? In
fact, much of the literature on semistructured data and
XML is directly concerned with this question.

1.1 Constraints and types

The use of a graph model of data blurs the distinc-
tion between types and constraints that is commonly
made in traditional database systems. In the world of
semistructured data these are both constraints which
restrict the structure of the graph interpretation of the
data. One of the goals of this paper is to express both
(traditional) types and (traditional) constraints as con-
straints on semistructured data. It is therefore worth
examining the distinction in the context of conventional
database systems. As an example, consider the follow-
ing ODL [22] schema:

class student
(extent students
key SSN)
{ attribute string SSN;
attribute string name;
relationship set<course> taking
inverse course::taken_by;}

class course

Jéroéme Siméon

simeon@research.bell-labs.com

Scott Weinstein

Bell Laboratories University of Pennsylvania

weinstein@cis.upenn.edu

(extent courses
key cno)
{ attribute string cno;
attribute string title;
relationship set<student> taken_by
inverse student::taking;}

If we remove the extent and key assertions and re-
place the relationship assertions with type declara-
tions such as attribute set<course> taking we obtain a
class declaration for a conventional object-oriented lan-
guage. These classes or types are an essential part of
any program that constructs or queries data. Without
them the program is meaningless. Contrast this with
the situation in most XML query languages where no
types are needed (“type” errors such as mis-spelled tag
names show up not as static errors but as empty an-
swers.) In addition, this schema also defines integrity
constraints: the extent and inverse declarations spec-
ify the following: (a) Inclusion constraints. For any
student s, s.taking is included in the extent courses.
Similarly, for any course ¢, c.taken_by is a subset of the
extent students. (b) Inverse constraints. For any stu-
dent s and any course ¢, if s is taking ¢ then ¢ is taken
by s, and vice versa. (c) Key constraints. Any two dis-
tinct student objects (they resulted from separate calls
to a constructor) have different SSN’s. Although such
constraints cannot be expressed in any object-oriented
system, they can be expressed in most schema definition
languages, and — just as the static analysis of types is
important for program correctness and efficiency — the
static analysis of such constraints is important for query
optimization [16, 13, 21].

It appears, therefore, that the distinction between
types and constraints is dictated largely by what con-
ventional programming languages treat as types. That
there is a non-trivial interaction between types and con-
straints is evident from consideration of the following
SQL [20] specification:

create table students

(SSN char(9),
name char(20),
primary key (SSN))
create table courses
(cno char(7),

"123" "Greg" "234" "Kate' "CS331" "DB" "123""CS331" "234""CS331"

(a)

cno

r

students students

courses

~ taking =V o taking
cno, title

name name

"123" "Greg" "CS331" "DB" "234" "Kate"

(b)

Figure 1: Graph representation of structured databases

title char(20),
primary key (cno))

create table enroll
(SSN char(9),
cno char(7),
primary key (SSN, cno),
foreign key SSN references students,
foreign key cno references courses)

The types associated with these ODL and SQL schemas
are quite different. However the two schemas appear
to specify equivalent information (to within details of
the base types), and this equivalence depends on the

presence of the constraints as well as the types.

1.2 Graph models of data

We start by adopting an edge-labeled graph as a model
of semistructured data. Figure 1 (a) and (b) depict rela-
tional and object-oriented databases for student/course
data, respectively. We first consider how the traditional
type of these databases constrains the structure of the
graph. For this we adopt a simple object-oriented type
system, which also serves to describe the type of rela-
tional databases. Let C be some finite set of classes,
then the set of types over C, TypesC, can be defined by:

7 o= b | C | {7} | lh:m, . .yln:Tn]
where b denotes some atomic type such as integer or
string, C' is a class in C, and the notations {.} and
[] represent set type and record type, respectively. In
addition, there is a mapping v from C to Types® that
defines the types of classes. For example, the type of
our object-oriented schema is expressed by:

v(student) = [name: string, taking: {course}]
v(course) = [cno: string, cname: string,
taken_by: {student}]

In the graph representation, a value of type b is rep-
resented by a node carrying the value. An object of
class C has a structure defined by v(C). A set of type
{7} is modeled by a node with outgoing edges that are
labeled with 7 and lead to nodes with a 7 structure. A
record of type [ly : 71, ..., ln : T»] is represented by a
node that has n outgoing edges. Each of these edges is

labeled with a unique /; and leads to a node with a ;
structure, for any i € [1,n].

Inclusion and inverse constraints are both examples
of path constraints, i.e., constraints defined in terms of
navigation paths. As an example, consider the following
(implicit) path constraints expressed on the ODL graph
in Figure 1 (b):

students.taking C courses,
courses.taken_by C students,
students.taking + courses.taken_by.

We shall define these constraints more rigorously in
Section 2. The first constraint says that the set of nodes
reached by following a students.taking path (from the
root) is contained in the set of nodes reached by fol-
lowing a courses path. The third says that if we follow
a students edge to a node x and x has a taking edge
to a node y, then y must have a taken_by edge to z;
similarly for courses edges.

We defer the discussion of key constraints to Sec-
tion 3. It is worth remarking that both the type con-
straints and path constraints so far described have a
simple first-order interpretation over data graphs if we
treat edges as binary relations [11].

1.3 XML

When it comes to XML (eXtensible Markup Lan-
guage [5]), the story is more interesting. XML data
also has a graph representation, but it is typically mod-
eled as a node-labeled tree. Like semistructured data,
XML data does not require a type system or schema,
but it may have a DTD (Document Type Definition).
In addition, a number of proposals have been developed
for XML that correspond to a data definition language,
e.g., XML Schema [24], XML Data [19]. DTDs and
these forms of specification can also be viewed as con-
straints. For example, a DTD for our student/course
data is as follows:

<!ELEMENT r (studentx, coursex)>
<!ELEMENT student (SSN, name, takingx)
<!ELEMENT course (cno, title, taken_byx)

Here we omit the descriptions of elements whose type is
string (PCDATA). This DTD constrains the structures

r

N

student student course course

AWAWATAN

SSN name taking SSN name cno title cno title taken_by
"123" "Greg" "CS350" "234" “Kate' "CS331" "DB" "CS350" "XML" "123"

Figure 2: An XML document tree

of XML document trees that conform to the DTD. For
example, it specifies, among other things, that the root
of such a tree has student children followed by course
children, and in addition, a student node in the tree
must have a unique SSN, a unique name and a possi-
bly empty sequence of taking subelements. An XML
document tree conforming to the DTD is depicted in
Figure 2. It should be noted that element types in a
DTD are defined in terms of regular expressions, which
are more complex than relation and class specifications
found in traditional databases.

In writing down constraints for XML we need to make
two changes. The first is the straightforward tran-
sition from edge-labeled graphs to node-labeled trees.
The second is more interesting. DTD specifications are
global. For example, the DTD constrains all student
nodes no matter where they occur (a more complicated
DTD could allow such nodes to occur in various places).
To this end we need to introduce path constraints that
also operate globally. For example, consider:

_x .student.taking C _x .course.cno,
_*.course.taken_by C _x .student.SSN.

Here ‘%’ is a combination of wild card and the Kleene
star, which matches any navigation path. These are
path inclusion constraints. Referring to an XML doc-
ument tree representing our student/course data, the
first constraint asserts that for each node reached by
following the path _x .student.taking from the root of
the tree, its value must match that of a node reachable
by following _ % .course.cno from the root. Intuitively,
it states that for any students, no matter where they
occur in the tree, their taking subelements stand for
courses; similarly for any courses.

1.4 Decision problems

There are two classical decision problems associated
with integrity constraints. One concerns consistency:
given any constraints, does there exist a database that
satisfies those constraints? The other is implication:
given that certain constraints are known to hold, does
it follow that some other constraint is necessarily satis-
fied? Implication is important in, among other things,

data integration. For example, one may want to know
whether a constraint ¢ holds in a mediator interface,
which may use XML as a uniform data format [4]. This
cannot be verified directly since the mediator interface
does not contain data. One way to verify ¢ is to show
that it is implied by constraints that are known to hold
[16]. Other important applications of implication in-
clude query optimization [13, 21] and database normal-
ization [23]. The consistency and implication problems
have been well studied in the relational dependency the-
ory (see, e.g., [2] for a survey).

The analyses of consistency and implication in the
context of semistructured and XML data are more in-
triguing than their counterparts in relational databases.
First, integrity constraints on semistructured and XML
data are typically defined in terms of path expressions
and thus are more complex than relational constraints.
Second, type constraints in this context, when present,
are also more complex than those found in a relational
schema. Type constraints may interact with integrity
constraints. This is certainly the case for XML: DTDs
are defined with regular expressions and they may inter-
act with integrity constraints in a highly intricate way.
As XML data may or may not come with a DTD, the
analyses need to be conducted in the presence and ab-
sence of DTDs. For semistructured data, one wants to
know whether complexity results established in the con-
text of typed data still hold, and vice versa. This high-
lights the need for investigating the interaction between
type constraints and path constraints. An interesting
observation is that types do not necessarily complicate
the analyses of consistency and implication.

In the rest of the paper, we shall present an informal
overview of path constraints for semistructured data in
Section 2, and keys, foreign keys for XML in Section 3.
In Section 4 we suggest directions for further research.

2 Constraints on semistructured data

Path inclusion constraints have been developed for
semistructured data. A first class of path constraints
was introduced in [3], denoted by Pj,.. The general
form of a P;,. constraint is:

aC g,

where a and [are regular path expressions. Refer-
ring to a rooted edge-labeled directed graph represent-
ing semistructured data, the constraint asserts that for
any node in the graph, if it is reached by following «
from the root, then it must also be reachable from the
root by following 3. If we use r to denote the root and
treat a, 0 as logic formulas with two free variables in-
dicating the tail and head of a path, respectively, then
the semantics of the constraint can be described by

Va (a(r, z) — B(r, x)).

Regular path expressions are defined by

a = €|l | aa | ala | ax
where € is the empty sequence, [is an edge label, and ‘|’,
¢ and ‘x’ denote union, concatenation, and the Kleene
closure, respectively. A path expression is called a sim-

ple path if it is a sequence of edge labels, i.e., it contains
neither ‘|’ nor ‘#’. One can express in Pj,.:

CS.course.taken_by C CS.student,
CS.course.prerequisitesx C (C'S|Math).course.

That is, referring to a university, courses of CS depart-
ment are taken by CS students only, and the prerequi-
sites of these courses are offered by CS or Math depart-
ment. Constraints of P;,. describe inclusion relations.

If the semistructured database contains information
about more than one university, one cannot use P,
constraints to describe that CS courses offered by a
university can only be taken by students of the same
university. In particular, the constraint

univ.CS.course.taken_by C univ.CS.student

fails to capture the semantics precisely. Another lim-
itation of P;,. is that it is not capable of expressing
inverse constraints found in object-oriented databases.

These considerations motivated the formulation of
another class of path constraints, denoted by P’ 9,

mc

11]. A P! . constraint has one of the following forms:
(form 1) (@, BC),
(form 2) (a, Lp=17),

where «, 3,7 are regular path expressions, and [,1’ are
edge labels. A constraint of form 1 is interpreted by:

Va (a(r,) = Vy (B(z, y) = v(z, v)))-
It asserts that for any nodes z and y, if x is reached by
following a from root r and y is reached by following
B from z, then y must also be reachable from z by
following . A constraint of form 2 is interpreted by a
pair of logic sentences:

Va (al(r, z) = Vy (B(z, y) = v(y, ©))),

Va (al'(r, z) = Vy (v(z, y) = By, 2))).
That is, for any 2 and y, if z is reached by following
a.l (resp. a.l') from r and y is reached by following (3
(resp. 7y) from z, then one can go back to x from y by
following ~ (resp. (). These capture the semantics of

inverse relationship.
In P?

wmc

(univ, CS.course.taken_by C CS.student),
(univ._, course.taken_by = student.taking).

we can express the following:

Here ‘_’ is a wild card that matches any edge label.

The first constraint states that courses offered by the
CS department of a university are taken by CS students
in the same university. The second describes an inverse
relationship, i.e., in any department at a university, if

a course c is taken by a student s, then s is taking c,
and vice versa. It should be noted that P;,. constraints
are a special case of P! = constraints, namely, when a
is the empty path e. We shall omit « if it is e.

Path constraints are important not only because they
provide some form of semantic integrity. They are
also useful in query optimization. This applies to both
semistructured and structured data. As an example,
consider the following queries that are to find students

who are taking a course with Kate.

Q1: select S2
from r.student S1, r.student S2, S1.taking C
where "Kate” in S1.name and C in S2.taking

Q2: select S’
from r.student S, S.taking C, C.taken_by S’
where "Kate” in S.name

The query plan implicit in the query Q1 requires two
iterations over students — with S1 and S2 — whereas the
query Q2 requests only one iteration over this poten-
tially very large set — with S. Given the simple path
constraints on students and courses presented in Sec-
tion 1, one can verify that Q1 and Q2 are equivalent.
Thus, if Q1 is requested, we may use a query plan that
iterates only once over the set of students. We should
emphasize that this is just a glance at the optimization
issue. We should also remark that to show the equiva-
lence of Q1 and Q2, one needs to show that the follow-
ing is implied by the given constraints, i.e., to consider
constraint implication in query optimization:

student.taking.taken_by C student.

Constraints of P, and P!, are consistent. That
is, given any Pj,. or PP = constraints, one can always
find a (finite) semistructured data graph that satisfies
them. When it comes to implication, the analysis is
no longer simple. The implication problem for Py,
has been shown to be decidable in exponential space
in terms of the size of constraints [3]. Better still, when
the path expressions in constraints are restricted to sim-
ple paths, i.e., sequences of edge labels, the problem is
decidable in polynomial time. However, the implication
problem is undecidable for P! . the mild generalization
of Pine. Worse still, the problem remains undecidable
even when the path expressions in constraints are sim-
ple paths [9]. Several practical and decidable cases of
the implication problem were identified in [9, 11].

Path functional constraints are generalizations of
functional dependencies. They were studied for nested
relational and object models [17, 18, 25], i.e., in the
presence of type constraints. One would be tempted to
think that the complexity results for constraint implica-
tion established in the typed context would also hold for
semistructured data, i.e., in the absence of types. In the
typed context one considers graphs whose structures are
constrained by types, whereas for semistructured data

one considers arbitrary graphs free of type constraints.
This leads to the question about the impact of types
on the implication analysis of path constraints. If the
presence of types would make the analysis harder, then
undecidability results developed in the typed context
could carry over to the untyped context. If it would
simplify the analysis, then decidability results in the
typed context would still hold for semistructured data.
However, the interaction between type and path con-
straints is far more intriguing.

It has been shown that the presence of types may
in some cases simplify the implication analysis of path
constraints and in other cases make it harder [8]. To
illustrate that types may simplify reasoning about path
constraints, let us consider a restriction of the object-
oriented type system given in Section 1, defined by:

t == b | C

T o=t | [ty e, ity

where b and C are atomic and class types, respectively.
This type system supports the record construct only.
When a type defined in this system is imposed on the
data, the graph representing the data has a rather sim-
ple regular structure. For constraint implication in this
typed context, we only consider graphs of these simple
structures, which yields a simpler analysis. Indeed, let
us consider the class of P! . constraints in which path
expressions are restricted to be simple paths, referred
to as P;,.. In this typed context, the implication prob-
lem for P§, is decidable in O(n®) time [8], whereas it is
undecidable in the context of semistructured data [9].

On the other hand, there is a path constraint impli-
cation problem that is decidable in the untyped context
but it becomes undecidable in a typed context. In par-
ticular, let us consider a set ¥ of P}, . constraints of
the form: (ag.p, 8 C 7), where ap is a fixed path,
and p is either a fixed edge label Iy, or a path that
does not contain ly. Let ¢ be a constraint of this form
with p = lp. We are interested in the implication prob-
lem to determine whether for any graph satisfying X, it
must also satisfy ¢. This is a problem that originates in
practical applications [8]. In the untyped context, this
implication problem is decidable in polynomial time. In
contrast, if we consider only those graphs constrained
by the object-oriented type system given in Section 1,
then the problem becomes undecidable [8]. In other
words, in this case the presence of types complicates
the analysis of path constraint implication.

Another practical restriction on semistructured data
graphs is a deterministic edge relation. For data found
in many applications, the graph representing the data is
deterministic, i.e., the edges emanating from each node
in the graph have distinct labels. For example, when
modeling Web pages as a graph, a node stands for an
HTML document and an edge represents a link with

an HTML label from one document (source) to another
(target). It is reasonable to assume that the HTML
label uniquely identifies the target document. Even if
this is not literally the case, one can achieve this by
including the URL (Universal Resource Locator) of the
target document in the edge label. This yields a deter-
ministic graph. This restriction simplifies the analysis
of path constraint implication. Indeed, if we consider
deterministic graphs only, then the implication prob-
lem for P;,, becomes decidable, even if we allow wild
cards in path expressions. However, this deterministic
restriction does not reduce the analysis of path con-
straint implication to a trivial problem. In particular,
in the context of deterministic graphs the implication

problem for P’ remains undecidable [10].

3 Keys and foreign keys for XML

The first and simplest form of constraints we encounter
in relational database is that of a key [2]. Keys are used
to provide a “canonical identifier” for a data element;
they are important in query optimization; and they are
used in foreign key constraints — one of the most widely
used forms of integrity constraints. If XML documents
are to be considered as databases, we shall need keys for
them, yet only recently has there been any systematic
study of keys for XML or semistructured data.

Both the XML specification itself [5] and XML
Schema [24] contain some form of key specification.
In the XML standard, ID attributes in DTD provide
a rather simple notion of keys, which are global and
unary. In XML Schema, key specification depends on
XPath [12], a rather complex language that makes rea-
soning about path inclusion, and hence key implication,
difficult. This problem is compounded by other techni-
cal details in the XML Schema specification. Moreover
in neither specification can one express relative keys,
which we shall briefly describe below. See [6] for a more
detailed discussion of these issues.

A simple form of key constraints is proposed in [15]
using ordinary XML attributes, i.e., attributes with a
string value referred to as single-valued attributes. A
key of [15] has the general form:

T(X) =T,

where 7 is an element type and X is a set of attributes
of 7. An XML document tree 7' satisfies the key if
and only if for any two 7 nodes in 7', if they agree on
the values of their X attributes, then they must be the
same node. A foreign key is specified with an inclusion
constraint and a key:

Tl[X]gTQ[Y] TQ(Y)—>T2,

where 71,7 are element types, and X,Y are lists of
single-valued attributes of 71, 75, respectively. An XML

tree T satisfies the foreign key if and only if it satisfies
the key and moreover, for any 7, node x there exists a 7
node y in T such that the values of the X attributes of
x match the values of the Y attributes of y. This asserts
that the set of attributes X of 7, elements is a foreign
key referencing the key attributes Y of 75 elements.

Let us refer to the class of constraints proposed in
[15] as Kot Keys and foreign keys defined in terms of a
single attribute are referred to as unary keys and foreign
keys. We write 7[l] and 7(I) as 7.l for any attribute 1.

In K44 one can express keys and foreign keys found in
relational databases. For example, assuming that SSN
and cno are attributes of element type enroll, and SSN
is an attribute of student, we can write

enroll(SSN, cno) — enroll,
student.SSN — student,
enroll.SSN C student.SSN.

That is, (SSN, cno) is a key of enroll, SSN is a key of
student and also a foreign key of enroll referencing
student. The value of an SSN attribute of student
is unique among student elements instead of in the
entire document. An SSN attribute of enroll references
student elements only. Thus, unlike ID and IDREF
attributes in DTDs, keys and foreign keys of K,y are
scoped within a class of elements.

To capture the semantics of IDREFS attributes in
DTDs, K44 includes set-valued foreign keys:

T1.l1 Cs TQ.lQ, T2.12—>T2,

where 71, 72 are element types, I is an ordinary (single-
valued) attribute of 75, while l1 is a set-valued attribute
of 71, i.e., an attribute whose value is (like IDREFS
attributes) interpreted as a set of strings. It asserts
that for any 7, node x and any string s in the I;
attribute of z, there exists a 7 node y such that s
matches the value of the [, attribute of y. To ex-
press object identifiers (oids) and inverse constraints
in object-oriented databases, K .4 also includes ID and
inverse constraints. In contrast to oids, ID attributes
are value-based, user-specified and mutable. To convert
an object-oriented database to XML, one needs ID con-
straints to capture the semantics of oids. In short, K44
aims at capturing important database constraints with
a minimum extension to XML DTDs.

Roughly following the notion of a key in XML
Schema, key specifications based on path expressions
have also been studied in [6], where two notions of keys
were introduced, namely absolute and relative keys. An
absolute key has the general form:

(Q: {Pla"':-Pl}):

where () is a path expression called the target path and
{Py,..., P} is a set of path expressions called the key
paths. In an XML tree, () identifies a set of nodes on
which the key is defined, i.e., the set of nodes reachable

from the root by following @, denoted by [Q]. The
key paths emanate from nodes of [Q] and they pro-
vide an identification for nodes in [@], along the same
lines as key attributes in relational database keys. The
tree satisfies the key if and only if for any two nodes
ny,ns in [Q], if they have all the key paths and agree
on them, then they must be the same node. By agreeing
on a path P we mean that there exist two nodes n/,n),
reachable by following P from nj,ns, respectively, such
that n} and n!), have the same value. Note that two
notions of equality are needed here because of the tree
semantics of XML data: value equality when comparing
nodes at the ends of key paths, and node identity when
comparing nodes in [@Q]. Value equality is elaborated
in [6]. We should remark that it is not required that
all nodes in [@Q] must have all the key paths. The key
has no impact on those nodes at which some key path
is missing. It is also possible that a key path may lead
to multiple nodes. This key specification captures the
semistructured nature of XML data [1].

Let us refer to the class of absolute keys as Kpq¢p,. For
example, the following are keys in Kpgp:

(- % .university.student, {firstname, lastname})

(x, {id}).
Again ‘_x’ is a combination of wild card and the Kleene
closure that matches any path. The first key asserts
that firstname and lastname are a key for university
students, no matter where they occur in an XML docu-
ment tree. That is, if two students have firstname and
lastname subelements and the values of these subele-
ments are pairwise equal, then they must be the same
student. In other words, the subelements uniquely iden-
tify a university student in the document. The second
key asserts that any element that has id subelements
is uniquely identified by the values of the id’s. That
is, any two nodes are disjoint on their id fields up to
value-equality. Note that an id element does not have
to have an id itself. This key captures the semantics of
an ID attribute in DTDs. We should remark that keys
expressed in KCpqe, are scoped within a class of elements,
and moreover, this specification of keys is orthogonal to
any typing specification (e.g. DTDs).

Path expressions in keys of Kpq, are defined by:

p u= €| 1] pp| =

Here [is a node label. This path language not only
allows us to express important keys for XML, but also
yields a low complexity (O(n?) time [7]) for determining
equivalence and containment of its path expressions.

There are many situations in which a key provides
only a relative specification. For example, in relational
database design, the key of a weak entity is made up
of the key of the “parent” entity and some additional
identification [23]. Similarly, in many scientific data for-
mats there is a hierarchical key structure in which sub-
elements are located relative to some parent node. To

Y

describe this, a notion of relative keys was introduced
in [6], with a general form:

(R, (@, 5)),

where R is a path expression that identifies a set of
nodes [R] comparable to “parent” entities, and (@, S)
is a key for every “sub-document” rooted at a node in
[R]. For example, consider

(book, {name}),
(book, (chapter, {number})),
(book.chapter, (section, {number})).

The first constraint is an absolute key in K44, which
asserts that a book name uniquely identifies a book in
a document. The second constraint states that chapter
number uniquely identifies a chapter, but only within
a book. In other words, chapter number is a key of
chapter relative to book. To identify a chapter in the
entire document, one also needs a key of book, e.g.,
book name. The third constraint is also a relative key,
which asserts that section number uniquely identifies
a section within a chapter. It should be noted that
absolute keys are a special case of relative keys, namely,
when the path expression R is the empty path. Relative
keys are important for hierarchically structured data,
including but not limited to XML documents.

Functional, inclusion and inverse constraints have
been defined for XML in terms of simple paths [15],
i.e., sequences of node labels. A simple path is inter-
preted with respect to a given set ¥ of K4y constraints.
In particular, an attribute in the path is treated as a
reference to 7 elements if it is a foreign key in X that ref-
erences 7 elements. In other words, a path may navigate
across different XML subtrees. For example, given that
taking is a foreign key of student referencing course,
taken by of course references student, teaching of
prof references course and taught_by of course refer-
ences prof, one can write:

univ.student.SSN — univ.student.taking,
univ.course.taken_by C univ.student,
student.taking.taught by = prof.teaching.taken_by.

The first constraint is a path functional constraint as-
serting that SSN of a university student determines the
courses that the student is taking. That is, if two stu-
dents have the same SSN, then they take the same
courses. The second constraint is a path inclusion con-
straint stating that courses offered by a university are
taken by university students. The third constraint is a
path inverse constraint asserting that if a student s is
taking a course taught by professor p, then p is teaching
a course taken by s, and vice versa.

Consistency and implication of XML constraints have
been studied in the absence of DTDs and other typing
constraints. In this context the consistency analysis is
simple: for any K, or Kpee, constraints there always

Jfoo foo

/N

X X X

(a) (b)

Figure 3: Impacts of DTDs and XML keys

exist an XML document satisfying them. For implica-
tion, it was shown [7] that there is a sound and com-
plete set of inference rules for ICpqsp, constraints, which
includes the following rules among others:

(superkey): If (Q,S)and S C S, then (@, S').
(containment): If (Q, S) and Q' C @, then (Q’, S).

The first rule states that if a set of paths S is a key for
[@Q], then so is any superset of S. This also holds for
keys in relational databases. The second rule says that
if path @’ is contained in @, i.e., any nodes reached
by following @)’ are also reachable by following (), then
any key for [Q] is also a key for [@Q']. This rules cannot
find a counterpart in relational databases. The implica-
tion problem for Kpu, constraints is decidable in O(n?)
time in terms of the size of constraints [7]. For K,
it has been shown [15] that the implication problem
is undecidable in general, but it becomes decidable in
O(n) time if only unary constraints are considered. In
addition, implication of path functional, inclusion and
inverse constraints by unary K, constraints is decid-
able in O(n?) time. That is the problem to determine
whether a path constraint is necessarily satisfied when
a given set of unary Cuy constraints is known to hold.

In the presence of DTDs or other type systems, it
becomes more difficult to reason about constraints. To
illustrate this, let us consider a simple key ¢ = (X,{ })
in Kpasp and a simple DTD D:

X, x>

There exist an XML tree that conforms to the DTD
(Fig. 3 (a)), and another tree that satisfies the key
(Fig. 3 (b)). However, no XML tree can both conform
to D and satisfy ¢, because D requires an XML tree
to have two distinct X nodes immediately under the
root, whereas ¢ allows at most one. This shows that
DTDs may interact with integrity constraints. In con-
trast, the consistency analysis in relational databases
is trivial: one can write arbitrary (primary) key and
foreign key specifications in SQL, without worrying
about consistency. The interaction between DTDs and
K qtt constraints has recently been studied. Preliminary
results show that the interaction is highly intricate [14].

Keys as specified in XML Schema [24] also interact
with types. To the best of our knowledge, consistency
and implication of constraints of XML Schema have not
been studied, either in the absence or presence of types.

<!ELEMENT foo

4 Research directions

For further research, a host of issues deserve investiga-
tion. First, functional and inclusion constraints with
regular path expressions need to be studied for XML.
These are particularly important if one wants to de-
velop a design theory for XML specifications as we do
for normalization in relational database design. These
constraints may not be a straightforward generalization
of functional and inclusion constraints considered in the
relational dependency theory, because of the tree se-
mantics of XML data and its related equality issues.

A second issue concerns consistency and implication
of XML constraints as well as their interaction with
types. These questions are still open in connection with
constraints defined in XML Schema.

Third, a practical project is to use integrity con-
straints to distinguish good XML design (specification)
from bad design, along the lines of normal forms for
relational schemas.

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on
the Web: From Relations to Semistructured Data
and XML. Morgan Kaufman, 2000.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations
of Databases. Addison-Wesley, 1995.

[3] S. Abiteboul and V. Vianu. Regular path queries
with constraints. In PODS’97, pages 122-133.

[4] C. Baru, A. Gupta, B. Lud&scher, R. Marciano,
Y. Papakonstantinou, P. Velikhov, and V. Chu.
XML-based information mediation with MIX. In
SIGMOD’99, pages 597-599.

[5] T. Bray, J. Paoli, and C. M. Sperberg-McQueen.
Extensible Markup Language (XML) 1.0. W3C
Recommendation, Feb. 1998.
http://www.w3.org/TR/REC-xml/.

[6] P. Buneman, S. Davidson, W. Fan, C. Hara, and
W. Tan. Keys for XML. Draft manuscript, 2000.

[7] P. Buneman, S. Davidson, W. Fan, C. Hara, and
W. Tan. Reasoning about keys for XML. Draft
manuscript, 2000.

[8] P. Buneman, W. Fan, and S. Weinstein. Inter-
action between path and type constraints. In
PODS’99, pages 56—67.

[9] P. Buneman, W. Fan, and S. Weinstein. Path con-
straints on semistructured and structured data. In
PODS’98, pages 129-138.

[10] P. Buneman, W. Fan, and S. Weinstein. Query
optimization for semistructured data using path
constraints in a deterministic data model. In
DBPL’99.

[11] P. Buneman, W. Fan, and S. Weinstein. Path
constraints in semistructured databases. JCSS,
61(2):146-193, 2000.

[12] J. Clark and S. DeRose. XML Path Language
(XPath). W3C Working Draft, Nov. 1999.
http://www.w3.org/TR/xpath.

[13] A. Deutsch, L. Popa, and V. Tannen. Physical data
independence, constraints, and optimization with
universal plans. In VLDB’99, pages 459-470.

[14] W. Fan and L. Libkin. On integrity constraints for
XML in the presence of DTDs. Draft manuscript,
2000.

[15] W. Fan and J. Siméon. Integrity constraints for
XML. In PODS’00, pages 23-34.

[16] D. Florescu, L. Raschid, and P. Valduriez. A
methodology for query reformulation in CIS using
semantic knowledge. Int’l J. Cooperative Informa-
tion Systems (IJCIS), 5(4):431-468, 1996.

[17] C. S. Hara and S. B. Davidson. Reasoning about
nested functional dependencies. In PODS’99,
pages 91-100.

[18] M. Ito and G. Weddell. Implication problems
for functional constraints on databases supporting
complex objects. JCSS, 50(1):165-187, 1995.

[19] A. Layman et al. XML-Data. W3C, Jan. 1998.
http://www.w3.org/TR/1998/NOTE-XML-data.

[20] J. Melton and A. Simon. Understanding the New
SQL: A Complete Guide. Morgan Kaufman, 1993.

[21] L. Popa, A. Deutsch, A. Sahuguet, and V. Tannen.
A chase too far? In SIGMOD’00, pages 273-284.

[22] R. G. Cattell et al. The Object Database Standard:
ODMG 3.0. Morgan Kaufmann, 2000.

[23] R. Ramakrishnan and J. Gehrke. Database Man-
agement Systems. McGraw-Hill, 2000.

[24] H. S. Thompson et al. XML Schema Part 1: Struc-
tures. W3C Working Draft, Apr. 2000.
http://www.w3.org/TR/xmlschema-1/.

[25] M. van Bommel and G. Weddell. Reasoning about
equations and functional dependencies on complex
objects. TKDE, 6(3):455-469, 1994.

