
Constraints for Semistructured Data and XMLPeter BunemanUniversity of Pennsylvaniapeter@cis.upenn.edu Wenfei FanTemple Universityfan@cis.temple.edu J�erôme Sim�eonBell Laboratoriessimeon@research.bell-labs.com Scott WeinsteinUniversity of Pennsylvaniaweinstein@cis.upenn.eduAbstractIntegrity constraints play a fundamental role indatabase design. We review initial work on the expres-sion of integrity constraints for semistructured data andXML.1 IntroductionSemistructured data is often described as \schema-less"or \self-describing". What these terms mean is that nopre-imposed schema or type system is needed for theinterpretation of semistructured data, which is usuallyunderstood as some form of labeled graph. In XMLterminology we start only with the notion that a doc-ument is \well-formed". This is a very weak conditionon the syntax of XML, which only guarantees that thedata can be represented by a labelled tree. This viewof data immediately invites the question: what does itmean to impose structure on semistructured data? Infact, much of the literature on semistructured data andXML is directly concerned with this question.1.1 Constraints and typesThe use of a graph model of data blurs the distinc-tion between types and constraints that is commonlymade in traditional database systems. In the world ofsemistructured data these are both constraints whichrestrict the structure of the graph interpretation of thedata. One of the goals of this paper is to express both(traditional) types and (traditional) constraints as con-straints on semistructured data. It is therefore worthexamining the distinction in the context of conventionaldatabase systems. As an example, consider the follow-ing ODL [22] schema:class student(extent studentskey SSN)f attribute string SSN;attribute string name;relationship set<course> takinginverse course::taken by;gclass course

(extent courseskey cno)f attribute string cno;attribute string title;relationship set<student> taken byinverse student::taking;gIf we remove the extent and key assertions and re-place the relationship assertions with type declara-tions such as attribute set<course> taking we obtain aclass declaration for a conventional object-oriented lan-guage. These classes or types are an essential part ofany program that constructs or queries data. Withoutthem the program is meaningless. Contrast this withthe situation in most XML query languages where notypes are needed (\type" errors such as mis-spelled tagnames show up not as static errors but as empty an-swers.) In addition, this schema also de�nes integrityconstraints: the extent and inverse declarations spec-ify the following: (a) Inclusion constraints. For anystudent s, s:taking is included in the extent courses.Similarly, for any course c, c:taken by is a subset of theextent students. (b) Inverse constraints. For any stu-dent s and any course c, if s is taking c then c is takenby s, and vice versa. (c) Key constraints. Any two dis-tinct student objects (they resulted from separate callsto a constructor) have di�erent SSN's. Although suchconstraints cannot be expressed in any object-orientedsystem, they can be expressed in most schema de�nitionlanguages, and { just as the static analysis of types isimportant for program correctness and e�ciency { thestatic analysis of such constraints is important for queryoptimization [16, 13, 21].It appears, therefore, that the distinction betweentypes and constraints is dictated largely by what con-ventional programming languages treat as types. Thatthere is a non-trivial interaction between types and con-straints is evident from consideration of the followingSQL [20] speci�cation:create table students(SSN char(9),name char(20),primary key (SSN))create table courses(cno char(7),1

r

courses

nameSSN cno title SSN

"DB""234" "Kate" "CS 331" "234""123" "Greg" "123" "CS 331"

(a)

r

students studentscourses

"CS 331" "DB""123" "Greg" "234" "Kate"

taken_by
cno title SSN

taken_by

(b)

cno

"CS 331"

SSN
cno

taking taking

students enroll

SSN SSNname
name name

students enroll

Figure 1: Graph representation of structured databasestitle char(20),primary key (cno))create table enroll(SSN char(9),cno char(7),primary key (SSN, cno),foreign key SSN references students,foreign key cno references courses)The types associated with these ODL and SQL schemasare quite di�erent. However the two schemas appearto specify equivalent information (to within details ofthe base types), and this equivalence depends on thepresence of the constraints as well as the types.1.2 Graph models of dataWe start by adopting an edge-labeled graph as a modelof semistructured data. Figure 1 (a) and (b) depict rela-tional and object-oriented databases for student/coursedata, respectively. We �rst consider how the traditionaltype of these databases constrains the structure of thegraph. For this we adopt a simple object-oriented typesystem, which also serves to describe the type of rela-tional databases. Let C be some �nite set of classes,then the set of types over C, TypesC , can be de�ned by:� ::= b j C j f�g j [l1 : �1; : : : ; ln : �n]where b denotes some atomic type such as integer orstring, C is a class in C, and the notations f:g and[:] represent set type and record type, respectively. Inaddition, there is a mapping � from C to TypesC thatde�nes the types of classes. For example, the type ofour object-oriented schema is expressed by:�(student) = [name: string, taking: fcourseg]�(course) = [cno: string, cname: string,taken by: fstudentg]In the graph representation, a value of type b is rep-resented by a node carrying the value. An object ofclass C has a structure de�ned by �(C). A set of typef�g is modeled by a node with outgoing edges that arelabeled with � and lead to nodes with a � structure. Arecord of type [l1 : �1; : : : ; ln : �n] is represented by anode that has n outgoing edges. Each of these edges is

labeled with a unique li and leads to a node with a �istructure, for any i 2 [1; n].Inclusion and inverse constraints are both examplesof path constraints, i.e., constraints de�ned in terms ofnavigation paths. As an example, consider the following(implicit) path constraints expressed on the ODL graphin Figure 1 (b):students:taking � courses,courses:taken by � students,students:taking *) courses:taken by.We shall de�ne these constraints more rigorously inSection 2. The �rst constraint says that the set of nodesreached by following a students:taking path (from theroot) is contained in the set of nodes reached by fol-lowing a courses path. The third says that if we followa students edge to a node x and x has a taking edgeto a node y, then y must have a taken by edge to x;similarly for courses edges.We defer the discussion of key constraints to Sec-tion 3. It is worth remarking that both the type con-straints and path constraints so far described have asimple �rst-order interpretation over data graphs if wetreat edges as binary relations [11].1.3 XMLWhen it comes to XML (eXtensible Markup Lan-guage [5]), the story is more interesting. XML dataalso has a graph representation, but it is typically mod-eled as a node-labeled tree. Like semistructured data,XML data does not require a type system or schema,but it may have a DTD (Document Type De�nition).In addition, a number of proposals have been developedfor XML that correspond to a data de�nition language,e.g., XML Schema [24], XML Data [19]. DTDs andthese forms of speci�cation can also be viewed as con-straints. For example, a DTD for our student/coursedata is as follows:<!ELEMENT r (student�, course�)><!ELEMENT student (SSN, name, taking�)<!ELEMENT course (cno, title, taken by�)Here we omit the descriptions of elements whose type isstring (PCDATA). This DTD constrains the structures2

r

student coursecoursestudent

SSN
"234" "Kate"

name cno titletakingnameSSN
"123" "Greg" "CS350"

cno title taken_by
"CS350""DB""CS331" "XML" "123"Figure 2: An XML document treeof XML document trees that conform to the DTD. Forexample, it speci�es, among other things, that the rootof such a tree has student children followed by coursechildren, and in addition, a student node in the treemust have a unique SSN, a unique name and a possi-bly empty sequence of taking subelements. An XMLdocument tree conforming to the DTD is depicted inFigure 2. It should be noted that element types in aDTD are de�ned in terms of regular expressions, whichare more complex than relation and class speci�cationsfound in traditional databases.In writing down constraints for XML we need to maketwo changes. The �rst is the straightforward tran-sition from edge-labeled graphs to node-labeled trees.The second is more interesting. DTD speci�cations areglobal. For example, the DTD constrains all studentnodes no matter where they occur (a more complicatedDTD could allow such nodes to occur in various places).To this end we need to introduce path constraints thatalso operate globally. For example, consider:� :student:taking � � :course:cno,� :course:taken by � � :student:SSN .Here ` �' is a combination of wild card and the Kleenestar, which matches any navigation path. These arepath inclusion constraints. Referring to an XML doc-ument tree representing our student/course data, the�rst constraint asserts that for each node reached byfollowing the path � :student:taking from the root ofthe tree, its value must match that of a node reachableby following � :course:cno from the root. Intuitively,it states that for any students, no matter where theyoccur in the tree, their taking subelements stand forcourses; similarly for any courses.1.4 Decision problemsThere are two classical decision problems associatedwith integrity constraints. One concerns consistency:given any constraints, does there exist a database thatsatis�es those constraints? The other is implication:given that certain constraints are known to hold, doesit follow that some other constraint is necessarily satis-�ed? Implication is important in, among other things,

data integration. For example, one may want to knowwhether a constraint ' holds in a mediator interface,which may use XML as a uniform data format [4]. Thiscannot be veri�ed directly since the mediator interfacedoes not contain data. One way to verify ' is to showthat it is implied by constraints that are known to hold[16]. Other important applications of implication in-clude query optimization [13, 21] and database normal-ization [23]. The consistency and implication problemshave been well studied in the relational dependency the-ory (see, e.g., [2] for a survey).The analyses of consistency and implication in thecontext of semistructured and XML data are more in-triguing than their counterparts in relational databases.First, integrity constraints on semistructured and XMLdata are typically de�ned in terms of path expressionsand thus are more complex than relational constraints.Second, type constraints in this context, when present,are also more complex than those found in a relationalschema. Type constraints may interact with integrityconstraints. This is certainly the case for XML: DTDsare de�ned with regular expressions and they may inter-act with integrity constraints in a highly intricate way.As XML data may or may not come with a DTD, theanalyses need to be conducted in the presence and ab-sence of DTDs. For semistructured data, one wants toknow whether complexity results established in the con-text of typed data still hold, and vice versa. This high-lights the need for investigating the interaction betweentype constraints and path constraints. An interestingobservation is that types do not necessarily complicatethe analyses of consistency and implication.In the rest of the paper, we shall present an informaloverview of path constraints for semistructured data inSection 2, and keys, foreign keys for XML in Section 3.In Section 4 we suggest directions for further research.2 Constraints on semistructured dataPath inclusion constraints have been developed forsemistructured data. A �rst class of path constraintswas introduced in [3], denoted by Pinc . The generalform of a Pinc constraint is:� � �;where � and � are regular path expressions. Refer-ring to a rooted edge-labeled directed graph represent-ing semistructured data, the constraint asserts that forany node in the graph, if it is reached by following �from the root, then it must also be reachable from theroot by following �. If we use r to denote the root andtreat �; � as logic formulas with two free variables in-dicating the tail and head of a path, respectively, thenthe semantics of the constraint can be described by8x (�(r; x)! �(r; x)):3

Regular path expressions are de�ned by� ::= � j l j �:� j �j� j ��where � is the empty sequence, l is an edge label, and `j',`;' and `�' denote union, concatenation, and the Kleeneclosure, respectively. A path expression is called a sim-ple path if it is a sequence of edge labels, i.e., it containsneither `j' nor `�'. One can express in Pinc :CS:course:taken by � CS:student,CS:course:prerequisites� � (CSjMath):course.That is, referring to a university, courses of CS depart-ment are taken by CS students only, and the prerequi-sites of these courses are o�ered by CS or Math depart-ment. Constraints of Pinc describe inclusion relations.If the semistructured database contains informationabout more than one university, one cannot use Pincconstraints to describe that CS courses o�ered by auniversity can only be taken by students of the sameuniversity. In particular, the constraintuniv:CS:course:taken by � univ:CS:studentfails to capture the semantics precisely. Another lim-itation of Pinc is that it is not capable of expressinginverse constraints found in object-oriented databases.These considerations motivated the formulation ofanother class of path constraints, denoted by Ppinc [9,11]. A Ppinc constraint has one of the following forms:(form 1) (�; � �),(form 2) (�; l:� *) l0:),where �; �; are regular path expressions, and l; l0 areedge labels. A constraint of form 1 is interpreted by:8x (�(r; x)! 8 y (�(x; y)! (x; y))):It asserts that for any nodes x and y, if x is reached byfollowing � from root r and y is reached by following� from x, then y must also be reachable from x byfollowing . A constraint of form 2 is interpreted by apair of logic sentences:8x (�:l(r; x)! 8 y (�(x; y)! (y; x))),8x (�:l0(r; x)! 8 y ((x; y)! �(y; x))).That is, for any x and y, if x is reached by following�:l (resp. �:l0) from r and y is reached by following �(resp.) from x, then one can go back to x from y byfollowing (resp. �). These capture the semantics ofinverse relationship.In Ppinc we can express the following:(univ; CS:course:taken by � CS:student),(univ: ; course:taken by *) student:taking).Here ` ' is a wild card that matches any edge label.The �rst constraint states that courses o�ered by theCS department of a university are taken by CS studentsin the same university. The second describes an inverserelationship, i.e., in any department at a university, if

a course c is taken by a student s, then s is taking c,and vice versa. It should be noted that Pinc constraintsare a special case of Ppinc constraints, namely, when �is the empty path �. We shall omit � if it is �.Path constraints are important not only because theyprovide some form of semantic integrity. They arealso useful in query optimization. This applies to bothsemistructured and structured data. As an example,consider the following queries that are to �nd studentswho are taking a course with Kate.Q1: select S2from r.student S1, r.student S2, S1.taking Cwhere "Kate" in S1.name and C in S2.takingQ2: select S'from r.student S, S.taking C, C.taken by S'where "Kate" in S.nameThe query plan implicit in the query Q1 requires twoiterations over students { with S1 and S2 { whereas thequery Q2 requests only one iteration over this poten-tially very large set { with S. Given the simple pathconstraints on students and courses presented in Sec-tion 1, one can verify that Q1 and Q2 are equivalent.Thus, if Q1 is requested, we may use a query plan thatiterates only once over the set of students. We shouldemphasize that this is just a glance at the optimizationissue. We should also remark that to show the equiva-lence of Q1 and Q2, one needs to show that the follow-ing is implied by the given constraints, i.e., to considerconstraint implication in query optimization:student:taking:taken by � student:Constraints of Pinc and Ppinc are consistent. Thatis, given any Pinc or Ppinc constraints, one can always�nd a (�nite) semistructured data graph that satis�esthem. When it comes to implication, the analysis isno longer simple. The implication problem for Pinchas been shown to be decidable in exponential spacein terms of the size of constraints [3]. Better still, whenthe path expressions in constraints are restricted to sim-ple paths, i.e., sequences of edge labels, the problem isdecidable in polynomial time. However, the implicationproblem is undecidable for Ppinc , the mild generalizationof Pinc . Worse still, the problem remains undecidableeven when the path expressions in constraints are sim-ple paths [9]. Several practical and decidable cases ofthe implication problem were identi�ed in [9, 11].Path functional constraints are generalizations offunctional dependencies. They were studied for nestedrelational and object models [17, 18, 25], i.e., in thepresence of type constraints. One would be tempted tothink that the complexity results for constraint implica-tion established in the typed context would also hold forsemistructured data, i.e., in the absence of types. In thetyped context one considers graphs whose structures areconstrained by types, whereas for semistructured data4

one considers arbitrary graphs free of type constraints.This leads to the question about the impact of typeson the implication analysis of path constraints. If thepresence of types would make the analysis harder, thenundecidability results developed in the typed contextcould carry over to the untyped context. If it wouldsimplify the analysis, then decidability results in thetyped context would still hold for semistructured data.However, the interaction between type and path con-straints is far more intriguing.It has been shown that the presence of types mayin some cases simplify the implication analysis of pathconstraints and in other cases make it harder [8]. Toillustrate that types may simplify reasoning about pathconstraints, let us consider a restriction of the object-oriented type system given in Section 1, de�ned by:t ::= b j C� ::= t j [l1 : t1; : : : ; ln : tn]where b and C are atomic and class types, respectively.This type system supports the record construct only.When a type de�ned in this system is imposed on thedata, the graph representing the data has a rather sim-ple regular structure. For constraint implication in thistyped context, we only consider graphs of these simplestructures, which yields a simpler analysis. Indeed, letus consider the class of Ppinc constraints in which pathexpressions are restricted to be simple paths, referredto as Psinc . In this typed context, the implication prob-lem for Psinc is decidable in O(n3) time [8], whereas it isundecidable in the context of semistructured data [9].On the other hand, there is a path constraint impli-cation problem that is decidable in the untyped contextbut it becomes undecidable in a typed context. In par-ticular, let us consider a set � of Psinc constraints ofthe form: (�0:�; � �), where �0 is a �xed path,and � is either a �xed edge label l0, or a path thatdoes not contain l0. Let ' be a constraint of this formwith � = l0. We are interested in the implication prob-lem to determine whether for any graph satisfying �, itmust also satisfy '. This is a problem that originates inpractical applications [8]. In the untyped context, thisimplication problem is decidable in polynomial time. Incontrast, if we consider only those graphs constrainedby the object-oriented type system given in Section 1,then the problem becomes undecidable [8]. In otherwords, in this case the presence of types complicatesthe analysis of path constraint implication.Another practical restriction on semistructured datagraphs is a deterministic edge relation. For data foundin many applications, the graph representing the data isdeterministic, i.e., the edges emanating from each nodein the graph have distinct labels. For example, whenmodeling Web pages as a graph, a node stands for anHTML document and an edge represents a link with

an HTML label from one document (source) to another(target). It is reasonable to assume that the HTMLlabel uniquely identi�es the target document. Even ifthis is not literally the case, one can achieve this byincluding the URL (Universal Resource Locator) of thetarget document in the edge label. This yields a deter-ministic graph. This restriction simpli�es the analysisof path constraint implication. Indeed, if we considerdeterministic graphs only, then the implication prob-lem for Psinc becomes decidable, even if we allow wildcards in path expressions. However, this deterministicrestriction does not reduce the analysis of path con-straint implication to a trivial problem. In particular,in the context of deterministic graphs the implicationproblem for Ppinc remains undecidable [10].3 Keys and foreign keys for XMLThe �rst and simplest form of constraints we encounterin relational database is that of a key [2]. Keys are usedto provide a \canonical identi�er" for a data element;they are important in query optimization; and they areused in foreign key constraints { one of the most widelyused forms of integrity constraints. If XML documentsare to be considered as databases, we shall need keys forthem, yet only recently has there been any systematicstudy of keys for XML or semistructured data.Both the XML speci�cation itself [5] and XMLSchema [24] contain some form of key speci�cation.In the XML standard, ID attributes in DTD providea rather simple notion of keys, which are global andunary. In XML Schema, key speci�cation depends onXPath [12], a rather complex language that makes rea-soning about path inclusion, and hence key implication,di�cult. This problem is compounded by other techni-cal details in the XML Schema speci�cation. Moreoverin neither speci�cation can one express relative keys,which we shall briey describe below. See [6] for a moredetailed discussion of these issues.A simple form of key constraints is proposed in [15]using ordinary XML attributes, i.e., attributes with astring value referred to as single-valued attributes . Akey of [15] has the general form:�(X)! �;where � is an element type and X is a set of attributesof � . An XML document tree T satis�es the key ifand only if for any two � nodes in T , if they agree onthe values of their X attributes, then they must be thesame node. A foreign key is speci�ed with an inclusionconstraint and a key:�1[X] � �2[Y]; �2(Y)! �2;where �1; �2 are element types, and X;Y are lists ofsingle-valued attributes of �1; �2, respectively. An XML5

tree T satis�es the foreign key if and only if it satis�esthe key and moreover, for any �1 node x there exists a �2node y in T such that the values of the X attributes ofx match the values of the Y attributes of y. This assertsthat the set of attributes X of �1 elements is a foreignkey referencing the key attributes Y of �2 elements.Let us refer to the class of constraints proposed in[15] as Katt . Keys and foreign keys de�ned in terms of asingle attribute are referred to as unary keys and foreignkeys. We write � [l] and �(l) as �:l for any attribute l.In Katt one can express keys and foreign keys found inrelational databases. For example, assuming that SSNand cno are attributes of element type enroll, and SSNis an attribute of student, we can writeenroll(SSN; cno) ! enroll,student:SSN ! student,enroll:SSN � student:SSN .That is, (SSN, cno) is a key of enroll, SSN is a key ofstudent and also a foreign key of enroll referencingstudent. The value of an SSN attribute of studentis unique among student elements instead of in theentire document. An SSN attribute of enroll referencesstudent elements only. Thus, unlike ID and IDREFattributes in DTDs, keys and foreign keys of Katt arescoped within a class of elements.To capture the semantics of IDREFS attributes inDTDs, Katt includes set-valued foreign keys:�1:l1 �S �2:l2; �2:l2 ! �2;where �1; �2 are element types, l2 is an ordinary (single-valued) attribute of �2, while l1 is a set-valued attributeof �1, i.e., an attribute whose value is (like IDREFSattributes) interpreted as a set of strings. It assertsthat for any �1 node x and any string s in the l1attribute of x, there exists a �2 node y such that smatches the value of the l2 attribute of y. To ex-press object identi�ers (oids) and inverse constraintsin object-oriented databases, Katt also includes ID andinverse constraints . In contrast to oids, ID attributesare value-based, user-speci�ed and mutable. To convertan object-oriented database to XML, one needs ID con-straints to capture the semantics of oids. In short, Kattaims at capturing important database constraints witha minimum extension to XML DTDs.Roughly following the notion of a key in XMLSchema, key speci�cations based on path expressionshave also been studied in [6], where two notions of keyswere introduced, namely absolute and relative keys. Anabsolute key has the general form:(Q; fP1; : : : ; Plg);where Q is a path expression called the target path andfP1; : : : ; Plg is a set of path expressions called the keypaths . In an XML tree, Q identi�es a set of nodes onwhich the key is de�ned, i.e., the set of nodes reachable

from the root by following Q, denoted by [[Q]]. Thekey paths emanate from nodes of [[Q]] and they pro-vide an identi�cation for nodes in [[Q]], along the samelines as key attributes in relational database keys. Thetree satis�es the key if and only if for any two nodesn1; n2 in [[Q]], if they have all the key paths and agreeon them, then they must be the same node. By agreeingon a path P we mean that there exist two nodes n01; n02reachable by following P from n1; n2, respectively, suchthat n01 and n02 have the same value. Note that twonotions of equality are needed here because of the treesemantics of XML data: value equality when comparingnodes at the ends of key paths, and node identity whencomparing nodes in [[Q]]. Value equality is elaboratedin [6]. We should remark that it is not required thatall nodes in [[Q]] must have all the key paths. The keyhas no impact on those nodes at which some key pathis missing. It is also possible that a key path may leadto multiple nodes. This key speci�cation captures thesemistructured nature of XML data [1].Let us refer to the class of absolute keys as Kpath . Forexample, the following are keys in Kpath :(� :university:student; ffirstname; lastnameg),(�; fidg).Again ` �' is a combination of wild card and the Kleeneclosure that matches any path. The �rst key assertsthat firstname and lastname are a key for universitystudents, no matter where they occur in an XML docu-ment tree. That is, if two students have firstname andlastname subelements and the values of these subele-ments are pairwise equal, then they must be the samestudent. In other words, the subelements uniquely iden-tify a university student in the document. The secondkey asserts that any element that has id subelementsis uniquely identi�ed by the values of the id's. Thatis, any two nodes are disjoint on their id �elds up tovalue-equality. Note that an id element does not haveto have an id itself. This key captures the semantics ofan ID attribute in DTDs. We should remark that keysexpressed in Kpath are scoped within a class of elements,and moreover, this speci�cation of keys is orthogonal toany typing speci�cation (e.g. DTDs).Path expressions in keys of Kpath are de�ned by:� ::= � j l j �:� j �Here l is a node label. This path language not onlyallows us to express important keys for XML, but alsoyields a low complexity (O(n2) time [7]) for determiningequivalence and containment of its path expressions.There are many situations in which a key providesonly a relative speci�cation. For example, in relationaldatabase design, the key of a weak entity is made upof the key of the \parent" entity and some additionalidenti�cation [23]. Similarly, in many scienti�c data for-mats there is a hierarchical key structure in which sub-elements are located relative to some parent node. To6

describe this, a notion of relative keys was introducedin [6], with a general form:(R; (Q; S));where R is a path expression that identi�es a set ofnodes [[R]] comparable to \parent" entities, and (Q; S)is a key for every \sub-document" rooted at a node in[[R]]. For example, consider(book; fnameg),(book; (chapter; fnumberg)),(book:chapter; (section; fnumberg)).The �rst constraint is an absolute key in Kpath , whichasserts that a book name uniquely identi�es a book ina document. The second constraint states that chapternumber uniquely identi�es a chapter, but only withina book. In other words, chapter number is a key ofchapter relative to book. To identify a chapter in theentire document, one also needs a key of book, e.g.,book name. The third constraint is also a relative key,which asserts that section number uniquely identi�esa section within a chapter. It should be noted thatabsolute keys are a special case of relative keys, namely,when the path expression R is the empty path. Relativekeys are important for hierarchically structured data,including but not limited to XML documents.Functional, inclusion and inverse constraints havebeen de�ned for XML in terms of simple paths [15],i.e., sequences of node labels. A simple path is inter-preted with respect to a given set � of Katt constraints.In particular, an attribute in the path is treated as areference to � elements if it is a foreign key in � that ref-erences � elements. In other words, a path may navigateacross di�erent XML subtrees. For example, given thattaking is a foreign key of student referencing course,taken by of course references student, teaching ofprof references course and taught by of course refer-ences prof, one can write:univ:student:SSN ! univ:student:taking,univ:course:taken by � univ:student,student:taking:taught by *) prof:teaching:taken by.The �rst constraint is a path functional constraint as-serting that SSN of a university student determines thecourses that the student is taking. That is, if two stu-dents have the same SSN, then they take the samecourses. The second constraint is a path inclusion con-straint stating that courses o�ered by a university aretaken by university students. The third constraint is apath inverse constraint asserting that if a student s istaking a course taught by professor p, then p is teachinga course taken by s, and vice versa.Consistency and implication of XML constraints havebeen studied in the absence of DTDs and other typingconstraints. In this context the consistency analysis issimple: for any Katt or Kpath constraints there always

X X X

(a) (b)

foo foo

Figure 3: Impacts of DTDs and XML keysexist an XML document satisfying them. For implica-tion, it was shown [7] that there is a sound and com-plete set of inference rules for Kpath constraints, whichincludes the following rules among others:(superkey): If (Q; S) and S � S0, then (Q; S0).(containment): If (Q; S) and Q0 � Q, then (Q0; S).The �rst rule states that if a set of paths S is a key for[[Q]], then so is any superset of S. This also holds forkeys in relational databases. The second rule says thatif path Q0 is contained in Q, i.e., any nodes reachedby following Q0 are also reachable by following Q, thenany key for [[Q]] is also a key for [[Q0]]. This rules cannot�nd a counterpart in relational databases. The implica-tion problem for Kpath constraints is decidable in O(n3)time in terms of the size of constraints [7]. For Katt ,it has been shown [15] that the implication problemis undecidable in general, but it becomes decidable inO(n) time if only unary constraints are considered. Inaddition, implication of path functional, inclusion andinverse constraints by unary Katt constraints is decid-able in O(n2) time. That is the problem to determinewhether a path constraint is necessarily satis�ed whena given set of unary Katt constraints is known to hold.In the presence of DTDs or other type systems, itbecomes more di�cult to reason about constraints. Toillustrate this, let us consider a simple key ' = (X; f g)in Kpath and a simple DTD D:<!ELEMENT foo (X, X)>There exist an XML tree that conforms to the DTD(Fig. 3 (a)), and another tree that satis�es the key(Fig. 3 (b)). However, no XML tree can both conformto D and satisfy ', because D requires an XML treeto have two distinct X nodes immediately under theroot, whereas ' allows at most one. This shows thatDTDs may interact with integrity constraints. In con-trast, the consistency analysis in relational databasesis trivial: one can write arbitrary (primary) key andforeign key speci�cations in SQL, without worryingabout consistency. The interaction between DTDs andKatt constraints has recently been studied. Preliminaryresults show that the interaction is highly intricate [14].Keys as speci�ed in XML Schema [24] also interactwith types. To the best of our knowledge, consistencyand implication of constraints of XML Schema have notbeen studied, either in the absence or presence of types.7

4 Research directionsFor further research, a host of issues deserve investiga-tion. First, functional and inclusion constraints withregular path expressions need to be studied for XML.These are particularly important if one wants to de-velop a design theory for XML speci�cations as we dofor normalization in relational database design. Theseconstraints may not be a straightforward generalizationof functional and inclusion constraints considered in therelational dependency theory, because of the tree se-mantics of XML data and its related equality issues.A second issue concerns consistency and implicationof XML constraints as well as their interaction withtypes. These questions are still open in connection withconstraints de�ned in XML Schema.Third, a practical project is to use integrity con-straints to distinguish good XML design (speci�cation)from bad design, along the lines of normal forms forrelational schemas.References[1] S. Abiteboul, P. Buneman, and D. Suciu. Data onthe Web: From Relations to Semistructured Dataand XML. Morgan Kaufman, 2000.[2] S. Abiteboul, R. Hull, and V. Vianu. Foundationsof Databases. Addison-Wesley, 1995.[3] S. Abiteboul and V. Vianu. Regular path querieswith constraints. In PODS'97, pages 122{133.[4] C. Baru, A. Gupta, B. Lud�ascher, R. Marciano,Y. Papakonstantinou, P. Velikhov, and V. Chu.XML-based information mediation with MIX. InSIGMOD'99, pages 597{599.[5] T. Bray, J. Paoli, and C. M. Sperberg-McQueen.Extensible Markup Language (XML) 1.0. W3CRecommendation, Feb. 1998.http://www.w3.org/TR/REC-xml/.[6] P. Buneman, S. Davidson, W. Fan, C. Hara, andW. Tan. Keys for XML. Draft manuscript, 2000.[7] P. Buneman, S. Davidson, W. Fan, C. Hara, andW. Tan. Reasoning about keys for XML. Draftmanuscript, 2000.[8] P. Buneman, W. Fan, and S. Weinstein. Inter-action between path and type constraints. InPODS'99, pages 56{67.[9] P. Buneman, W. Fan, and S. Weinstein. Path con-straints on semistructured and structured data. InPODS'98, pages 129{138.

[10] P. Buneman, W. Fan, and S. Weinstein. Queryoptimization for semistructured data using pathconstraints in a deterministic data model. InDBPL'99.[11] P. Buneman, W. Fan, and S. Weinstein. Pathconstraints in semistructured databases. JCSS,61(2):146{193, 2000.[12] J. Clark and S. DeRose. XML Path Language(XPath). W3C Working Draft, Nov. 1999.http://www.w3.org/TR/xpath.[13] A. Deutsch, L. Popa, and V. Tannen. Physical dataindependence, constraints, and optimization withuniversal plans. In VLDB'99, pages 459{470.[14] W. Fan and L. Libkin. On integrity constraints forXML in the presence of DTDs. Draft manuscript,2000.[15] W. Fan and J. Sim�eon. Integrity constraints forXML. In PODS'00, pages 23{34.[16] D. Florescu, L. Raschid, and P. Valduriez. Amethodology for query reformulation in CIS usingsemantic knowledge. Int'l J. Cooperative Informa-tion Systems (IJCIS), 5(4):431{468, 1996.[17] C. S. Hara and S. B. Davidson. Reasoning aboutnested functional dependencies. In PODS'99,pages 91{100.[18] M. Ito and G. Weddell. Implication problemsfor functional constraints on databases supportingcomplex objects. JCSS, 50(1):165{187, 1995.[19] A. Layman et al. XML-Data. W3C, Jan. 1998.http://www.w3.org/TR/1998/NOTE-XML-data.[20] J. Melton and A. Simon. Understanding the NewSQL: A Complete Guide. Morgan Kaufman, 1993.[21] L. Popa, A. Deutsch, A. Sahuguet, and V. Tannen.A chase too far? In SIGMOD'00, pages 273{284.[22] R. G. Cattell et al. The Object Database Standard:ODMG 3.0. Morgan Kaufmann, 2000.[23] R. Ramakrishnan and J. Gehrke. Database Man-agement Systems. McGraw-Hill, 2000.[24] H. S. Thompson et al. XML Schema Part 1: Struc-tures. W3C Working Draft, Apr. 2000.http://www.w3.org/TR/xmlschema-1/.[25] M. van Bommel and G. Weddell. Reasoning aboutequations and functional dependencies on complexobjects. TKDE, 6(3):455{469, 1994.8

