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Abstract. The syntax of comprehensions is very close to
the syntax of a number of practical database query lan-
guages and is, we believe, a better starting point than
first-order logic for the development of database lan-
guages. We give an informal account of a language based
on comprehension syntax that deals uniformly with a va-
riety of collection types; it also includes pattern match-
ing, variant types and function definition. We show,
again informally, how comprehension syntax is a natural
fragment of structural recursion, a much more power-
ful programming paradigm for collection types. We also
show that a very small “abstract syntax language” can
serve as a basis for the implementation and optimization
of comprehension syntax.

1 Introduction

Ever since relational databases were first conceived [12],
first-order logic, i.e., relational calculus/algebra has been
taken as the starting point for the design of relational
query languages. It has been an invaluable tool for for-
mulating both semantics and syntax, as well as provid-
ing deep insights into expressive power of database lan-
guages. However, with the desire to increase the expres-
sive power of query languages and with the need to com-
municate with non-relational data structures — especially
those that are provided by object oriented databases, we
must ask whether it is appropriate to continue to stretch
this once elegant paradigm of first-order logic as a pro-
gramming language to cope with these richer domains.

We want to propose an alternative strategy: to look
at the operations that are naturally associated with the
data structures involved, and to use this as a guiding
principle for database language design. For example a
database relation is a set of records. In this case, our ap-
proach is to achieve more generality and flexibility by
looking independently at the canonical operations for
record types and for set types. An immediate conse-
quence of this approach is that, with the ability to com-

bine set and record construction in an arbitrary fash-
ion, we can build languages for “non-flat” relations, i.e.
nested relations or, more generally, complex objects [2].
Such languages are important for several reasons, among
them is the ability of object-oriented databases to sup-
port objects that can themselves contain sets of objects.
Another important reason is that the same principles
apply to other collection types such as lists, bags (mul-
tisets), arrays, indexed structures and certain kinds of
trees.

Our purpose in this paper is not to give a full account of
the languages that can be developed by this approach,
but to describe a simple language of comprehensions
that bears close affinities with a number of practical
database languages and to show informally how this lan-
guage is just a restriction of the more general language
of structural recursion - the language that arises from
considering the canonical operations on collection types
[8,7,9,32]. The authors are currently engaged in writing
a book on the theory and practice of programming lan-
guages for collection types, and the material presented
here is based upon an introductory chapter of that book.
Among the important topics we shall not cover are type-
checking and inference, expressive power, optimization
and implementation. We shall simply present a short
“primer” on comprehension syntax together with an in-
formal rationale for its development. In particular we
shall

e show how the language of comprehensions can nat-
urally and uniformly express operations on various
collection types including sets, bags and lists;

e show how variant types, function declarations and
pattern matching can also be uniformly supported
in this language, and

e provide an informal introduction to structural recur-
sion and its relationship to comprehension syntax.

Let us start by looking at a familiar query in SQL [15]
that extracts all the pairs of employee names and man-



ager names from the relations Emp of employees and
Dept of departments:

SELECT Name, Mgr
FROM Emp, Dept
WHERE Emp.DNum = Dept.DNum

A more verbose version of this query can also be written

in SQL

SELECT Name = p.Name, Mgr = d.Mgr
FROM Emp p, Dept d
WHERE p.DNum = d.DNum

We can put a different interpretation on the syntax of
this query. In SQL, the symbols p and d are simply
aliases for the relation names Emp and Dept respectively.
Instead we take them as tuple variables that are bound
to successive tuples in the respective relations. Each
pair of tuples that satisfies the WHERE ... condition
contributes to the output. The idea of having explicit
tuple variables is not new; they are used in the (tuple)
relational calculus and, more importantly, they are used
in certain query languages for object-oriented databases
[5, 23, 6]. In fact, the Os query language [5] has some
interesting connections with what we shall develop. In
our syntax this query is written:

{[Name = p.Name, Mgr = d.Mgr] |
\p <= Emp,
d <— Dept
\ pt,
p.DNum = d.DNum}

The syntactic form {e | ¢1, ¢a,..., ¢, } is a comprehen-
ston. It is an expression that denotes a collection — in
this case a set. It can be read as “the set of all e such
that ¢; and ¢y ...and ¢,”. The term “comprehension”
comes from set theory and is used in certain program-
ming languages [30]. The syntax closely resembles the
second SQL query, but record construction is explicit:
[Name = p.Name, Mgr = d.Mgr] denotes a record with
Name and Mgr fields. There is also a close resemblance
between comprehension syntax and relational calculus,
but there is an important difference in that we explicitly
introduce (or “bind”) the variables p and d by marking
them with a backslash. Thus \p <— Emp is to be thought
of as binding p to successive records in the Emp relation.

Variable bindings such as \d are simple examples of pat-
terns, which serve both to bind variables and to match
structures [22]. For example,

{n | [Name = \n, DNum = 12,...] <~ Emp}

extracts the names of employees in department 12. The
pattern [Name = \n, DNum = 12,...] matches those
tuples in Emp that have a DNum equal to 12. For
each of these, the variable n is bound to the Name
field. The ellipsis (...) matches the remaining fields

of the records in Emp. This query is equivalent to
{e.Name | \e <= Emp, e.DNum = 12}. Our original SQL

query can also be expressed using pattern matching:

{[Name = n, Mgr = m] |
[Name = \n, DNum =\d,...] <~ Emp,
[DNum = d,Mgr =\m...] < Dept}

The variable d is introduced in the first pattern and then
used in the second. Once a variable is introduced in this
way, its scope extends to the end of the comprehension.
It can also be used in the “head” of the comprehension.
In complicated programs it is essential to distinguish be-
tween the binding and use of a variable, which accounts
for our need to make bindings explicit. The scoping rules
and the meaning of comprehensions can be understood
using nested for-loops. The comprehension from the pre-
vious example can be understood as resulting in the set
S obtained as follows:

Si={F
foreach [Name = \n, DNum =\d,...] in Emp
foreach [DNum = d, Mgr = \m,...] in Dept
S := SU{[Name = n, Mgr = ml};

We should stress that this analogy is to clarify scoping
rules; it is not the way to implement comprehensions
efficiently.

Two further examples show that we can easily deal with
“non-flat” relations:

{e.Name.LastName | \e <— Emp}

{[DNum = d, Project = p] |
[DNum = \d, Projects = \s,...] <— Emp,
\p < s}

In the first of these, the Name field is assumed to be itself
a record. In the second we have assumed that the Emp
tuples have a Projects field which is itself a set. The query
returns a (flat) relation that connects a department with
a project if the department has an employee working on
the project. Such queries are common in object-oriented
databases. The second example is an example of un-
nesting in nested relational algebra. We may conversely
nest a relation with attributes A and B with

{[A=a,B' ={b|[A=a,B=\b] < R}1|
[A=\g,...] < R}



2 Collections

Until now we have tacitly assumed that the collections
we have been dealing with are sets, but we cannot get far
with this assumption. Consider a simple query involving
aggregate functions:

average{z.Salary | \e# <— Emp}

If the expression {z.Salary | \& <— Emp} denotes a set,
this query may not give the expected result, for if two
employees have the same salary, that value will only oc-
cur once in the set. However, if we assume that the ex-
pression denotes a multiset, or bag, then multiple occur-
rences of the same salary will be allowed and the query
should give the desired result. We use the syntax {2,3,4}
to denote a set of values ({3,2,4,2} denotes the same
set). Bags (multisets) allow multiple occurrences of the
same element, so that the syntax {|3,2,4, 2[} represents
a bag with two occurrences of 2 and is different from
{2,3,4[}. Finally, we use the notation {|3,2,4,2|} for
sequences of values, i.e. lists. For example, {|2,3,4, 2]}
and {|3,2,4, 2|} represent different lists.

The same principles of comprehension syntax make sense
for all three collection types, but we shall different kinds
of brackets, analogous to the brackets used above. It
is possible to use the same brackets for all three types,
but this puts an additional burden on type inference,
and this is beyond the scope of our paper. The correct
computation of the average salary is therefore:

average{|z.Salary | \& <— SetToBag Empl}

SetToBayg creates a bag from a set, giving each element
a multiplicity of one.

Why is the function SetToBag needed here? The form
p <— s inside a comprehension is called a generator. In-
side a bag comprehension s must be a bag. Similarly all
the generators in a set comprehension must use sets, and
likewise for lists.

An important observation is that the order in which the
generators appear in a comprehension dictates the way in
which the elements of the resulting collection are gener-
ated. As pointed out earlier, a good analogy is to think
of the generators as nested for-loops where outermost
corresponds to leftmost. This is evident for list compre-
hensions:

(2, ) [ \z <= {1, 2]}, \y <= {[10,20, 30}
produces the list
{I(1,10), (1, 20),(1,30),(2, 10), (2,20),(2, 30)[}

Interchanging \z <— {|1,2|} and \y < {10, 20, 30]}
produces {|(1, 10), (2, 10), (1, 20), (2, 20), (1, 30), (2, 30)|}-

Had this particular comprehension been a bag compre-
hension, or a set comprehension, interchanging the two
generators would not have changed the resulting collec-
tion because of the commutativity laws that hold for bags
and sets.

Lists, bags and sets are usually available as distinguished
types in object-oriented database systems [23]. In addi-
tion, the semantics of SQL involves both sets and bags,
though they are not cleanly separated in that language.
There are, in fact other kinds of collections: indexed
structures, arrays, or-sets and certain kinds of trees for
which the syntax of comprehensions is also meaningful,
but they are beyond the scope of this paper.

3 Types

Before proceeding further, it is worth reviewing the syn-
tax of types. They have been implicit in our queries, but
both our data and our queries have types and it is im-
portant that there is a language to describe these types.
The BNF for our data types is given by:

7:= bool | int | string | ... | {7} | {7} | {I7[} |
NI ST S A 2 B VI ST R A

In this, bool | int | string | ... are the (built-in) base
types. The other types are all constructors — they build
new types from existing types. [l1 : m,..., 0, @ 7]
constructs record types from the types 7y,...,7,. <ly :
T, ..., 1y : 7> constructs variant types from the types
T1,...,Tn — more on these in a moment. {7}, {7[}, and
{I7[} respectively construct set, bag, and list types from
the type 7.

For example, a type for the Emp relation (though it is
certainly not a first normal form relation) could be:

{[Name:[FirstName:string,LastName: siringl,
DNum:int,
Status:<Regular:[Salary:int, Extension:string],
Consultant:[Day_Rate:int, Phone:stringl >,
Projects:{string}]}

The wariant or “tagged union” type <Regular
...,Consultant : ...> expresses disjoint possibilities for
the Status field of this type. For example <Regular =
[Salary = 25000, Extension = 2665]1> denotes the status
of a regular employee, while <Consultant = [Day_Rate =
750, Phone = 9441212]1> denotes that of a consul-
tant. Variants are well known in programming lan-
guages [16, 34], but are often overlooked in data models,
where their absence creates needless fragmentation of the
database and confusion over null values. Variants can be
conveniently used in pattern matching:



{[Name = n, Phone =] |
[Name = \n,
Status = <Consultant =
[Phone = \¢,...1>,...] <~ Emp}

{[Name = n,NoProj = count(SetToBag(p))] |
[Name = \n,
Status = <Regular = \r>,
Projects = \p,...] <— Emp}

The first query finds the names and telephone numbers
of all consultants, because the pattern in this compre-
hension only matches consultants. The second query re-
turns, for each regular employee, the name and number
of projects to which that employee is assigned.

4 Declarations

In composing a large query, it is useful to give names to
intermediate results or auxiliary functions. Our language
allows us to do this through declarations with which we
can define both variables and functions. Suppose we
want to find for each project, all regular employees work-
ing on that project. It adds clarity if we first define a
function emps which takes a project p, and returns the
set of the names and salaries of the regular employees
working on that project:

define emps \p=
{[Name = n,Salary = s] |
[Name = \n,
Status = <Regular = [Salary = \s, ...1>,
Projects = \ps,...] <— Emp,
p < ps}

The parameters of functions are patterns [22]. In this
example the variable p is bound in the simple pattern
\p, which is the parameter of the function emps, but it
is a constant in the pattern that occurs in p <— ps}.

Now we can answer the original query by:

define assignments =
{[Project = p, Empls = emps(p)] |
[Projects = \ps,...1 <— Emp,
\p <— ps}

Here emps is a function with input p, while assignments
is a variable. The following delta function makes more
extensive use of pattern matching. The rule is that if
the first pattern matches the input then the value of the
corresponding expression is returned; if not, the next
pattern is matched, and so on. Thus the delta function

returns 1 when its input is 0, and 0 when its input is
anything else:

define delta 0 = 1
| delta\z = 0

We can use arbitrary patterns, including records and
variants, in function declarations. Function with pat-
terns are very useful when dealing with variants. Sup-
pose we want to compute, for each project p, the to-
tal weekly pay of employees working on that project.
We start by defining a function wage that computes the
weekly income of an employee, as determined by Status:

define wage <Regular = [Salary = \s,...1> = 5/52

| wage <Consultant = [Day_Rate = \d,...1> = d*5

Using that, we define a function WageTotal which com-
putes the total weekly pay of employees attached to the
project p:

define WageTotal \p = sum{jwage(s) |

[Status = \s,
Projects = \ps,...] <— SetToBag(Emp),
p < pslt

A simple comprehension then allows us to find the wage
expenses for every project.

5 Comprehensions and the Rela-
tional Algebra

We have already seen that the general form of a com-
prehension is {e | ¢1,...,¢,} in which each ¢; is either a
generator or a condition (a boolean valued expression).
A generator has the form p <— s, where p is a pattern
and s some expression that denotes a collection. A con-
dition can be a simple condition, like v in s, in which v
and s are expressions and which holds iff v isin s, v = v/,
v < v/, a conjunction C and C’, a disjunction C' or C’,
a negation not C', or a quantifier forall (p <= s).C or
exists (p <— s).C, where p is a pattern, s is an expres-
sion denoting a collection, and C' is a condition. Note
that the quantifier exists (p <— s).C is just a shorthand
for the condition not({[L 1 | p < s,C} ={}). In
this, we could use any constant in place of the empty
record [ 1. Finally, forall (p <— s).C is a shorthand for
not(exists (p <— s).(not C)).

In the following example we compute the set All_Emps of
employees working at all projects on which John Smith is
working, while Some_Emps is the set of employees having
at least one project in common with John Smith:



define J_.S =
[FirstName = " John", LastName = " Smith"]

define P_J.S = {p |
[Name = J_S, Projects = \ps] <— Emp,

\p <— ps}

define All_Emps = {e | \e <— Emp,
forall (\p <— P_J_S).p in e.Projects}

define Some_Emps = {e¢ | \e <— Emp,
exists (\p <— P_J_S).p in e.Projects}

All operations from the relational algebra [31] can be
expressed using comprehensions:

define union(\x,\y) = {v|\z < {z,y}, \v < 2}
define difference(\x,\y) = {v | \v <~ &, not(v in y)}

define product(\x,\y) =
{[A=u,B=u/,C=v,D =77
[A=\uy,B=\ul < =,
[C=\v,D=\v'] <y}

define selectp _c(\x) = {u | \u <- z,u.A=u.C}

define project(AVC)(\X) =
{[A: ’U,CI 'U] | [A:\U,BI\U’] <— I}

In these definitions we have used (\z,\y) as shorthand
for the record pattern [#1 = \z, #2 = \yl. Thus two-
argument functions, such as union are, strictly speaking,
functions of a two-field record pattern [22].

It is also possible to express the GROUP-BY construct of
SQL using nested collections (i.e. by doing the grouping
explicitly). E.g., consider some relation R(A, B, C) with
attributes A, B and C, of which B is an integer, and
consider the following SQL query:

SELECT A, sum(B)
FROM R
GROUP-BY C

We assume that R satisfies the functional dependence
C—A (else the SQL program is not correct). This query
can be expressed with comprehensions as:

define group_by_c(\c) = {r.B|\r <~ R,7.C=¢[}

define response =

{ITA = r.A,;SB = sum(group_by_c(r.C))1 | \r <— R|}

It is then straightforward to add a generic group_by op-
erator as a shorthand for this program.

6 Comprehension Language

In this section we put the pieces together and define a
functional programming language for collection types,
which we call the comprehension language (CL). A pro-
gram is a sequence of declarations of variables and/or
functions:

define idl ...
define id2 ...

where id1, id2, ..., are variable or function identifiers.
A wvariable declaration has the form:

define z =e

where e is some expression, while a function declaration
has the form:

define f pl = el
| fp2=e2

Here pl, p2, ...are patterns, while el, €2, ..., are ex-
pressions. Recursively defined functions are not allowed
within CL.

The syntax of ezpressions depends on their type. We
consider some built-in operations associated with the
base types, and allow numeric expressions such as el +¢€2,
boolean expressions such as el and e2, and a condi-
tional if € then el else €2 where e is a boolean expres-
sion and el, e2 have the same type. Some given set of
aggregate functions and conversion functions between
the three different collection types is assumed. Thus
SetToBag(s) is an expression of type {|7[}, provided that
s is some expression of type {7}, and sum(e) is an ex-
pression of type int, when e is an expression of type
{lint[}. The more interesting syntactic constructs for ex-
pressions are associated with collection types, record and
variant types. Thus we can (1) construct a record, by

[Al = el,...,An = en] where €l,...,en are expres-
sions, and (2) extract from a record, by e.A. Also we
can (1) construct a collection, e.g. a set {el,... en},

or (2) inspect a collection, using comprehension syntax.
We can construct variants using expressions like <A = e>
and take them apart with pattern matching.

The patterns are of four kinds: (1) a variable binding \z,
(2) a constant pattern (which may an arbitrary expres-
sion, but recall that expressions do not contain variable
bindings), (3) a record pattern, possibly with trailing el-
lipsis meaning that additional fields might be present,



[Al = pl,...An = pn,...] (here the trailing “...” are
part of the syntax), where pl,... pn are pattern, and
(4) a variant pattern <A = p>, where p is a pattern.

Through examples we have given enough evidence that
the comprehension language can express everything SQL
can, provided that the same built-in functions are avail-
able. A legitimate question to ask is whether its addi-
tional features, such as nested collections, variants, and
functions, make it too powerful. Is it still possible to
compile it and execute it with a decent performance?
The answer is surprisingly yes. The language CL has
some intersting “conservativity” properties. Suppose,
first, we consider CL with no aggregate functions and no
conversion functions, and consider only those functions
that have “flat” (i.e. first-normal-form) relations as in-
put and output. Those queries are precisely the queries
that are expressible in the (standard) relational algebra.
Suppose further that we add some aggregate functions,
but still restrict the input and output to have the flat
relational types. Queries expressible in this language are
exactly those that are expressible in the relational alge-
bra with a GROUP-BY operator and the same aggregate
functions — essentially SQL. This has two implications:
first relational algebra and SQL both occur as natural
fragments of CL. Second, on those queries that have
flat relational type, we can exploit the same optimiza-
tion techniques that are used in SQL and the relational
algebra. CL deals with a much richer variety of data
structures and non-flat input and output types, and op-
timization is an interesting issue; however we know that
CL queries can be evaluated in PTIME.

As evidence for its potential of clean and efficient im-
plementation, we give in section 8 an abstract syntax
language, into which the comprehension language can
be translated.

7 Structural Recursion

It can be shown [35] that there are queries such as tran-
sitive closure that are not expressible in CL. This is
one reason for considering an extension of the compre-
hension language with a new construct called structural
recursion. On the other hand, these forms of recursions
are not ad hoc programming constructs, but natural it-
erators associated with the collection types: part of their
very definitions as mathematical objects [8]. Moreover,
as we will see, a basic restriction of these iterators has
exactly the expressive power of comprehensions.

First, we introduce some further notation: slUs2 de-
notes the union of two sets, b1Pb2 is bag sum in which
one adds the multiplicity of elements, and [1@[2 is the
result of appending lists {1 and [2. Also, another re-
lated group of operators inserts elements into collections:

ins(z, s) = {z}Us for sets, add(z, b) = {lz[}®b for bags,
and cons(z, () wef {lz[}@!I for lists,

Structural recursion comes in two different flavors, cor-
responding to two different ways of viewing sets, bags,
and lists. First we view a collection, say a bag, as be-
ing obtained from the empty bag by repeatedly adding
its elements, one by one. E.g., the bag {z1, 22, 23]} is
viewed as add(z1,add(z2,add(zs,{ [}))). This suggests
the following form of iteration to compute the sum of
the elements of a bag of numbers:

define

sum({| [}) =0
| sum(add(\z,\s)) = = + sum(s)

Even though this uses the syntax of general recursive
definitions with patterns of collection type we mean it
only as syntactic sugar, as an instance of the following
specific template:

define

h({ [}) =>e
| h(add(\z,\s)) = i(z, h(s))

In this case, we say that the function A is defined on bags
by structural recursion on the insert presentation (SRI),
with parameters e and 7 . In order for the definition to
make sense on bags, ¢ must be “commutative” | i.e. sat-
isfy the condition (1, i(za,v)) = i(2a, (21, v)), because
the decomposition of some nonempty bag as add(\z, \s)
is not unique. Similarly, we define SRI for sets and lists,
replacing add(z, s) and { [} by their counterparts for lists
and sets. In the case of sets, ¢ must be in addition “idem-
potent”, i.e. satisfy i(z,i(x,v)) = i(z,v), while for lists,
no conditions have to be imposed on i. In fact, structural
recursion over lists has been known under the name fold
or reduce in textbooks of functional programming [1].

SRIis a specific program template. We stress once again
that none of the languages considered in this paper al-
lows general recursion, nor do they allow general pattern
matching on collection types. In contrast with general
recursion, structural recursion always terminates.

In the example of the function sum, the constant e is 0,
while the function 7 is i(z, v) = +v, so it is commutative
but not idempotent: therefore sum is correctly defined on
bags, and could be defined on lists as well in the same
way, but not on sets. A trick is necessary to compute
the sum of elements of some set through structural re-
cursion, namely to compute successive pairs (s, sum(s))
using structural recursion. We leave the details as an
exercise.

For a more elaborate example, consider the Components
relation, of type:



Components : {[Part:string, Subpart:string] }

But Components only gives us the direct subparts of each
part. To find the indirect subparts, we apply the fol-
lowing function computing the transitive and reflexive
closure, trc:

define All_Names =
union({p.Part | \p <— Components},
{p.Subpart | \p <— Components})

define compose(sl, s2) =
{[Part = p,Subpart = 7] |
[Part = \p, Subpart = \¢q] < s1,
[Part = ¢, Subpart = \r] < s2}

define tre({ }) =
{[Part = p,SubPart = p] | \p <— All_Names}
| tre(ins(\z,\s)) =

tre(s)Ucompose(tre(s), compose({x}, tre(s)))

For the second form of structural recursion we view a
collection, say a bag, as a sum of smaller bags, these
as sums of even smaller bags, and so on, until singleton
bags, or the empty bag is reached. This suggests a dif-
ferent kind of recursion for adding up the elements of a
bag of numbers:

define

sum({{ }) =0

| sum({\e]}) ==
| sum(\sl®\s2)=sum(sl) + sum(s2)

In a similar fashion, we can define the function reverse
on lists:

define

reverse({| [}) =1 [}
| reverse({[\e[}) ={lz[}

| reverse(\s1@\s2)=reverse(s2)Qreverse(sl)

In its general form, the structural recursion over the
union presentation, SRU, allows us to define a function
h, with the following template:

define

h({ 1) e
| A({\zl})  =f(2)
| h(\sl®\s2) =-u(h(sl), h(s2))

Again, some conditions have to be imposed on e and
on the functions u. For lists we have to impose (1)
identity: u(v,e) = u(e,v) = v, and (2) associativity:
u(vy, u(ve,v3)) = u(u(vy,v2),vs). For bags, we have
to impose, in addition, (3) commutativity: u(vy,vs) =

u(vz, v1), while for sets, we also have to impose (4) idem-
potence: u(v,v) = v.

SRI is naturally associated with sequential processing of
collections: the elements of some collection s are pro-
cessed one by one. In contrast, SRU is naturally as-
sociated with the parallel processing of collections, in a
divide and conquer manner: to compute f(s), one di-
vides s into two components s1@®s2, computes f(s1) and
f(s2) in parallel and independently, then compose the
two results.

The structural recursion over the insert presentation SR/
is at least as expressive as SRU. Indeed, consider the
definition of the function h above using SRU. We can
define the same function using SRI:

h({ ) =>e
| h(add(\z,\s)) =u(f(z), h(s))

define

The side conditions imposed on the functions used in
both SRI and SRU are annoying. As the functions 2
or u become more complicated, it becomes impossible
for a compiler to check them: in fact, checking them is
undecidable [8, 28]. However, there are important special
cases of SRU where these equations are automatically
satisfied. Namely whene = {{ f,u=® (ore={ },u=
U for sets, and e = {| [}, u = @ for lists). Then, the
more restrictive form of structural recursion is given by
the following template:

h({ 1) ={ I
| A({\z}) = f(2)
| A(\s1 & \s2) =h(sl) & h(s2)

define

In this restricted form, the structural recursion is always
well defined. Since in this definition the only function
we are able to chose is f, we abbreviate the function
h with ext(f). Its meaning is ext(f)({|z1,...,2z.[}) =
fz1)® ... ®f(z,) (similarly for sets and lists).

8 An Abstract Syntax Language

We are now going to define a language that stands in
the same relation to comprehension syntax as relational
calculus does to practical relation query languages. The
salient point is that this language is built around the
restricted form of structural recursion ext defined in sec-
tion 7 and that, as we will show below, ext is equivalent
to comprehensions (this connection was first observed by
Wadler [32]). Namely, in one direction we have:

ext(f)(s) = {v | \z < s,\v < f(z)[}

Conversely, ext can be used to “compile away” compre-
hension syntax by the following simple rules:



1. {e|\z < S,G} = ext(f)S, where f is a function

defined by f(\z) = {e | G}
2. {e | C,G} % if C then {E | G} else { }, when C is

a condition.

In this, G stands for the remaining components (genera-
tors and conditions) of the comprehension. By repeated
application of these rules we can remove successive com-
ponents of the comprehension until we are left with the
simple comprehension {e | }, which is trivially equivalent

to {e}.

To present this abstract syntax language built around
ext we make some simplifications: we will ignore vari-
ant types and collection types other than sets. While
they are very important as data structures and they can
easily be added to this presentation, their addition does
not fundamentally affect the language. Hence, in what
follows, “object-types” are the types of structures that
can be built from the base types b using record and set
construction:

ro=b| U im,. .l | {7}

where b stands for the built-in types. The language de-
fines two different syntactic categories: terms e, having
some type 7 as defined above, and functions f, having
some type o — 7, where o, T are types as defined above.
This constrains our functions to be first order, i.e. they
cannot take functions as inputs or return functions as
results.

Now to the language. We assume that all variables
are tagged with their type; that is 7 is a variable z
whose type is 7. The following typing rules express
both the syntax and the properly typed expressions for
the language. For example read the rule [REC-1] as “If
€1 ...e, are expressions of the language with respective
types 71 ...7, then we can form the expression [I; =

€1,...,ln = €en] whose typeis [y :7m,..., 0, : 7,17
[VAR] -
[coNsT] .
€1:TL ... €n:Tn
RECT T =T L
[REG-E] e:[...l:7...]
el:t

€1 :T,...,6n T
SET-1
[ ] €1,.-,en}: {7}
[SET-E] fin —{r}

ext(f) : {7} — {72}

€: Ty

[FUN-1] Az"le T — T
fimm—m e:m

FUN-E

[ ] fle) i m
€1:0 €3:0

EQUAL

[EQUAL] G = (01]

A few comments on this language:

1. We have used lambda terms (anonymous function
definition). Read Az".e as “that function of 27
whose value is €”. In general e will be an expression
involving z7.

2. We have given an explicitly typed language. How-
ever polymorphic type inference is possible [22, 24,
26, 10], which justifies our presentation of a practi-
cal language without type annotations.

3. The boolean values true and false are represented by
{L 1} and {} respectively, where [ ] is the empty
record. These are the two values of type {[1}. This
simplifies translation from comprehensions, because
a condition C'in a comprehension can be replaced by
\z <— C where z is a new variable. Thus conditions
are generators.

We claim that CL can be effectively translated into this
abstract syntax. A full justification of this fact is beyond
the scope of this paper. However, we have seen that com-
prehensions can be translated into expressions involving
ext, the remaining translations (e.g. the removal of pat-
terns) is not hard. As an example, union at any type is
the function (omitting type annotations):

Az.ext(Az.z){x.#1, v.#2}

That is, the union operation works on a tuple — a record
with two fields labelled #1 and #2 — by placing these
fields in a set and applying ext of the identity function
to this set.

The abstract syntax language has been the subject of
several studies (see the discussion in section 9) and is
now well understood. This makes it extremely useful in
understanding both the expressive power and optimiza-
tion strategies for comprehension syntax.

One might ask if there is a variable-free presentation of
comprehension syntax — just as the relational algebra
serves as a variable-free presentation of relational calcu-
lus. In fact there is one, but it is an algebra of functions
on complex objects rather than on the objects them-
selves; and it is an algebra that is well known to math-
ematicians as a (categorical) monad with products and
sums [32, 9]. It was this construct that suggested the



abstract syntax language to the authors. Category the-
ory has been a useful tool in generalizing mathematical
structures, and it is unsurprising that it should be useful
in generalizing database structures.

9 Conclusions

Let us try to summarize our results by reversing, more or
less, the development of this paper. Structural recursion
on sets; bags and lists together with the canonical opera-
tions on records and variants provide us with a powerful
programming paradigm for database structures. By us-
ing a natural, but restricted form of structural recursion
we obtain a language that is equivalent to comprehen-
sion syntax; in fact it is a language into which one can
readily compile comprehension syntax. This language
has an associated functional algebra. Comprehension
syntax itself can be further restricted by constraining
the input and output types to be (flat) relational types
(sets of records). This language expresses precisely those
queries that are definable in the relational algebra. By
adding fixed set of aggregate operations such as sum,
count, max to comprehension syntax and again restrict-
ing it to those queries whose input and output are flat
relations, we obtain a “rational reconstruction” of SQL.
Perhaps the most surprising observation is that these
well-known database languages are natural fragments of
a simple and powerful functional language; and there are
many more connections with known database languages
that are beyond the scope of this paper.

For further reading on this subject, the idea of using
structural recursion for database languages was sug-
gested in [4, 24, 7], and the properties of well-defined
programs using structural recursion were examined in
[8]. Comprehension syntax and its associated algebra
was studied in [32, 33, 9] and its connection with struc-
tural recursion and complex-object algebras was studied
in [9]. That comprehension syntax at relational types
gives us a language equivalent to the relational algebra
was shown in [25, 35], even if nesting is used in interme-
diate results. Another result of this kind [27] shows that
by adding a bounded fixed-point construct to compre-
hension syntax gives us, again at relational types, infla-
tionary datalog, and in [19, 21] it is shown that nesting at
intermediate types does not add expressiveness in pres-
ence of aggregate functions and certain generic queries.
Other results on expressive power are to be found in
[19, 20, 21]. Our approach can be used for different col-
lections: languages for or-sets were studied in [17, 13]
and bag languages in [18]. [29] shows that transitive
closure, which is efficiently expressible using structural
recursion, has a necessarily exponential implementation
in complex-object algebra [3]. [14] show how to encode

related database languages in the simply-typed lambda-
calculus. The possibility of using comprehension syntax
for arrays is examined in [11]. Connections with parallel
complexity classes are studied in [28].
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