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as generalizations of the relational data model. The second is to try to draw out theconnection between data models and data types, something that is crucial if we areto achieve a proper integration of databases [4, 5, 39] and programming languages.The main focus of this paper is the �rst of these. There are a number of attemptsto generalize the relational data model beyond �rst-normal-form relations [17, 36, 32];there are also numerous formulations of other data models [1, 18, 7, 19] that at �rstsight appear to have little to do with relations. We shall see that by exploiting thebasic ideas of domain theory, well known in the study of semantics of programminglanguages, we can obtain generalizations of many of the basic results of relationaldatabases in a way that has very little to do with the details of the data structuresthat are used to de�ne them; and which allows the application of relational databaseprinciples to a much wider range of data models. Although some observations havebeen made [34, 14] that suggest a connection between database and programminglanguage semantics, there appears to have been no attempt directly to characterizerelational databases in the appropriate semantic domains.To the hardened �rst-normal-form relational database theorist this paper o�erslittle more than alternative, and perhaps simpler, derivations of some existing results.However, given the recent activity in the study of \higher order" relations, whichattempts to apply the basic results of relational databases to other structures, it isinteresting to ask how far this work can be pushed. What are the properties of thedata model that allow us to de�ne relational operators, functional dependencies etc.?In doing this, we shall �nd it useful to produce a simple denotational semantics forrelations and other structures, which is an extension to the semantics for missingvalues proposed by Lipski [23]. The idea is that these structures denote sets of valuesin some space which we may think of as the \real world". One of the advantages ofour approach is that it allows us to provide a denotational semantics for structuressuch as sets of attribute names, which usually receive an operational treatment. Sucha semantics will, we hope, ultimately be useful if we are ever to achieve our secondgoal of achieving a healthy marriage of databases and programming languages.The organization of this paper is as follows. In section 2 we describe the propertiesof the underlying domains that we shall need. Section 3 then shows how powerdo-2



main orderings (orderings on sets of values) can be used to characterize the variousjoins that are discussed in relational algebra. In section 4, in trying to characterizeprojection, we introduce the notion of schemes, which generalize relational schemes(sets of column names). Schemes enjoy some nice properties with respect to power-domain orderings and allow us to characterize functional dependencies and universalrelations, which is done in the following sections. Section 7 concludes by showinghow these ideas can be applied to various extensions of relational databases includingtyped relations, relations with null values and various forms of higher order relations;it also suggests that there may be some limitations to what one can do with non�rst-normal-form relations. The reader who is more interested in data types andstructures rather than some of the more esoteric areas of database theory may wishto skip much of sections 5 and 6, and turn directly to section 7.2 Orderings and DomainsThe idea that is fundamental in denotational semantics is that expressions denotevalues, and that the domain of values is partially ordered. In the same way we canthink of database structures as descriptions and that these descriptions are partiallyordered by how well they describe the real world. Without putting any particularstructure on the real world, we can de�ne the meaning [[d]] of a description d as theset of all real-world objects described by d. We can then say that a description d1 isbetter than d2, d1 w d2, if d1 describes a subset of the real-world objects describedby d2, i.e. [[d1]] � [[d2]].An example of such an ordering is to be found in at record structures. A atrecord is a partial function from a set L of labels to an unordered set V of values. Ifr1 and r2 are two such functions, then r1 w r2 if the graph of r1 contains the graphof r2. For example, fName)0J. Doe 0;Dept)0Sales 0;O�ce)33gw fName)0J. Doe 0;Dept)0Sales 0gUsing the term \real world" to describe the semantics of such records is, of course,contentious. It is better to think of these records as partial descriptions (or approx-3



imations) to elements in some space or \universe" of total descriptions, in this caselarge { possibly in�nite { record structures. Suppose that this universe were thefunction space L ! V where L = fName;Dept ;O�ceg, we would then have[[fName)0J. Doe 0;Dept)0Sales 0g]] =ffName)0J. Doe 0;Dept)0Sales 0;O�ce) vg j v 2 VgNote that this formulation of the denotation of a record with incomplete informa-tion corresponds with that given in [23], and as it will shortly appear, this space ofat records provides the basis for the relational model; however there are a numberof other orderings that we shall examine later in this paper. These include Bancil-hon's complex objects [7], orderings on tree structures that give rise to higher orderrelations [17, 1, 36, 35, 32], the feature structures in uni�cation-based grammar for-malisms (see [43] for a survey), �nite state automata [37],  -terms [2]. In this catalogwe should also include Scott's aptly-named \information systems" { consistent, de-ductively closed sets of predicates [42]. In all of these it is possible to describe certaingeneralizations of relational operations.We shall require somewhat more structure on our space D of partial descriptionsthan being partially ordered. The most important property is that it is boundedcomplete:1. any non-empty subset S of D has a greatest lower bound uS,In addition we shall also make two further assumptions that are common in denota-tional semantics [38]:2. any directed subset S of D has a least upper bound tS,3. the set K(D) of compact elements in D forms a countable basis for D.Partially ordered sets (D;v) with these properties are widely used in the semanticsof programming languages, and are often called Scott domains [42]. Throughout thispaper we shall refer to them as domains. We shall also use the notation s1 t s2 ands1 u s2 for tfs1; s2g and ufs1; s2g respectively.4



It is an immediate consequence of the �rst condition that any subset of S ofD that is bounded above has a least upper bound tS and also that that D has abottom element, ?D. The second condition, when taken with the axiom of choice,ensures that every member of D is bounded above by some member of Dmax, the setof maximal elements of D. We shall therefore use Dmax as the universe of completedescriptions; and the de�nition of [[d]] is then simply fx 2 Dmax j D v xg = "d\Dmax.Apart from some remarks at the end of the paper, we shall not make any use of thethird condition; however we should note that in any practical database context thiscondition will surely be satis�ed.There is one extra condition which we shall need when we introduce schemesbelow:4. A domain D is distributive if every principal ideal #x is a distributive lattice.Note that the space of at record structures is a distributive domain. Even more istrue of this domain: each principal ideal is a complete atomic boolean algebra, thatis, a powerset. We shall not need to assume this in general, however.We shall see that there are a number of ways to construct domains that representthe kinds of data structures we use in databases; particularly simple are the atdomains. Given a set of atomic values V, a at domain V? of V is obtained by addingbottom element? to V and ordering them as x v y if and only if x = y or x = ?. Thisdomain is a domain of atomic descriptions; an element v 2 V? is either a completedescription (v 6= ?) with the meaning fvg or the non-informative description ? withthe meaning V. The bottom element introduced in V? can be interpreted as a nullvalue representing \unknown values". There are number of other approaches to nullvalues, some of them distinguish \inappropriate" and \unknown" values. Such anapproach is entirely consistent with what we develop here and can be modeled bydomains that are more complicated than V?. Later we shall comment more on nullvalues.We can now describe more precisely the domain of labeled records that we discussedin the introduction. Given a countable set of labels L and a domain D, a domain oflabeled record L ! D over D is a set of total functions from L to D with the ordering5



de�ned as r1 v r2 if and only if for all l 2 L, r1(l) v r2(l). This can be thought ofas a domain of descriptions by attributes. This ordering represents the fact that r2is a better description that r1 if r2 has better descriptions than r1 in all attributes.The minimal element ?L!D in L ! D is the constant function ?D and if S is a setof functions, then uS is the function r such that for all l, r(l) = ufs(l) j s 2 Sg, andtS is the function r0 such that for all l; r0(l) = tfs(l) j s 2 Sg provided that all theleast upper bounds exist.The space of at records is a special case of a domain of records where D is aat domain V?. Indeed, the space of partial functions from L to V is isomorphic toL ! V?. To make our notation for records precise, fl1 ) d1; � � � ; ln ) dng denotesan element r in L ! D such that r(li) = di for 1 � i � n otherwise r(l) = ?D. Forexample, in L ! V?, ifr1 = fEmp#)12345;Name)0J. Doe 0gand r2 = fEmp#)12345;Sal)20000gthen r1 u r2 = fEmp#)12345gand r1 t r2 = fEmp#)12345;Name)0J. Doe 0;Sal)20000g:However fEmp#)12345;Name)0J. Doe 0g t fName)0K. Smith 0g does not exist. Anadvantage of treating the space of at records as L ! V? is that many resultsconcerning at records can be regarded as special cases of more general records andare readily applied to L ! D for a more complicated domain D.As an example consider a database which lists the values of physical constants asthey have been determined in particular experiments. Set up as a relational database,a typical entry might contain the following �elds (among others): author, publication,name of constant, lower bound, upper bound, dimension. Being forced to express ev-ery record in �rst-normal-form has two obvious disadvantages. First, it does not6



Name Dept Sal O�ce0K. Smith 0 0Mktg 0 30,000 2750J. Doe 0 0Sales 0 20,000 147ffName)0J. Doe 0; Dept)0Sales 0; Sal)20,000; O�ce)147g,fName)0K. Smith 0;Dept)0Mktg 0; Sal)30,000 O�ce)275gg .Figure 1: A relation and its representation as a set of recordsreect the property that the intervals [lower bound, upper bound] are partially or-dered, smaller intervals being better approximations, and, second, there is no wayhow the obvious dependency (name of constant) [lower bound, upper bound]) couldbe expressed in ordinary relational algebra. Our formalism as developed below willallow to state such a dependency and will provide a simple formula for checking theconsistency of the database. (An inconsistency is reached in our example if assertedintervals for the same constant do not overlap.)3 Powerdomains and Relational AlgebraDatabases usually contain sets of values which, from our foregoing discussion, wewould expect to describe sets of objects in the real world. If we interpret data-base values as elements in a domain, then database sets, such as relations, must beintepreted as sets of elements in that domain. Indeed, we can interpret a �rst-normal-form relation r of a relational scheme (a set of attribute names) R in the relationalmodel as a set S of elements in the domain of at records L ! V? such that for anyd 2 S; fl j d(l) 6= ?g = R. Later in this section, we shall see that this interpretation isfaithful to various relational operations and that the domain of at records, therefore,serves as a domain of the relational model. This is how relations are described in lan-guages such as Pascal/R [39], and extensions of this representation are to be found inTaxis [8] and Galileo [3]. Figure 1 shows a very simple relation and its representationas a set of at records. 7



A Ba ba ?(i) A B Ca b ?a ? c(ii)Figure 2: Some problematic relationsIf we consider these sets of elements in a domain as sets of descriptions then wewould like to order the sets themselves by how good they describe sets of real-worldobjects, but how? The study of the semantics of non-determinism, which attempts todescribe the behavior of sets of processes, provides us with some answers. However,we must �rst decide whether we are prepared to work arbitrary sets, or whether somerestrictions are needed.Given a domain (D;v), a set S � D is a co-chain if no member of S is greaterthan any other member of S, i.e. 8x; y 2 S:x w y implies x = y. If S � D has theproperty that any two members of S are inconsistent, i.e. they do not have a de�nedjoin, then we shall call S independent. Note that an independent set is necessarily aco-chain.First-normal-form relations are independent sets. If, however, we admit null valuesin relations by relaxing the condition fl j d(l) 6= ?g = R of �rst-normal-relation tofl j d(l) 6= ?g � R, we have to decide whether structures such as (i) or (ii) of �gure 2are valid relations. (i) fails to be a co-chain because fA)ag v fA)a; B)bg, and(ii) fails to be independent because fA)a; B)bg t fA)a; C)cg is de�ned.In what follows we shall assume that database sets are �nite co-chains and we shalluse the words �nite co-chain and relation interchangeably. Using our simple notionof database semantics, we might justify this assumption by saying that if d1 and d2are descriptions with d2 a better description than d1 then d1 is redundant and can beeliminated from the database. This is equivalent to saying that for all pairs d1; d2 inS neither [[d1]] � [[d2]] nor [[d1]] � [[d2]]. Whether or not this justi�cation is reasonabledepends on the intended semantics of the operations on co-chains which, in turn,depends on the circumstances in which they are used. See [28] for a more detailed8



R1 Dept O�ce0Mktg 0 2750Sales 0 147 R2 Name Dept O�ce0K. Smith 0 0Mktg 0 2750L. Jones 0 0Mktg 0 275R3 Name Dept O�ce0K. Smith 0 0Mktg 0 2750L. Jones 0 0Mktg 0 2750J. Doe 0 0Sales 0 1470M. Blake 0 0Sales 0 147R1 v] R2 R2 v[ R3 R1 v\ R3Figure 3: Examples of the three orderingsexamination of the semantics of relational operations. Independence means that notwo descriptions in S can describe the same real-world object, i.e. [[d1]] \ [[d2]] = ;.We shall need to discuss independent sets when we generalize the notion of schemes.We shall use CD to refer to the set of �nite co-chains in D and ID for the set of �niteindependent sets.To return to the problem of �nding orderings on sets the study of the semanticsof non-determinism provides us with three orderings1:A v[ B if 8a 2 A9b 2 B:a v bA v] B if 8b 2 B9a 2 A:a v bA v\ B if A v[ B and A v] Brespectively called the Hoare, Smyth, and Egli-Milner ordering. Figure 3 shows ex-amples of these orderings in �rst-normal-form relations.For arbitrary sets, these are not orderings; they are pre-orderings and orderingsare derived by taking equivalence classes. However, in each case there are canonicalrepresentatives for each equivalence class:Lemma 1 Let P be a partial order. Then the following is true for all subsets A andB of P .1This melodious notation was suggested to us by Carl Gunter.9



(i) A =[ #A.(ii) A v[ B , #A � #B.(iii) A =] "A.(iv) A v] B , #A � "B.(v) A =\ "A \ #A. 2So in reasoning about these orderings it is helpful to think in terms of lower sets,upper sets, and order-convex sets, respectively. We said before that we want to modeldatabase sets (or relations) as �nite co-chains in our domains. Since databases tend toget bigger and bigger during their existence one might think that the Hoare orderingis the most natural for them. However, viewed as approximations of sets of real worldobjects it is the Smyth ordering which corresponds to this semantics. We regard itas a strength of our approach that it allows to formalize di�erent intuitions aboutdatabases. The mathematics is nice in each case:Lemma 2 If D is a domain then (CD;v[) and (CD;v]) are distributive lattices withbottom element. (CD;v]) also has a top element, namely, the empty co-chain.Proof. Given two �nite co-chains S1 and S2, it is clear how the sup and inf arefound for each of the two orderings:S1t[S2 = themaximal elements of #S1[#S2 = the maximal elements of S1[S2.S1u[S2 = the maximal elements of #S1\#S2 � S1uS2 = fs1us2 j s1 2 S1; s2 2S2g.S1 t] S2 = the minimal elements of "S1 \ "S2 � S1 u S2.S1 u] S2 = the minimal elements of "S1 [ "S2 � S1 [ S2.Distributivity follows because we can embed CD in the distributive lattice of all lower(upper) sets in D. 2 10



We wish to remark that these lattices are not complete: Neither (CD;v[) nor(CD;v]) contain sups for directed subsets. If we want completeness then we have totake certain computability considerations into account which translate into topologi-cal restrictions on in�nite subsets of a domain. We have no need to pursue this themefurther but note that sup and inf in both orderings are de�ned for any set of subsetsof a domain. They may not be representable by their subset of minimal or maximalelements, however.It the space of �nite co-chains with the three orderings in which we representvarious operations on database sets, some of which will emerge as generalizations ofrelational operations. We also mention that these ordered spaces are not the sameas powerdomains in the programming language literature [33, 45], where the orderedspaces of sets are constructed in such a way that they are themselves domains. Truepowerdomain constructions are not needed until we discuss higher-order relations,where a tuple can itself contain a set as an attribute value. We shall discuss how ourpresentation of database sets can also contain these higher-order values in section 7,but for the time being we shall exploit the representation of database sets in the spaceof �nite co-chains.There is an immediate connection with relational algebra that indicates the im-portance of these orderings.Theorem 1 Interpreting relations as �nite co-chains A;B in L ! V?, At]B is thenatural join of A and B. If a least upper bound for A;B exists in v\ then it is alossless join.This statement is actually more of a de�nition than a result. We can only prove itin the case of �rst-normal-form relations, for it is only then that we have acceptedde�nitions for the various joins. Given relation schemes (sets of attribute names)R1; R2 � L and relation instances r1; r2, let r01; r02 and r03 be the interpretations ofr1; r2 and r1 ./ r2 in L ! V?. Suppose t 2 r03, then by the conventional de�nition ofnatural join, there are t1 2 r01 such that t(l) = t1(l) for all l 2 R1 and t2 2 r02 suchthat t(l) = t2(l) for all l 2 R2. By the de�nition of the interpretation, t1(l) 6= ? i�l 2 R1; t2(l) 6= ? i� l 2 R2. This implies t1 v t and t2 v t and clearly t is minimal11



r1 = f fName) 0J. Doe 0 ;Status)f Student-status)0Graduate 0ggfName) 0M. Blake 0;Status)f Student-status)0Undergraduate 0gggr2 = f fName)0J. Doe 0; Status)f Employee-status)0TA0ggfName)0L. Jones 0; Status)f Employee-status)0Facalty 0gggr1 t] r2= f fName)0J. Doe 0;Status)f Student-status)0Graduate 0;Employee-status)0TA0gggFigure 4: Natural join in \nested" recordswith respect to this property. Therefore t 2 r01 t] r02. Conversely suppose t 2 r01 t] r02.There must exist t1 2 r1; t2 2 r2 such that t1 v t and t2 v t. Since V? is at thisimplies that t(l1) = t1(l1) when l1 2 R1 and t(l2) = t2(l2) when l2 2 R2. By theminimality of t with respect to v, t(l) = ? i� l 62 R1 [R2. Hence t 2 r03. See [28] fora discussion of the semantics of lossless join and the proof of the second part of thisresult. 2The importance of this result is that it provides a generalization of natural jointo sets of values in arbitrary domains. Figure 4 shows an example of natural join innested records.A more intuitive way of thinking of these results is to view the natural join asthe appropriate operation when two sets of database descriptions \over-approximate"some desired set in the real world. Suppose, for example, that we want to �nd theset of TEACHING-FELLOWS, but we only have available database sets describingEMPLOYEES and STUDENTS. Both of these over-approximate our desired set (anyteaching fellow is both an employee and a student) and so the appropriate operationto achieve a better approximation to TEACHING FELLOWS is to take the naturaljoin of EMPLOYEES and STUDENTS.The partial ordering v\ does not give rise to least upper bounds when appliedto co-chains. However, if two database sets have a least upper bound in v\, thenany real world set that is \exactly" described by (i.e. above in v\) the two databasesets is also \exactly" described by the least upper bound. Since a least upper boundin v\ is also a least upper bound in v], if t\ exists then the natural join is thelossless join. Traditionally the lossless join condition is stated operationally, in terms12



of projections; from this we see that it has a simple denotational interpretation.We might also ask whether t[ corresponds to anything in the relational algebra.S1t[ S2 is simply the set of maximal elements in S1[S2 and is awkward to deal within relational algebra as it generally requires the introduction of null values. Howeverwe shall make some use of this operator later. If we are prepared to introduce nullvalues, then t[ is what [35] calls the \null union", and S1 t[ (S1 t] S2) t[ S2 is whatis sometimes called the outer join. Merret [26] describes this operation and also the\left-wing" and \right-wing" operations, which are S1t[ (S1t]S2) and (S1t]S2)t[S2respectively.In some cases these operations preserve independence:Lemma 3 If S1 and S2 are independent, so are S1 t] S2, S1 t[ (S1 t] S2) t[ S2,S1 t[ (S1 t] S2) and (S1 t] S2) t[ S2. 2However, the other operators (u[;u] and t[) do not, in general, carry independentsets into independent sets.We should also note that the co-chain S1 u] S2 is the set of minimal elements ofS1 [ S2. When S1 [ S2 is a co-chain, S1 u] S2 = S1 t[ S2. The operator u[ is, as weshall see in the next section, a general form of projection.In order to conform to traditional notation, we shall generally replace the symbolt] by what is conventionally used in databases, ./.4 ProjectionThe main point of the previous section is that we are able to de�ne various joinswithout reference to the special structure of relations. In particular, we do not requireany notion of sets of column names (or schemes as they are called in the relationaldatabase literature [24, 46]) in order to characterize natural join. Projection, however,makes explicit mention of a scheme. For example fName, O�ceg is a scheme andthe projection �fName, O�ceg(R) where R is the relation shown in Figure 1 isffName)0J. Doe 0;O�ce)147g,fName)0K. Smith 0; O�ce)275gg .13



If, therefore, we are to carry further the idea of casting relational algebra in the theoryof domains, we need to generalize the notion of relational schemes and projection.We have essentially two options: the �rst is to look at what properties are desiredof the projection function itself; the second is to identify schemes with some set ofelements in the underlying domain D. The second approach is motivated by theidea that a set of column names gives rise to a smaller universe of descriptions. Forexample, we might say that the relational scheme fName, O�ceg denotes the set ofall descriptions (functions) of the form ffName) v, O�ce) wg j v;w 2 Vg. Thecourse we shall follow is to look at both possibilities with the goal of �nding somecharacterization that is natural in the sense that it admits some natural algebra overthe set of schemes. This is essential if we are to generalize ideas about functionaldependencies which are usually cast in the boolean algebra of sets. However, theauthors should admit here that the generalization of schemes that we are going toprovide, while it arises from extremely natural conditions and captures a numberof relational database constructs, may require further re�nement if it is to be usedfor all of relational database theory. We do not know, for example, whether we canrepresent multi-valued dependencies using our characterization.We start from the observation that in relational databases we can say what pro-jection means for a single tuple. It is simply the function that throws away certain�elds from a tuple or record. More generally, we can think of projection as a functionp 2 D ! D that is decreasing, idempotent and monotone, i.e. for all x; y 2 D,p(x) v x, p(p(x)) = p(x), and p(x) v p(y) whenever x v y. Computability of a pro-jection is reected in the property of preserving directed sups: p(Fi2I xi) = Fi2I p(xi).Such functions are also known as projections in domain theory, and it is clear that a(relational) projection onto a set of column names satis�es these conditions.Projections are completely determined by their image:Lemma 4 Let D be a domain and p; p0 be projections on D.(i) p(x) = Ffy j p(y) = y v xg.(ii) p v p0 , im(p) � im(p0), p � p0 = p0 � p = p.14



(iii) p preserves inf's of nonempty sets.(iv) im(p) is closed under existing sup's. 2We feel that arbitrary projections as de�ned above do have a signi�cance in mod-eling databases domain theoretically. In this paper, however, we shall concentrate ona more restricted notion of projection which we shall develop in two steps.In the case of a relational domain L ! V?, restricting the set of labels to somesubset L of L gives rise to a downward closed subset of L ! V?, namely the set ofall functions s for which s(l) = ? if l 62 L.De�nition. Let D be a domain. A strong ideal in D is a downward closed subsetA of D which is closed under existing joins. By pA we denote the unique projectionon D with image A.Projections onto strong ideals enjoy several desirable properties:Lemma 5 (i) Let A be a strong ideal in a domain D and let y be an element of Aabove pA(x) for some x 2 D. Then pA(x) = x u y.(ii) If D is distributive then pA preserves all existing sup's.Proof. (i) By de�nition we have pA(x) v x and pA(x) v y so pA(x) v x u y. Onthe other hand, x u y is an element of A below x and pA(x) is the sup of all thoseelements, hence x u y v pA(x).(ii) Suppose x t y exists. Then pA(x) t pA(y) = (x u pA(x t y)) t (y u pA(x t y))(by (i)) = pA(xt y)u (xt y) (distributivity) = pA(xt y). The sup of any set is equalto the directed sup of its �nite subsets. Our projection preserves both kinds of sups,hence arbitrary sups. 2The intersection of an arbitrary set of strong ideals is again a strong ideal. Thisimmediately gives us the followingTheorem 2 The set (SID;�) of strong ideals on a (distributive) domain D is a(distributive) algebraic lattice. 2 15



The second condition on projections we want to consider here is also easily mo-tivated by the example of at record structures L ! V?. Suppose we project ontorecords with labels from some subset L of L and we �nd that a record s is projectedonto pL(s) below some s0 2 L! V?. This means that pL(s) contains null values forsome labels from L and can be updated using the corresponding entries of s0. It isclear, then, that s itself can be updated, resulting in the record sts0. We incorporatethis property in our model as follows.De�nition. A strong ideal A in a domain D satis�es the slide condition if 8x 2D:8y 2 A:(pA(x) v y) xt y exists). A co-chain S in D is a scheme if #S is a strongideal which satis�es the slide condition. The corresponding projection we denote bypS (instead of p#S).We �rst note that projections de�ned by schemes �t in with our proposed seman-tics:Theorem 3 A strong ideal A on a domain D is generated by a scheme if and onlyif 8x 2 D:pA[[x]]D = [[pA(x)]]A.Proof. \)" Let x be maximal in D and suppose pA(x) is not maximal in A,that is, pA(x) < y 2 A. By the slide condition, x t y exists and since x is maximal,xt y = x and pA(x) w y. Contradiction. Given any x 2 D and any y 2 [[pA(x)]]A, thesup of x and y exists and is below some maximal element z of D. Clearly, pA(z) = yby the maximality of y.\(" Given x 2 D and y 2 A, y w pA(x), let y0 be an element of Amax above y.This element must be in the image of pA[[x]]D, that is, there exists an element z ofDmax\"x which is mapped onto y0. Therefore x and y are bounded and xty exists. 2In section 7.1 we shall further substantiate our claim that schemes properly gener-alize the notion of schemes in relational database theory by showing that schemes inthe domain L ! V?of at record structures correspond exactly to the subsets of L.Lemma 6 Let D be distributive domain.(i) If A and B are strong ideals generated by schemes then so is A t B = fa t b ja 2 A; b 2 Bg. 16



(ii) If A and B are strong ideals generated by schemes then so is A \B.(iii) If (Ai)i2I is any set of strong ideals generated by schemes then so is Fi2I Ai =fFi2I ai j ai 2 Aig.(iv) If A;B are schemes then so is A tB = fa t b j a 2 A; b 2 Bg.(v) If (AI)i2I is any set of schemes then so is Fi2I Ai = fFi2I ai j ai 2 Aig.Proof. (i) A t B is downward closed: x v a t b implies x = x u (a t b) =(xua)t(xub) and xua is in A and xub is in B. IfM is a bounded subset of AtB thenMA = fa 2 A j 9b 2 B:atb 2Mg andMB = fb 2 B j 9a 2 A:atb 2Mg are boundedand FMA = mA 2 A and FMB = mB 2 B. Hence FM = mA tmB is in A tB. Asfor the slide condition, assume that x is an element of D and that pAtB(x) is belowsome atb. Because pA(atb) w a and pB(atb) w b we may assume that a = pA(atb)and b = pB(a t b). We can then calculate: pA(x) = pA(pAtB(x)) v pA(a t b) = a andsimilarly pB(x) v b. Since A satis�es the slide condition, the sup of a and x existsand by Lemma 5 pB(a t x) = pB(a) t pB(x) v pB(a t b) t b = b. Using the slidecondition for B we �nd that the sup of a t x and b must exist. This proves the slidecondition for A tB.(ii) A u B is clearly a strong ideal. The slide condition is seen to hold by thefollowing argument. If pAuB(x) is below y 2 A u B then because of pAuB = pA � pB,pA maps pB(x) below y. Hence y t pB(x) exists and is an element of B. Using theslide condition for B we see that y t x exists.(iii) If I is empty then Fi2I Ai equals f?g which is a scheme. If I is in�nite thenwe may think of I as the directed union of its �nite subsets. From part (i) we alreadyknow how to construct the sup of a �nite set of strong ideals, so it remains to considerdirected collections. Assume, therefore, that I is directed and that Ai � Aj wheneveri � j. Given an element x of A = Fi2I Ai �rst note that x = Fi2I pAi (x) and thatthis join is directed. It is clear that A is a strong ideal. Let X be any element of Dand let y 2 A be above pA(x). Then for each i 2 I, pAi (y) is above pAi(pA(x)). Sothe sup zi = pAi(y) t x exists and the directed sup of all zi gives us the sup of y andx. Therefore A satis�es the slide condition.17
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Figure 5: A domain where the join of two schemes cannot be calculated pointwise.(iv) By (i) it remains to show that A t B is an independent set. Indeed, if x isabove a1 t b1 and a2 t b2 it follows that a1 = a2 and b1 = b2 because both A and Bare independent sets.(v) Same proof as for (iv). 2Distributivity is essential for Part (i) of this lemma, as the example shown in Fig-ure 5 demonstrates. There the pointwise sup of the schemes fa1; a2;?g and fb1; b2;?gdoes not satisfy the slide condition.We plan to present a deeper investigation into the mathematics of schemes in alater paper, but mention that ideals generated by schemes form a complete lattice:Theorem 4 If D is a distributive domain then (SD;v[) is a distributive completelattice. 2In the remainder of this section we shall work the generating co-chain of an ideal,that is, with schemes. It turns out that the ordering � on strong ideals is replacedby the Egli-Milner ordering v\ on schemes.Theorem 5 If A and B are schemes on a domain D then A v[ B if and only ifA v] B. 18



Proof. \)" Let x be an element of B and let y be maximal above x in D. ThenpA(y) = pA(pB(y)) = pA(x) and therefore pA(x) is maximal in #A which means thatit is contained in A.\(" If x is an element of A, let y be maximal in D above x. Since x = pA(y) wpA(pB(y)), the sup of x and pB(y) exists. pB(y) is maximal in #B and because ofA v] B it is above some x0 2 A. The set fx; x0g is bounded by x t pB(y) which isonly possible if x = x0. Hence x v pB(y) and A v[ B. 2So far we have discussed the projection of individual elements (\records") intostrong ideals. We shall now proceed to discuss the projection of relations, that is,�nite co-chains. The obvious choice, namely, to apply the projection pointwise, has itsparticular applications. However, we might not get a co-chain as the image. Throwingaway redundant information means in our case to keep only the maximal elements ofthe image.De�nition. Let D be a domain and A be a scheme in D.(i) The function �A: CD ! CD is de�ned by �A(R) = fx 2 pA(R) j x maximalin pA(R)g.(ii) If R 2 CD is a subset of A, we shall call R an instance of A.(iii) If R 2 CD is a subset of #A, we shall call it a subinstance of A.Theorem 6 Let A;B be schemes in a distributive domain D.(i) If R is an instance of A then R v[ A and A v] R.(ii) If R is an (sub-)instance of A and S is an (sub-)instance of B then R ./ S andR t\ S (if it exists) are (sub-)instances of AtB and Rt[ S is a subinstance ofA tB.(iii) If R is an instance of A then �B(R) is a subinstance of B.(iv) If R is a �nite co-chain in D then pA(R) ./ R = R.(v) If R is a �nite co-chain in D then �A(R) ./ R w] R.19



(vi) If R is a �nite independent set in D then �A(R) ./ R w\ R.Proof. Of these only (vi) is nontrivial. One half of the Egli-Milner orderingfollows from (v). As for the \Hoare"-part we can copy the corresponding proof ofTheorem 5. 2Let us recapitulate the development of our theory so far. We have exhibiteda general structure which may take the place of attribute value sets in relationaldatabase, namely distributive Scott-domains. We proposed to model relations as�nite co-chains in these domains. In Lemma 2 we have shown that relations form adistributive lattice under two natural orderings which correspond to the two intuitionsone might have about a relation: One being that a relation gives information abouta part of a set of real world objects, the other being that a relation approximatesevery element of a set of real world objects. We then proceeded to model the notionsof scheme and projection and found (Theorem 4) that schemes form a distributivecomplete lattice. This says that the set of schemes is nearly a powerset and allows tointerpret intuitionistic logic in it. Along the way we have indicated the possibilities for�ne tuning in this model: Using independent sets instead of co-chains or generalizingschemes to strong ideals. We shall now go on to test our theory in two �elds, that offunctional dependencies and that of universal relations.5 Functional DependenciesWe start again with the familiar example of a relational database. Given some set offunctional dependencies and given a set A of attribute names one can use Armstrong'sAxioms in order to produce a setA0 � A which contains all attribute names dependingon A. In our domain theoretic setting we may view this process as a function on thelattice of schemes, which is monotone, idempotent and increasing. These functionsare the exact counterpart of projections as discussed in the previous section.De�nition. A closure on a domain D is a monotone function f :D ! D, suchthat f � f = f w idD.Lemma 7 Let D be a domain and f; f 0 be closures on D.20



(i) f(x) = ufy j f(y) = y w xg.(ii) f w f 0 , im(f) � im(f 0), f � f 0 = f 0 � f = f .(iii) f preserves all existing sup's.(iv) im(f) is closed under nonempty inf's. 2This is, of course, the exact dual of Lemma 4. Note that because of part (iii),closures are always continuous.Given a function f : D ! D, we can de�ne a relation ef � D�D by ef = f(x; y) jy v f(x)g and obtain an immediate connection with Armstrong's Axioms.Theorem 7 If f is a closure in D ! D, ef satis�es(a) 8x; y 2 D if x w y then (x; y) 2 ef ,(b) if S � D is such that 8y 2 S:(x; y) 2 ef then tS exists and (x;tS) 2 ef , and(c) 8x; y; z 2 D:(x; y) 2 ef and (y; z) 2 ef ) (x; z) 2 ef .When D is �nite (b) may be replaced by(b0) for x; y; w 2 D if (x; y) 2 ef and xtw exists then wty exists, and (wtx;wty) 2ef .Conversely, suppose ef � D � D satis�es (a), (b) or (b') as appropriate, and (c)above, and de�ne f : D ! D by f(x) = tfy j (x; y) 2 efg. Then f is a closure.From which (a), (b0) and (c) are immediately seen to be generalizations of Arm-strong's Axioms. Before discussing the connection, we should prove this result. (a)follows immediately from the de�nition of a closure since if y v x, then y v f(x)and (x; y) 2 ef . (b) is also immediate because f(x) must be a bound for S, there-fore tS exists and tS v f(x). To show (c), if (x; y) 2 ef then y v f(x) and bymonotonicity and idempotence f(y) v f(x). The conditions also imply z v f(y).Combining these last two inequalities we have z v f(x), i.e. (x; z) 2 ef . Con-versely, we �rst note that condition (b) implies that tfy j (x; y) 2 efg exists and f21



is well de�ned. If x1 v x2 and (x1; y) 2 ef then (x2; y) 2 ef by (a) and (c) so thatfy j (x1; y) 2 efg � fy j (x2; y) 2 efg, and hence f(x1) v f(x2) guaranteeing mono-tonicity. By (a) (x; x) 2 ef , so f(x) w x. Finally, by (b) (x;tfy j (x; y) 2 efg) 2 ef ,and so (x; f(x)) 2 ef ; similarly (f(x); f(f(x))) 2 f . Using (c), (x; f(f(x)) 2 ef and sof(f(x)) v f(x). But we have just shown that f is increasing. Hence f(f(x)) = f(x).Suppose (a), (b), (c) hold and that (x; y) 2 ef . For any w 2 D, (wtx;w) 2 ef and(w t x; x) 2 ef by (a), and by (c) (w t x; y) 2 ef . Therefore, by (b) (w t x;wt y) 2 ef .Conversely, assume D �nite. First note that, by putting w = x in (b0) we havex t y exists. Suppose 8y 2 S:(x; y) 2 ef . If S has just two members, y1; y2 then(x; x t y1) 2 ef by (b0) and (x; x t y1 t y2) 2 ef by (c), therefore y1 t y2 exists. Using(c) and (a) we get (x; y1 t y2) 2 ef , i.e. (x;tS) 2 ef . By induction, we can repeat thisargument to derive (b) for any �nite S. 2Armstrong's Axioms are precisely (a), (b0), (c) when applied to the lattice of sub-sets of the set of attribute names. Related characterizations of Armstrong's Axiomsin a lattice-theoretic setting have been given by [20]. It is also interesting that inScott's information systems [42] functions on domains are de�ned by a similar deviceof taking approximating relations.We now connect this abstract notion of a functional dependency with our earliersemantics in which sets of attribute names are represented by schemes. A relationsatis�es a functional dependency A! B if any two tuples that agree on the attributenames A agree on the attribute names B. Another way of stating this is to follow[16] and say that a relation r satis�es A ! B if the partition on r induced by A(i.e. the equivalence relation induced on the tuples by equality on A) is �ner thanthe partition induced by B. In the standard theory there are no null values allowedin places corresponding to attributes from A[B. We keep this strong interpretationof satisfaction.De�nition. Let A;B be schemes in a domain D. A relation R 2 CD satis�es thefunctional dependency A ! B if R w] A and R w] B and if pA(x) = pA(y) impliespB(x) = pB(y) for all x; y 2 R. 22



Theorem 8 For relations in distributive domains Armstrong's Axioms are consistentand complete.Proof. Given a relation R in a distributive domain D and given a scheme A v] Rit is clear that R satis�es A ! A. If S is a collection of schemes and R satis�esA ! B for all B 2 S and some scheme A, then S is bounded by R in the Smythordering. We claim that the sup of S is also below R: If x is an element of R andB is a scheme contained in S then x is above some element xB of B. Therefore xbounds the set X = fxB j B 2 Sg. The sup of X is an element of FS by Lemma 6,(v) and is below x. This proves FS v] R. Assume, then, that pA(x) = pA(y).By assumption we know that pB(x) = pB(y) for all B 2 S. Hence we also haveptS(x) = FB2S pB(x) = FB2S pB(y) = ptS(y), which proves A! FS.It is clear that transitivity holds. This proves that Armstrong's Axioms are correctwith respect to our de�nition of satisfaction.Completeness is trivial because we have more models available than in the rela-tional case. 2It is an immediate consequence of the preceding theorem and Theorem 7 thata relation R 2 CD induces a closure f on the lattice of schemes with the propertyf(A) w B if and only if R satis�es A! B.Our de�nition of satisfaction of a dependency requires that the relation under con-sideration contains no partial information. If a relation does contain partial elements,a di�erent concept is called for.De�nition. Let A;B be schemes in a domain D. A relation R 2 CD is consistentwith the functional dependency A! B if there is a relation R0 w\ R which satis�esA! B.This is natural enough. However, in a practical instance consistency may behard to check. We therefore introduce a weaker notion of consistency with a moreoperational avor. Given a scheme (or any independent set) A and a relation R thenA induces a partial equivalence relation �A on R: x �A y if there is a 2 A such thata v x; y. We may say that �A identi�es those elements in R which contain the same23



total information in their A-part. By R=A we denote the set of equivalence classesof �A.Now assume that A ! B is a dependency where A v\ B and that R is somerelation. The result of restricting R to the `columns' of B is expressed by �B(R).Wherever two elements of �B(R) contain the same total information in their A-part,consistency with A ! B implies that their B-part can be updated to a common(total) value. This amounts to saying that each equivalence class in �B(R)=A hasan upper bound in D. Let us denote the resulting set of suprema by (�B(R)=A)t.Formally we de�neDe�nition. For A v\ B schemes and R a relation in a domain D, we say that Ris weakly consistent with the dependency A! B if (�B(R)=A)t exists.Remember the example of physical constants, given in Section 2. Certainly we ex-pect that the name of a constant will imply its value, although the exact numbers willnever be known. To say that our database is weakly consistent with the implicationname of constant ! [ lower bound, upper bound] amounts to the requirement thatthe entries for the same constant report intervals with at least one common point.The reader will have noticed that weak consistency makes no requirement aboutthose elements of the relation R which contain partial information in their A-part.The philosophy here is that any �nite set of elements with partial information oversome scheme A can be updated in such a way that its elements are pairwise di�erentin their A-part. We may call a domain in which this is always the case rich and obtainthe following immediate characterization.Lemma 8 A domain D is rich if and only if for each x 2 D the denotation [[x]] of xcannot be covered by a �nite set of denotations [[yi]] with all yi 6v x.With this we can formulateTheorem 9 Let A v\ B be schemes in a domain D. Let R be a relation in D. If Ris consistent with A! B then R is weakly consistent with A! B. If #A is rich andD distributive then the converse also holds. Moreover, if R0 w\ R and R0 satis�esA! B then R0 w[ (�B(R)=A)t. 24



Proof. Suppose R0 w\ R and R0 satis�es (A;B), then �B(R0) w[ �B(R) and themembers of (�B(R0)=A) are singleton sets. Thus any class in (�B(R)=A) is boundedabove by one of these singletons, and (�B(R)=A)t exists. This also establishes thesecond part of the theorem. Conversely, if (�B(R)=A)t exists, we have, for each a 2 A,the element ba = tfr j r 2 �B(R) and r w ag 2 #B. Now for each r 2 R \ "A formthe point r0 = bAtr with a 2 A being the unique element of A below r. (This is wherethe slide condition comes in.) The set R0 of these points certainly satis�es A ! B.But we also have to update the other elements of R which contain partial informationin their A-part. We use the assumption that #A is rich for this. The set pA(Rn"A) isa �nite poset contained in #A. Because #A is rich, we can �nd elements �r 2 [[p]]A(r)Asuch that r1 6= r2 implies �r1 6= �r2 and also �r 6= pA(r0) for all r0 2 R0. (Givenr 2 pA(R n "A), choose �r 2 [[r]]A n (Sf"s j s 6v r; s 2 pA(R n "A)g [ Sf"r0 j r0 2 R0g).)Finally let ~r be the unique element of B above �r for each r 2 pA(R n "A). The set ~Rof all these elements satis�es A! B and so does R0 [ ~R. 2Dependencies are often divided [46, 24] into two classes: those like functionaldependencies that generate equality constraints, and those that generate new tuples.The \chase" is a procedure that performs all possible inferences on a set R to producea new set R0 where R0 w\ R. In fact, we can also use functional dependencies in thesame way. The co-chain (�B(R)=A)t describes the inferences that can be made, giventhat R is consistent with A! B. In fact the co-chainT = ((�B(R)=A)t ./ R) t[ R (1)is the least (in v[) set that contains all these inferences. Note that T is the outer joinof (�B(R)=A)t and R and that R v\ T .6 Universal RelationsWithout involving ourselves in a discussion of the usefulness or practicality of theUniversal Relation Assumption [47, 48, 21, 6], we now investigate a general charac-terization of universal relations that shows how the general form of their implementa-tion can be derived from their abstract properties. Behaviorally, a universal relation25



can be thought of as a simple query language, or transducer, in which the possiblequeries, or inputs, are sets of column names and the output from the input of a givenset of column names is a relation de�ned on those names. More precisely, we canthink of a universal relation as a function � : SD ! CD with the property that �(S)is an instance of S, i.e. �(S) � S.In a survey [25] of the various de�nitions of universal relations Maier et al give acondition, \containment", that all reasonable de�nitions satisfy. The condition, whichis also noted in [41], is that if A;B are schemes with A v\ B, then �A(�(B)) � �(A).This is equivalent to requiring that � be monotone as a function from schemes underthe natural ordering to the �nite cochains CD under the Smyth ordering, i.e. ifA v\ B then �(A) v] �(B). There are various ways of obtaining such a function. Aparticularly simple method is given the total projection of an arbitrary subset T of Donto the schemes of D: �(A) = �A(T \ "A) (2)(the expression �S(T \ "A) is called the total projection of T onto the scheme A.)A more general method is obtained by projecting onto A those subsets T of somecollection T of �nite subsets of D that are contained in the upward closure of A:�(A) = [f�A(T ) j T 2 T and T � "Ag (3)Most of the various de�nitions of universal relations given in [25] appear to be ex-pressible in this form. By using a result that is readily proved from theorem 6,Lemma 9 If A is a scheme, and S1; S2 are co-chains in D with S1 w] A and S2 w] Athen �A(S1 u] S2) = �A(S1) [ �A(S2)2we can write (3) as �(A) = �A(u]fT 2 T j T v] Ag). We shall call a universal relationthat can be described in this fashion a closure universal relation (because this lastequation is closely related to the de�nition of a closure in (CD;v]). By taking T asa collection of singleton sets, equation (2) can be seen as a special case of (3). An26



example of a universal relation satisfying (2) is the Universal Instance Assumption,which says that �(A) = �A(I) where I is a subset of the maximal elements of D.Theorem 10 A universal relation de�ned by the universal instance assumption is aclosure relation.The proof follows immediately from the observation that I, being a �nite set ofmaximal elements, is contained in "A for any scheme A 2Another reason for believing that closure universal relations are an appropriateclass to consider is given by the following result.Theorem 11 In the relational domain D = L ! V?, any universal relation satisfy-ing the containment condition is a closure universal relation.Proof. If � is the given universal relation de�ne�0(A) = �A(u]f�(B) j B 2 SD and �(B) � "Ag):�0 is then a closure universal relation, and we need to show that, for any scheme A,�(A) = �0(A). Because we are dealing with the relational domain, ifB is a scheme suchthat � 6= �(B) � "A then B w\ A. Using this fact and the containment condition,whenever �(B) � "A, we must have �A(�(B)) � �(A). Hence �(A) = �0(A) for anyscheme A 2It is not true that any universal relation satisfying the containment conditioncan be cast in the form of a closure relation. Consider, for example, the domainin �gure 6, in which the schemes are A1 = f?g, A2 = fa1; a2; dg, A3 = fb1; b2; dg,A4 = fa1; a2; e1; e2g, A5 = fb1; b2; e1; e2g, and A6 = fc1; c2; c3; c4; e1; e2g. Now considera universal relation � such that �(A1) = f?g, �(A2) = �(A3) = fdg, �(A4) = fe1; e2g,�(A5) = fe1g, and �(A6) = fe1g, which satis�es the containment condition. If � is aclosure universal relation, then T (as used in equation 3) must contain a set T whichcontains e2 such that T � "A4, but T cannot be contained in "A5 because e2 is not amember of �(A5). Therefore T must contain a1 or a2. But if this happens then �(A4)must also contain a1 or a2, which contradicts the de�nition of �.27
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JJJJJJ JJJJJJ BBBBBB ������Figure 6: A universal relation not extending to a closureA more sophisticated example of a universal relation de�nition arises from theF-weak instance universal relation [25]. Suppose we are given a set of schemesfR1; R2; : : : ; Rng in D and instances ri � Ri, i 2 1 : : : n. Suppose we are also givena set F of functional dependencies and that t[fri j i 2 1 : : ng is consistent with F .Consider the universal relation de�ned by�(C) = \f�C(S0) j S 0 w[ ri; i 2 1 : : : n; S 0 2 CD; and S 0 satis�es Fg (4)which, for each scheme C de�nes an instance of C. Let us assume, for simplicity, thatF+ is generated by the single non-trivial dependency (A;B) where B w\ A. From(1) of the previous section, we can write �(C) as�(C) = �C(((�B(S)=A)t ./ S) t[ S) (5)where S = t[fri j i 2 1 : : ng and �C(T ) is the total projection of a set T onto C,�C(T ) = �C(T \ "C).By manipulation of (5) we can now write it in a form consistent with the generalform for closure universal relations given in (3). First observe that if S1; S2 are co-chains in D, then �C(S1 t[ S2) = �C(S1) [ �C(S2). Therefore we can rewrite (5)as �(C) = �C((�B(S)=A)t ./ S) [ [�C(fri j Ri w\ Cg) (6)28



Now consider the set Q = (�B(S)=A)t which, by the de�nition of S is (�B(t[fri ji 2 1 : : ng)=A)t, By the distributivity of (CD;v[), Q = (t[f�B(ri) j i 2 1 : : ng=A)t.A point in Q is the least upper bound of some set of points, each chosen from some�B(ri) where Ri w\ A. Let I be the set of indices of all such schemes, I = fi j i 21 : : n and Ri w\ Ag. We can then express Q asQ = t[f./i2I 0 �B(ri) j I � I 0 � 1 : : ng (7)The term �C((�B(S)=A)t ./ S), which is the left-hand component of (6) can thereforebe written as the union of total projections of terms of the formri0 ./ �B(ri1) ./ �B(ri2) ./ � � � ./ �B(rik) (8)where Rij w\ A for j 2 1 : : k. The right hand component can, trivially, be written inthis form too.We have therefore succeeded in reducing the universal relation de�nition given inequation (5) to the projection of the union of a set of joins. More importantly, (5) isan example of an \FD-join" expression. A theorem of Maier et. al. and Chan [25, 15]shows that the F -weak instance universal relation (5) can be computed as the unionof FD-joins. Their proofs work by considering the properties of speci�c algorithms,whereas by considering the general properties of the spaces involved we have beenable to produce a reasonably concise algebraic derivation. It should be noted thatthe proof outlined here is incomplete. We need to close this o� under all functionaldependencies; but this presents no di�culties.7 Higher Order Relations and Other ModelsOne of the contentions of this paper is that much of our theory of relational databasesis independent of the detailed structure of the relational model and depends only onsome rather general properties of the spaces out of which we can construct such amodel. It should be stressed that we have based the preceding analysis only on theassumption that the underlying space was a domain. Nowhere did we assume that wewere dealing with relations, although we frequently appealed to the �rst-normal-formrelations for examples. 29



In trying to generalize various operations, we had no problem with the naturaljoin, but in order to make projection generalize smoothly when dealing with functionaldependencies and universal relations, we had to characterize �rst independent sets andthen schemes. We shall therefore be particularly interested in identifying schemes inthese other models. If we can do that, we can be sure that the basic ideas of functionaldependencies, universal relations etc., generalize properly.7.1 Typed �rst-normal-form relationsWe have seen that the domain L ! V? of at records is a domain of the relationalmodel in the preceding sections, and it deserves little extra comment here. As wehave noted earlier, this domain is a special case of a product domain.Given a function F from a set of labels L to a set of sets S, a labeled productQl2L F (l) is the set of functions f : L ! SS such that for all l 2 L; f(l) 2 F (l). If S isa set of domains, then Ql2L F (l) is also a domain, a domain of labeled products, underthe componentwise ordering, i.e. f1 v f2 i� f1(l) v f2(l) for all l 2 L. Furthermore,a scheme in a domain of labeled products is a product of schemes, i.e. it is easy toshow that:Lemma 10 The set of schemes in Ql2L F (l) is the set of labeled products of the formQl2L �(l), where � is any function from L to SfSS j S 2 Sg such that �(l) 2 SF (l) 2Since the domain of at records L ! V? is the domain of labeled product Ql2L V?,where we take V? as the constant function on L, the above result shows that ascheme in this domain is a product Ql2L �(l) where � is any function from L to SV? .Since SV? = ff?g;Vg, each such function � : L ! SV? is identi�ed by the subsetL = fl j �(l) 6= f?gg of L and the corresponding scheme is isomorphic to the setof total functions from L to V. Therefore the set of all schemes in this domain isisomorphic to the set of spaces of total functions L ! V; L � L and is identi�edby the set of all subsets of L. However, restrictions on these function spaces do notproduce schemes, for exampleffName)s; Age)i;Shoe-size)ig j s; i 2 Vg30



t?it nei tukit v1i tv2i : : : tvniiHHHHHHHHHHH �����������HHHHHHHHHHH @@@@@@ ������Figure 7: A domain Vi with null valuesis not a scheme if V has more than one element.If we require that the columns of a relation are \typed", we are given a set ofat domains V and an assignment of domains in V to labels in L, i.e. a function� : L ! V (�(l) are called \domains" in database parlance). Then the domain oftyped at records D� is the domain of labeled products D� = Ql2L �(l). A schemein this domain is a product Ql2L �(l) where � is any function � : L ! Sl2L S�(l) suchthat for all l 2 L; �(l) 2 S�(l). Since each �(l) is a at domain, S�(l) is either f?g orthe set of all maximal elements in �(l). Thus the set of all schemes in this domainis isomorphic to the set of all product domains of the form Ql2L�(l); L � L. If each�(l) is represented by a type �l, then for a �nite L = fl1; : : : ; lng, a scheme Ql2L�(l)is represented by the type fl1 : �l1; : : : ; ln : �lng.7.2 Null valuesOur �rst \non-at" example arises from the introduction of null values, which giverise to an ordering on tuples. The framework that we have developed here shouldallow us to ascribe semantics to the various kinds of null values and to investigatehow the mathematical properties generalize.Combining work in [9, 22, 40] Zaniolo [49] introduced an ordered space Vi withnull values shown in �gure 7.?i is interpreted as no information; nei means non-existent, or wrong; uki means31



unknown { a value exists (other than nei), but it is not yet known.Tree-like domains such as this are domains with a particularly simple structure.In fact we can call a domain D a tree if, whenever x; y 2 D and x t y exists thenx v y or y v x. A section of a tree D is a set S such that any path in D from the root(?) to a leaf contains exactly one member of S. The following results characterizeindependent sets and schemes in a tree.Lemma 11 D is a tree i� CD = ID (i.e. the co-chains are the independent sets)2Lemma 12 S is a section of D i� it is a scheme for D2For example, the schemes for Vi in �gure 7 are f?ig, fnei;ukig and fnei; v1i ; : : : ; vnii g.We can use this to de�ne domains of typed records with null values by simplyreplacing at domains with tree-like domains in the previous development. Given aset T of tree-like domains and a type assignment � : L ! T , a domain of typedrecords D� is the domain D� = Ql2L�(l) of labeled products. A scheme in thisdomain is a product Ql2L �(l) where � is a function � : L ! Sl2L S�(l) such thatfor all l 2 L; �(l) 2 S�(l). Unlike the case of typed at records, S�(l) may containschemes which are neither f?g nor the set of maximal elements in �(l) and the setof schemes in this domain is no longer isomorphic to the set of products of the formQl2L�(l); L 2 L. In order to represent schemes in this domain in a type system, weneed to de�ne \scheme-types" to represent schemes ST ;T 2 T . We will show anexample of such de�nition in the next section.This allows us to establish that the whole apparatus of functional dependencies,universal relations, etc. works smoothly in the domain of relations with null values,i.e. relations de�ned over tree-like domains.To take an example, in a payroll database, the values fv1i ; : : : ; vnii g could be thestate tax rate with nei being used when such a tax was inappropriate, e.g.,. for over-seas employees. There is then a functional dependency ADDRESS! fnei; v1i ; : : : ; vnii gand an inferred dependency ADDRESS! fnei;ukig. The investigation of such de-pendencies may be useful when attempting to do database design on databases withexceptional values such as those investigated in [10].32



7.3 Record structuresIn programming languages such as Pascal, record types are constructed both by giv-ing a labelled set of �elds and by giving a case statement or discriminated union.Moreover record types can be components of other record types, and we can carrythis construction to any depth. The domains of such records allows us a furthergeneralization of the domains we have just considered. These domains can be alsoregarded as the domain of feature structures which are used to represent linguisticinformation [43].In the previous sections, we have constructed domains and their schemes of �rst-normal form relations with null values by using labeled product constructors. Bysimply iterating this construction process, we can construct domains and schemesof general record structures without discriminated union. Domains corresponding todiscriminated union can be constructed by labeled sum constructors.Given a function F from a set of labels L to a set of sets S, a labeled sumPl2L F (l)is the set of pairs f< l; v >j v 2 F (l)g. If S is a set of domains, we de�ne thedomain of labeled sums P?l2L F (l) to be the set f< l; v >j v 2 F (l)g [ f?g. Thisis indeed a domain under the ordering de�ned as x v y if and only if either x = ?or x =< l; v > and y =< l; v0 and v v v0. Corresponding to the result for labelledproducts (lemma 10), a scheme in a domain of labeled sums is a labeled sum ofschemes, i.e. it is easy to show that:Lemma 13 A scheme in P?l2L F (l) is either the singleton set f?g or a labeled sumPl2L S(l), where S is any function from L to SfSS j S 2 Sg such that S(l) 2 SF (l)2.Starting with given primitive domains such as the at domain of integers, we cannow construct domains of record structures by applying product and sum construc-tions. We can then identify the set of schemes in those domains. Suppose we are givenprimitive domains B1; : : : ;Bn with corresponding sets of schemes SB1 ; : : : ;SBn . Thenwe can de�ne the familyDom of domains with associated sets of schemes generatedby Bi's as:(1) Bi 2Dom. The associated set of scheme is SBi,33



(2) If D �Dom with associated sets of schemes SD;D 2 D, then for any function� : L !D, D� = Ql2L�(l) 2Dom with the set of schemesSD� = fQl2L �(l) j 9� : L ! SD2D SD: 8l 2 L: �(l) 2 S�(l)g.(3) If D � Dom with corresponding sets of schemes SD;D 2 D, then for anyfunction � : L ! D, D� =P?l2L�(l) 2Dom with the set of schemesSD� = fPl2L �(l) j 9� : L ! SD2D SD: 8l 2 L: �(l) 2 S�(l)g.Dom corresponds to domains of record structures generated from primitive valuesin B1; : : : ;Bn.We give an example of concrete representation of domains of record structures.By the analogy of a type system of a porgramming language, we call expressionrepresenting domains types and de�ne the membership relation between records anddomains as typing rules. We will comment more on the relationship between domainsand types in a programming language later. We start with types. A type expressionis one that can be constructed by the following rules:(1) B1; : : : ; Bn, the (names of) base types such as int, bool, string etc. are typeexpressions.(2) If �1; �2; : : : ; �n are type expressions then fl1 : �1; l2 : �2; : : : ; ln : �ng is a typeexpression.(3) If �1; �2; : : : ; �n are type expressions then [l1 : �1; l2 : �2; : : : ; ln : �n] is a typeexpression.The notation [l1 : �1; l2 : �2; : : : ; ln : �n] indicates a discriminated union. An exampleof such a type expression is�1 = fName:string; Age:int; Status :[Employee:fO�ce:string; Extension :intg;Consultant :fAddress:string; Telephone :intg]gThe syntax for records is similarly de�ned:(1) For each base type B, we assume that we are given the corresponding primitivedomain B such as the at domain N? of integers. Then elements in B arerecords. ?B represents a null value in B.34



(2) If r1; r2; : : : ; rn are records then fl1 ) r1; l2 ) r2; : : : ; ln ) rng is a record.(3) If r is a record, [l) r] is a record.(4) If � is a discriminated union type then ?� is a record.The following is an example of record:r1 = fName)0J. Doe 0; Age)21; Status)[Employee)fO�ce)G7; Extension)5556g]gMoreover, we regard the record r1 having the type �1. Formally, a record r has type� if one of the following conditions hold:(1) r 2 B and � is the base type B corresponding to B.(2) r = fl1 ) r1; l2 ) r2; : : : ; ln ) rng, � = fl1 : �1; l2 : �2; : : : ; ln : �ng, and ri hastype �i for 1 � i � n.(3) r = [li ) ri], � = [l1 : �1; l2 : �2; : : : ; lm : �m], i � m, and ri has type �i.(4) r = ?� ; � = [l1 : �1; : : : ; ln : �n]Records are ordered by the following rules:(1) v v v0 if v; v0 2 B and v; v0 are ordered in B.(2) fl1 ) r1; l2 ) r2; : : : ; ln ) rng v fl1 ) r01; l2 ) r02; : : : ; ln ) r0ng if ri v r0i forall 1 � i � n.(3) [l) r] v [l) r0] if r v r0.(4) ?� v ?� for any discriminated union type � .(5) ?[l1:�1;:::;ln:�n] v [li ) r] if 1 � i � n and r has the type �i.Informally, one record is better than another if it has better values in same �elds. Forexample, ifr2 = fName)0J. Doe 0; Age)?int; Status)[Employee)fO�ce)G7; Extension)?int]g35



then r2 v r1. From these de�nitions we can immediately see that the set of all recordsof a type � is a domain D� belonging to the family of domains Dom constructedfrom the set of primitive domains B1; : : : ;Bn and the ordering relation on recordscorresponds exactly to the orderings on domains in Dom.We next deine the syntax of scheme-types for a type � . � 0 is a scheme-type for �if:(1) � is a base type and � 0 = � or � 0 = unit�. unit� denotes the trivial schemef?Bg in B.(2) � 0 = fl1 : � 01; l2 : � 02; : : : ; ln : � 0ng, � = fl1 : �1; l2 : �2; : : : ; ln : �ng and � 0i is ascheme-type for �i, for 1 � i � n.(3) � 0 = [l1 : � 01; l2 : � 02; : : : ; ln : � 0n], � = [l1 : �1; l2 : �2; : : : ; ln : �n], and � 0i is ascheme-type for �i, for 1 � i � n.(4) � 0 = unit� and � is any discriminated union type. unit� denotes the trivialscheme f?�g in D� .The following is a scheme-type of the type �1 de�ned in our example of a record typeabove:�2 = fName:string; Status :[Employee:fO�ce:string; Extension :unitintg;Consultant :fAddress:string; Telephone :unitintg]gMoreover, we regard the record r2 having the above scheme-type �2. Formally, arecord r has a scheme type � if:(1) r 2 Bi and � = Bi.(2) r = ?Bi, � = unitBi.(3) r = fl1 ) r1; : : : ; ln ) rng, � = fl1 : �1; : : : ; ln : �ng and ri has the scheme-type�i for 1 � i � n.(4) r = [li ) ri],� = [l1 : �1; : : : ; ln : �n], i � n and ri has scheme-type �i.36



A BC Da1 c1 d1c2 d2a2 c4 d1c3 d3c2 d1(a) A BC Da1 c1 d1a1 c2 d2a2 c4 d1a2 c3 d3a2 c2 d1(b)Figure 8: Restricted higher-order relation and equivalent relation(5) ?� 0 and � is any scheme-type of any discriminated union type � 0.Then by the de�nition of the scheme-types, we can also see that the set of all recordsof the scheme-type � 0 for the type � is a scheme in D� .Sets of records belonging to a given type therefore form an interesting general-ization of �rst-normal-form relations for which we can de�ne relational operations,functional dependencies etc.7.4 Structures that contain setsAn extension to the relational model that has recently enjoyed some popularity is thestudy of higher-order relations [17, 1, 35, 32]. In these model a value in a tuple canitself be a set of values, i.e. another relation. In order to obtain a class of higher-order relations that behave well under relational operations, [35] describes partitionnormal form relations. In such relations the attributes with simple (atomic) valuesfunctionally determine the attributes with higher-order values, which must also be inpartition normal form. However, because of this severe restriction, sets are not treatedas �rst-class values in this model. Indeed, it is not hard to show that partition-normalform relations are isomorphic to relations over record structures (without labeledsums) de�ned in the previous section. For example, the relation (a) in �gure 8 isequivalent to the relation (b).In order to obtain a data model in which sets are treated as �rst-class values, we37



need to construct a space of sets as a domain. Since, in de�ning various databaseoperations, we have only assumed that the underlying space is a domain, once wehave done this then sets can be also treated as regular values. In order to constructa domain of sets, we need to de�ne an ordering on sets as database values. Oneobvious possibility is to treat the space of sets as a at domain so that two sets arecomparable i� there are equal. However, as we have seen, a at domain has onlytwo schemes, the set of all maximal elements and the trivial scheme containing onlybottom element, and does not yield interesting structures.A second possibility is to regard sets as ordered by v[, which is what Banchilhonused in his complex object model [7]. Given a domain D, it can be shown [42] thatwe can construct a domain P[(D) corresponding to the space of sets of elements in Dordered by v[ (the Hoare powerdomain of D). Since P[(D) is a domain, the resultsof previous sections are readily applicable. However, it is probably rather di�cult to�nd semantics of a natural join since a natural join is determined by the ordering v]and therefore database sets and sets appears as values in database objects are treateddi�erently. We should also note that, since P[(D) is a lattice,Lemma 14 For a domain D, the schemes in P[(D) are the singleton sets ffdggwhere d 2 D 2which means that functional dependencies in such a domian are rather trivial con-straints.Another possibility is to consider sets as values ordered by v], which is done in [12,13, 29]. Smyth showed that [45] for any domain D, a domain P](D) correspondingto the space of of sets of elements in D ordered by v], called Smyth powerdomainof D, can be constructed. Under this approach, a natural join can be given coherentsemantics. Again there are no non-trivial schemes in P](D). However, if we relaxour de�nition of a scheme, we can make some progress. Recall that a scheme A is anindependent set in a domain D satisfyingpA(D) = Aand 8x 2 D:p�A[[x]]D = [[pA(x)]]A38



One way to generalize this is to specify directly a subset of D that is not necessarilydownward closed. We say that a subset S of D is a generalized scheme in D if(1) S is closed under bounded join, (2) S has a minimal element and (3) the setof maximal elements maxset(S) of S satis�es the second condition of schemes, i.e.8x 2 D:p�S [[x]]D = [[pS(x)]]S where pS(x) = tfs j s 2 S; s v xg. The original de�nitionof schemes is a special case of generalized schemes. We can then �nd interestingschemes in P](D).Lemma 15 If S is a generalized scheme in a domain D then the set P](S) is ageneralized scheme in P](D)This suggests that if we regard sets as values ordered by v], then the previouslydescribed type systems can be extended to include a set type constructor by addingthe following rules:(1) If � is a type then f�g is a type.(2) If � 0 is a scheme type of � then f� 0g is a scheme-type of f�g.(3) If v1; : : : ; vn are database objects of type � then minset(fv1; : : : ; vng) is a data-base object of type f�g.In the third rule, a given set of database objects is coerced to a canonical repre-sentative of an element in P](D) by taking its minimal elements. Natural join andprojection work properly on the extended structures. Figure 9 shows an example ofa natural join in the domain of records extended by these rules.One restriction of the above approach is that we presuppose the meaning of sets ofdatabase objects by chosing the ordering v], i.e. sets are overdescribing some desiredset of objects. This choice may not be appropriate for some applications. An ideathat merits further investigation is to look at partial descriptions that consist of pairsof sets: a complete and a consistent description of some target set. This may beparticularly valuable in constructing a semantics for database merging [27] where theindividual databases may not form a complete description of the real world.39



r1 = ffPname) 0Nut 0;Supplier) f fSname) 0Smith 0;City) 0London 0g;fSname) 0Blake 0;City) 0Paris 0ggg;fPname) 0Bolt 0;Supplier) ffSname) 0Blake 0;City) 0Paris 0g;fSname) 0Adams 0;City) 0Athens 0ggggr2 =ffPname) 0Nut 0;Supplier) ffCity) 0Paris 0gg;Qty) 100g;fPname) 0Bolt 0;Supplier) ffCity) 0Paris 0gg;Qty) 200ggr1 ./ r2 = ffPname) 0Nut 0;Supplier) ffSname) 0Blake 0;City) 0Paris 0gg;Qty) 100g;fPname) 0Bolt 0;Supplier) ffSname) 0Blake 0;City) 0Paris 0gg;Qty) 200ggFigure 9: Natural Join of Higher-order Relations7.5 Recursive structuresIt is reasonable to suppose that we can also generalize database theory to work forrecursive types, which can be used to give a type to unbounded structures such aslists. For example, given a domain D represented by a type � , we can de�ne a typefor � -lists as the type satisfying the folloiwng equasion:list(� ) = [null : fg;nonnull : ffirst : � ; rest : list(� )g]This is the type of all lists of elements in D. Then for any scheme-type � 0 for � ,list(� 0) is a scheme-type for list(� ). There are also other scheme-type for list(� ) thanin the above form. For example, the following is also a scheme-type for list(� ) thatcorresponds to the set of all lists of length less than or equal to one.onelist = [null : fg;nonnull : ffirst : � ; rest : unitlist(�)g]where unitlist(�) is the scheme-type list(unit�) for list(� ).The domain Dlist(�) corresponding to list(� ) can be de�ned as the domain equa-tion: Dlist(�) = Null+ (D �Dlist(�))whereNull is the trivial one element domain. Let S be the scheme inD correspondingto the scheme-type � 0. Then the scheme corresponding to the scheme-type list(� 0) is40



the set of maximal elements in the domain de�ned by the equation:Dlist(� 0) = Null + (S �Dlist(� 0))The scheme corresponding to the scheme-type onelist can be also de�ned.The general form of schemes in recursive types such as these requires furtherinvestigation.8 Conclusion and Further InvestigationWe have tried to show that the application of domain theory allows us to provide aclean semantics for relational databases and provides a generalization of many of theideas in relational database theory { especially those concerned with database design{ into a large class of higher-order and recursive structures.One major limitation of our work is that our characterization of the relationaldatabases is restricted to a single domain. Operations and notions such as join andfunctional dependency are de�ned only within a given domain. It is however desirableto allow databases to contain values of di�erent domains. This becomes essential if wewant to treat values in a database as typed data structures and to integrate them intoa type system of a programming language. In previous section we have constructed acollection of domains of records. As we suggested, each domain corresponds to a typein a type system of a programming language. In such a type system, it is naturalto represent a database as a collection of relations of di�erent types. Our formalismcannot be directly applied to such a database. One way to overcome this limitationwould be to develop a theory of the relationship between various domains and toextend our characterization of the relational databases to a family of domains. [29]proposed one such theory for join and projection and showed that a family of databasedomains can be integrated in an ML style type system. In [31] we have also shownthat ML type inference method can be generalized to such an integrated type system.We further hope that the theory of functional dependencies and universal relationswe have developed in this paper can be also generalize to families of domains.Finally we should note that in database programming languages [8, 3, 44], inknowledge bases [11] and in A��t-Kaci's [2] calculus for type subsumption the ordering41
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