
Polymorphism and Type Inference in Database
Programming

PETER BUNEMAN

University of Pennsylvania

and

ATSUSHI OHORI

Kyoto University

In order to find a static type system that adequately supports database languages, we need
to express the most general type of a program that involves database operations. This can be
achieved through an extension to the type system of ML that captures the polymorphic nature
of field selection, together with a technique that generalizes relational operators to arbitrary data
structures. The combination provides a statically typed language in which generalized relational
databases may be cleanly represented as typed structures. As in ML types are inferred, which
relieves the programmer of making the type assertions that may be required in a complex database
environment.

These extensions may also be used to provide static polymorphic typechecking in object-oriented
languages and databases. A problem that arises with object-oriented databases is the apparent
need for dynamic typechecking when dealing with queries on heterogeneous collections of objects.
An extension of the type system needed for generalized relational operations can also be used for
manipulating collections of dynamically typed values in a statically typed language. A prototype
language based on these ideas has been implemented. While it lacks a proper treatment of persis-
tent data, it demonstrates that a wide variety of database structures can be cleanly represented
in a polymorphic programming language.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and
Theory; D.3.2 [Programming Languages]: Language Classification—applicative languages;
D.3.3 [Programming Languages]: Language Constructs and Features—data types and con-
struct, abstract data types; H.2.1 [Database Management]: Logical Design—data models and
schemas; H.2.3 [Database Management]: Languages—database programming languages, query
languages

General Terms: Database Programming Languages, Type Systems, Data Models

This is the authors’ version of the article published in ACM Transactions on Database Systems,
21(1):30-76, 1996.
Peter Buneman was partly supported by research grants NSF IRI86-10617 and ARO DAA6-29-
84-K-0061; Atsushi Ohori’s work was supported by Oki Electric Industry, Co., and by a Royal
Society Research Fellowship at the University of Glasgow, Scotland.
Author’s addresses: Peter Buneman: Department of Computer and Information Science, Uni-
versity of Pennsylvania, Philadelphia, PA 19104, U.S.A.; Atsushi Ohori: Research Institute for
Mathematical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-01, JAPAN.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of ACM.
To copy otherwise, or to republish, requires a fee and/or specific permission.
c© 1995 ACM 0164-0925/99/0100-0111 $00.75

ACM Transactions on Database Systems, Vol. 21, No. 1, March 1996, Pages 30–76.

2 · Peter Buneman and Atsushi Ohori

Additional Key Words and Phrases: Generalized relational algebra, inheritance, object-oriented
databases, polymorphism, record calculus, type inference

1. INTRODUCTION

Expressions such as 3 + ”cat” and [Name = ”J. Doe”]¦PartNumber contain type
errors — applications of primitive operations such as “+” or “¦” (field selection)
to inappropriate values. Static type checking – the detection of type errors in a
program before it is executed – has long been advocated for many forms of database
programming [Schmidt 1977; Albano et al. 1985; Atkinson and Buneman 1987;
Kim 1994] which is characterized by the complexity and size of the data structures
involved. For relational query languages checking of the type correctness of a query
such as

select Name
from Employee
where Salary > 100000

is routinely carried out by the compiler, not only as a partial check on the cor-
rectness of the program, but also as an intrinsic part of the optimization process.
Typechecking is straightforward because the type of the Employee relation is known
from the database schema definitions. Suppose, however, these definitions were un-
available. The query itself still provides some type information: Employee is a
relation, with at least an attribute Name of undetermined type and a numeric at-
tribute Salary. How can we express the type information implied by the query? An
equivalent problem is to express the most general type of the function

function Wealthy(S) = select Name
from S
where Salary > 100000

Here, the parameter S is constrained to be a relation with a Name and a numeric
Salary attribute. However, describing this general constraint is not possible in cur-
rent programming languages. In statically typed languages, one gives a complete
type such as function Wealthy(S:EmployeeRel) · · · to the parameter of Wealthy, re-
stricting the function to be applicable only to a particular relation type; and in
dynamically typed languages, no type checking is done during compilation, allow-
ing the possibility of run-time errors. The language ML has a polymorphic type
system in which the most general type of a function can be described and inferred
from its definition. However, ML’s type system does not extend to database oper-
ations and cannot be used to describe the type of functions such as Wealthy. The
purpose of this paper is to show how to extend the polymorphic type system of ML
to database operations, and to demonstrate that the extended type system pro-
vides a practical basis for database programming languages where relational and
object-oriented databases can be cleanly represented.

Why is such a polymorphic type system important to database programming,
where one is generally working against a known schema, i.e. a fixed set of types?
We see a number of reasons:

Separate Compilation/External Procedures. It is frequently advantageous
to develop software components of large systems independently. One would like —
ACM Transactions on Database Systems

Polymorphism and Type Inference in Database Programming · 3

as far as possible — to check the type correctness of these components separately.
This is the rationale for the development of systems of modules/packages for a
number of programming languages [Ichbiah et al. 1979; Wirth 1977; Appel and
MacQueen 1991]. In a database context one may well want to develop software
independently of the schema or type definitions that consitute the database. Having
a polymorphic type for a function such as Wealthy describes precisely the constraints
placed on the schema by the query in the body of that function. Thus the type of
Wealthy describes what must be checked when that code is linked to the database.

Schema Evolution. A common problem in database software maintenance is
the need to cope with changes in the database schema. It is advantageous to be able
to describe the precise constraints that the existing software places on the schema
in order to describe what evolution is possible, or to identify the code that will have
to be rewritten to cope with a given change of schema. Again, the polymorphic
type of Wealthy describes precisely the constraint that the enclosed query places on
the database schema.

Database Programming Languages. There is a growing interest in database
programming languages with more expressive type systems. Traditional approaches,
including object-oriented languages, have derived their type systems from program-
ming languages and are either static [Schmidt 1977; Albano et al. 1985; Object De-
sign Inc. 1991] or have some dynamic components [Atkinson et al. 1983; Copeland
and Maier 1984]. However, neither of these approaches provides a satisfactory ac-
count of the polymorphic nature of database programming such as Wealthy above.
Napier [Morrison et al. 1989] attempts to combine parametric polymorphism and
persistence, but its polymorphism does not extend to operations on database struc-
tures. See [Atkinson and Buneman 1987] for a survey of various approaches to
type-checking in database programming.

Type Inference. Finally there is an important point of programming con-
venience. ML has a type inference algorithm that automatically infers, from an
untyped program, the most general (polymorphic) type of that program. This
provides the programmer much of flexibility and convinience of dynamically typed
languages such as Lisp while maintaining the type safety and some of the efficiency
of statically typed languages. We believe it is highly desirable to extend these
ideas to a database context, which is characterized by the complexity of the types
involved.

This paper describes a prototype language Machiavelli developed at University
of Pennsylvania, which embodies these ideas. A preliminary sketch of the language
was presented in [Ohori et al. 1989]. In addition to polymorphic type system,
Machiavelli also generalizes relational operators including join and projection to
arbitrary complex objects, and contains a mechanism to represent statically typed
programs over heterogeneous collections. In this paper, we shall describe Machi-
avelli, the principles on which its type system is constructed, its type inference
algorithm to implement the type system, and demonstrate its expressive power in
database programming. Machiavelli is implemented in Standard ML of New Jer-
sey [Appel and MacQueen 1991] as an interpreter, that demonstrates the material
presented here with the exception of reference types and cyclic data. Some related
systems are worth mentioning:

ACM Transactions on Database Systems

4 · Peter Buneman and Atsushi Ohori

SML], developed by one of the authors, is an extension of Standard ML [Mil-
ner et al. 1990] with the polymorphic record operations used in Machiavelli. Its
compiler is implemented by modifying Standard ML of New Jersey compiler using
an efficient compilation method for polymorphic record operations developed in
[Ohori 1992; Ohori 1995]. CAML light has been extended by Rémy to include sim-
ilar record operations based on his formulation of polymorphic typing for records
[Remy 1989]. CPL/Kleisli is a system developed by Wong [Wong 1994] for hetero-
geneous database integration using the principles of programming with collection
types[Buneman et al. 1994]. Its type system is derived from the one presented here
and is an integral part of the query rewriting system that attempts to reformulate
programs to exploit the optimizations that are available in the query languages as-
sociated with the external data sources. This system is in use by scientists involved
with biomedical (genomic) databases [Hart and Wong 1994].

To illustrate a program in Machiavelli, consider the function Wealthy, which takes
a set of records (i.e. a relation) with Name and Salary information and returns the
set of all Name values that occur in records with Salary values over 100K. For
example, applied to the relation

{[Name = ”Joe”, Salary = 22340],
[Name = ”Fred”, Salary = 123456],
[Name = ”Helen”, Salary = 132000]}

which is Machiavelli syntax for a set of records, we should get the set {”Fred”,
”Helen”} of character strings. The function is written in Machiavelli (whose syntax
largely follows that of ML) as follows

fun Wealthy(S) = select x¦Name
from x <- S
where x¦Salary > 100000;

The select . . . from . . . where . . . form is simple syntactic sugar for more basic
Machiavelli program structure (see section 2).

Although no types are mentioned in the code, Machiavelli infers the type infor-
mation

Wealthy : {d :: [[Name : d′,Salary : int]]} → {d′}.
In this type, d and d′ are type variables, and the valid types for Wealthy may
be obtained by substituting specific types for d and d′. However there are two
restrictions on the types that may be substituted. The first is indicated by the
decoration “:: [[Name : d′,Salary : int]]” on the type variable d. This allows
only certain record types to be substituted for d, i.e. those with an integer Salary
field, a Name field whose type must agree with the type in the output, and possibly
other fields. Thus

{[Name : string , Salary : int]} → {string}
{[Name : string , Age : int , Salary : int]} → {string}
{[Name : [First : string , Last : string], Weight : int , Salary : int]}

→ {[First : string , Last : string]}
are allowable instances of the type of Wealthy, while

{[Name : string]} → {string}
{[Name : string , Age : int , Salary : string]} → {string}
{int} → {string}

ACM Transactions on Database Systems

Polymorphism and Type Inference in Database Programming · 5

are not allowable instances, for the substitutions for d that generate them do not
match with the constraints imposed by the decoration [[Name : d′,Salary : int]].
Type variables whose instantiation is controlled by such a decoration are called
kinded type variables.

The second constraint we place on the type variables d and d′ is that they can
only be instantiated with description types. Basic operations of databases require
computable equality, and this is not available on function types and, may be un-
available on certain base types. Description types are essentially the same as ML’s
equality types – those types on which equality is available – but more operations are
available. The constraint, whose details will be given later, governs how function
types may appear in description types.

In order to display type variables using conventional programming fonts we follow
the ML convention of displaying ordinary type variables as ’a, ’b, . . . and description
type variables as ”a, ”b etc. Thus the type {d :: [[Name : d′,Salary : int]]} → {d′}
will be displayed in examples as {”a::[Name : ”b, Salary : int]} -> {”b}.

The typing Wealthy : {”a::[Name : ”b, Salary : int]} -> {”b} places restrictions
on how Wealthy may be used. For example, all of the following will be rejected by
the compiler.

Wealthy({[Name = ”Joe”], [Name = ”Fred”]})
Wealthy({[Name = ”Joe”, Salary = ”nonsense”]})
sum(Wealthy({[Name = ”Fred”, Salary = 30000],

[Name = ”Joe”, Salary = 200000]}))
In the first application the Salary field is missing; in the second it has the wrong
type. In neither case can we find a suitable instantiation for the kinded type variable
”a::[Name : ”b, Salary : int]. In the third case we can find such an instantiation, but
this results in the variable ”b being bound to string, so that the result of Wealthy
is of type {string} — an inappropriate argument for sum.

There is a close relationship between the polymorphism represented by the kinded
type variables and the generic nature of object-oriented programming. The type
scheme {”a::[Name : ”b, Salary : int]} can be thought of as a class, and functions that
are polymorphic with respect to this, such as Wealthy, can be thought of as methods
of that class. For the purposes of finding a typed approach to object-oriented
programming, Machiavelli’s type system has similar goals to the systems proposed
by Cardelli and Wegner [Cardelli 1988; Cardelli and Wegner 1985]. However, there
are important technical differences, the most important of which is that Machiavelli
does not use subtyping but uses polymorphic instantiation of kinded type variables
to represent inheritance. This property allows us to capture the exact polymorphic
nature of operations on records, and enables us to extend the type system to various
database operations such as natural join.

Turning to object-oriented databases, research has centered more on a discussion
of features[Atkinson et al. 1989] than on any principled attempt to provide a formal
semantics. However, looking at these features, there are some that are not directly
captured in a functional language with the relational extensions we have described
above. First, the class structure of object-oriented languages provides a form of
abstraction and inheritance that does not immediately fall out of an ML-style type
system. Second, object identity is not provided in the relational model (though it is
an open issue as to whether it requires more than the addition of a reference type, as

ACM Transactions on Database Systems

6 · Peter Buneman and Atsushi Ohori

in ML.) Third, and perhaps most interesting from the standpoint of object-oriented
databases, there is an implicit requirement that heterogeneous collections should be
representable in the language. We believe that these issues can be satisfactorily
resolved in the context of the type system we are advocating. In particular, we
shall show how heterogeneous collections – which would appear to be inconsistent
with static type-checking – can be satisfactorily represented using essentially the
same apparatus developed to handle relational data types.

The organization of this paper is as follows. Section 2 introduces the basic data
structures of Machiavelli including records, variants and sets, and shows how rela-
tional queries can be obtained with the operations for these structures. Section 3
contains a definition of the core language itself. It defines the syntax of types and
terms, and describes the type inference system. Section 3 also presents the type
inference process in some detail for the basic operations required for records, sets
and variants. In section 4, the language is extended with relational operations –
specifically join and projection – that cannot be derived from basic set operations,
and the type inference system is extended to handle them. In section 5 we discuss
how this type system can be used to capture an important aspect of object oriented
databases, the manipulation of heterogeneous collections. Section 6 concludes with
a brief discussion of further applications of these ideas to object-oriented languages
and databases.

2. BASIC STRUCTURES FOR DATA REPRESENTATION

Our language and type system should be expressive enough to represent various
data structures that violate the “first-normal-form assumption” underlying most
implemented relational database systems and most of the traditional theory of
relational databases. For example we want to be able to deal with structures such
as

{[Name = [First = ”Ellen”, Last = ”Gurman”], Children = {”Jeremy”, ”Christopher”}],
[Name = [First = ”Bridget”, Last = ”Ludford”], Children = {”Adam”, ”Benjamin”}]}

which is built up out of records and (uniformly typed) sets. This structure is a
non-first-normal-form relation in which the Name field contains a record and the
Children field contains a set of strings. It is an example of a description term, and in
this section we shall describe the constructors that enable us to build up such terms
from atomic data: records, variants, sets and references. We shall also describe how
cyclic structures are created. As we describe each constructor, we shall say under
what conditions it constructs a description term.

We start with the basic syntactic forms of Machiavelli for value and function
definition, which are exactly those of ML. Names are bound to values by the use of
val, as in

val four = 2 + 2

functions are defined through the use of fun, as in

fun factorial(n) = if eq(n,1) then 1 else n ∗ factorial(n-1)

and there is a function constructor fn x => . . . that is used to create functions
without naming them, as in

(fn x => x + x) (4)

ACM Transactions on Database Systems

Polymorphism and Type Inference in Database Programming · 7

which evaluates to 8. There is also the form let x = e1 in e2 end, which evaluates
e2 in the environment in which x is bound to e1. Example:

let x = 4 + 5 in x + x∗x end

which evaluates to 90. This form is treated specially, and it is the basis for ML’s
polymorphism. By implicit or explicit use of let, polymorphic functions are in-
troduced and used. A polymorphic function definition such as that of Wealthy is
treated as shorthand for a let binding whose scope is the rest of the program.

2.1 Labeled Records and Labeled Variants

The syntax for labeled records is:

[l1 = v1,. . .,ln = vn]

where l1, . . . , ln stand for labels. The labels in a record must be distinct and the
order of their appearance is insignificant. A record is a description term if all its
fields v1, . . . , vn are description terms. Other than record construction, ([. . .]),
there are two primitives for records. The first, ¦l, is field selection; r¦l selects the
l field from the record r. The second, modify(,l,), is field modification in which
modify(r,l,e) creates a new record identical to r except on the l field where its value
is e. For example,

modify([Name = ”J. Doe”, Age = 21], Age, 22)

evaluates to [Name = ”J. Doe”, Age = 22]. It is important to note that modify
does not have a side-effect. It is a function that returns another record. This
construct enables us to modify a record field that is not a reference and provides
added flexibility in programming with records.

We shall make frequent use of the syntax (e1, e2) for pairs. This is simply an
abbreviation for the record [first = e1, second = e2]. Triples and, generally, n-tuples
are similarly constructed.

Variants are used to “tag” values in order to treat them uniformly. For example,
the values <Int = 7> and <Real = 3.0> could both be treated as numbers, and the
tags used to indicate how the value is to be interpreted (e.g. real or integer.) A
program may use these tags in deciding what operations to perform on the tagged
values (e.g. real or integer arithmetic.) The syntax for constructing a variant is:

<l=v>

The operation for analyzing a variant is a case expression:

case e of
<l1=x1> => e1,

...
<ln=xn>=> en,
else e0

endcase

where each xi in <li=xi> => ei is a variable whose scope is in ei. This operation first
evaluates e and if it yields a variant <li=v> then binds the variable xi to the value
v and evaluates ei under this binding. The possible results e1, . . . , en, e0 should all
have the same type. If there is no matching case then the else clause is selected.
The else is optional, and, if omitted, the argument e must be evaluated to a variant

ACM Transactions on Database Systems

8 · Peter Buneman and Atsushi Ohori

labeled with one of l1, . . . , ln. The type system ensures that this condition can be
statically checked.

For example,

case <Consultant = [Name = ”J. Doe”, Address = ”10 Main St.”,
Phone = ”222-1234”]>

of
<Consultant = x> => x¦Phone,
<Employee = y> => y¦Extension

endcase

yields ”222-1234”. Note that case . . . endcase is an expression, and returns a value.
A variant <l = v> is a description term if v is a description term.

2.2 Sets

Sets in Machiavelli can only contain description terms and sets themselves are
always description terms. This restriction is essential to generalize database oper-
ations over structures containing sets. There are four basic expressions for sets:

{} empty set,
{x} singleton set constructor,
union(s1,s2) set union,
hom(f ,op,z,s) homomorphic extension.

We use the notation {x1, x2, . . . , xn} as shorthand for union({x1}, union({x2},
union(. . . ,{xn}))).

Of these, hom requires some explanation. This is a primitive function in Machi-
avelli, similar to the “pump” operation in FAD [Bancilhon et al. 1988] and the
“fold” or “reduce” of many functional languages defined by

hom(f ,op,z,{}) = z,
hom(f ,op,z,{e}) = f(e),
hom(f ,op,z,union(e1,e2)) = op(hom(f ,op,z,e1),hom(f ,op,z,e2)).

For example, a function to check if there is at least one element satisfying property
P in a set can be defined as

fun exists P S = hom(P, or, false, S)

and a function that finds the largest member of a set of non-negative integers is

fun max S = hom(fn x => x, fn(x,y) => if x > y then x else y, 0, S)

In general the result of this operation will depend on the order in which the ele-
ments of the set are encountered; however if op is an associative, commutative and
idempotent operation with identity z and f has no side-effects (as is the case in the
exists and max examples) then the result of hom will be independent of the order
of this evaluation. Now one would also like to use hom on operations that are not
idempotent, for example

fun sum S = hom(fn x => x, +, 0, S)

However + is not idempotent, and it is easy to construct programs whose outcome
depends on the evaluation strategy [Breazu-Tannen and Subrahmanyam 1991]. It is
easy enough to remove such ambiguous outcomes by insisting — as we have done in
our implementation — that, in the representation of sets, we do not have duplicated
ACM Transactions on Database Systems

Polymorphism and Type Inference in Database Programming · 9

elements. This is equivalent to putting a condition on the third line of the definition
of hom that the expressions e1 and e2 denote disjoint sets. Unfortunately this
considerably complicates the operational semantics of the language, and it precludes
the possibility of lazy evaluation. For a resolution of this issue see [Breazu-Tannen
and Subrahmanyam 1991; Breazu-Tannen et al. 1991], which discuss the semantic
properties of programs with sets and other collection types. In this paper we shall
occasionally make use of “incorrect” applications of hom; however we are confident
that the adoption of an alternative semantics will not affect typing issues, which
are the main concern here.

Various useful functions can be defined using correct applications of hom. A
function map(f, S), which applies the function f to each member of S is:

fun map(f,S) = hom(fn x => {f x}, union, {}, S)

For example map(max,{{1,2},{3},{6,5,4}}) evaluates to {2,3,6}. A selection func-
tion is defined by

fun filter(p,S) = hom(fn x => if p(x) then {x} else {}, union,{},S)

which extracts those members of S that satisfy property p; for example the expres-
sion filter(even,{1,2,3,4}) evaluates to {2,4}. In addition to these examples, hom
can be used to define set intersection, membership in a set, set difference, the n-fold
cartesian product (denoted by prod n below) of sets and the powerset (the set of
subsets) of a set. Also, the form

select E
from x1 <- S1,

x2 <- S2,
...

xn <- Sn

where P

in which x1, x2, . . . , xn may occur free in E and P , is provided in the spirit of
relational query languages and the list comprehensions of Miranda [Turner 1985].
This can be implemented as

map((fn(e,p) => e),
filter((fn(e,p) => p),

map((fn(x1,x2,. . .,xn) => (E,P)),
prod n(S1,S2,. . .,Sn))))

See [Wadler 1990] for a related discussion of syntax for programming with lists.

2.3 Cyclic Structures

In many languages, the ability to define cyclic structures depends on the ability to
reassign a pointer. In Machiavelli, these two ideas are separated. It is possible to
create a structure with cycles through use of the (rec v.e) construct, e.g.

val Montana = (rec v.[Name = ”Montana”, Motto = ”Big Sky Country”,
Capital = [Name = ”Helena”, State = v]])

This record behaves like an infinite tree obtained by arbitrary unfolding by substi-
tution for v. For example, the expressions Montana¦Capital, Montana¦Capital¦State,
Montana¦Capital¦State¦Capital, etc. are all valid. Moreover, equality test and other

ACM Transactions on Database Systems

10 · Peter Buneman and Atsushi Ohori

database operations on description terms generalize to those cyclic structures. This
uniform treatment is achieved by treating description terms as regular trees [Cour-
celle 1983]. The syntax (rec v.e) denotes the regular tree given as the solution to the
equation v = e, where e may contain the variable v. To ensure that the equation
v = e has a proper solution, we place the restriction that e must contain a proper
term constructor (other than variables or (rec v.) form).

2.4 References

We believe – though we shall comment more on this in section 6 – that the no-
tion of object identity in databases is equivalent to that of references as they are
implemented in ML. There are three primitives for references:

new(v) reference creation,
!r de-referencing,
r:=v assignment.

new(v) creates a new reference and assigns the value v to it, !r returns the value
associated with the reference r, and r:=v changes the value associated with the
reference r to v. In a database context, they correspond respectively to creating an
object with identity, retrieving the value of an object, and changing the associated
value of an object without affecting its identity.

The uniqueness of identity is guaranteed by the uniqueness of each reference.
Two references are equal only if they are the results of the same invocation of new
primitive. For example if we create the following two objects (i.e. references to
records),

John1 = new([Name=”John”, Age= 21]);
John2 = new([Name=”John”, Age= 21]);

then John1 = John1 and !John1 = !John2 are true but John1 = John2 is false even
though their associated values are the same. Sharing and mutability are captured
by references. If we define a department object as

SalesDept = new([Name = ”Sales”, Building = 11]);

and from this we define two employee objects as

John = new([Name=”John”, Age =21, Dept = SalesDept]);
Mary = new([Name=”Mary”, Age =31, Dept = SalesDept]);

then John and Mary share the same object SalesDept as the value of Dept field.
Thus, an update to the object SalesDept as seen from John,

(!John)¦Dept := modify(!((!John)¦Dept), Building, 98)

is reflected in the department as seen from Mary. After this statement,

(!((!Mary)¦Dept))¦Building

evaluates to 98. Unlike many languages references do not have an optional “nil”
or “undefined” value. If such an option is required it must be explicitly introduced
through the use of a variant. References are always description terms regardless of
their associated values.
ACM Transactions on Database Systems

Polymorphism and Type Inference in Database Programming · 11

3. TYPE INFERENCE AND POLYMORPHISM IN MACHIAVELLI

Type inference is a technique used to infer type information that represents the poly-
morphic nature of a given untyped (or partially typed) program. Hindley [Hindley
1969] established a complete type inference algorithm for untyped lambda expres-
sions. Independently, Milner [Milner 1978] developed a type inference algorithm for
a functional programming language that allowed polymorphic definitions through
use of the let construct. Damas and Milner [Damas and Milner 1982] later showed
the completeness of this type inference algorithm, which has been successfully used
in ML and other functional programming languages [Augustsson 1984; Milner et al.
1990; Turner 1985; Hudak et al. 1992]. In this section we give an account of the
Damas-Milner type system and its extension which is used in Machiavelli to infer
types for programs involving records, variants, and sets.

For programs that do not involve field selection, variants and database operations,
Machiavelli infers type information similar to that of ML. For example, from the
definition of the identity function

fun id x = x;

the type system infers the type

id : ’a -> ’a

where the type variable ’a stands for an “arbitrary type”, and the notation ’a -> ’a
represents the set of types that can be obtained by substituting ’a with various
ground types (i.e. type expressions that do not contain type variables.) The most
important property of the ML type system is that for any type consistent expression,
a principal type can be inferred. This is a type whose instances are types of the
expression and conversely any type of the expression is an instance.

A more substantial example of type inference is given by the function map of
section 2.2, which has the type.

map : ((”a -> ”b) ∗ {”a}) -> {”b}
Here ”a and ”b are type variables that represent description types. The type for
map indicates that it is a function that takes a function of type δ1→ δ2 and a set of
type {δ1} and returns a set of type {δ2} where δ1, δ2 can be any description types.
Thus map(max, {{1,2,3},{7},{5,2}}) is a legitimate application of map. Again, the
type ((”a -> ”b) ∗ {”a}) -> {”b} is principal in that any type for map is obtained
by substituting description types for the type variables ”a and ”b. In the example,
(({int} -> int) ∗ {{int}}) -> {int} is the type of map in map(max, {{1,2,3},. . .}).

It is, however, not possible for ML’s type inference method to infer a type for a
program involving field selection, variants, or the operations of relational algebra
that we shall describe later. In ML, the simplest function using field selection fun
name x = x¦Name requires an explicit type to be added for the argument x. The
difficulty is that the type system of ML is not general enough to represent the
relationship between a record type and the type of one of its fields.

Wand attempted [Wand 1987] to solve this problem using the notion of row
variables, which are variables ranging over finite sets of record fields. His system,
however, does not share with ML the property of principal typing (see [Ohori and
Buneman 1988; Jategaonkar and Mitchell 1988; Wand 1988; Remy 1989] for analysis
of the problem and for refinements.) Based on Wand’s general observation, in

ACM Transactions on Database Systems

12 · Peter Buneman and Atsushi Ohori

-> val joe = [Name=”Joe”, Age=21,
Status=<Consultant = [Address=”Philadelphia”, Telephone=2221234]>];

>> val joe = [Name=”Joe”, Age=21,
Status=<Consultant = [Address=”Philadelphia”, Telephone=2221234]>]

: [Name : string, Age : int, Status : ’a::<Consultant : [Address : string,Telephone : int]>]
-> fun phone(x) = case x¦Status of

<Employee = y> => y¦Extension,
<Consultant = y> => y¦Telephone

endcase
>> val phone = fn : ’a::[Status : <Employee : ’b::[Extension : ’d],

Consultant : ’c::[Telephone : ’d]>] -> ’d
-> phone(joe);
>> val it = 2221234 : int
-> fun increment age(x) = modify(x, Age, x¦Age + 1);
>> val increment age = fn : ’a::[Age : int] -> ’a::[Age : int]
-> increment age([Name=”John”,Age=21]);
>> val it = [Name=”John”,Age=22] : [Name : string,Age : int]

Fig. 1. Some Simple Machiavelli Examples

[Ohori and Buneman 1988] a type inference method was developed that overcomes
the difficulty and extends the method to database operations through the use of
syntactic conditions to control substitution of type variables. The type system was
further refined in [Ohori 1992; Ohori 1995] using kinded typing, which allows us
to represent principal types of polymorphic recod operations. Machiavelli’s type
system is based on this account of record operations. For example, the function
name above is given the type

name : ’a::[Name : ’b] -> ’b

The notation ’a::[Name : ’b] describes all record types containing the field Name : τ
where τ is any instance of ’b. Substitutions for ’a are restricted to those that
conform to this description. The type above then represents all possible types of
the function name and may be taken as a principal (kinded) type for name. More
examples of type inference for records and variants are shown in Figure 1 which
shows an interactive session in Machiavelli. Input to the system is prompted by
-> , and output is preceded by >> . The top level input is either a value or function
binding; the variable it is a name for the result of evaluation of an expression. The
output consists of this result together with its inferred type.

We now define a small language obtained by combining the data structures de-
scribed in the previous section with a functional calculus and then giving its type
system.

3.1 Expressions

The syntax of programs or expressions of the core language is given by

e ::= cτ | () | x | (fn x => e) | e(e) | let x=e in e end |
if e then e else e | eq(e,e) |
[l=e,. . .,l=e] | e¦l | modify(e,l,e) |
<l=e> | case e of <l=x> => e,. . ., <l=x> => e endcase |
case e of <l=x> => e,. . ., <l=x> => e else => e endcase |
{} | {e} | union(e,e) | hom(e,e,e,e) |

ACM Transactions on Database Systems

Polymorphism and Type Inference in Database Programming · 13

new(e) | (!e) | e:=e |
(rec x.e)

In this, cτ stands for standard constants including constants of base types and ordi-
nary primitive functions on base types. x stands for the variables of the language.
() is the single value of type unit and is returned by expressions such as assignment.
The binding val id = e1; e2 is syntactic sugar for let id = e1 in e2 end. Recur-
sive function definition with multiple arguments can be defined using the standard
method in functional languages such as ML. Evaluation rules for these expressions
can be obtained by extending an operational semantics of ML (with references)
such as that provided in [Tofte 1988].

3.2 Types and Description Types

The set of types of Machiavelli, ranged over by τ , is the set of regular trees [Courcelle
1983] represented by the following type expressions:

τ ::= t | unit | b | bd | τ → τ | [l:τ ,. . .,l:τ] | <l:τ ,. . .,l:τ> | {τ} | ref(τ) | (rec v.τ(v))

t stands for type variables. unit is the trivial type whose only value is (). b and bd

range respectively over the base types and base description types in the language.
The other type expressions are: τ → τ for function types, [l:τ ,. . .,l:τ] for record
types, <l:τ ,. . .,l:τ> for variant types, and {τ} for set types. In (rec v.τ(v)), the
body τ(v) is a type expression, in which the variable v may occur free, and the
entire expression denotes the solution to the equation v = τ(v). To ensure that a
type expression always denotes a unique regular tree, we place the restriction that
τ(v) in (rec v.τ(v)) contains a proper type constructor (other than variables or (rec
v′.) form). In keeping with our syntax for records we shall use the notation τ1 ∗ τ2

as an abbreviation for the type [first : τ1, second : τ2]. n-tuple types are treated
similarly.

Database examples of Machiavelli types are: a relation type,

{[PartNum : int, PartName : string, Color : <Red : unit, Green : unit, Blue : unit>]}
a complex object type,

{[Name : [First : string, Last : string], Children : {string}]}
and a mutable object type,

(rec p. ref([Id# : int, Name : string, Children : {p}]))
Note that (rec v.τ(v)) is not a type constructor but syntax to denote the solution
to the equation v = τ(v). As a consequence, distinct type expressions may denote
the same type. For example, the following type expression denotes the same type
as the one above:

(rec p. ref([Id# : int, Name : string,
Children : {ref([id# : int, Name : string, Children : {p}])}]))

The set of description types, ranged over by δ, is the subset of types represented
by the following syntax:

δ ::= d | unit | bd | [l:δ,. . .,l:δ] | <l:δ,. . .,l:δ> | {δ} | ref(τ) | (rec v.δ(v))

ACM Transactions on Database Systems

14 · Peter Buneman and Atsushi Ohori

d stands for description type variables, i.e. those type variables whose instances are
restricted to description types. τ in ref(τ) ranges over the syntax of all types given
previously. This syntax forbids the use of a function type or a base type which is
not a description type in a description type unless within a ref(. . .). Thus int -> int
is not a description type but

ref([x coord : int, y coord : int, move horizontal : int -> ()])

is a description type.

3.3 Type Inference without Records and Variants

A legal Machiavelli program corresponds to an (untyped) expression associated with
a type inferred by the type inference system. As such, the definition of this implicit
system requires two steps: first we give the typing rules, which determine when
an untyped expression e is judged to have a type τ and is therefore well typed;
second, we develop a type inference algorithm that infers, for any type consistent
expression, a principal type. For readability, we develop the description of the type
system, in two stages. In this and the following subsection, we describe the type
system for expressions that do not involve records and variants; then, in subsection
3.4, we extend the system to records and variants by introducing kinding.

The typing rules are given as a set of rules to derive typing judgments. Since,
in general, an expression e contains free variables and the type of e depends on
the types assigned to those variables, a typing judgment is defined relative to a
type assignment of free variables. We let A range over type assignments, which
are functions from a finite subset of variables to types. We write A(x, τ) for the
function A′ such that domain(A′) = domain(A)∪{x}, A′(x) = τ and A′(y) = A(y)
for y 6= x. A typing judgment is a formula of the form:

A¤ e : τ

expressing the fact that expression e has type τ under type assignment A. The
typing rules for those operations in Machiavelli that do not involve records are
shown in Figure 2. Note that in some of them such as (union), types are restricted
to description types, which is indicated by the use of δ instead of τ .

In (let), the notation e1[e2/x] denotes the expression obtained from e1 by sub-
stituting e2 for all free occurrences of x. This is a departure from the Damas-Milner
system [Damas and Milner 1982] in that it does not use generic types (a type ex-
pression of the form ∀t. τ) but instead it uses syntactic substitution of expressions.
It can be shown [Ohori 1989a; Mitchell 1990] that this proof system is equivalent
to that of Damas-Milner. The advantage of our treatment of let is that it yields
simpler proofs and can be extended to the relational algebra, as we shall show later.
While it is possible to extend Damas-Milner generic types to records and variants
using kinded type abstraction [Ohori 1992; Ohori 1995], we do not know how to
extend this technique to the conditional typing that we shall require for database
operations such as join and projection. Note that this rule is only to define typ-
ing for let expressions; it does not imply that the semantics for a let expression is
defined by term substitution, which would yield call-by-name semantics. Since we
have references, we choose the usual call-by-value semantics for let expressions.

The proof system of Figure 2 determines which expressions are type correct
Machiavelli programs (not involving operations on records and variants). Unlike
ACM Transactions on Database Systems

Polymorphism and Type Inference in Database Programming · 15

(const) A¤ cτ : τ

(unit) A¤ () : unit

(var) A¤ x : τ if x ∈ domain(A),A(x) = τ

(abs)
A(x, τ1) ¤ e : τ2

A¤ fn x => e : τ1→ τ2

(app)
A¤ e1 : τ1→ τ2 A¤ e2 : τ1

A¤ e1(e2) : τ2

(let)
A¤ e1[e2/x] : τ A¤ e2 : τ ′

A¤ let x = e2 in e1 end : τ

(if)
A¤ e1 : bool A¤ e2 : τ A¤ e3 : τ

A¤ if e1 then e2 else e3 : τ

(eq)
A¤ e1 : δ A¤ e2 : δ

A¤ eq(e1,e2) : bool

(singleton)
A¤ e : δ

A¤ {e} : {δ}

(union)
A¤ e1 : {δ} A¤ e2 : {δ}

A¤ union(e1,e2) : {δ}

(hom)
A¤ e1 : δ→ τ1 A¤ e2 : (τ1 ∗ τ2)→ τ2 A¤ e3 : τ2 A¤ e4 : {δ}

A¤ hom(e1,e2,e3,e4) : τ2

(new)
A¤ e : τ

A¤ new(e) : ref(τ)

(deref)
A¤ e : ref(τ)

A¤ !e : τ

(assign)
A¤ e1 : ref(τ) A¤ e2 : τ

A¤ e1:=e2 : unit

(rec)
A(v, δ) ¤ e(v) : δ

A¤ (rec v. e(v)) : δ

Fig. 2. Typing Rules for Expressions Without Records and Variants

ACM Transactions on Database Systems

16 · Peter Buneman and Atsushi Ohori

the simple type discipline, this proof system does not immediately yield a decision
procedure for type checking expressions. The second step of the definition of the
type system is to give such a decision procedure. Following [Hindley 1969; Mil-
ner 1978], we solve this problem by developing an algorithm that always infers a
principal typing for any type consistent expressions.

A substitution S is a function from type variables to types. A substitution may
be extended to type expressions, and we identify a substitution and its extension,
i.e. we shall write S(τ) for the expression obtained by replacing each type variable
t in τ with S(t). A typing A1 ¤ e : τ1 is more general than A2 ¤ e : τ2 if
domain(A1) ⊆ domain(A2) and there is some substitution S such that τ2 = S(τ1)
and A2(x) = S(A1(x)) for all x ∈ domain(A1). A typing A ¤ e : τ is principal if
it is more general than any other derivable typing of e.

Figure 3 shows an algorithm to compute a principal typing for any untyped
expression of Machiavelli that does not contain records, variants and database
operations. The algorithm consists of a set of functions, one for each typing
rule, together with the main function Typing. Based on the typing rule (rule),
PRULE synthesizes a principal typing for an expression e from those of its subex-
pressions. It generates the equations that make the typings of the subexpres-
sions conform to the premises of the rule, solves the equations and generates the
typing corresponding to the conclusion of the rule. Unify used in these func-
tions is a unification algorithm; allpairs({A1, . . . ,An}) denotes the set of pairs
{(Ai(x),Aj(x)) | x ∈ domain(Ai) ∩ domain(Aj), i 6= j}. The notation F ↑X de-
notes the restriction of the function F to the set X ⊆ domain(F).

For example, consider the function PAPP, which takes principal typings of e1 and
e2, and synthesizes a principal typing of e1(e2). It first generates the equations
that require the common variables of e1 and e2 to have the same type assignment,
together with the equation that makes the type of e2 to be the domain type of the
type of e1. They are respectively the set of equations allpairs({A1,A2}) and the
equation (τ1, τ2→ t). It then solves these equations by Unify which always finds a
most general solution to the equations (if it exists) in the form of a substitution S.
Finally, it returns the type assignment S(A1)∪S(A2) and a type S(t), corresponding
to the conclusion of the rule app.

The main function Typing is presented in the style of [Mitchell 1990]. It analyzes
the structure of the given expression, recursively calls itself on its subexpressions
to get their principal typings and then calls an appropriate function P that corre-
sponds to the outermost constructor of the expression. The extra parameter L to
Typing is an environment that records the principal typings of let-bound variables.
By maintaining this environment, the algorithm avoids repeated computation of
a principal type of e1 in inferring a typing of expressions of the form let x=e1 in
e2 end, and it also enables incremental compilation. Renaming type variables in
the case of x ∈ domain(L) effectively achieves the same effect of computing the
principal typing of e1 for each occurrence of x in e2.

As an example of type inference, let us use the algorithm to compute a principal
typing of the function insert and of its application:

val insert = fn x => fn S => union({x}, S);
insert 2 {};

ACM Transactions on Database Systems

Polymorphism and Type Inference in Database Programming · 17

PAPP((A1, τ1), (A2, τ2)) =
let S = Unify(allpairs({A1,A2}) ∪ {(τ1, τ2→ t)}) (t fresh)
in (S(A1) ∪ S(A2), S(t))
end

PABS((A, τ), x) =

if x ∈ domain(A) then (A↑domain(A)\{x},A(x)→ τ)
else (A, t→ τ) (t fresh)

PLET((A1, τ1), (A2, τ2)) =
let S = Unify(allpairs({A1,A2}))
in (S(A1 ∪ A2), S(τ2))
end

PSINGLETON(A, τ) = let S = Unify({(τ, d)}) in (S(A), {S(d)}) end (d fresh)

PUNION((A1, τ1), (A2, τ2)) =
let S = Unify(allpairs({A1,A2}) ∪ {(τ1, τ2), (τ1, {d})}) (d fresh)
in (S(A1 ∪ A2), S({d}))
end

..

.

Typing(e, L) =
case e of:

cτ =⇒ (∅, τ)
x =⇒ if x ∈ domain(L) then L(x) with all type variables renamed

else ({x : t}, t) (t fresh)
fn x => e =⇒ PABS(Typing(e, L), x)
e1(e2) =⇒ PAPP(Typing(e1, L), T yping(e2, L))
let x = e1 in e2 =⇒ let (A1, τ1) = Typing(e1, L)

L′ = L(x, (A1, τ1))
in PLET((A1, τ1), T yping(e2, L′))

{e} =⇒ PSINGLETON(Typing(e, L))
union(e1,e2) =⇒ PUNION(Typing(e1, L), T yping(e2, L))
..
.

endcase

Fig. 3. Type Inference Algorithm without Records, Variants

ACM Transactions on Database Systems

18 · Peter Buneman and Atsushi Ohori

Figure 4 shows the sequence of the function calls and their results during the com-
putation. Line 1 is the top level call of the algorithm on fn x => fn S => union({x},
S). Line 3 is the first recursive call on its only subexpression, whose result is shown
on line 16. Lines 9 and 12 contain a call of Typing on a variable, which immedi-
ately returns a principal typing. In PSINGLETON on line 10 and 11, type variable t1 is
unified with a fresh description type variable d1. In line 13 and 14, PUNION unifies
type variable t2 with type {d1} and takes the union of type assignments. Line 18
shows a principal typing of insert. Lines 19 – 36 show the process for insert 2 {},
which is a shorthand for let insert = fn x => fn S => union({x}, S) in insert 2 {} end.

It requires some work to show that the algorithm we have described has the
desired properties. We have also glossed over some important details such as the
treatment of description type variables, recursive types and references. Before
dealing with these issues let us first show how the typing rules and the inference
system may be extended to handle records and variants.

3.4 Kinded Type Inference for Records and Variants

To extend the type system to records and variants, we need to introduce kind
constraints on type variables. The set of kinds in Machiavelli is given by the syntax:

K ::= U | [[l:τ ,. . .,l:τ]] | 〈〈l:τ ,. . .,l:τ〉〉
The idea is that U denotes the set of all types, [[l1:τ1,. . .,ln:τn]] denotes the set of
record types containing the set of all fields l1 : τ1, . . . , ln : τn, and 〈〈l1:τ1,. . .,ln:τn〉〉
denotes the set of variant types containing the set of all variants l1 : τ1, . . . , ln : τn.

In the extended type system, type variables must be kinded by a kind assignment
K, which is a mapping from type variables to kinds. We write {t1 :: k1, . . . , tn :: kn}
for a kind assignment K that maps ti to ki (1 ≤ i ≤ n). A type τ has a kind k
under a kind assignment K, denoted by K ` τ :: k, if it satisfies the conditions
shown in Figure 5. For example, the following is a legal kinding:

{t1 :: U, t2 :: [[Name : t1, Age : int]]} ` t2 :: [[Name : t1]]

A typing judgment is now refined to incorporate kind constraints on type vari-
ables:

K,A¤ e : τ

Typing judgments of the form A ¤ e : τ described in the previous subsection
should now be taken as judgments of the form K0,A¤ e : τ where K0 is the kind
assignment mapping all the type variables appearing in A, τ to the universal kind
U. The typing rules for records and variants in the extended type system are given
in Figure 6. The rules for other constructors are the same as before except that
they should be reinterpreted relative to a kind assignment K. For example, the
rule abs becomes

(abs)
K,A(x, τ1) ¤ e : τ2

K,A¤ fn x => e : τ1→ τ2

In particular, these propagate the kind assignment, but they do not change it, nor
do they involve kinding judgements of the form K ` τ :: K.

It can be seen that the kinding constraints in the rules (dot) and (variant)
express the conditions under which field selection and variant formation can be
ACM Transactions on Database Systems

Polymorphism and Type Inference in Database Programming · 19

1 Typing(fn x => fn S => union({x},S),∅)
2 = PABS(Typing(fn S => union({x},S), ∅),x)
3 〉Typing(fn S => union({x},S), ∅)
4 〉 = PABS(Typing(union({x},S), ∅), S)
5 〉 〉Typing(union({x},S), ∅)
6 〉 〉 = PUNION(Typing({x}, ∅), T yping(S, ∅))
7 〉 〉 〉Typing({x}, ∅)
8 〉 〉 〉 = PSINGLETON(Typing(x, ∅))
9 〉 〉 〉 〉Typing(x, ∅) = ({x: t1}, t1)
10 〉 〉 〉 = PSINGLETON(({x: t1}, t1))
11 〉 〉 〉 = ({x: d1}, {d1})
12 〉 〉 〉Typing(S, ∅) = ({S: t2}, t2)
13 〉 〉 = PUNION(({x: d1}, {d1}), ({S: t2}, t2))
14 〉 〉 = ({x : d1, S : {d1}}, {d1})
15 〉 =PABS(({x : d1, S : {d1}}, {d1}), S)
16 〉 =({x : d1}, {d1}→{d1})
17 = PABS(({x : d1}, {d1}→{d1}), x)
18 = (∅, d1→{d1}→{d1})

19 Typing(let insert = fn x => fn S => union({x},S) in insert 2 {} end,∅)
20 = PLET((∅, d1→{d1}→{d1})), Typing(insert 2 {}, {(insert, (∅, d1→{d1}→{d1}))})
21 〉Typing(insert 2 {}, {(insert, (∅, d1→{d1}→{d1}))})
22 〉 = PAPP(Typing(insert 2, {(insert, (∅, d1→{d1}→{d1}))}),

Typing({}, {(insert, (∅, d1→{d1}→{d1}))}))
23 〉 〉Typing(insert 2, {(insert, (∅, d1→{d1}→{d1}))})
24 〉 〉 = PAPP(Typing(insert, {(insert, (∅, d1→{d1}→{d1}))}),

Typing(2, {(insert, (∅, d1→{d1}→{d1}))}))
25 〉 〉 〉Typing(insert, {(insert, (∅, d1→{d1}→{d1}))})
26 〉 〉 〉 = (∅, d2→{d2}→{d2})
27 〉 〉 〉Typing(2, {(insert, (∅, d1→{d1}→{d1}))})
28 〉 〉 〉 = (∅, int)
29 〉 〉 = PAPP((∅, d2→{d2}→{d2}), (∅, int))
30 〉 〉 = (∅, {int}→{int})
31 〉 〉Typing({}, {(insert, (∅, d1→{d1}→{d1}))})
32 〉 〉 = (∅, {d3})
33 〉 = PAPP((∅, {int}→{int}), (∅, {d3}))
34 〉 = (∅, {int})
35 = PLET((∅, d1→{d1}→{d1}), (∅, {int}))
36 = (∅, {int})

Fig. 4. Computing a Principal Typing

ACM Transactions on Database Systems

20 · Peter Buneman and Atsushi Ohori

K ` τ :: U for all τ

K ` t :: [[l1:τ1,. . .,ln:τn]] if t ∈ domain(K),K(t) = [[l1:τ1,. . .,ln:τn,. . .]]

K ` [l1:τ1,. . .,ln:τn,. . .] :: [[l1:τ1,. . .,ln:τn]]

K ` t :: 〈〈l1:τ1,. . .,ln:τn〉〉 if t ∈ domain(K),K(t) = 〈〈l1:τ1,. . .,ln:τn,. . .〉〉
K ` <l1:τ1,. . .,ln:τn,. . .> :: 〈〈l1:τ1,. . .,ln:τn〉〉

Fig. 5. Kinding Rules

(record)
K,A¤ e1 : τ1, . . . ,K,A¤ en : τn

K,A¤ [l1=e1,. . .,ln=en] : [l1:τ1,. . .,ln:τn]

(dot)
K,A¤ e : τ1 K ` τ1 :: [[l : τ2]]

K,A¤ e¦l : τ2

(modify)
K,A¤ e1 : τ1 K,A¤ e2 : τ2 K ` τ1 :: [[l : τ2]]

K,A¤ modify(e1,l,e2) : τ1

(variant)
K,A¤ e : τ1 K ` τ2 :: 〈〈l:τ1〉〉

K,A¤ <l=e> : τ2

(case)
K,A¤ e : <l1:τ1,. . .,ln:τn> K,A(xi, τi) ¤ ei : τ (1 ≤ i ≤ n)

K,A¤ case e of <l1=x1> => e1, . . ., <ln=xn> => en endcase : τ

(case’)

K,A¤ e : τ0
K,A(xi, τi) ¤ ei : τ(1 ≤ i ≤ n)

K,A¤ e0 : τ
K ` τ0 :: 〈〈l1:τ1,. . .,ln:τn〉〉

K,A¤ case e of <l1=x1> => e1,. . ., <ln=xn> => en else => e0 endcase : τ

Fig. 6. Typing Rules for Records and Variants

typed. The following is an example of a legal typing:

{t1 :: U, t2 :: [[Name : t1]]}, ∅¤ fn x => x¦Name : t2→ t1

which says that the function fn x => x¦Name can be applied to any record type t2
which contains the field Name : t1 and returns a value of type t1.

Note that we do not need “recursive kinds” to represent recursive polymorphic
types involving records and variants. They are represented by a kind assignment in
which type variables may assigned to a kind containing some of those type variables,
as seen in the following example:

{d :: [[Children:{d}]]}, ∅¤ fn x => union({x}, x¦Children) : d→{d}
Because of the cyclic dependency of the kind constraint, instances of the de-
scription type variable d are restricted to the recursive types of the form (rec
p.[Children:{p},. . .]). The following is an example of an instance of this type scheme:

(rec p.[Name:string, Children:{p}]) →{(rec p.[Name:string, Children:{p}])}
To refine the type inference algorithm, we need to refine an unification algorithm

to kinded unification. The strategy is to add a kind assignment to each component
in unification and to check the condition that unification respects the constraints
specified by kind assignments. A kinded substitution is a pair (K, S) consisting of a
kind assignment K and a substitution S. Intuitively, the kind assignment K is the
ACM Transactions on Database Systems

Polymorphism and Type Inference in Database Programming · 21

kind constraints that must be satisfied by the results of applying the substitution
S. We write [t1 7→ τ1, . . . , tn 7→ τn] for the substitution S such that S(ti) = τi

(1 ≤ i ≤ n), and S(x) = x for all the other variables. We say that a kinded
substitution (K1, S) respects a kind assignment K2 if, for all t ∈ domain(K2),
K1 ` S(t) :: S(K2(t)) is a legal kinding. For example, a kind substitution

({t1 :: U}, [t2 7→ [Name : t1,Age : int]])

respects the kind constraints {t1 :: U, t2 :: [[Name : t1]]} and can be applied to
type t2 under this constraint. A kinded substitution (K1, S1) is more general than
(K2, S2) if S2 = S3 ◦ S1 for some S3 such that (K2, S3) respects K1, where S ◦ S′ is
the composition of substitutions S, S′ defined as S ◦ S′(t) = S(S′(t)). A kinded set
of equations is a pair consisting of a kind assignment and a set of pairs of types.
A kinded substitution (K1, S) is a unifier of a kinded set of equations (K2, E) if it
respects K2 and S(τ1) = S(τ2) for all (τ1, τ2) ∈ E. We can then obtain the following
result, a refinement of Robinson’s [Robinson 1965] unification algorithm.

Theorem 1. There is an algorithm Unify which, given any kinded set of equa-
tions, computes a most general unifier if one exists and reports failure otherwise.

We provide here a description of the algorithm for acyclic types; its correctness
proof can be found in [Ohori 1995]. We will describe the necessary extensions for
cyclic regular trees in the following subsection.

The algorithm Unify is presented in the style of [Gallier and Snyder 1989] by a set
of transformation rules on triples (K, E, S) consisting of a kind assignment K, a set
E of type equations and a set S of “solved” type equations of the form (t, τ) such
that t 6∈ FTV (τ). Let (K, E) be a given kinded set of equations. The algorithm
Unify first transforms (K, E, ∅) to (K′, E′, S′) until no more rules can apply. It then
returns (K′, S′) if E′ is empty; otherwise it reports failure.

Let F range over functions from a finite set of labels to types. We write [F]
and [[F]] respectively to denote the record type identified by F and the record kind
identified by F . Figure 7 gives the set of transformation rules for record types and
function types. The rules for variant types are obtained from those of record types
by replacing record type constructor [F], record kind constructor [[F]] with variant
type constructor <F>, and variant kind constructor 〈〈F 〉〉, respectively. Rules i, ii,
v and vi are same as those in ordinary unification. Rule i eliminates an equation
that is always valid. Rule ii is the case for variable elimination; if occur-check
(the condition that t does not appear in τ) succeeds then it generates one point
substitution [t 7→ τ], applies it to all the type expressions involved and then moves
the equation (t, τ) to the solved position. Rules v and vi decompose an equation of
complex types into a set of equations of the corresponding subcomponents. Rules iii
and iv are cases for variable elimination similar to rule ii except that the variables
have non trivial kind constraint. In addition to eliminating a type variable as in rule
ii, these rules check the consistency of kind constraints and, if they are consistent,
generates a set of new equations equivalent to the kind constraints.

Using this refined unification algorithm, we can now extend the type inference
system. First, we refine the notion of principal typings. A typing K1,A1 ¤ e : τ1

is more general than K2,A2 ¤ e : τ2 if domain(A1) ⊆ domain(A2), and there is
a substitution S such that the kinded substitution (K2, S) respects K1, A2(t) =

ACM Transactions on Database Systems

22 · Peter Buneman and Atsushi Ohori

i (K, E ∪ {(τ, τ)}, S) ⇒ (K, E, S)

ii (K ∪ {t 7→ U}, E ∪ {(t, τ)}, S) ⇒ ([t 7→ τ](K), [t 7→ τ](E), {(t, τ)} ∪ [t 7→ τ](S))
if t does not appear in τ

iii (K ∪ {t1 7→ [[F1]], t2 7→ [[F2]]}, E ∪ {(t1, t2)}, S) ⇒
([t1 7→ t2](K ∪ {t2 7→ [[F]]}),
[t1 7→ t2](E ∪ {(F1(l), F2(l))|l ∈ domain(F1) ∩ domain(F2)}),
{(t1, t2)} ∪ [t1 7→ t2](S))

where F = {(l, τl)|l ∈ domain(F1) ∪ domain(F2),
τl = F1(l) if l ∈ domain(F1) otherwise τl = F2(l)}

if t1 not appears in F2 and t2 not appears in F1.

iv (K ∪ {t1 7→ [[F1]]}, E ∪ {(t1, [F2])}, S) ⇒
([t1 7→ [F2]](K),
[t1 7→ [F2]](E ∪ {(F1(l), F2(l))|l ∈ domain(F1) ∩ domain(F2)}),
{(t1, [F2])} ∪ [t1 7→ [F2]](S))

if domain(F1) ⊆ domain(F2) and t 6∈ FTV ([F2])

v (K, E ∪ {(τ1
1 → τ2

1 , τ1
2 → τ2

2)}, S) ⇒ (K, E ∪ {(τ1
1 , τ1

2), (τ2
1 , τ2

2)}, S)

vi (K, E ∪ {[F1], [F2]}, S) ⇒ (K, E ∪ {(F1(l), F2(l))|l ∈ domain(F1)}, S)
if domain(F1) = domain(F2)

Fig. 7. Some of the Transformation Rules for Kinded Unification

S(A1(t)) for all t ∈ domain(A1), and τ2 = S(τ1). A typing K,A¤e : τ is principal
if it is more general than all the derivable typings for e. The type inference algorithm
is extended by adding the new functions to compose a principal type for record
and variant operations and to extend the main algorithm by adding the cases for
records and variants. Figure 8 shows the necessary changes to the main algorithm.
Figure 9 shows the new composition functions corresponding to the typing rules for
records and variants. The functions we have defined in Figure 3 remain unchanged
except that they take kinded typings of the form (K,A, τ) and the appropriate
kind assignments must be added as components of the parameter of the unification
algorithm and of its result.

Figure 10 shows the type inference process for the function fn x => (x¦Name, x¦Sal
> 10000), a function that is used in the implementation of Wealthy of section 1.

3.5 Further Refinement and the Correctness of the Type Inference System

In the explanation of type inference algrithm so far, we have ignored the con-
straint that some type variables should only denote description types. The neces-
sary extension is to introduce description kind constructors D, [[l : δ, . . . , l : δ]]d and
〈〈l : δ, . . . , l : δ〉〉d respectively denoting the set of all description types, description
record types, and description variant types. Although it increases the notational
complexity, these extension can be easily incorporated with the unification algo-
rithm and the type inference.

Another simplification we made in the description of the type inference algorithm
is our assumption that types are all non cyclic. To extend the type inference algo-
rithm to recursive types, we only need to extend the kinded unification algorithm
ACM Transactions on Database Systems

Polymorphism and Type Inference in Database Programming · 23

Typing(e, L) =
case e of

cτ =⇒ (∅, ∅, τ)
x =⇒ if x ∈ domain(L) then L(x) with all type variables renamed

else ({t :: U}, {x : t}, t) (t fresh)
..
.
[l1=e1,. . .,ln=en] =⇒ PRECORD([l1 = Typing(e1, L), . . . , ln = Typing(en, L)])
e¦l =⇒ PDOT(Typing(e, L), l)
modify(e1,l,e2) =⇒ PMODIFY(Typing(e1, L), T yping(e2, L), l)
<l=e> =⇒ PVARIANT(Typing(e, L), l)
case e of <l1=x1> => e1,. . ., <ln=xn> => en endcase =⇒

PCASE1(Typing(e, L),
[l1 = PABS(Typing(e1, L), x1), . . . ,
ln = PABS(Typing(en, L), xn)])

case e of <l1=x1> => e1,. . ., <ln=xn> => en else e0 endcase =⇒
PCASE2(Typing(e, L),

[l1 = PABS(Typing(e1, L), x1), . . . ,
ln = PABS(Typing(en, L), xn)],
Typing(e0, L))

endcase

Fig. 8. The Main Algorithm for Type Inference with Records and Variants

to infinite regular trees. The necessary extension is similar to the one needed to ex-
tend an ordinary unification algorithm to regular trees [Huet 1976], which involves:
(1) defining a data structure to represent regular trees; (2) changing the cases for
variable elimination (cases of ii and iv) by eliminating occur-check and replacing
the one point substitution [t 7→ τ] by the substitution [t 7→ (rec v.τ [v/t])] where
(rec v.τ [v/t]) is a regular tree that is a solution to v = τ [v/t], and (3) changing the
cases for decomposition (cases v and vi) so that they generate the equations for
the set of pairs of corresponding subtrees of the given regular trees.

We have also ignored the details of dealing with references. The above type
inference method cannot be directly extended to references, since the call-by-value
operational semantics for let expressions involving references does not agree with
polymorphic type discipline for let binding. As Milner observed in his original
presentation of ML type system [Milner 1978], the straightforward application of
ML type inference method to references yields unsound type system. Solutions
have been proposed in [Tofte 1988; MacQueen 1988; Leroy and Weise 1991; Hoang
et al. 1993]. They differ in detailed treatment but they are all based on the idea
that the type system restricts substitution on type variables in reference types in
such a way that references created by a polymorphic functions are monomorphic.
Since these mechanisms can be regarded as a new form of kind constraint on type
variables, we believe that they can safely be incorporated with our type system.
Another more radical solution [Leroy 1993] is to change the semantics of let to call-
by-name, with which Damas-Milner polymorphic let typing and equivalently our
rule for let become sound. This strategy can also be adopted. However, for want of
good intuitions about the merits of these mechanisms, we adopt the simplest and
restrict the reference constructor to monomorphic types.

With these refinements, the complete static type inference of ML is extended to
ACM Transactions on Database Systems

24 · Peter Buneman and Atsushi Ohori

PRECORD([l1 = (K1,A1, τ1), . . . , ln = (Kn,An, τn)]) =
let (K, S) = Unify(K1 ∪ · · · ∪ Kn, allpairs({A1, . . . ,An}))
in (K, S(A1) ∪ · · · ∪ S(An), S([l1 : τ1, . . . , ln : τn]))
end

PDOT((K,A, τ), l) =
let (K′, S) = Unify(K ∪ {t1 :: U, t2 :: [[l : t1]]}, {(t2, τ)}) (t1, t2 fresh)
in (K′, S(A), S(t1))
end

PMODIFY((K1,A1, τ1), (K2,A2, τ2), l) =
let (K, S) = Unify(K1 ∪ K2 ∪ {t1 :: U, t2 :: [[l : t1]]},

allpairs({A1,A2}) ∪ {(t2, τ1), (t1, τ2)}) (t1, t2 fresh)
in (K, S(A), S(t2))
end

PVARIANT((K,A, τ), l) = (K ∪ {t :: 〈〈l : τ〉〉},A, t) (t fresh)

PCASE1((K0,A0, τ0), [l1 = (K1,A1, τ1), . . . , ln = (Kn,An, τn)]) =
let (K, S) =

Unify(K0 ∪ · · · ∪ Kn ∪ {t :: U, t1 :: U, . . . , tn :: U},
allpairs({A0, . . . ,An}) ∪ {(τi, ti→ t)|1 ≤ i ≤ n}
∪{(τ0, <l1 : t1, . . . , ln : tn>)}) (t, t1, . . . , tn fresh)

in (K, S(A1) ∪ · · · ∪ S(An), S(t))
end

PCASE2((K0,A0, τ0), [l1 = (K1,A1, τ1), . . . , ln = (Kn,An, τn)], (Kn+1,An+1, τn+1)) =
let (K, S) =

Unify(K0 ∪ · · · ∪ Kn+1 ∪ {t :: U, t1 :: U, . . . , tn :: U, t0 :: 〈〈l1 : t1, . . . , ln : tn〉〉},
allpairs({A0, . . . ,An+1}) ∪ {(τi, ti→ t)|1 ≤ i ≤ n}
∪{(τ0, t0), (τn+1, t)}) (t, t0, t1, . . . , tn fresh)

in (K, S(A1) ∪ · · · ∪ S(An), S(t))
end

Fig. 9. New Functions to Synthesize Principal Typings

ACM Transactions on Database Systems

Polymorphism and Type Inference in Database Programming · 25

Typing(fn x => (x¦Name, x¦Sal > 10000), ∅)
= PABS(Typing((x¦Name, x¦Sal> 10000), ∅), x)
〉Typing((x¦Name, x¦Sal > 10000), ∅)
〉 = PRECORD((Typing(x¦Name, ∅), Typing(x¦Sal > 10000, ∅)))
〉 〉Typing(x¦Name, ∅)
〉 〉 = PDOT(Typing(x, ∅), Name)
〉 〉 〉Typing(x, ∅) = ({t1 :: U}, {x : t1}, t1)
〉 〉 = PDOT(({t1 :: U}, {x : t1}, t1), Name)
〉 〉 = ({t2 :: U, t1 :: [[Name : t2]]}, {x : t1}, t2)
〉 〉Typing(x¦Sal > 10000, ∅)
〉 〉 = P>(Typing(x¦Sal, ∅), T yping(10000, ∅))
〉 〉 〉Typing(x¦Sal, ∅) = ({t3 :: U, t4 :: [[Sal : t3]]}, {x : t4}, t3)
〉 〉 〉Typing(10000, ∅) = (∅, ∅, int)
〉 〉 = P>(({t3 :: U, t4 :: [[Sal : t3]]}, {x : t4}, t3), (∅, ∅, int))
〉 〉 = ({t4 :: [[Sal : int]]}, {x : t4}, bool)
〉 = PRECORD(({t2 :: U, t1 :: [[Name : t2]]}, {x : t1}, t2),

({t4 :: [[Sal : int]]}, {x : t4}, bool))
〉 = ({t2 :: U, t1 :: [[Name : t2, Sal : int]]}, {x : t1}, t2 ∗ bool)

= PABS(({t2 :: U, t1 :: [[Name : t2, Sal : int]]}, {x : t1}, t2 ∗ bool), x)
= ({t2 :: U, t1 :: [[Name : t2, Sal : int]]}, ∅, t1→ t2 ∗ bool)

Fig. 10. Examples of Type Inference with Records

records, variants, and set data types, as stated in the following result:

Theorem 2. Let e be any raw term of Machiavelli. If Typing(e, ∅) = (K,A, τ)
then K,A ¤ e : τ is a principal typing of e. If Typing(e, ∅) reports failure then e
has no typing.

Just as legal ML programs correspond to principal typing schemes with empty
type assignment, legal Machiavelli programs correspond to principal kinded typ-
ing schemes with empty type assignment, ie. typings of the form K, ∅ ¤ e : τ .
Machiavelli prints a typing K, ∅¤ e : τ as

e : τ ′

where τ ′ is a type whose type variables are printed together with their kind con-
straints in K in the following formats:

—’a,’b,. . . for those type variables t such that K(t) = U, . . .

—”a,”b,. . . for those description type variables d such that K(d) = D, . . .

—’a::[l1:τ1,. . .,ln:τn],. . . for those type variables t such that K(t) = [[l1 : τ1, . . . , ln :
τn]], . . .

—”a::[l1:τ1,. . .,ln:τn],. . . for those description type variables d such that K(d) = [[l1 :
τ1, . . . , ln : τn]]d, . . .

—’a::<l1:τ1,. . .,ln:τn>,. . . for those type variables t such that K(t) = 〈〈l1 : τ1, . . . , ln :
τn〉〉, . . .

—”a::<l1:τ1,. . .,ln:τn>,. . . for those description type variables d such that K(d) =
〈〈l1 : τ1, . . . , ln : τn〉〉d, . . .

as already seen in examples. Thus the type output in the following example
ACM Transactions on Database Systems

26 · Peter Buneman and Atsushi Ohori

-> fun name x = x¦Name;
>> val name = fn : ’a::[Name : ’b] -> ’b

is a representation of the following kinded typing scheme:

{t2 :: U, t1 :: [[Name : t2]]}, ∅¤ fn x=> x¦Name : t1→ t2

The examples shown in Figure 1 use the same convention.
To summarize our progress to this point: we have augmented type schemes of ML

with description types (which already exist in ML in a limited form) and kinded
type variables. This has provided us with a type system that not only expresses
the generic nature of field selection, but also allows sets to be uniformly treated in
the language. However relational databases require more than the operations we
have so far described, and it is to these that we now turn.

4. OPERATIONS FOR GENERALIZED RELATIONS

We are now going to show how we can extend Machiavelli to include the operations
of the relational algebra, specifically projection and natural join, which are not
covered by the operations developed so far. There are two points to be made about
our strategy. The first is that we are going to put an ordering on values and on
description types. The ordering on types, although somewhat similar to that used
by Cardelli [Cardelli 1988], is in no sense a part of Machiavelli’s polymorphism. This
should be apparent from the fact that we have already incorporated polymorphic
field selection without such an ordering.

The second point is that the introduction of join complicates the presentation of
the type system and increases the complexity of the type inference problem, which
requires us to extend the notion of (kinded) typing schemes to conditional typing
schemes [Ohori and Buneman 1988] by adding syntactic conditions on instantiation
of type variables. A similar problem was later observed in [Wand 1989] if one uses
a record concatenation operation rather than join. (See also [Cardelli and Mitchell
1989; Harper and Pierce 1991; Remy 1992] for polymorphic calculi with record
concatenation.) Since we are primarily concerned with database operations, our
inclination is to examine the record joining operation that naturally arises as a
result of generalizing the relational algebra.

Our strategy in this section is first to provide a method for generalizing rela-
tional algebra over arbitrary description types. We then provide the additional
typing rules, which have associated order constraints on the types. We then pro-
vide a principal conditional typing scheme which represents the exact set of prov-
able typings. Finally, we describe a method to check statically the satisfiability of
these constraints. In other words, we are still able to guarantee that a typechecked
program will not cause a run-time type error.

4.1 Generalizing Relational Algebra

Our rationale for wanting to generalize relational operations is that, in keeping with
the rest of the language, we would like them to be as “polymorphic” as possible.
Since equality is essential to the definition of most of these operations, we limit
ourselves to their effect on description types. To this end we generalize the following
four operations to arbitrary description terms and introduce them as polymorphic
functions into the system:
ACM Transactions on Database Systems

Polymorphism and Type Inference in Database Programming · 27

eq(e1,e2) equality test,
join(e1,e2) database join,
con(e1,e2) consistency check,
project(e,δ) projection of d onto the type δ.

The intuition underlying their generalization is the idea exploited in [Buneman
et al. 1991] that database objects are partial descriptions of real-world entities
and can be ordered by goodness of description. The polymorphic type system to
represent generalized relational operations (including cyclic structures) has been
developed in [Ohori 1990]. Here, we limit ourselves to acyclic description terms.
We first consider join and equality.

We claim that join in the relational model is based on the underlying operation
that computes a join of tuples. By regarding tuples as partial descriptions of real-
world entities, we can characterize it as a special case of very general operations on
partial descriptions that combines two consistent descriptions. For example, if we
consider the following non-flat tuples

t1 = [Name = [First = ”Joe”]] and t2 = [Name = [Last = ”Doe”]]

as partial descriptions, then the combination of the two should be

t = [Name = [First= ”Joe”, Last = ”Doe”]].

Thus t is the least upper bound t1 t t2 of t1 and t2 under an ordering v induced
by the inclusion of record fields, so that

join(d1,d2) = d1 t d2 and eq(d,d′) = d v d′ and d′ v d

This approach also provides a uniform treatment of null values [Zaniolo 1984;
Biskup 1981], which are used in databases that represent incomplete information.
To represent null values, we also extend the syntax of Machiavelli terms with:

null(b) the null value of a base type b,
<> the (polymorphic) null value of variant types.

Other incomplete values can be built from these using the constructors for descrip-
tion terms. However care must be taken [Lipski 1979; Imielinski and Lipski 1984]
to ensure that use of the algebra with these extended operations and null values
provides the semantics intended by the programmer.

These characterizations do not depend on any particular data structure such as
flat records. Once we have defined a (computable) ordering on the set of description
terms, join and equality generalize to arbitrary description terms. To obtain such
an ordering, we first define a pre-order ¹ on acyclic description terms.

cb ¹ cb for all constants cbof type b,
null(b) ¹ cb for all constants cbof type b,

null(b) ¹ null(b) for any base type b

[l1 = d1,. . .,ln = dn] ¹ [l1 = d′1,. . .,ln = d′n,. . .] if di ¹ d′i (1 ≤ i ≤ n),
<> ¹ <>,

<> ¹ <l = d> for any description d,

<l = d> ¹ <l = d′> if d ¹ d′,

r ¹ r for any reference r,

ACM Transactions on Database Systems

28 · Peter Buneman and Atsushi Ohori

r1 = {[Pname = ”Nut”,Supplier = { [Sname = ”Smith”,City = ”London”],
[Sname = ”Jones”,City = ”Paris”],
[Sname = ”Blake”,City = ”Paris”]}],

[Pname = ”Bolt”,Supplier = { [Pname = ”Blake”,City = ”Paris”],
[Sname = ”Adams”,City = ”Athens”]}]}

r2 = {[Pname = ”Nut”,Supplier = {[City = ”Paris”]},Qty = 100],
[Pname = ”Bolt”,Supplier = {[City=”Paris”]},Qty = 200]}

join(r1,r2) = {[Pname = ”Nut”,Supplier ={[Sname = ”Jones”,City = ”Paris”],
[Sname = ”Blake”,City = ”Paris”]}, Qty = 100],

[Pname = ”Bolt”,Supplier ={[Sname = ”Blake”,City = ”Paris”]}, Qty = 200]}

Fig. 11. Natural join of higher-order relations

{d1,. . . ,dn} ¹ {d′1,. . . ,d′m}
if ∀d′ ∈ {d′1, . . . , d′m}. ∃d ∈ {d1, . . . , dn}. d ¹ d′

The last rule expresses how the ordering can be extended to sets. Because ¹ fails
to be anti-symmetric an ordering is obtained by taking induced equivalence rela-
tion and regarding a description term as a representative of its equivalence class.
Thus we take v as the ordering induced by ¹. Among representatives, there is a
canonical one having the property that if it contains a set term then its members
are pairwise incomparable, i.e. an anti-chain. Since v and t are computable, our
characterization of join and eq immediately gives their definitions on general de-
scription terms, which computes a canonical representative. con, which checks for
the existence of a join is also computable. The equality (eq) is a generalization of
structural equality to sets and null values. Figure 11 shows an example of a join of
complex descriptions. The importance of this definition of join is that it is a faithful
generalization of the join in the relational model. In [Buneman et al. 1991] it is
shown that:

Theorem 3. If r1, r2 are first-normal form relations then join(r1,r2) is the nat-
ural join of r1 and r2 in the relational model.

Projection in the relational model is defined as a projection on a set of labels. We
generalize it to an operation which projects a complex description term onto some
type that describes part of its structure, and we define projection as an operation
specified by this type. Recall that the syntax of ground (variable free) description
types is

δ ::= unit | bd | [l:δ,. . .,l:δ] | <l:δ,. . .,l:δ> | {δ} | ref(τ) | (rec v.δ(v))

Projection is therefore an operation indexed by a ground description type. The
operation project(x,δ) takes a value x whose type is “bigger” than δ and returns a
value of type δ by a generalized form of projection onto that type. The following
is a simple projection on a flat relation, which has the obvious result:

project({ [Name = ”J. Doe”, Age = 21, Salary = 21000],
[Name = ”S. Jones”, Age = 31, Salary = 31000] },

{[Name : string, Salary : int]})
ACM Transactions on Database Systems

Polymorphism and Type Inference in Database Programming · 29

By using the ordering we have just defined, projection can be specified as:

project(x, δ) =
⊔
{d|d v x, d : δ}

which is computable for any description type δ.
These definitions for join and projection can be generalized to cyclic structures,

and there are polymorphic algorithm for the generalized definitions [Ohori 1990].
To summarize these extensions to the language, we have introduced the constants

null(b) and <> and the term constructors join, con, and project. Machiavelli’s call-
by-value operational semantics described in section 3 is directly extended to those
operation by adding their computation algorithms to the evaluation rules.

4.2 Type Inference for Relational Algebra

join, project and con are polymorphic operations in the sense that they compute join
and projection of various types. To represent this, we define an ordering on ground
description types that represents the ordering on the structure of descriptions. For
the set of acyclic description types, this is given by the following inductive definition:

bd ¿ bd

[l1:δ1,. . .,ln:δn] ¿ [l1:δ
′
1,. . .,ln:δ′n,. . .] if δi ¿ δ′i (1 ≤ i ≤ n)

<l1:δ1,. . .,ln:δn> ¿ <l1:δ′1,. . .,ln:δ′n> if δi ¿ δ′i (1 ≤ i ≤ n)
{δ1} ¿ {δ2} if δ1 ¿ δ2

ref(δ) ¿ ref(δ)

This definition reflects the definition of the ordering on description terms. In partic-
ular, the rule for reference types reflects the property that two reference expressions
have a join if they denote the same reference value, and therefore have the same
type. (There may be other choices for the ordering of variant types. The choice
will depend on the intended semantics of this construct as a partial description.)
Using this ordering, types of join, project, and con are given as:

con : δ1 ∗ δ2→ bool such that δ1 t¿ δ2 exsists
join : δ1 ∗ δ2→ δ3 such that δ3 = δ1 t¿ δ2

project(,δ2) : δ1→ δ2 such that δ2 ¿ δ1

To integrate these operations with the polymorphic core of Machiavelli defined
in section 3, we need to take account of these operations in the type system. We
therefore explicitly introduce syntactic conditions on substitution of type variables
for three forms of constraint associated with the types of these operations: δ1t¿ δ2

exists, δ = δ1t¿δ2, and δ2 ¿ δ1. In fact we only need to consider the last two forms
of constraint since δ1 t¿ δ2 will exist whenever we can find a type δ3 = δ1 t¿ δ2.
To represent them we introduce the following syntactic conditions:

(1) τ = jointype(τ, τ), and
(2) lessthan(τ, τ).

Note the difference between δ3 = δ1 t¿ δ2 and τ3 = jointype(τ1, τ2). The former
is a property on the relationship between three ground description types. On the
other hand, the latter is a syntactic formula denoting the constraint on substitutions

ACM Transactions on Database Systems

30 · Peter Buneman and Atsushi Ohori

(null1) C,K,A¤ null(b) : b

(null2) C,K,A¤ <> : δ if K ` δ :: 〈〈〉〉

(con)
C,K,A¤ e1 : δ1 C,K,A¤ e2 : δ2
C ∪ {δ = jointype(δ1, δ2)},K,A¤ con(e1, e2) : bool

(for some δ)

(join)
C,K,A¤ e1 : δ1 C,K,A¤ e2 : δ2
C ∪ {δ = jointype(δ1, δ2)},K,A¤ join(e1, e2) : δ

(project)
C,K,A¤ e : δ1

C ∪ {lessthan(δ2, δ1)},K,A¤ project(e1, δ2) : δ2

Fig. 12. The Typing Rules for Relational Operations

of type variables in τ1, τ2, τ3 to ensure that any ground instance of these satisfies
such a property. A similar remark holds for δ1 ¿ δ2 and lessthan(τ1, τ2). Using
these syntactic conditions on type variables, we can extend the type system to
incorporate these new operations. Typing judgements in the extended system has
the form C,K,A ¤ e : τ where the extra ingredient C is a set of these syntactic
conditions. Figure 12 shows the typing rules for the new operations. Other rules
remain the same as those defined in Figure 2 and 6 except that they are now relative
to a given set of conditions. For example, the rule abs becomes

(abs)
C,K,A(x, τ1) ¤ e : τ2

C,K,A¤ fn x => e : τ1→ τ2

In particular, these other rules only propagate the given set of conditions and do
not change its contents.

Since the conditions we introduced involve the ordering that is defined only on
ground types, we need to interpret a typing judgement in this extended system as a
scheme representing the set of all ground typings obtained by substituting its type
variables with appropriate ground types. This interpretation is consistent with our
treatment of let construct (let rule in Figure 2) and its semantics described in
[Ohori 1989a]. A ground substitution θ satisfies a condition c if

(1) if c ≡ τ1 = jointype(τ2, τ2) then θ(τ1), θ(τ2), θ(τ3) are description types satis-
fying θ(τ1) = θ(τ2) t¿ θ(τ3),

(2) if c ≡ lessthan(τ1, τ2) then θ(τ1) and θ(τ2) are description types satisfying
θ(τ1) ¿ θ(τ2).

θ satisfies a set C of conditions if it satisfies each member of C. We say that a
ground typing ∅, ∅,A¤ e : τ is an instance of C,K,A′ ¤ e : τ ′ if there is a ground
substitution θ that respects K and satisfies C such that A↑dom(A′)= θ(A′) and
τ = θ(τ ′). As seen in this definition, a typing in the extended system is subject
to a set of conditions associated with it. To emphasize this fact, we call typing
judgement in the extended type system a conditional typing. A conditional typing
scheme C,A¤e : τ is principal if any derivable ground typing for e is an instance of
it. The following result establishes the complete inference of principal conditional
typing schemes.

Theorem 4. There is an algorithm which, given any raw term e, returns either
failure or a tuple (C,K,A, τ) such that if it returns (C,K,A, τ) then C,K,A¤e : τ

ACM Transactions on Database Systems

Polymorphism and Type Inference in Database Programming · 31

-> fun join3(x,y,z) = join(x,join(y,z));
>> val join3 = fn : (”a ∗ ”b ∗ ”c) -> ”d

where { ”d = jointype(”a,”e), ”e = jointype(”b,”c) }
-> Join3([Name = ”Joe”],[Age = 21],[Office = 27]);
>> val it = [Name = ”Joe”,Age = 21,Office = 27] : [Name : string,Age : int,Office : int]
-> project(it,[Name : string]);
>> val it = [Name=”Joe”] : [Name : string]

Fig. 13. Some Simple Relational Examples

is a principal conditional typing scheme, otherwise e has no typing.

A proof of this, which also gives the type inference algorithm for Machiavelli, is
based on the technique we have developed in [Ohori and Buneman 1988] which
established the theorem for a sublanguage of Machiavelli. A complete proof and
a complete type inference algorithm can be reconstructed from the corresponding
proof and algorithm presented in [Ohori 1989b].

Figure 13 gives two simple examples of the typing schemes that are inferred by
Machiavelli. The type (”a ∗ ”b ∗ ”c) -> ”d where { ”d = jointype(”a,”e), ”e =
jointype(”b,”c) } of the three-way join join3 is the representation of the principal
conditional typing scheme:

C,K, ∅¤ fn(x,y,z) => join(x,join(y,z)) : (d2 ∗ d4 ∗ d5)→ d1

where C and K are as follows.

C =
{

d1 = jointype(d2, d3),
d3 = jointype(d4, d5)

}
, K =

d1 :: D,
d2 :: D,
d3 :: D,
d4 :: D,
d5 :: D

It is therefore tempting to identify legal Machiavelli programs with principal condi-
tional typing schemes. There is however one problem in this approach: a conditional
typing schemes may not have a satisfiable instance. In such a case, the term has
no typing and should therefore be regarded as a term with type error. Unfortu-
nately checking the satisfiability of a set of these conditions is NP-hard [Ohori and
Buneman 1988]. A practical solution is to delay the satisfiability check of a set
of conditions until its type variables are fully instantiated. Once the types of all
type variables in a condition are known, its satisfiability can be efficiently checked
and it can then be eliminated. To achieve complete static typechecking under this
strategy, the type system must satisfy the following property: for any expression
containing joins and projections, if its evaluation involves evaluation of joins and
projections, then the conditions associated with the types of the joins and the pro-
jections in the expression only contain ground types. In most cases where type
variables originate from polymorphic function definitions, this condition is satis-
fied. Since joins and projections appearing in the body of a polymorphic function
are evaluated only after the parameters to these operations are bound to some
values, type variables originating from the polymorphic function definition should

ACM Transactions on Database Systems

32 · Peter Buneman and Atsushi Ohori

-> parts;
>> val it = {[Pname=”bolt”,P#=1,Pinfo=<Base= [Cost=5]>],

. . .
[Pname=”engine”,P#=2189,
Pinfo= <Composite = [SubParts={[P#=1,Qty=189], ...},

AssemCost=1000]>],. . .}
: {[Pname : string,P# : int,

Pinfo : <Base : [Cost : int],
Composite : [SubParts : {[P# : int,Qty : int]},AssemCost : int]>]}

-> suppliers;
>> val it ={[Sname=”Baker”,S#=1,City=”Paris”],. . .}

: {[Sname : string,S# : int,City : string]}
-> supplied by;
>> val it = {[P#=1,Suppliers={[S#=1],[S#=12],. . .}],. . .}

: {[P# : int,Suppliers : {[S# : int]}]}

Fig. 14. A Part-Supplier Database in Generalized Relational Model

have all been instantiated with ground types in any expressions that cause evalua-
tion of those joins and projections. However, there is one exception, which is the
case of expressions containing joins and projections of variants. Since variants are
themselves polymorphic values, their type variables may never be instantiated. To
preserve complete static typechecking, we place the restriction that the program-
mer must supply the type specification of variants if they are arguments of join and
projection (directly or indirectly through function abstraction and function appli-
cation.) The type system can easily enforce this restriction by rejecting expressions
whose conditions involves type variables having a variant kind. We therefore iden-
tify legal Machiavelli programs with principal conditional typing schemes where
the only conditions are those that contain type variables that have a kind other
than variant kinds. This approach yields a practical solution to typechecking poly-
morphic programs involving join and projection. Since the additional restriction
we imposed does not restrict polymorphic function definitions, we believe that this
method preserves most of the advantages of polymorphic typing without incurring
algorithmic difficulty in checking satisfiability of conditions.

Figure 14 shows an example of a database containing non-flat records, variants,
and nested sets, where we assume that the names parts, suppliers, and supplied by
are already bound. With the availability of a generalized join and projection, we
can immediately write programs that manipulate such databases. Figure 15 shows
some simple query processing for the database example in figure 14. Note the use
of join and other relational operations on “non-flat” relations. Data and operations
can be freely mixed with other features of the language including recursion, higher-
order functions, and polymorphism. This allows us to write, with relative ease,
powerful programs whose type correctness is checked at compile time. Figure 16
shows query processing on the example database using polymorphic functions. The
function cost taking a part record and a set of such records as arguments computes
the total cost of the part. In the case of a composite part, it first generates a set
of records, each consisting of a subpart number and its cost, and then uses hom

ACM Transactions on Database Systems

Polymorphism and Type Inference in Database Programming · 33

(∗Select all base parts ∗)
-> join(parts,{[Pinfo=<Base=[]>]});
>> val it = {[Pname=”bolt”, P#=1, Pinfo=<Base=[Cost=5]>],. . .}

: {[Pname : string,P# : int,
Pinfo : <Base : [Cost : int],

Composite : [SubParts : {[P# : int,Qty : int]}, AssemCost : int]>]}

(∗List part names supplied by ”Baker” ∗)
-> select x¦Pname

from x <- join(parts,supplied by)
where Join3(x¦Suppliers,suppliers,{[Sname=”Baker”]}) <> {};

>> {”bolt”,. . .} : {string}

Fig. 15. Some Simple Queries

to accumulate the costs of subparts. In order to prevent the set constructor from
collapsing subpart costs which are equal, the computed subpart cost is paired with
the subpart number. Note that scope of type variables is limited to a single type
scheme, so that instantiations of ”a in the type of cost are independent of those of
”a in the type of expensive-parts. Also, the apparent complexity of the type of cost
could be reduced by naming the large repeated sub-expression.

Without proper integration of the data model and programming language, defin-
ing such a function and checking its type consistency is problematic. Moreover, the
functions cost and expensive parts are both parameterized by the relation (partdb)
and their polymorphism allows them to be applied to many different types. This is
particularly useful when we have several different databases with the same struc-
ture of cost information. Even if these databases differ in the structure of other
information, these functions are uniformly applicable.

5. HETEROGENEOUS SETS

The previous section provided an extension to a polymorphic type system for
records that enabled us to infer the type-correctness of programs that involve oper-
ations of the relational algebra – notably projection and natural join. Here, we shall
use closely related mechanisms to deal with a problem that arises in object-oriented
databases, that of dealing with heterogeneous collections. The problem arises from
two apparently contradictory uses of inheritance that arise in programming lan-
guages and in databases. In object-oriented languages the term describes code shar-
ing: by an assertion that Employee inherits from Person we mean that the methods
defined for the class Person are also applicable to instances of the class Employee. In
databases – notably in data modeling techniques – we associate sets Ext(Person)
and Ext(Employee) with the entities Person and Employee and the inheritance of
Employee from Person specifies set inclusion: Ext(Employee) ⊆ Ext(Person).

These notions of inheritance are apparently contradictory. For example, if mem-
bers of Ext(Employee) are instances of Employee, how can they be members of
Ext(Person) whose members must all be instances of Person? One way out of this
is to relax what we mean by “instance of” and to allow an instance of Employee
also to be an instance of Person. We can now take Ext(Person) as a heteroge-

ACM Transactions on Database Systems

34 · Peter Buneman and Atsushi Ohori

(∗a function to compute the total cost of a part ∗)
-> fun cost(p,partdb) =

case p¦Pinfo of
<Base = x> => x¦Cost,
<Composite = x> =>

hom(fn(y)=> y¦SubpartsCost,+,0,
select [SubpartsCost=cost(z,partdb) ∗ w¦Qty,P#=w¦P#]
from w <- x¦SubParts, z <- partdb
where eq(z¦P#,w¦P#)) + x¦AssemCost

endcase;

>> val cost = fn
: (”a::[Pinfo : <Base : ”b::[Cost : int],

Composite : ”c::[SubParts : {”d::[P# : ”e,Qty : int]},
AssemCost : int]> ,

P# : ”e]
∗ {”a::[Pinfo : <Base : ”b::[Cost : int],

Composite : ”c::[SubParts : {”d::[P# : ”e,Qty : int]},
AssemCost : int]> ,

P# : ”e]})
-> int

(∗select names of ”expensive” parts ∗)
-> fun expensive parts(partdb,n) = select x¦Pname

from x <- partdb
where cost(x,partdb) > n;

>> val expensive parts = fn :
: ({”a::[Pinfo : <Base : ”b::[Cost : int],

Composite : ”c::[SubParts : {”d::[P# : ”e,Qty : int]},
AssemCost : int]> ,

P# : ”e, Pname : ”f]}
∗ int) -> {”f}

-> expensive parts(parts,1000);
>> val it = {”engine”,. . .} : {string}

Fig. 16. Query Processing Using Polymorphic Functions

ACM Transactions on Database Systems

Polymorphism and Type Inference in Database Programming · 35

neous set, some of whose members are also instances of Employee. Type systems,
however, can make the manipulation of heterogeneous collections difficult or im-
possible by “losing” information. For example if l has type list(Person) and e has
type Employee, the result of insert(e, l) will still have type list(Person), and the
first element of this list will only have type Person. This problem appears both in
languages with a subsumption rule [Cardelli 1988] and in statically type-checked
object-oriented languages such as C++ [Stroustrup 1987] which claim the ability
to represent heterogeneous collections as an important feature. In some cases the
information is not recoverable; in others it can only be recovered in a rather dan-
gerous fashion by “type-casting” values on the basis of information maintained by
the programmer. A preliminary solution to this problem was described by the au-
thors in [Buneman and Ohori 1991]. The approach here is simplified by use of the
techniques developed in the preceding sections.

5.1 Dynamic and partial values

We shall exploit an idea of dynamic values proposed in [Cardelli 1986]. These are
values that carry their type with them, and can be regarded as a pair consisting of
a type and a value of that type. A formal system for type systems with dynamic
was developed in [Abadi et al. 1991]. In these proposals there are two operations
on dynamic values; at any type τ we have:

dynamic : τ -> dynamic
coerce(τ) : dynamic -> τ

The function dynamic creates a value of type dynamic out of a value of any type –
operationally it pairs the value with its type. Conversely coerce(τ) takes such a pair
and returns the value component provided the type component is τ ; otherwise it
raises an exception. A standard use for dynamic values is for representing persistent
data, since the type of external data cannot be guaranteed. For example 2 +
coerce(int)(read(input stream)) will either add 2 to the input or raise an exception.

Our approach to heterogeneous collections is to generalize the notion of a dynamic
type to one in which some of the structure is visible. A type P([Name : string,
Age : int]) denotes dynamic values whose actual type δ is “bigger” than [Name :
string, Age : int], i.e. [Name : string, Age : int] ¿ δ where ¿ is the ordering we used
to represent types of relational operators. Thus the assertion e : P([Name : string,
Age : int]) means that e is a dynamic value, but it is known to be a record and that at
least Name and Age fields are available on e. We shall refer to such partially specified
dynamic values as partial values. Note that a partial value is like a dynamic value in
that it always carries its (complete) type. The new type constructor P allows us to
mix those partial values with other term constructors in the language. For example,
e′ : {P(δ)} means that e′ is a set of objects each of which is a partial value whose
complete type is bigger than δ (under the ordering ¿.) It is this use of the ordering
on types in conjunction with a set type that allows us to express heterogeneous
collections. An assertion of the form e : {P([Name : string, Age : int])} means that e
is a set of records, each of which has at least a Name : string and Age : int field, and
therefore relational queries involving only selection of these fields are legitimate. As
a special case of partial types, we introduce a constant type any denoting dynamic
values on which no information is known – it is a (completely) dynamic value.

ACM Transactions on Database Systems

36 · Peter Buneman and Atsushi Ohori

To show the use of partial types, let us assume that the following names have
been given for partial types:

Person∗ for P([Name : string, Address : string])
Employee∗ for P([Name : string, Address : string, Salary : int])
Customer∗ for P([Name : string, Address : string, Balance : int])

Also suppose that DB is a set of type {any} so that we initially have no information
about the structure of members of this set. Here are some examples of how such a
database may be manipulated in a type-safe language.

(1) An operation filter P(δ) (S) can be defined, which selects all the elements of S
which have partial type P(δ), i.e. filter P(δ) (S) : {P(δ)}. We may use this in
a query such as

select [Name=x¦Name, Address=x¦Address]
from x <- filter Employee∗ (DB)
where x¦Salary > 10,000

The result of this query is a set of (complete) records, i.e. a relation. There
is some similarity with the ∗ form of Postgres [Stonebraker and Rowe 1986],
however we may use filter on arbitrary kinds and heterogeneous sets; we are
not confined to the extensionally defined relations in the database.

(2) Under our interpretation of partial types, if δ1 ¿ δ2 then P(δ1) is more par-
tial than P(δ2) and any partial value of type P(δ2) also has type P(δ1). This
property can be used to represent the desired set inclusion in the type system.
In particular, Person∗ is more partial than Employee∗. From this, the inclusion
filter Employee∗ (S) ⊆ filter Person∗ (S) will always hold for any heterogeneous
set S, in particular for the database DB. Thus the “data model” (inclusion) in-
heritance is derived from a property of type system rather than being something
that must be achieved by the explicit association of extents with classes.

(3) By modifying the technique used to give a polymorphic type of join, we can
define the typing rules for unions and intersections of heterogeneous sets. By
adding a partial type any, the partialness ordering has meet and join opera-
tions. The union and intersection of heterogeneous sets have, respectively, the
meet and join of their partial types. Thus, the type system can infer an ap-
propriate partial type of heterogeneous set obtained by various set operations.
For example, the following typings are inferred.

union(filter Customer∗ (DB), filter Employee∗ (DB))
: {P([Name : string, Address : string])}

intersection(filter Customer∗ (DB), filter Employee∗ (DB))
: {P([Name : string, Address : string, Salary : int, Balance : int])}.

(intersection is definable in the language) These inferred types automatically
allow appropriate polymorphic functions to be applied to the result of these set
operations. For example, since the type of an intersection of two heterogeneous
sets is the join of the types, polymorphic functions applicable to either of the
two sets are applicable to the intersection. Thus, we successfully achieve the
desired coupling of set inclusion and method inheritance.

ACM Transactions on Database Systems

Polymorphism and Type Inference in Database Programming · 37

(4) We have the ability to write functions such as

fun RichCustomers(S) = select [Name=x¦Name, Balance=x¦Balance]
from x <- intersection(S,filter Customer∗ (DB))
where x¦Salary > 30,000

Type inference allows the application of this function to any heterogeneous set
each members of which has at least the type P([Salary : int]). The result is a
uniformly typed set, i.e. a set of type {[Name : string, Balance : int]}. Thus the
application RichCustomers(filter Employee∗ (DB)) is valid, but the application
RichCustomers(filter Customer∗ (DB)) does not have a type, and this will be
statically determined by the failure of type inference.

In the following subsections we shall describe the basic operations for dealing
with sets and partial values. We shall then give typing rules to extend Machiavelli
to include those partial values.

5.2 The Basic Operations

To deal with partial values we introduce four new primitive operations: dynamic,
as, coerce and fuse. We also extend the meaning of some of the existing primitives,
such as union.

dynamic(e). This is used to construct a partial value and has type P(δ) where δ
is the type of e. A heterogeneous set may be constructed with

{dynamic([Name = ”Joe”, Age = 10]), dynamic([Name = ”Jane”, Balance = 10954])}
This expression implicitly makes use of union, and as a result of the extended typing
rules for union, the expression has type {P([Name : string])}, which is the meet of
{P([Name : string, Age : int])} and {P([Name : string, Balance : int])}.

The remaining three primitives may all fail. Rather than introduce an exception
handling mechanism, we adopt the strategy that if the operation succeeds, we return
the result in a singleton set, and if it fails, we return the empty set.

as P(δ) (e). This, for any description type δ, “exposes” the properties of e
specified by the type δ. This returns a singleton set containing the partial value
if the coercion is possible and the empty set if it is not. For example, if e = as
P([Name : string]) (dynamic([Name = ”Joe”, Balance = 43.21])), e will have partial
type {P([Name : string])} and an expression such as select x¦Name from x <- e will
type check, while select x¦Balance from x <- e will not.

Using as and hom we are now in a position to construct the filter operation,
mentioned earlier, which ties the inclusion of extents to the ordering on types.
Because we do not have type parameters, it cannot be defined in the language.
However it can be treated as a syntactic abbreviation:

filter P(δ) (S) ≡ hom(fn x => as P(δ) (x),union, S, {})
coerce δ (e). This coerces the partial value denoted by e to a (complete) value

of type δ. It will only succeed if the type component of e is δ. Again, if the
operation succeeds we return the singleton set, otherwise we return the empty set.
For example coerce [Name : string] (dynamic([Name = ”Jane”, Balance = 10954]))
will yield the empty set while coerce [Name : string, Balance : int] (dynamic([Name =
”Jane”, Balance = 10954])) will return the set {[Name = ”Jane”, Balance = 10954]}

ACM Transactions on Database Systems

38 · Peter Buneman and Atsushi Ohori

fuse(e1, e2). This combines the partial values denoted by e1 and e2. It will only
succeed if the (complete) values of e1 and e2 are equal. If e1 has partial type P(δ1)
and e2 has partial type P(δ2) then fuse(e1, e2) will have the partial type P(δ1t¿δ2).
If

e1 =(dynamic([Name = ”Jane”, Age = 21, Balance = 10954])),
e2 = as P([Name : string]) e1,
e3 = as P([Age : int]) e1, and
e4 = as P([Name : string]) dynamic([Name = ”Jane”]),

then fuse(e2, e3) will be a singleton set of type {P([Name : string, Age : int])} while
fuse(e2, e4) will return the empty set. fuse may be used to define set intersection as
in

fun fuse1(x,s) = hom(fn y => fuse(x,y), union, s, {})
fun intersection(s1,s2) = hom(fn y => fuse1(y,s2), union, s1, {})

Note that fuse is more basic than equality for we can compute whether the partial
values v1 and v2 are equal (as complete values) by not(empty(fuse(v1, v2))).

5.3 Extension of the Language

To incorporate these partial values, we extend the definition of the language. The
set of types is extended to include any and the partial type constructor P(δ):

τ ::= · · · | any | P(δ)

We identify the following subset (ranged over by π) that may contain partial types.

π ::= d | bd | [l:π,. . .,l:π] | <l:π,. . .,l:π> | {π} | ref(π) | any | P(δ)

The set of terms is extended to include operations for partial values.

e ::= · · · | dynamic(e) | fuse(e,e) | as P(δ) e | coerce δ e

To extend the type system to these new term constructors for partial values, we
define an ordering on the above subset of types, which represents the partialness
of types. We write π . π′ to denote that π is more partial than π′. The rules to
define this ordering are:

any . P(δ) for any δ

P(δ1) . P(δ2) if δ1 ¿ δ2

bd . bd

[l1:π1,. . .,ln:πn] . [l1:π
′
1,. . .,ln:π′n] if πi . π′i (1 ≤ i ≤ n)

<l1:π1,. . .,ln:πn> . <l1:π′1,. . .,ln:π′n> if πi . π′i (1 ≤ i ≤ n)
{π} . {π′} if π . π′

ref(π) . ref(π′) if π . π′

The first two of these rules derive the order on partial types directly from the
ordering ¿ that we introduced in section 4. The remaining rules lift this order-
ing component-wise to all description types. The following are examples of this
ordering.
ACM Transactions on Database Systems

Polymorphism and Type Inference in Database Programming · 39

(dynamic)
C,K,A¤ e : δ

C,K,A¤ dynamic(e) : P(δ)

(as)
C,K,A¤ e : P(δ)

C,K,A¤ as P(δ′) e : {P(δ′)}

(coerce)
C,K,A¤ e : P(δ)

C,K,A¤ coerce δ′ e : {δ′}

(fuse)
C,K,A¤ e1 : π1 C,K,A¤ e2 : π2

C ∪ {π = jointype.(π1, π2)},K,A¤ fuse(e1,e2) : {π}

(union)
C,K,A¤ e1 : {π1} C,K,A¤ e2 : {π2}
C ∪ {π = meettype.(π1, π2)},K,A¤ union(e1,e2) : {π}

Fig. 17. Typing Rules for Partial Values

P([Name : string, Address : string]) . P([Name : string, Address : string, Balance : int])

[Acc No : int, Customer : P([Name : string, Address : string, Balance : int])] .
[Acc No : int, Customer : P([Name : string, Address : string, Balance : int, Salary : int])]

Figure 17 gives the typing rules for the new term constructors. The new con-
dition π = jointype.(π1, π2) used in rules (fuse) denotes the condition on the
ground substitutions θ such that θ(π) = θ(π1) t. θ(π2), and the condition π =
meettype.(π1, π2) used in the rule (union) denotes the ground substitutions θ
such that θ(π) = θ(π1) u. θ(π2).

Standard elimination operations introduced in Section 2 and database operations
we defined in Section 4 are not available on types containing the partial type con-
structor P. The only exception is the field selection, which requires only partial
information on types specified by kinds. From an expression e of type of the form
P([. . .,l:δ,. . .]), the l field can be safely extracted. The result of the field selection
e¦l is δ itself if δ is a base type. However, if δ is a compound type then the actual
type of the l field of the expression e is some δ′ such that δ . δ′. In this case, the
type of the result of field selection e¦l is the partial type P(δ). Recall the typing
rule for field selection:

(dot)
C,K,A¤ e : τ1 K ` τ1 :: [[l : τ2]]

C,K,A¤ e¦l : τ2

To make this rule to be applicable to the above two cases for partial values, we only
need to define the following kinding rule for partial types.

K ` P([l1:δ1,. . .,ln:δn,. . .]) :: [[l1:π1,. . .,ln:πn]]
where πi = δi if δi is a base type otherwise πi = P(δi).

Other rules defined in Figure 5 remain unchanged except that types may contain
partial types. A record kind now ranges also over partial types and the field selection
becomes polymorphic over partial types as well as complete types.

For this extended language, we still have a complete type inference algorithm.
The necessary technique is essentially the same as that for typechecking join op-
eration we have described in the previous section. We then have a language that
uniformly integrate heterogeneous sets in its type system. For example, the function

Wealthy : {”a::[Name : ”b, Salary : int]} -> {”b}
ACM Transactions on Database Systems

40 · Peter Buneman and Atsushi Ohori

-> DB;
>> val it = {· · ·} : {any}
-> val employees = filter Employee∗ DB;
>> val employees = {· · ·} : {P([Name : string, Address : string, Salary : int])}
-> val customers = filter Customer∗ DB;
>> val customers = {· · ·} : {P([Name : string, Address : string, Balance : int])}
-> union(employees,customers);
>> val it = {· · ·} : {P([Name : string,Address : string])}
-> intersection(employees,customers);
>> val it = {· · ·} : {P([Name : string,Address : string, Balance : int, Salary : int])}
-> fun RichEmployees S = select x¦Name from x <- S where x¦Salary > 30,000
>> val RichEmployees = fn : {”a::[Salary : int, Name : ”b]} -> {”b}
-> fun GoodCustomers S = select x¦Name from x <- S where x¦Balance > 3,000
>> val GoodSustomers = fn : {”a::[Balance : int, Name : ”b]} -> {”b}
-> fun GoodEmployees S = intersection(GoodCustomers(S),RichEmployees(S));
>> val GoodEmployees = fn : {”a::[Balance : int, Salary : int, Name : ”b]} -> {”b}
-> GoodEmployees(intersection(employees,customers));
>> val it = {· · ·} : {string}

Fig. 18. Programming with Heterogeneous Sets

we defined in the introduction may also be applied to heterogeneous sets of type
such as {P([Name : string, Salary : int])} . Figure 18 gives examples involving partial
values.

6. CONCLUSIONS

We have demonstrated an extension to the type system of ML which, using kinded
type inference, allows record formation and field selection to be implemented as
polymorphic operations. This together with a set type allows us to represent sets
of records – relations – and a number of operations (union, difference, selection and
projection onto a single attribute) of a generalized (non first-normal-form) relational
algebra. This has been implemented; in particular a recent technique [Ohori 1992;
Ohori 1995] for compiling field selection into an efficient indexing operation is being
combined with the record operations mentioned above in an extension to Standard
ML of New Jersey [Appel and MacQueen 1991].

A further extension to this type system using conditional type schemes allows us
to provide polymorphic projection and natural join operations, giving a complete
implementation of a generalized relational algebra. It could be argued that these
operations are not important since they are not present in practical relation query
languages. Instead a product and single-column projection are usually employed.
However a similar type inference scheme can be used in a technique for statically
checking the safety of operations on heterogeneous collections, in which each mem-
ber of a collection of dynamically typed values have some common structure. The
approach we have described provides, we believe, a satisfactory account of how re-
lational database programming, and some aspects of object-oriented programming
may be brought into the framework of a polymorphically typed programming lan-
guage, and it may be used as the basis for a number of further investigations into
ACM Transactions on Database Systems

Polymorphism and Type Inference in Database Programming · 41

the principles of database programming. We briefly review a few here.
Abstract Types and Classes. While we have covered some aspects of object-

oriented databases, we have not dealt with the most important aspect of classes in
object-oriented programming: that of abstraction and code sharing. In [Ohori and
Buneman 1989] statically typed polymorphic class declarations are described. The
implementation type of a class is normally a record type, whose fields correspond to
“instance variables” in object-oriented terminology. That methods correctly use the
implementation type is ensured through checking the correctness of field selection,
as described in this paper, and the same techniques may be carried into subclasses
to check that code is properly inherited from the superclass. For example, one can
define a class Person as:

class Person = [Name:string, Age:int]
with

fun make person (n,a) = [Name=n, Age=a] : string * int -> Person
fun name p = p¦Name : sub -> string
fun age p = p¦Age : sub -> int
fun increment age p = modify(p,Age,p¦Age + 1) : sub -> sub

end

where sub is a special type variable ranging over the set of all subtypes of Person,
which are to be defined later. Inclusion of the sub variable in the type of methods
name, age, and increment age reflects the user’s intention being that these methods
should be inherited by the subtypes of Person. From this, the extended type system
infers the following typing for each method defined in this class.

class Person with
make person : string * int -> Person
name : (’a <Person) -> string
age : (’a <Person) -> int
increment age : (’a <Person) -> (’a <Person)

The notation (’a <Person) is another form of a kinded type variable whose instances
are restricted to the set of subtypes of Person. This can be regarded as an integration
of the idea of bounded type abstraction introduced in [Cardelli and Wegner 1985]
and data abstraction. As in an object-oriented programming language, one can
define a subclasses of Person as:

class Employee = [Name:string, Age:int, Salary:int] isa Person
with

fun make employee (n,a) = [Name=n, Age=a, Salary=0] : string * int -> Employee
fun salary e = e¦Salary : sub -> int
fun add salary (e,s) = modify(e,Salary,e¦Salary + s) : sub * int -> sub

end

By the declaration of isa Person, this class inherits methods name, age, increment age
from Person. The prototype implementation of Machiavelli prints the following type
information for this subclass definition.

class Employee isa Person with
make employee : string * int -> Employee
add salary : (’a <Employee) * int -> (’a <Employee)
salary : (’a <Employee) -> int

inherited methods:
name : (’a <Person) -> string

ACM Transactions on Database Systems

42 · Peter Buneman and Atsushi Ohori

age : (’a <Person) -> int
increment age : (’a <Person) -> (’a <Person)

The type system can statically check the type consistency of methods that are
inherited. It is also possible to define classes that are subclasses of more than one
classes, such as ResearchFellow below.

class Student = [Name:string, Age:int, Grade:real] isa Person
with

fun make student (n,a) = [Name=n, Age=a, Grade=0.0] : string * int -> Employee
fun grade s = s¦Grade : sub -> real
fun set grade (s,g) = modify(s,Salary,g) : sub * real -> sub

end

class ResearchFellow = [Name:string, Age:int, Salary:int, Grade:real]
isa {Employee, Student} with

fun make RF (n,a) = [Name=n, Age=a, Grade=0.0, Salary = 0]
: string * int -> ResearchFellow

end

Classes can be parameterized by types and the type inference system we have
described can be extended to programs involving classes and subclass definitions.

One possible addition to this idea is the treatment of object identity. Through-
out this paper we have held to the view that object identity, as a programming
construct, is nothing more than reference, and that object creation and update are
satisfactorily described by the operations on references given in ML and a number
of other programming languages. However Abiteboul and Bonner [Abiteboul and
Bonner 1991] have given a catalog of operations on objects and classes, not all of
which can be described by means of this simple approach to object identity. Some
of the operations appear to call for the passing of reference through an abstraction.
For example one may think of Person object identities as references to instances of
a Person class and Employee object identities as references to instances of a Em-
ployee class. But this approach precludes the possibility that some of the Person
and Student identities may be the same, in fact the latter may be a subset of the
former. The ability to ask whether two abstractions are both “views” of the same
underlying object appears to call for the ability to pass a reference through an
abstraction. If this can be done, we believe it is possible to implement most, if not
all, the operations suggested by Abiteboul and Bonner.

Other collection types. The original description of Machiavelli [Ohori et al.
1989] attracted some attention [Immerman et al. 1991] because of the use of hom as
the basic operation for computation on sets. The reason for using hom was simply
to have a small, but adequate collection of operations on sets on which to base our
type system. For the purpose of type inference or type checking, the fewer primitive
functions the better. In our development, record types and set types are almost
independent; there are only a few primitive operations that involve both, and these
occur in sections 4 and 5. For other purposes we could equally well have used
record types in conjunction with lists, bags or some other collection type. In fact
the use of lists, bags and sets is common in object-oriented programming, and some
object-oriented databases [Object Design Inc. 1991] supply all three as primitive
types.
ACM Transactions on Database Systems

Polymorphism and Type Inference in Database Programming · 43

The study of the commonality between these various collection types is a fruitful
extension to the ideas provided here. It may provide us with better ways of struc-
turing syntax [Wadler 1990], with an understanding of the commonality between
collection types [Watt and Trinder 1991], and a more general approach to query
languages and optimization for these types [Breazu-Tannen et al. 1992].

ACKNOWLEDGMENTS

Val Breazu-Tannen deserves our special thanks. He has contributed to many of
the ideas in this paper and has greatly helped us in our understanding of type
systems. We thank the referees for their careful reading; we are also grateful for
helpful conversations with Serge Abiteboul, Malcolm Atkinson, Luca Cardelli, John
Mitchell, Rick Hull and Aaron Watters.

REFERENCES

Abadi, M., Cardelli, L., Pierce, B., and Plotkin, G. 1991. Dynamic typing in a statically-
typed language. ACM Transactions on Programming Languages and Systems 13, 2, 237–
268.

Abiteboul, S. and Bonner, A. 1991. Objects and views. In Proc. ACM SIGMOD Conference,
pp. 238–247.

Albano, A., Cardelli, L., and Orsini, R. 1985. Galileo: A strongly typed, interactive con-
ceptual language. ACM Transactions on Database Systems 10, 2, 230–260.

Appel, A. W. and MacQueen, D. B. 1991. Standard ML of New Jersey. In Proc. Third
International Symposium on Programming Languages and Logic Programming, pp. 1–13.

Atkinson, M., Bailey, P., Chisholm, K., Cockshott, W., and Morrison, R. 1983. An
approach to persistent programming. Computer Journal 26, 4 (November), 360–365.

Atkinson, M., Bancilhon, F., DeWitt, D., Dittrick, K., Maier, D., and Zdonik, S. 1989.
The object-oriented database system manifesto. In Proceedings of the First Deductive and
Object-Oriented Database Conference, Kyoto, Japan, pp. 223-240.

Atkinson, M. and Buneman, O.P. 1987. Types and persistence in database programming
languages. ACM Computing Surveys 19, 1, 105–190.

Augustsson, L. 1984. A compiler for Lazy ML. In Proc. ACM Symposium on LISP and
Functional Programming, pp. 218–227.

Bancilhon, F., Briggs, T., Khoshafian, S., and Valduriez, P. 1988. FAD, a powerful and
simple database language. In Proc. Intl. Conf. on Very Large Data Bases, pp. 97–105.

Biskup, J. 1981. A formal approach to null values in database relations. In Advances in Data
Base Theory Vol 1. New York: Prenum Press.

Breazu-Tannen, V., Buneman, P., and Naqvi, S. 1991. Structural recursion as a query
language. In Proc. 3rd International Workshop on Database Programming Languages, pp.
9–19. Morgan Kaufmann Publishers.

Breazu-Tannen, V., Buneman, P., and Wong, L. 1992. Naturally embedded query languages.
In Proc. International Conference on Database Theory, Springer LNCS, pp. 140-154.

Breazu-Tannen, V. and Subrahmanyam, R. 1991. Logical and computational aspects of
programming with sets/bags/lists. In Proc. International Colloquium on Automata, Lan-
guages, and Programming, Springer LNCS 510, pp. 60–75.

Buneman, P., Jung, A., and Ohori, A. 1991. Using powerdomains to generalize relational
databases. Theoretical Computer Science 91, 1, 23–56.

Buneman, P., Libkin, L., Suciu, D., and Tannen, V.and Wong, L. 1994. Comprehension
syntax. SIGMOD Record 23, 1, 87–96.

Buneman, P. and Ohori, A. 1991. A type system that reconcile classes and extents. In 3rd
International Workshop on Database Programming Languages pp. 191–202. Morgan Kauf-
mann Publishers.

ACM Transactions on Database Systems

44 · Peter Buneman and Atsushi Ohori

Cardelli, L. 1986. Amber. In Combinators and Functional Programming, Lecture Notes in
Computer Science 242, pp. 21–47. Springer-Verlag.

Cardelli, L. 1988. A semantics of multiple inheritance. Information and Computation 76,
138–164. (Special issue devoted to Symp. on Semantics of Data Types, Sophia-Antipolis,
France, 1984).

Cardelli, L. and Mitchell, J. 1989. Operations on records. In Proceedings of Mathematical
Foundation of Programming Semantics, Lecture Notes in Computer Science 442, pp. 22–
52.

Cardelli, L. and Wegner, P. 1985. On understanding types, data abstraction, and polymor-
phism. Computing Surveys 17, 4 (Dec.), 471–522.

Copeland, G. and Maier, D. 1984. Making Smalltalk a database system. In Proc. ACM
SIGMOD conference, pp. 316–325.

Courcelle, B. 1983. Fundamental properties of infinite trees. Theoretical Computer Sci-
ence 25, 95–169.

Damas, L. and Milner, R. 1982. Principal type-schemes for functional programs. In Proc.
ACM Symposium on Principles of Programming Languages, pp. 207–212.

Gallier, J. and Snyder, W. 1989. Complete sets of transformations for general E-unification.
Theoretical Computer Science 67, 2, 203–260.

Harper, R. and Pierce, B. 1991. A record calculus based on symmetric concatenation. In
Proc. ACM Symposium on Principles of Programming Languages, pp. 131–142.

Hart, H. and Wong, L. 1994. Query language for genetic databases. Unpublished manuscript.
Available on WWW via http://www.cis.upenn.edu/~wfan/DBHOME.html.

Hindley, R. 1969. The principal type-scheme of an object in combinatory logic. Trans. Amer-
ican Mathematical Society 146, 29–60.

Hoang, M., Mitchell, J., and Viswanathan, R. 1993. Standard ML weak polymorphism
and imperative constructs. In Proc. IEEE Symposium on Logic in Computer Science, pp.
15–25.

Hudak, P., Peyton Jones, S., Wadler, P., Boutel, B., Fairbairn, J., Fasel, J., Guzman,
M., Hammond, K., Hughes, J., Johnsson, T., Kieburtz, D., Nikhil, R., Partain, W.,
and Perterson, J. 1992. Report on programming language Haskell a non-strict, purely
functional language version 1.2. SIGPLAN Notices, Haskell special issue 27, 5.

Huet, G. 1976. Résolution d’équations dans les langages d’ordre 1,2,. . . ω. Ph. D. thesis, Uni-
versity Paris.

Ichbiah, J., Barnes, J., Heliard, J., Krieg-Bruckner, B., Roubine, O., and Wichmann,
B. 1979. Rationale of the design of the programming language Ada. ACM SIGPLAN no-
tices 14, 6.

Imielinski, T. and Lipski, W. 1984. Incomplete information in relational databases. Journal
of ACM 31, 4 (Oct.), 761–791.

Immerman, N., Patnaik, S., and Stemple, D. 1991. The expressiveness of a family of finite
set languages. In Proc. ACM Symposium on Principles of Database Systems, pp. 37–52.

Jategaonkar, L. A. and Mitchell, J. 1988. ML with extended pattern matching and sub-
types. In Proc. ACM Conference on LISP and Functional Programming, Snowbird, Utah,
pp. 198–211.

Kim, W. 1994. Observations on the ODMG-93 proposal. ACM Sigmod record 23, 1.

Leroy, X. 1993. Polymorphism by names for references and continuation. In Proc. ACM Sym-
posium on Principles of Programming Languages, pp. 220–231.

Leroy, X. and Weise, P. 1991. Polymorphic type inference and assignment. In Proc. ACM
Symposium on Principles of Programming Languages, 291–302.

Lipski, W. 1979. On semantic issues connected with incomplete information databases. ACM
Transactions on Database Systems 4, 3 (Sept.), 262–296.

MacQueen, D. 1988. References and weak polymoprhism. Note in Standard ML of New Jersey
Distribution Package.

Milner, R. 1978. A theory of type polymorphism in programming. J. Comput. Syst. Sci. 17,
348–375.

ACM Transactions on Database Systems

Polymorphism and Type Inference in Database Programming · 45

Milner, R., Tofte, M., and Harper, R. 1990. The Definition of Standard ML. The MIT
Press.

Mitchell, J. 1990. Type systems for programming languages. In J. van Leeuwen (Ed.), Hand-
book of Theoretical Computer Science, Chapter 8, pp. 365–458. MIT Press/Elsevier.

Morrison, R., Brown, A., Connor, R., and Dearle, A. 1989. Napier88 reference manual.
Tech. rep., Department of Computational Science, University of St Andrews.

Object Design Inc. 1991. ObjectStore Reference Manual. Burlington, MA. Object Design Inc.

Ohori, A. 1989a. A simple semantics for ML polymorphism. In Proc. ACM/IFIP Conference
on Functional Programming Languages and Computer Architecture, London, England, pp.
281–292.

Ohori, A. 1989b. A study of types, semantics and languages for databases and object-oriented
programming. Ph. D. thesis, University of Pennsylvania.

Ohori, A. 1990. Semantics of types for database objects. Theoretical Computer Science 76,
53–91.

Ohori, A. 1992. A compilation method for ML-style polymorphic record calculi. In Proc. ACM
Symposium on Principles of Programming Languages, pp. 154–165.

Ohori, A. 1995. A polymorphic record calculus and its compilation. Submitted for publication.
Available as a preprint RIMS-1013 from RIMS, Kyoto University. (Extended version of
[Ohori 1992].)

Ohori, A. and Buneman, P. 1988. Type inference in a database programming language. In
Proc. ACM Conference on LISP and Functional Programming, Snowbird, Utah, pp. 174–
183.

Ohori, A. and Buneman, P. 1989. Static type inference for parametric classes. In Proc. ACM
OOPSLA Conference, New Orleans, Louisiana, pp. 445–456. (The extended version was
published in Mitchell, J. and Gunter, G. editors, Theoretical Aspects of Object-Oriented
Programming, pp. 121–147, 1994. MIT Press.)

Ohori, A., Buneman, P., and Breazu-Tannen, V. 1989. Database programming in Machi-
avelli – a polymorphic language with static type inference. In Proc. ACM SIGMOD con-
ference, Portland, Oregon, pp. 46–57.

Remy, D. 1989. Typechecking records and variants in a natural extension of ML. In Proc. ACM
Symposium on Principles of Programming Languages, pp. 77–88. (The extended version
was published in Mitchell, J. and Gunter, G. editors, Theoretical Aspects of Object-Oriented
Programming, pp. 67–95, 1994. MIT Press.)

Remy, D. 1992. Typing record concatenation for free. In Proc. ACM Symposium on Principles
of Programming Languages, pp. 166–175.

Robinson, J. A. 1965. A machine-oriented logic based on the resolution principle. Journal of
ACM 12, 23–41.

Schmidt, J. 1977. Some high level language constructs for data of type relation. ACM Trans-
actions on Database Systems 5, 2.

Stonebraker, M. and Rowe, L. 1986. The design of Postgres. In Proc. ACM SIGMOD
conference, pp. 340–355.

Stroustrup, B. 1987. The C++ programming language. Addison-Wesley.

Tofte, M. 1988. Operational semantics and polymorphic type inference. Ph. D. thesis, De-
partment of Computer Science, University of Edinburgh.

Turner, D. 1985. Miranda: A non-strict functional language with polymorphic types. In Func-
tional Programming Languages and Computer Architecture, Lecture Notes in Computer
Science 201, pp. 1–16. Springer-Verlag.

Wadler, P. 1990. Comprehending monads. In Proc. ACM Conference on Lisp and Functional
Programming, pp. 61–78.

Wand, M. 1987. Complete type inference for simple objects. In Proc. IEEE Symposium on
Logic in Computer Science, Ithaca, New York, pp. 37–44.

Wand, M. 1988. Corrigendum : Complete type inference for simple object. In Proc. IEEE
Symposium on Logic in Computer Science, pp. 132.

ACM Transactions on Database Systems

46 · Peter Buneman and Atsushi Ohori

Wand, M. 1989. Type inference for record concatenation and simple objects. In Proc. IEEE
Symposium on Logic in Computer Science, pp. 92–97.

Watt, D. and Trinder, P. 1991. Towards a theory of bulk types. Tech. rep., Department of
Computing Science, Glasgow University, Glasgow G12 8QQ, Scotland.

Wirth, N. 1977. Modula: a language for modular multiprogramming. Software Practice and
Experience 7, 1, 3–35.

Wong, L. 1994. Querying nested collections. Ph. D. thesis, Department of Computer and
Information Science, University of Pennsylvania.

Zaniolo, C. 1984. Database relation with null values. J. Comput. Syst. Sci. 28, 1, 142–166.

ACM Transactions on Database Systems

