
Archiving Scientific Data

PETER BUNEMAN

University of Edinburgh

SANJEEV KHANNA

University of Pennsylvania

KEISHI TAJIMA

Japan Advanced Institute of Science and Technology

and

WANG-CHIEW TAN

University of California, Santa Cruz

Archiving is important for scientific data, where it is necessary to record all past versions of a
database in order to verify findings based upon a specific version. Much scientific data is held in a
hierachical format and has a key structure that provides a canonical identification for each element
of the hierarchy. In this paper we exploit these properties to devlop an archiving technique that is

both efficient in its use of space and preserves the continuity of elements through versions of the
database, something that is not provided by traditional minimum-edit-distance diff approaches.
The approach also uses timestamps. All versions of the data are merged into one hierarchy
where an element appearing in multiple versions is stored only once along with a timestamp.
By identifying the semantic continuity of elements and merging them into one data structure,
our technique is capable of providing meaningful change descriptions, the archive allows us to
easily answer certain temporal queries such as retrieval of any specific version from the archive
and finding the history of an element. This is in contrast with approaches that store a sequence
of deltas where such operations may require undoing a large number of changes or significant
reasoning with the deltas.

A suite of experiments also demonstrates that our archive does not incur any significant space
overhead when contrasted with diff approaches. Another useful property of our approach is that
we use XML format to represent hierarchical data and the resulting archive is also in XML. Hence,
XML tools can be directly applied on our archive. In particular, we apply an XML compressor
on our archive, and our experiments show that our compressed archive outperforms compressed
diff-based repositories in space efficiency. We also show how we can extend our archiving tool to
an external memory archiver for higher scalability and describe various index structures that can
further improve the efficiency of some temporal queries on our archive.

Categories and Subject Descriptors: H.2.8 [Database Management]: Scientific Databases;
H.3.7 [Information Storage and Retrieval]: Collection, Dissemination, Systems issues; H.2.1
[Database Management]: Data models

General Terms: Algorithms, Design, Experimentatal Analysis, Management

Additional Key Words and Phrases: Keys for XML

Authors’ addresses: Peter Buneman, Email: peter@cis.upenn.edu; Sanjeev Khanna, Email:
sanjeev@cis.upenn.edu; Keishi Tajima, Email: tajima@jaist.ac.jp; Wang-Chiew Tan, Email:
wctan@cs.ucsc.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20 ACM 0362-5915/20/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. , No. , 20, Pages 1–39.

2 · Buneman, Khanna, Tajima, and Tan

1. INTRODUCTION

Scientific databases are published on the Web to disseminate the latest research.
As new results are obtained these databases will be updated, mainly by adding data,
but also by modifying and deleting existing data. Since other research may be based
on a specific version of a database, it is important to create archives containing all
previous states of the data. Failure to do so means that scientific evidence may
be lost and the basis of findings cannot be verified. A search of scientific data
available on the Web [CELLBIODBS] suggests that archiving is an ubiquitous
problem. Even databases of physical constants [PHYSICSCONSTANTS] are less
“constant” than one might naively imagine. The onus of keeping archives typically
falls on the producers of data, but there are no general techniques for efficiently
keeping long-term archives that also provide efficient support for basic operations
such as retrieval of a past version from the archive and tracing the evolutionary
history of an element in the archive.

As an example of the issues involved, consider two widely used datasets in genetic
research: Swiss-Prot [Bairoch and Apweiler 2000], a protein sequence database,
and On-line Mendelian Inheritance in Man (OMIM) [OMIM 2000], a database of
descriptions of human genes and genetic disorders. Both databases have a similar
hierarchical structure and both are heavily curated, i.e., they are maintained with
extensive manual input from experts in the field. In the case of Swiss-Prot, a new
version is produced approximately every four months, and all old versions are kept.
On the other hand, in the case of OMIM, a new version is produced almost every
day, but only occasionally is a (printed) archive produced. Swiss-Prot and OMIM
are two contrasting examples of archiving practices1. There is an obvious trade-
off between the frequency with which the database is “published” and the space
required for complete archiving. Although keeping all old versions allows one to
quickly obtain an old version, such an archiving method clearly does not scale well
in the long run or if the database is published very frequently, such as like OMIM.
Even if the issue of space is not critical, and we choose to keep all versions, there
is also the issue of the efficiency with which one can query the temporal history
of some part of the database. For example, to find when a given observation first
appeared in history or when it was last changed may require one to locate that
observation in each of a very large number of versions.

Another approach to archiving is to keep a record of the changes – a “delta”
– between every pair of consecutive versions. We will call this the sequence-of-

delta approach throughout the paper. Such a method of archiving clearly conserves
space and scales well. In this approach, however, retrieving an old version might
involve undoing or applying many deltas. Likewise, the efficiency of finding the
evolutionary history of an element is also a problem and may require significant

1It should be mentioned that, in addition to the published versions, both SWISS-PROT and
OMIM keep audit trails of the edits to the data, so there is more historical information than is
apparent from the archives. However it is not clear that either organization could easily produce
the state of its data as it was at some arbitrary past time.

ACM Transactions on Database Systems, Vol. , No. , 20.

Archiving Scientific Data · 3

Version 1 Version 2 Output of diff

<gene>

<id>6230</id>

<name>GRTM</name>

<seq>GTCG...</seq>

<pos>11A52</pos>

</gene>

<gene>

<id>2953</id>

<name>ACV2</name>

<seq>AGTT...</seq>

<pos>08A96</pos>

</gene>

<gene>

<id>2953</id>

<name>ACV2</name>

<seq>GTCG...</seq>

<pos>11A52</pos>

</gene>

<gene>

<id>6230</id>

<name>GRTM</name>

<seq>AGTT...</seq>

<pos>08A96</pos>

</gene>

2,3c

<id>2953</id>

<name>ACV2</name>

8,9c

<id>6230</id>

<name>GRTM</name>

Fig. 1. Two versions and the diff.

reasoning with the deltas.
Tools for keeping changes made to text documents, such as CVS [CVS] of-

ten adopt the sequence-of-delta approach. Such tools typically use line-diff algo-
rithms [Miller and Myers 1985; Myers 1986] to describe changes. Tree diffs have
also been developed for XML and other hierarchical structures [Zhang and Shasha
1989; Chawathe et al. 1996; Chawathe and Garcia-Molina 1997; Cobena et al. 2001].
These diff algorithms compute deltas that are also based on the notion of minimal-
edit-distance, and we shall refer to these as diff-based aproaches . Measuring the
”diff” of two structures is one of a number of ways of computing a delta, others
could be based, for example, on edit scripts or transaction logs. The problem with
the diff-based approach is that it may ignore the semantic continuity of data ele-
ments. As an example, suppose we have a database containing data of two genes,
as shown in Version 1 of Figure 1. It was later discovered that the information on
one gene had been confused with the other, and the data was corrected as shown
in Version 2. A diff algorithm might explain the change as genes changing their
names and id numbers, as shown by the diff output in Figure 1; It says that lines 2-3
of Version 1 should be replaced with <id>2953</id><name>ACV2</name>, i.e., the
gene GRTM changed its id to 2953, and also changed its name to ACV2. Similarly,
the diff says the gene ACV2 changed its id to 6230, and also changed its name to
GRTM.

If we are only interested in retrieving an entire (past) version from a diff-based
repository, such nonsensical change descriptions do not surface. However, if we
are interested in finding the temporal history of an element in the database, the
diff-based approach may require one to perform some complicated analysis on the
diff scripts. This example suggests that there is a temporal invariance of keys that
should be captured by an archiving system. We would like an archiving system
that is able to preserve the continuity of data elements through time.

The archiving techniques described in this paper stem from the requirements
and properties of scientific databases. They are, of course, applicable to data in
other domains, but they are especially appropriate to scientific data for a variety of
reasons. First, as we have noted, archiving is important for scientific data. Second,

ACM Transactions on Database Systems, Vol. , No. , 20.

4 · Buneman, Khanna, Tajima, and Tan

scientific data is largely accretive or ”write mostly”, and the transaction rate is low.
In particular, an individual data entry will be modified infrequently. Third, much
scientific data is kept in well-organized hierarchical data formats and is naturally
converted into XML. Finally, this hierarchically structured data usually has a key

structure which is explicit in the design of the format. The key structure provides
a canonical identification for every part of the document, and it is this structure
that is the basis for our techniques.

Our archiver leverages these properties and effectively stores multiple versions
of hierarchical data in a compact archive that can easily support certain temporal
queries by using the following techniques:

—Identifying changes based on keys. In contrast to the many existing tools
that use the diff-based approach based on minimum edit distance, we identify the
correspondence and changes between two given versions based on keys. We will
call this approach key-based approach. By this, our archive can preserve semantic
continuity of each data element in the archive, and can efficiently support queries
on the history of those elements.

—Merging versions based on keys. In contrast to the delta-based approach,
we merge all versions into one hierarchy. We will call this approach merging

approach. An element may appear in many versions, but we identify those occur-
rences using the key structure and store it only once in the merged hierarchy. The
sequence of versions in which an element appears is described by its timestamp

(a sequence of version numbers) and is stored together with that element. Since
changes to our database are largely accretive and an element is likely to exist for
a long time, we can compactly represent its timestamp using time intervals rather
than a sequence of version numbers. Notice that the description of changes is
grouped by elements in this structure while the description of changes is grouped
by time in the sequence-of-delta approach. When compared with the latter ap-
proach, the former can easily support both the retrieval of very old versions or
queries on the history of an element.

—Inheritance of timestamps. Conceptually, a timestamp is stored with every
element to indicate its existence at various points in history. In actual implemen-
tation, a timestamp is stored at a child element only when it is different from
the timestamp of its parent element. Since most changes are insertions of new
elements, it is likely that an element in the archive has identical timestamp to
its parent element. Hence a fair amount of space overhead is usually avoided by
inheriting timestamps.

There are two orthogonal choices to be made among the possible descigns of an
archiver: whether to use a diff-based or key-based method of describing change and
whether to use a sequence-of-delta or a merging technique in recording the change.
Our approach is key-based + merging approach while systems such as CVS use
a diff-based + sequence-of-delta approach. The other two combinations are also
possible, and in fact, we also use diff-based + merging approach for unkeyed part
of the data. The details are explained later.

Another interesting aspect of our approach is that our archive can be easily rep-
resented as yet another XML document. Our choice of using XML is motivated in

ACM Transactions on Database Systems, Vol. , No. , 20.

Archiving Scientific Data · 5

db

dept

name

finance fn

John Doe

ln

emp

123−4567

telsal

95K

db

dept

telfn ln

emp

tel

dept

name

finance

db

dept

fn

emp

John

ln

Doe 123−4567

tel

90K

sal

name

marketing fn

emp

John

ln

Doe

name

finance fn ln

SmithJane

emp

db

dept

name

finance

sal

95KJane Smith 123−6789 112−3456

PSfrag replacements

Version 1 Version 2 Version 3

Version 4

Fig. 2. A sequence of versions

part by the existence of many biological databases in hierarchical formats, which
are close to the XML data model. Many of these databases are also moving to-
wards support for XML (e.g., Swiss-Prot [EMBL-EBI (European Bioinformations
Institute)]). Since XML is also a widespread format for representation and ex-
change, we assume sources are provided in XML and chose to represent our archive
in XML. Our choice of XML also allows us to leverage many existing XML tools
such as XML editors, parsers, etc. that are readily available. In particular, we sub-
sequently use an XML compressor such as XMill [Liefke and Suciu 2000] to further
compress the archive (see Section 5).

This paper describes the archiving technique in detail and gives some experi-
mental data on its performance. The technique is an extension of the “persistent
data structures” of Driscoll et al. [Driscoll et al. 1989] (see Section 8). In order to
establish the viability of this approach, we do several things:

—We show that the compacted archive can be constructed efficiently, i.e., a new
version can be efficiently merged with an existing archive.

—We show, experimentally, that the space overhead for our compacted archive is
comparable to the existing approaches.

—We also establish experimentally that our compacted archives work well with
XMill, and outperform compressed diff-based repositories in terms of space effi-
ciency.

—Since our archive preserves the semantic continuity of elements, it is easy to
support various temporal queries more efficiently than delta-based approaches.
We also show that we can further improve the efficiency of answering certain

ACM Transactions on Database Systems, Vol. , No. , 20.

6 · Buneman, Khanna, Tajima, and Tan

name

finance fn lnfn

John Doe

ln

123−4567

tel{123−4567} tel{112−3456}

112−3456

sal

95KJane Smith

sal

95K

emp{fn=John,ln=Doe} emp{fn=Jane,ln=Smith}

123−6789

tel{123−6789}

dept{name=finance}

db

Fig. 3. Version 4 annotated with key values.

queries by defining simple index structures on top of our archive.

For example, on the basis of our experimental findings for OMIM, which is not
adequately archived (we recorded 100 versions over roughly 100 days), we predict
that we should be able to construct a compacted archive for a year in less than
1.12 times the space of the last version. Moreover, the archive, under XMill, will
compress to 40% of the size of the last version.

2. AN EXAMPLE

A simple example illustrates how the archiver works. In Figure 2, we see a sequence
of versions of a company database containing information about its employees in
each department. Every department can be identified by its department name, i.e.,
name is the key for departments. Within each department, every employee can be
uniquely identified by the employee’s firstname and lastname, i.e., firstname and
lastname is the key for employees. Notice that it is possible for two employees have
the same firstname and lastname if they belong to distinct departments (e.g., John
Does of version 3). Each employee also has at most one salary value, and one or
more telephone numbers. Figure 3 shows version 4 of Figure 2 with key information
annotated on nodes. For example, emp nodes are annotated with firstname and
lastname values and tel nodes are annotated with its subvalue.

Figure 4 shows how those versions can be merged into one compact archive by
“pushing down” timestamps. We first start at the top level of the versions, and
determine the nodes that correspond to one another across all versions according
to their key values. At the top level, each version has only one root node and
they correspond to one another. We merge corresponding nodes together, annotate
the resulting node with the version numbers of all merged nodes and push the
timestamp of each merged node down their respective subtrees. We recursively
invoke this procedure for the children of merged nodes until we reach the leaves.
The root node in the archive is used to keep track of the possibility that an archived
version is empty. For example, suppose the database is empty at version 5. If version
5 is archived, then the node root will have timestamp t=[1-5] while the node db will
have timestamp t=[1-4], indicating that version 5 is an empty database2.

2Note that the current version number is the largest number in the root node. Instead of using a
root node, one can also choose to keep track of the next version number as meta-information and
increment the next version number whenever a version is archived.

ACM Transactions on Database Systems, Vol. , No. , 20.

Archiving Scientific Data · 7

name

finance fn

John Doe

ln

123−4567

tel{123−4567}sal

95K

t=3 t=4

dept{name=finance}

123−6789

fn ln

Smith 95K

sal, t=[4]

Jane

tel{123−6789}, t=[4]

root, t=[1−4]

db

emp{fn=John,ln=Doe}, t=[3−4]

90K

dept{name=marketing}, t=[3]

112−3456

tel{112−3456}, t=[4]

emp{fn=Jane,ln=Smith}, t=[2,4]

Fig. 4. “Pushing” time down. Example of an archive.

Observe that in the resulting archive in Figure 4, nodes appearing in many ver-
sions are stored only once in the archive. If a node occurs in version i, then the
timestamp of the corresponding node in the archive contain i. We use time inter-
vals to describe the sequence of versions for which a node exists. For example, the
time intervals [1-3,5,7-9] denotes the set {1,2,3,5,7,8,9}. If a node does not have a
timestamp, it is assumed to inherit the timestamp of its parent. For example, the
finance dept node inherits the timestamp t=[1-4] from its parent db node. Observe
also that it is a property of the archive that the timestamp of a node is always a
superset of timestamps of any descendant node. This archive can be represented
in XML, as shown in Figure 5. For example, employee John Doe of the finance
department has a timestamp <T t="3-4"> around it, indicating that the entire
subtree within exists in versions 3 and 4. Furthermore, during these times, John
has salary 90K at version 3 and 95K at version 4.

We may assume that the tag T is in a separate namespace [W3C 1999a]. It is
also easy to see that to reconstruct any previous version, all we need is a simple
scan through the “compacted” document. Notice that information on changes is
grouped by elements in this structure while information on changes is grouped by
time in the sequence-of-delta approach. Also, our archive ignores the order among
elements with keys. If the emp node corresponding to John Doe occurs in version
5 after the emp node corresponding to Jane Smith, it might still be represented in
the archive before Jane Smith.

There are two immediate caveats about this approach. First, what happens if
the data does not have a key system, i.e., there are nodes that cannot be uniquely
identified by their paths and any subelements? We have found that most scientific
data sources have a well-organized key system. However, there are cases in which
we cannot define appropriate keys for all the nodes down to the leaves. For example,
some data may be free text represented as a sequence of <line> elements and some
<line> elements may have same text value. Even in such a case, provided the upper
nodes in the tree have keys, we can still “push down” the timestamps in the upper
part, stop merging, and apply a conventional diff algorithm when we reach elements
without keys, such as <line> elements in the example above. In fact, if the entire
document does not have appropriate keys, our archiving technique is very close to
the SCCS approach [Rochkind 1975] (see also Section 8). The second caveat is

ACM Transactions on Database Systems, Vol. , No. , 20.

8 · Buneman, Khanna, Tajima, and Tan

<T t="1-4">

<root>

<db>

<T t="3">

<dept>

<name>marketing</name>

<emp>

<fn>John</fn> <ln>Doe</fn>

</emp>

</dept>

</T>

<dept>

<name>finance</name>

<T t="3-4">

<emp>

<fn>John</fn> <ln>Doe</ln>

<T t="3"><sal>90K</sal></T>

<T t="4"><sal>95K</sal></T>

<tel>123-4567</tel>

</emp>

</T>

<T t="2,4">

<emp>

<fn>Jane</fn> <ln>Smith</ln>

<T t="4"><sal>90K</sal></T>

<T t="4"><tel>123-4567</tel></T>

<T t="4"><tel>112-3456</tel></T>

</emp>

</T>

</dept>

</db>

</root>

</T>

Fig. 5. XML representation of the archive in Figure 4.

whether the new structure really is smaller than the accumulated past versions.
Here, we capitalize on the fact that the timestamps associated with elements can
be compactly represented as a small number of intervals and are often inherited
from a parent element. Our experiments in Section 5 validate this.

In the following sections we first explain the notion of keys for hierarchical data
that plays an important role in our archiving system. Next, we describe the main
modules of the archiver in detail, including key annotation, nested merge and fin-
gerprinting of keys for efficiency. We then show some experimental results on some
widely used biological data sets and also on some synthetic data. The following
sections show how the whole process can be implemented on large data sets using
external memory and show how versions and the temporal history of an element
may be efficiently retrieved.

ACM Transactions on Database Systems, Vol. , No. , 20.

Archiving Scientific Data · 9

3. KEYS FOR HIERARCHICAL DATA

The general notion of a key for XML is described in [Buneman et al. 2001] and sum-
marized in Appendix A. Informally, a key is an assertion of the form (Q, {P1, . . . , Pk})
where Q, P1, . . . , Pk are all path expressions in a syntax like XPath [W3C 1999b]
but consisting only of node and attribute names. The path Q identifies the target

set for the key – the set of nodes to be constrained by the key. The paths P1, . . . , Pk

are the key paths and are analogous to the key attributes in the relational setting.
An XML document satisfies a key (Q, {P1, . . . , Pk}) if

—from any node identified by Q, every path Pi (1 ≤ i ≤ k) exists uniquely, and

—if two nodes n1 and n2 identified by Q have the same value at the end of each
key path in {P1, . . . , Pk}, then n1 and n2 are identical nodes.

Example: (/book, {isbn}). Every book child of the root must have a unique isbn
child, and if two such book nodes have the same value for their isbn children, then
they are the same node.

In the definition above, the path Q in a key starts at the root. We shall need to
be able to define keys starting from one of a set of “context nodes”. For example
we would like to say that beneath any book node, a chapter node is specified by
its chapter-number child. But this is to hold only beneath some book node – not
globally. We can specify such a key simply by adding to the definition the context
path, in this case (/book, (chapter, {chapter-number})). Such a key is called a
relative key. All the keys we deal with will be relative.

As a further example, version of the company database satisfies the following key
constraints.

—(/, (db, {})). There is at most one db element below the root.

—(/db, (dept, {name})). Every dept node within a db node can be uniquely iden-
tified by the contents of its name subelement.

—(/db/dept, (emp, {fn, ln})). Every emp node within a dept node along the path
/db/dept can be uniquely identified by the contents of its fn and ln subelements.

—(/db/dept/emp, (sal, {})). There is at most one sal subelement under each emp
node along the path /db/dept/emp.

—(/db/dept/emp, (tel, {.})). Every tel node within an emp node along the path
/db/dept/emp can be uniquely identified by its contents (“.” denotes the empty
path). That is, the same telephone number cannot be repeated below an emp
node.

The keys shown above are rather simple. For the scientific data that we use for
our experiments, keys are also simple. (See Appendix B.) Observe that for strong
keys, whenever a key (Q, (Q′, {P1, ..., Pk})) exists, the keys (Q/Q′, (Pi, {})),
1 ≤ i ≤ k are implied (Pi is a non-empty key path). Although we do not explicitly
state these keys, we shall always assume that they are part of the key specification.
We remark that for documents that are standard and consistent representations of
relations in XML, the set of keys can be automatically generated from the relational
schema.
Some terminology. We say a node or an element is keyed if it has a key. In other
words the sequence of tag names from the root to this node is equal to the concate-

ACM Transactions on Database Systems, Vol. , No. , 20.

10 · Buneman, Khanna, Tajima, and Tan

nation of context and target path of some key. In the example databases in Figure 2,
every non-leaf node is keyed. Given a set of keys, we consider the paths given by
the concatenation of context and target paths for every key in the key specification.
We say a path in this set is a frontier path if it is not a proper prefix of some other
path in the set. A node is a frontier node if the sequence of tag names from root
to that node equals to some frontier path. In other words, a frontier node is the
deepest possible keyed node. For example, the key specification for the company
database has frontier paths /db/dept/name, /db/dept/emp/fn, /db/dept/emp/ln,
/db/dept/emp/sal, and /db/dept/emp/tel. An example of a frontier node is name,
but the node emp is not a frontier node. Obviously, there can be unkeyed nodes
beyond frontier nodes. If there are area code and number subelements within each
tel node, then these subelements are unkeyed nodes beyond the frontier node tel.

Assumptions about the key structure. In this paper, we assume the given key
specification possess the following properties.

—We assume that every key defined for a node is relative to its parent node and
keys are defined up to a certain depth in the tree. For example, to identify an
emp node that lies on the path /db/dept/emp requires one to first identify the
correct db and dept nodes. That is, the key defined for an emp node is relative to
its parent node, dept, and the key defined for a dept node is relative to its parent
node, db. Such keys are called “insertion-friendly” keys in [Buneman et al. 2001].

—Given a set of keys that a document satisfies, every node that does not occur
beneath frontier nodes is keyed. In other words, we assume that the keys “cover”
every node that does not occur beneath frontier nodes. For example, there cannot
be some unkeyed node directly under emp since emp nodes are not frontier nodes.

—Our last restriction is that nodes that exist beneath some key path cannot be
keyed. Given a key (Q2, (Q

′

2, {...})), there cannot be a key (Q1, (Q
′

1, {P1, ..., Pk}))
where k ≥ 1 such that Q1/Q′

1/Pi is a proper prefix of Q2/Q′

2, for some i ∈ [1, k].
The reason is that the order among keyed nodes is unimportant and since the
order among element nodes in an XML value is important for (key) value equality,
the nodes beneath Q1/Q′

1/Pi for every i ∈ [1, k] should not be keyed. Otherwise,
the key of a node in Q1/Q′

1 may be different each time the order among keyed
nodes beneath Q1/Q′

1/Pi changes.

The first assumption makes it easy for us to determine the correspondences between
nodes in the archive and a version as we go down the trees starting from the root.
Although this assumption may seem restrictive, we have found that the keys for
our experimental data naturally adhere to this assumption. The second assumption
is a restriction made only to simplify the discussion of our merge algorithm in
Section 4.2. In the event that non-keyed nodes above frontier nodes exist, our
archiver handles these nodes by applying conventional diff techniques on the nodes,
since no key information is known about these nodes. The last assumption is in
fact not required due to the “top-down” localized merging of nodes in our merge
algorithm as discussed in Section 4.2. Two nodes in Q1/Q′

1 are merged only when
their corresponding values at Q1/Q′

1/Pi are equal. In case the two nodes at Q1/Q′

1

are merged, the two corresponding nodes at Q2/Q′

2 are also merged by virtue that
they occur in a key path of Q1/Q′

1.

ACM Transactions on Database Systems, Vol. , No. , 20.

Archiving Scientific Data · 11

New version

Keys

Archive
Annotate Keys,
Timestamps

Annotate Keys

Nested Merge New Archive

Fig. 6. Main modules in our archiving system.

4. MAIN MODULES

We now describe our main modules: Annotate Keys and Nested Merge as shown in
Figure 6. The module Annotate Keys annotates each keyed element in a document
or an archive with its key value. For example, Annotate Keys will transform the
version 4 of the database in Figure 2 into the database shown in Figure 3. The
key values allow Nested Merge to determine immediately the corresponding nodes
in the archive and version. A node in the archive corresponds to a node in the
version if they have the same key value. The module Nested Merge merges a new
version into the existing archive according to correspondence of nodes between the
archive and version. When annotating archives, we also need some processing of
the timestamps, which will be explained later.

4.1 Annotate Keys

In this section, we show how, given a key specification, one can annotate every
keyed node in an XML document with its key value. For example, emp nodes in
the version of Figure 3 and the archive of Figure 4 are annotated with these keys —
emp{fn=Jane, ln=Smith} and emp{fn=John, ln=Doe}. The resulting tree is such
that every keyed node can be identified by the path from root to that node by
taking into account existing key values as well.

The idea behind the algorithm Annotate Keys is to scan through the document,
looking out for nodes that should be keyed and nodes that contain key path values.
Given a key (Q, (Q′, {P1, ..., Pk})), a node that is on the path Q/Q′ is a node to
be keyed and a node that is on the path Q/Q′/Pi, where i ∈ [1, k], is a node that
contains a key path value. (The key path value is the XML value rooted under that
node.) As an XML document is scanned in document order, an open tag is always
encountered before the corresponding close tag (assuming that the document is
well-formed). Alternatively, we say a node is entered first before it is exited in the
tree representation of the XML document. Observe that by the time one exits a
node n that needs to be keyed (i.e., n is along the path Q/Q′), the nodes containing
key path values of n would already have been visited (i.e., those nodes are along
paths Q/Q′/Pi, i ∈ [1, k]).

Whenever we encounter a node that contains a key path value, we memorize
the entire “subtree” of the node and store the subtree value at the node. One can
avoid storing large key path values by computing and storing its fingerprint instead.
We describe how one can compute fingerprints in Section 4.3. We emphasize that
fingerprints are used entirely for efficiency purposes. A fingerprint uses less space

ACM Transactions on Database Systems, Vol. , No. , 20.

12 · Buneman, Khanna, Tajima, and Tan

than the actual value and it is faster to compare two fingerprints (comparisons
are done in Nested Merge described in Section 4.2) of the respective key values
instead of comparing the actual key values. In fact, most well-organized databases
have small key path values and hence, fingerprints might not be necessary for such
databases.

The algorithm below describes how to annotate keyed nodes of an incoming
version with its key value. We assume that the document D satisfies the key
constraints imposed by K which consists of q keys (C1, (S1, {P11, ..., P1m1

})),...,
(Cq , (Sq , {Pq1, ..., Pqmq

})). We let CSi denote the sequence of label names in Ci

followed by Si of the ith key and let p(M) denote the sequence of label names on
a stack M . The process of annotating keyed nodes in D can occur during the time
the document is first read into memory.
Algorithm Annotate Keys(D, K)

1. Initialize an empty main stack M .
2. Traverse the nodes of tree D in document order (preorder).

(a) Upon entering a node, push the node label onto all active stacks.
If p(M) = CSi for some i, then

initialize an empty stack Mij for each key path, Pij , j ∈ [1, mi].
For each stack Mij corresponding to key path Pij do

If p(Mij) equals the sequence of tag names in key path Pij , then
start memorizing P v

ij , the XML value of current node. (**)
(b) Before leaving a node,

If P v
ij is currently being memorized and

p(Mij) equals the sequence of tag names in key path Pij , then
stop memorizing P v

ij (**)

remove P v
ij and stack Mij .

If p(M) = CSi for some i, then
annotate the node with key path values P v

i1,...,P
v
imi

.
Pop all active stacks.

The main stack M is used to keep track of the path from root node to the current
node – the sequence of tag names from root to the current node. There are two
main events during the traversal of the document in document order. Whenever a
node (an open tag) is first encountered, we push the tag name of the node onto all
active stacks and check if the path of the current node is equal to the concatenation
of tag names in Ci/Si of some key i. The check against Ci/Si will tell if the node is
to be keyed according to key i. If so, we create an empty stack for each key path in
key i. Whenever we reach a node at the end of a key path of i, we start memorizing
the value (or subtree) as we traverse the subtree of this node. Upon exit of a node
(a close tag), we check if the memorization of the value has been completed. If so,
we stop memorizing the value and remove the key path stack. If the current node
to be exited is a keyed node, we annotate the current node with all the values of
its key paths. (For the above code, a node refers to an element node and can be
easily extended to handle attribute nodes. Text nodes have no labels and are not
pushed onto the stacks.) Observe that all relevant key paths of a keyed node will
have been visited before the keyed node is exited. Hence we are always guaranteed
to have all values of the key paths upon leaving a keyed node. Moreover observe

ACM Transactions on Database Systems, Vol. , No. , 20.

Archiving Scientific Data · 13

Data Size No. of Nodes(N) Height(h)

OMIM 27.0MB 206466 5

Swiss-Prot 436.2MB 10903568 6

XMark 11.2MB 167864 12

Fig. 7. Various statistics of our experiment data.

that there can be at most Σq
i=1mi key path stacks active at any time. The reason

is that a keyed node of path l has to be exited before another keyed node of path
l can be encountered. Furthermore, since we do not have keyed nodes within key
path values, at most one key path value is being memorized at any time. The size
of each stack is at most h where h is the height of the tree.
Analysis. We show that the running time of Annotate Keys is dominated by the
size of the document and key specification. We first analyze the statements marked
(**). In the extreme case, a key path value of an element may occur within the
key path value of another element. Such situation occurs when we have overlapping
key paths, e.g., when we have keys (/A, (B, {C/D})) and (/A/B, (C, {D/E})). The
key path value under the path D/E of element C occurs within the key path value
under the path C/D of element B. A naive implementation that copies P v

ij (a key
path value) can increase the size of the document by a factor of N where N is
the number of nodes in the document. The total size of all key path values is
O(N2) since the total size of all outermost key path values, second outermost key
path values and so on is at most N , N − 1, ..., 1 respectively. To obtain smaller
key path values, we could compute the fingerprint and copy the fingerprint instead
of P v

ij (see Section 4.3). Alternatively, we have implemented P v
ij as a pointer to

the node holding the key path value. We copy the pointers around and they are
subsequently dereferenced when its value is sought. For simplicity of our analysis,
we shall assume that P v

ij is implemented as a pointer to the node holding the key
path value.

The algorithm scans D once, taking actions in 2(a) and 2(b) for every node. In
2(a), assuming that the time for every path comparison is proportional to the length
of the path, a naive implementation for this step takes qh + hΣq

i=1mi time. The
condition check for p(M) = CSi for some i takes qh time and the check that some
stack Mij corresponds to key path Pij takes hΣq

i=1mi time. There are possibly
more efficient alternatives to the implementation of the check p(M) = CSi due to
overlapping paths among CSi. See for instance [Altinel and Franklin 2000; Diao
et al. 2002]. In 2(b), since we only remember the pointer to the key path value
when necessary, this step takes at most 1 + h time where h is the time to check
if p(Mij) equals Pij . It also checks if the current path is equal to CSi for some
i and performs annotations accordingly. This takes qh + maxi mi time at most
where qh is the time required to check if the current path equals CSi for some i
and maxi mi is the time required to annotate a node with all its key path values (or
pointers). Popping all active stacks takes another Σq

i=1mi time at most. Hence the
total time taken for each node is qh + hΣq

i=1mi + 1 + h + qh + maxi mi + Σq
i=1mi =

O(h(Σq
i=1mi + q)). If D has N nodes, total time is O(Nh(Σq

i=1mi + q)). Figure 7
shows the size of each parameter for the experiment data we use. Size, N and h
are statistics pertaining to the largest version of each dataset.

ACM Transactions on Database Systems, Vol. , No. , 20.

14 · Buneman, Khanna, Tajima, and Tan

db

a b

d e f t1

Archive�(versions�1-11)

db

a c

d e g t2

Version�12

Nested�Merge

T=1-11

T=1-11T=1,3-11
db

a b

d e f

t1

Archive�(versions�1-12)

T=1-12

T=1-11
c

t2

T=12T=1,3-12

T=1,3-11 T=12

d e g

Fig. 8. Illustration of Nested Merge.

Keyed nodes of an archive are annotated in the same way. In addition, we
handle the timestamp tags as follows. Whenever “...<T t=...>V </T>...” occurs
where t=... is the timestamp and V represents the contents within the tag T, the
root nodes of V are annotated with timestamp t=... if they are keyed. Otherwise,
V must contain nodes beneath frontier nodes. In this case, V remains as a subtree
of node <T t=...>.

Example 4.1. Figure 4 shows an example. Observe that the timestamp t=[3-4]
is annotated on the emp{fn=John, ln=Doe} node. However, since 90K and 95K
are beyond frontier nodes, they continue to exist under their respective timestamp
nodes.

4.2 Nested Merge

Nested Merge is used for archiving documents where the order among keyed nodes
does not matter. We first describe the main idea behind Nested Merge before
describing the algorithm in detail below. The main idea behind nested merge is
recursively to merge nodes in D (the incoming version) to nodes in A (the archive)
that have the same key value, starting from the root. When a node y from D
is merged with a node x from A, the timestamp of x is augmented with i, the
new version number. The subtrees of nodes x and y are then recursively merged
together. Nodes in D that do not have corresponding nodes in A are simply added
to A with the new version number as its timestamp. Nodes in A that no longer
exists in the current version D will have their timestamps terminated appropriately,
i.e., these nodes do not contain timestamp i.

Example 4.2. Figure 8 illustrates the basic idea of Nested Merge. An arrow
between a node in the archive and a node in the version indicates that they are
corresponding nodes, i.e., they have the same key value. Corresponding nodes are
merged together in the new archive and their timestamps are augmented with the
latest version number, i.e., number 12. Since the b element no longer exists in
Version 12, its timestamp is not augmented with the latest version number in the
new archive. On the other hand, since c first exists in Version 12, a new c element is
created in the new archive with the timestamp t=[12]. Assuming that a is a frontier
node, Nested Merge will detect that the contents of the a element in the archive
and that in the incoming version are different, i.e., <d/><e/><f/> is not the same

ACM Transactions on Database Systems, Vol. , No. , 20.

Archiving Scientific Data · 15

as <d/><e/><g/> according to value equality. Hence, although there are clearly
common elements among the contents, they are stored separately under different
timestamp nodes in the new archive.

Value Equality. Before we describe the algorithm Nested Merge, we shall recall
the definition of value equality (also described in Appendix A), which is used in
comparing key values of nodes in Nested Merge. Recall that the value of a node
is defined according to its type. If a node is a text node (T-node), the value is its
text string. If a node is an attribute node (A-node) that has attribute name l and
string v, its value is the pair (l, v). The value of an element node (E-node) consists
of two things: (1) a possibly empty list of values of its E and T children nodes
according to the document order, and (2) a possibly empty set of values of its A
children nodes. A node n1 is value equal to a node n2, denoted as n1 =v n2, if they
agree on their value, i.e., intuitively, the trees rooted at the nodes are isomorphic
by an isomorphism that is identity on string values.

In the following discussion, we assume that A and D are already annotated with
keys as described in the previous section. We assume the archive A contains versions
1 through i−1 and D is the new version (version i), which respects key specification
K, to be archived into A. To simplify discussion, we assume that elements in the
incoming version or archive, except timestamp elements, do not contain attributes.
The archive A is assumed to contain a single root node rA even when no versions
are present. For any node x in A, let time(x) denote the timestamps annotated
on node x. Before any version is merged into A, time(rA) exists as an empty
set. Let label(x) denote the full label of a node x, including its key value but
excluding timestamp annotations. For example, the label of the emp node of John
Doe in Figure 4 is emp{fn=John, ln=Doe}. In general, the label of a node has
the form l(p1 = v1, ..., pk = vk). The labels of two nodes, l{p1 = v1, ..., pk = vk}
and l′{p1 = v′1, ..., pk = v′k}, are equal if the corresponding tag names are identical
(l = l′) and key values are the same (v1 =v v′1, ..., vk =v v′k). Otherwise, they
are not the same. Let rD denote the virtual root of D where label(rD) is identical
to label(rA) and the tree representation of D is contained as a subtree of rD . Let
children(x) denote the sequence of children nodes of x. Let xml(x) denote the
XML representation of the entire tree rooted at x. We invoke the algorithm with
the following arguments, Nested Merge(rA, rD, {}). The last argument contains
inherited timestamp, initially empty.
Algorithm Nested Merge(x, y, T)

If time(x) exists, then
add i to time(x),
let T be time(x).

If y is a frontier node then
If every node in children(x) is not a timestamp node, then

If x 6=v y, then
create timestamp node t1 (i.e., <T t="T − {i}">) and attach children(x) to t1,
create timestamp node t2 (i.e., <T t="i">) and attach children(y) to t2,
attach t1 and t2 as children nodes of x.

Else
If there exists a node x′ in children(x) such that children(x′)=v children(y), then

ACM Transactions on Database Systems, Vol. , No. , 20.

16 · Buneman, Khanna, Tajima, and Tan

add i to time(x′).
Else

create timestamp node t1 (i.e., <T t="i">) and attach children(y) to t1,
attach t1 as child node of x.

Else
Let XY = {(x′, y′) | x′ ∈ children(x), y′ ∈ children(y), label(x′) = label(y′)}.
Let X ′ denote the rest of the nodes in children(x) that do not occur in XY and
Y ′ denote the rest of the nodes in children(y) that do not occur in XY .
For every pair (x′, y′) ∈ XY

(a) Nested Merge(x′, y′, T)
For every x′ ∈ X ′

(b) If time(x′) does not exist, then let time(x′) be T − {i}.
For every y′ ∈ Y ′

(c) Let time(y′) = {i} and attach y′ as a child node of x.

The algorithm first determines the current timestamp. It is i added to time(x)
if time(x) exists. Otherwise, the timestamp is inherited from its parent. Observe
that time(rA) always exists. It is a property of the algorithm that label(x) =
label(y) whenever Nested Merge(x, y, T) is invoked. The algorithm then proceeds
by checking if y is a frontier node.

Frontier nodes are handled specially because there are no keyed nodes beyond
frontier nodes. Thus the recursive merging of identical nodes no longer applies for
the descendents of frontier nodes. The children nodes of any frontier node have the
property that either they are all timestamp nodes or none of them is a timestamp
node. In Figure 4, sal of John Doe is an example of a frontier node whose children
are all timestamp nodes, tel of John Doe is a frontier node none of whose children
are timestamp nodes. The transition from having no timestamp children nodes
to all timestamp children nodes occurs when an incoming version is such that the
content of the frontier node to be merged differs from that in the archive. Consider
the last archive in Figure 9 which contains versions 1-3. When version 4 is merged,
sal of John Doe in version 4 differs from that in the archive containing versions 1-3.
Hence, timestamps are used to enclose the salary values at the respective times.
The resulting archive is shown in Figure 4.

If y is not a frontier node, we “partition” nodes in children(x) and children(y)
into three sets. (1) The first set, XY , contains pairs of nodes from children(x) and
children(y) respectively with equal key values. Observe that by the property of
keys, for every node in children(x), there can be at most one node in children(y)
with an equal key value. (2) The second and third sets are X ′ and Y ′. The set X ′

(resp. Y ′) consists of nodes in children(x) (resp. children(y)) where there does not
exist any node in children(y) (resp. children(X)) with an equal key value.

Nested merge is recursively called on pairs of nodes in XY , inheriting the current
timestamp T . To ensure that nodes of X ′ no longer exist at time i, timestamp T
excluding i is annotated on nodes of X ′ if they do not already contain timestamp
annotations that terminate earlier than i. Subtrees rooted at nodes of Y ′ are
attached as a subtrees of x and they are annotated with timestamp i since they
only begin to exist at time i.

ACM Transactions on Database Systems, Vol. , No. , 20.

Archiving Scientific Data · 17

root, t=[]

db

dept

name

finance

root, t=[1]

name

finance fn ln

SmithJane

db

root, t=[1,2]

dept

emp, t=[2]

dept

db

root, t=[1−3]

dept, t=[3]

name

finance fn

John

ln

Doe 123−4567

telsal

90K

emp, t=[3] name

marketing fn

emp

John

ln

Doe

Fig. 9. States of the archive as versions 1-3 are merged. Keys of nodes are omitted.

Figure 9 together with Figure 4 shows the evolution of the archive as versions 1
to 4 of Figure 2 are added.
Analysis. We analyze the running time of Nested Merge to show that it is
O(αN log N), where N = max(NA, ND), NA and ND are the number of nodes
in A and D respectively, and α is the maximum time it takes to compare the labels
of two nodes or test if two nodes are value equal. We assume the set of frontier
paths are kept in a hash table and hashing will allow us to determine if a given
path (or node) is a frontier path in expected constant time. Let dA and dD be the
maximum degree of A and D respectively. Hence children(x) and children(y) can
be determined in dA and dD time. According to the algorithm, if y is a frontier
node, so is x. The first If statement following the condition that y is a frontier
node in the algorithm executes in O(dA) time since there are at most dA children
nodes in children(x). The second If statement executes in α time. The third If
statement executes in O(α ∗ dA) time assuming that the time to test whether the
sequence of nodes in children(x′) is value equal to the respective sequence of nodes
in children(y) takes less time than testing whether x′ =v y, which takes α time at
worst. The rest of the statements take take at worst O(dA + dD) time to attach
nodes to t1 or t2 respectively. Hence the statements on the condition that y is a
frontier node executes in O(α(dA + dD)) time.

In case y is not a frontier node, the algorithm proceeds to determine XY , X ′,
and Y ′ and appropriate actions, (a), (b), and (c), are taken for nodes in each set. In
fact, one does not have to determine XY , X ′ and Y ′ naively. Our implementation

ACM Transactions on Database Systems, Vol. , No. , 20.

18 · Buneman, Khanna, Tajima, and Tan

assumes that children(x) and children(y) are sorted in ascending order according to
their key values and a merge-sort is done on the sorted nodes: Start with the first
node of each sorted sequence children(x) and children(y). Call them x′ and y′. (1)
If label(x′)=lablabel(y′), then perform action (a). (2) If label(x′)<lablabel(y′), then
perform the action (b) on x′ and let x′ be the next node in the sequence children(x).
(3) Otherwise, perform action (c) on y′ and let y′ be the next node in the sequence
children(y). We repeat this procedure until we run out of nodes on either sequence.
If children(x) (resp. children(y)) is empty first, we perform action (c) (resp. (b))
on the rest of the nodes in children(y) (resp. children(x)). Since every node in A
and D is sorted at some point and a merge sort is performed, Nested Merge takes
O(αN log N) time.

Observe that in the description above, we have used “≤lab” to compare the labels
of two nodes. We define “≤lab” for labels of nodes next. Let label(x) be l1(p1 = v1,
..., pk = vk) and label(y) be l2(p

′

1 = v′1, ..., p′l = v′l), where the key path values
are lexicographically ordered according to pis and p′is. Then, label(x)<lablabel(y)
if (i) l1 < l2, or (ii) l1 = l2 and k < l, or (iii) l1 = l2, k = l, pi = p′i, vi =v v′i
for all i ∈ [1, j − 1], j ∈ [1, k], and pj < p′j , or (iv) l1 = l2, k = l, pi = p′i,
vi =v v′i for all i ∈ [1, j − 1], j ∈ [1, k], pj = p′j , and vj <v v′j . The label of two
nodes are equal (label(x)=lablabel(y)) if l1 = l2, k = l, pi = p′i, vi =v v′i for all
i ∈ [1, k]. The definition of “≤v” for XML values can be found in Appendix A.
Notice that had we computed fingerprints, the process of determining whether
label(x) is less than label(y) will compare the fingerprints vj and v′j instead of
actual XML values. The use of fingerprints for ordering nodes does not affect
correctness since we use the same ordering on nodes in the archive and version
and all that really matters in Nested Merge is that nodes with identical key values
(therefore identical fingerprints) are merged together.
Further Compaction. To obtain a further compact archive representation, one
can apply diff-based techniques on values beneath frontier nodes. Within the fron-
tier node, we represent the contents that remain the same across versions only once
and mark the parts that differ by timestamps. This approach is much like the one
that SCCS [Rochkind 1975] adopts. In this way, instead of representing values of
these nodes under the respective timestamps, we represent only their difference.
The advantage of this technique arises when values differ only slightly across ver-
sions.

Example 4.3. Going back to the illustration for Nested Merge in Example 4.2,
Figure 10 shows the resulting archive if further compaction is applied. Observe that
elements d and e occur only once in the output archive under further compaction
since the difference between the values of the frontier node a in the archive and
incoming version is only on the last element. As before, we use timestamps to
mark the existence of the nodes at various times.

4.3 The fingerprint of an XML value

In this section, we show how one can adapt Nested Merge to use fingerprints instead
of actual key values so that the version is archived correctly even when collisions of
fingerprints may occur.

To compute the fingerprint of an XML value V , we first obtain the canonical

ACM Transactions on Database Systems, Vol. , No. , 20.

Archiving Scientific Data · 19

db

a b

d e f t1

Archive�(versions�1-11)

db

a c

d e g t2

Version�12

Nested�Merge

T=1-11

T=1-11T=1,3-11
db

a b

d e f

t1

Archive�(versions�1-12)

T=1-12

T=1-11
c

t2

T=12T=1,3-12

T=1,3-12 T=12

g

T=1,3-11

Fig. 10. Illustration of further compaction.

form of the XML value [W3C 2001a] CV . The canonical form is such that given
two XML values V and V ′ that are value equal, their corresponding canonical forms
are string equal. That is, given two XML values V and V ′, V =v V ′ if and only if
CV = CV ′

3.
With the canonical representation of an XML value, a fingerprint of the canonical

XML value can be obtained by applying DOMHash [Maruyama et al. 2000] or other
hash functions (see for instance [Motwani and Raghavan 1995]) on the XML value.
Therefore, given two XML values V and V ′ that are value equal, f(CV) = f(CV ′)
where f is the fingerprint function.

We next describe how Nested Merge can be modified to use fingerprints instead
of actual key values.

Compute fingerprints. We compute the fingerprint of the key value of every
keyed node in the archive and version using a fingerprint function f and canonical
XML. Note that since fingerprints are applied only on key values in the archive and
key values do not change, the fingerprints of each keyed node need not be updated
in the archive once they are computed. Computing all fingerprints takes O(αn)
assuming that α is the time to compute the fingerprint of the largest key value4

and n is the number of nodes in the archive or version (whichever is bigger).
Sort. Next, we sort all keyed sibling nodes according to the fingerprints. This

takes O(βn log n) time, assuming that it takes β units of time to compare two
fingerprints. After the archive and version are sorted, we proceed to merge keyed
nodes at every level according to their fingerprints.

Merge. Whenever a node in the version matches with a node in the archive
(i.e., their fingerprints match), one has to verify that their actual key values indeed
match. This is to ensure that we do not merge nodes with different key values.
Hence, every successful match between two fingerprints in fact incurs the extra time
α — the time to compare their actual key values. Assuming that the probability of
error is O(1/t)5, and there are at worst n nodes in the version, the expected number

3Although the whitespaces between elements are preserved in the canonicalization of an XML
value in [W3C 2001a], our XML model ignores these whitespaces.
4We shall assume that the time to compare two XML key value is roughly the same as the time
to compute the fingerprint of the larger key value of the two.
5For MD5, t is typically 264 or 2128 which is much larger than typical values of n.

ACM Transactions on Database Systems, Vol. , No. , 20.

20 · Buneman, Khanna, Tajima, and Tan

of collisions for any node in the archive is therefore O(n/t). Therefore, at worst
every node in the version is compared with O(1+n/t) nodes in the archive during the
merge process. Hence, the merge phase takes expected time O((β + α)(n + n2/t)).

We next compare the total “work” done when Nested Merge uses fingerprints
with the total “work” done when Nested Merge does not use fingerprints. The
total work done when Nested Merge uses fingerprints is

—Compute fingerprints. O(αn) for computing fingerprints of nodes in archive
and version.

—Sort. O(βn log n) for sorting nodes in archive and version.

—Merge. O((β + α)(n + n2/t) expected time for merging nodes in the version to
the archive.

The total work done when Nested Merge does not use fingerprints is

—Sort. O(αn log n) for sorting nodes in the archive and version.

—Merge. O(αn) for merging nodes in the version to archive.

Since a fingerprint is smaller than the size of the actual key value (β < α) and t is
typically larger than n, the total work done in either case is roughly the same. Hence
the difference in total work done is essentially the time to compute fingerprints and
sort nodes in the former case versus the time to sort nodes using actual key values
in the latter case.

5. EXPERIMENTAL RESULTS

The main purpose of our experiments is to answer the following question: How
does the storage space performance of our technique compare with traditional diff-
based + sequence-of-delta approaches? Our experiments show that our archive
requires only slightly more space than those existing approaches on real scientific
data. Moreover, our results also show that our compressed archive is more space
efficient than any compressed delta-based repository. There are many variants of
delta-based approaches but we identified two likely competitive candidates: (1) the
incremental diff approach that stores the first version and diffs of every successive
pairs of versions in a repository, and (2) the cumulative diff approach that stores
the first version and diffs of every version from the first version.

An alternative to the incremental diff approach is to store the last version to-
gether with successive backward diffs. Whether with the forward or backward diff
approach, the size of the repositories should be the same since each element ap-
pears exactly once in some diff and in the first (or last) version. Thus, we focus
our attention on the forward diff approach and simply refer to it as the incremental
diff approach. For similar reasons, the size of a cumulative backward diff repository
should be the same as that of the forward cumulative repository. Since the back-
ward cumulative diff approach involves reconstructing all cumulative diffs whenever
a new version arrives, we focus our attention instead on the forward cumulative diff
approach and simply refer to it as the cumulative diff approach.

Cumulative diffs is obviously worse than incremental diffs in storage efficiency.
However, it has the advantage of being fast in retrieving any version: Any version
can be retrieved by one application of an edit script. Hence if the storage space

ACM Transactions on Database Systems, Vol. , No. , 20.

Archiving Scientific Data · 21

required by cumulative diffs is not far from that required by incremental diffs, cumu-
lative diffs would be a tougher competitor for us. Our experiments, however, show
that cumulative diffs quickly suffers from the large storage space when the number
of versions gets larger as shown later. Henceforth, we concentrate on comparisons
between our archive and the incremental diff approach.

In addition to the choice of incremental diffs or cumulative diffs, we also have
a choice of tree diffs or line diffs. Tree diffs have been extensively studied [Zhang
and Shasha 1989; 1990; Chawathe et al. 1996; Chawathe and Garcia-Molina 1997;
Cobena et al. 2001] and we used XML-Diff [XMLTREEDIFF], which is imple-
mented for XML and is downloadable from the Web. However, when compared
with line diff, XML-Diff incurred a significantly higher space overhead (and it was
also not robust: We could only run it on some of our data). Since our XML data
is formatted in such a way that each element is represented by one or more consec-
utive lines separate from other elements, line diff gives a compact representation
for small changes. For this reason, we chose line diff for the comparison. In all our
experiments, we used the standard unix diff command with “-d” option to compute
the smallest edit scripts. Hence, the sizes of our diff repositories are always the
smallest possible.

Since each version of our data is large and our basic archiver is an in-memory
algorithm, we quickly ran out of memory on a machine with 256MB memory. To
overcome the memory limitation, we hashed our experimental data into “chunks”
based on the values of keys. An incoming version is partitioned in the same manner,
and we apply our archiver to the corresponding chunks of the archive and the
incoming version. Since we never merge elements with different key values, we can
obtain the archive of the whole data by merging the archive and the version chunk
by chunk, and concatenating the results. Since our concern was storage space,
what we did to overcome the memory limitation was done in order to obtain a
quick verification of how our archiving technique compares to conventional diff-
based techniques. We show how to extend Nested Merge to an external memory
algorithm in Section 6 to handle large files. We note here that unix diff (line diff)
also ran out of memory on large files. Therefore we applied unix diff on versions of
the respective chunks as well.

We also examined how our approach and other approaches perform in combi-
nation with compression techniques. We compress the diff-based repositories with
gzip (a standard file compression tool) and we compress our archives with XMill
(an XML compression tool) [Liefke and Suciu 2000]. We also experimented with
compressing cumulative diffs with gzip since compressed cumulative diffs may be
small. As another possible competitor, we also put all the versions side by side into
one XML tree and compress it with XMill. Both gzip and XMill were run with
“-9” option to give the best possible compression.

In the following graphs in this section, line version shows the size of each version,
and line archive shows the size of our archives storing up to each version. Line
V1+inc diffs shows the size of incremental diff repositories, i.e., the total size of the
first version and all the incremental diffs, and line V1+cumu diffs shows the size of
cumulative diff repositories. Line gzip(V1+incremental diffs) and line gzip(V1+cumu
diffs) refer to the size of incremental diff repository and cumulative diff repository

ACM Transactions on Database Systems, Vol. , No. , 20.

22 · Buneman, Khanna, Tajima, and Tan

Size (bytes) x 106 Size (bytes) x 109

OMIM Data

V1+cumulative_diffs
archive
V1+incremental_diffs
version

size (bytes) x 106

of versions
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

130.00

140.00

150.00

160.00

170.00

180.00

190.00

200.00

210.00

220.00

0.00 20.00 40.00 60.00 80.00 100.00

SwissProt Data

V1+cumulative_diffs
archive
V1+successive_diffs
version

size (bytes) x 109

version sequence
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

0.00 5.00 10.00 15.00 20.00

V
1
+

cu
m

u
di

ff
s

archive

V1+inc diffs version

V
1
+

cu
m

u
d
iff

s

ar
ch

iv
e

V 1
+
in
c
di
ff
s

version

Number of Versions

(a) OMIM (over 3 − 4 months) (b) Swiss-Prot (over ≈ 5 yrs)

Fig. 11. OMIM and Swiss-Prot with cumulative diffs.

with gzip applied, respectively. Line xmill(archive) shows the size of our archives
with XMill applied. Finally, line XMill(V1+...+Vi) refers to the size of the concate-
nation of all the versions with XMill applied.

5.1 Summary of Experimental Results

We conducted experiments to compare the size of our archive with the size of
diff repositories on real and synthetic datasets. For synthetic data, we simulated
two types of changes; In one experiment, each version is generated with random
changes with varying frequencies of change. In the other experiment, each version
is generated in such a way that it gives a bad scenario for our archiver.

Our experiments show although cumulative diff repositories are attractive for
their efficiency in reconstructing any past version, the space requirements grows
quadratically with the number of versions. The experiments also show that the size
of our archive is comparable to the size of an incremental diff repository on real
datasets and synthetic data with random changes. Hence, our archiving technique
is able to preserve the historical continuity of elements without incurring signifi-

ACM Transactions on Database Systems, Vol. , No. , 20.

Archiving Scientific Data · 23

Size (bytes) x 106 Size (bytes) x 109

OMIM Data

archive
V1+incremental_diffs
version
gzip(V1+cumulative_diffs)
xmill(V1+...+Vi)
gzip(V1+incremental_diffs)
xmill(archive)

size (bytes) x 106

of versions

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

0.00 20.00 40.00 60.00 80.00 100.00

SwissProt Data

archive
V1+successive_diffs
version
gzip(V1+cumulative_diffs)
xmill(V1+...+Vi)
gzip(V1+successive_diffs)
xmill(archive)

size (bytes) x 106

version sequence
0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

550.00

600.00

650.00

700.00

750.00

800.00

850.00

900.00

0.00 5.00 10.00 15.00 20.00

archive, V1+inc diffs

version

gz
ip

(V
1
+

cu
m

u
d
iff

s)

xmill(V1 + ...Vi)

gzip(V1+inc diffs)

xmill(archive)

ar
ch

iv
e

V
1
+

in
c

d
iff

s

ve
rs
io

n

gz
ip
(V

1
+

cu
m

u
di
ff
s)

xm
ill
(V

1

+
...

+
V i

)

gzi
p(V

1
+inc

diff
s)

xmill(a
rchi

ve)

Number of Versions

(a) OMIM (over 3 − 4 months) (b) Swiss-Prot (over ≈ 5 yrs)

Fig. 12. Storage space of OMIM and Swiss-Prot with incremental diffs.

cant space overhead when compared with diff-based repositories. Furthermore, we
show that our compressed archive outperforms compressed diff repositories in all
scenarios (real or synthetic). For synthetic data where we generated bad scenarios
for our archiver, our archive indeed takes up much more space than an incremental
diff repository as expected. Suprisingly, however, our compressed archive continues
to outperform the compressed incremental diff repository even under such circum-
stances. Hence, if space is the main concern, we are likely to do better archiving
with our technique and compressing with XML compression tools.

5.2 Comparison with Cumulative Diffs

We first show that although cumulative diff has the advantage of retrieving any
past version fast, it quickly suffers from the drawback of incurring large amounts of
storage space when it is applied to real data. Figure 11 shows the result of applying
the cumulative diff approach to OMIM [OMIM 2000] and Swiss-Prot [Bairoch and

ACM Transactions on Database Systems, Vol. , No. , 20.

24 · Buneman, Khanna, Tajima, and Tan

Size (bytes) x 106 Size (bytes) x 106

Auction Data (05)

archive
V1 + incremental diffs
version
gzip(V1 + cumulative diffs)
xmill(V1+...+Vi)
gzip(V1 + incremental diffs)
xmill(archive)

size (bytes) x 106

version sequence

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00

17.00

18.00

19.00

0.00 5.00 10.00 15.00 20.00

Auction Data (30)

archive
V1 + incremental diffs
version
gzip(V1 + cumulative diffs)
xmill(V1+...+Vi)
gzip(V1 + incremental diffs)
xmill(archive)

size (bytes) x 106

version sequence

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

0.00 5.00 10.00 15.00 20.00

arc
hiv

e

V1
+inc

diff
s

version
gz

ip
(V

1
+

cu
m

u
di

ff
s)

xmill(V1
+ ... + Vi)

gzip(V1
+inc diffs)

xmill(arch
ive)

ar
ch

iv
e

V
1
+

in
c

di
ff
s

version

gz
ip
(V

1
+

cu
m

u
di
ff
s)

xm
ill
(V

1
+

..
.
+

V
i
)

gz
ip

(V
1
+

in
c

di
ff
s)

xmill(a
rch

ive)

Number of Versions

(a) 1.66%/1.66%/1.66% change ratio (b) 10%/10%/10% change ratio

Fig. 13. Storage performance on XMark data under different change ratio.

Apweiler 2000] data, which are real scientific data as described in Introduction. It
shows that for OMIM and Swiss-Prot, the total amount of storage space required by
the cumulative diff approach far exceeds that required by our archiving technique or
the incremental diff based approach. When the 10th version of Swiss-Prot is added,
the cumulative diff repository already incurs more than twice the storage space used
by our technique or the incremental diff approach. Therefore, we concentrated our
experiments on comparisons between storage costs of our archive and incremental
diff repositories.

5.3 Comparison with Incremental Diffs

The graphs in Figure 12 again show the results of the experiments with OMIM
and Swiss-Prot but without the line for cumulative diffs (and with some additional
lines explained later). In those graphs, we see that the incremental diff approach
marginally outperforms our approach for most cases. For OMIM, the archive size

ACM Transactions on Database Systems, Vol. , No. , 20.

Archiving Scientific Data · 25

Size (bytes) x 106 Size (bytes) x 106

Auction Data (05)

archive
V1 + incremental diffs
version
gzip(V1 + cumulative diffs)
xmill(V1+...+Vi)
gzip(V1 + incremental diffs)
xmill(archive)

size (bytes) x 106

version sequence

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00

0.00 5.00 10.00 15.00 20.00

Auction Data (30)

archive
V1 + incremental diffs
version
gzip(V1 + cumulative diffs)
xmill(V1+...+Vi)
gzip(V1 + incremental diffs)
xmill(archive)

size (bytes) x 106

version sequence

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

32.00

34.00

36.00

38.00

0.00 5.00 10.00 15.00 20.00

arc
hiv

e

V1+inc diffs

version

gzip(V1+cumu diffs)

xmill(V1 + ... + Vi)

gzip(V1+inc diffs)

xmill(archive)

ar
ch

iv
e

V1+inc diffs

version

gzip(V1+cumu diffs)

xmill(V1 + ... + Vi)
gzip(V1+inc diffs)

xmill(arc
hive)

Number of Versions

(a) 1.66%/1.66%/1.66% change ratio (b) 10%/10%/10% change ratio

Fig. 14. Storage performance on XMark data with insertion and deletion of highly similar elements.

is never 1% more than the size of incremental diffs, and for Swiss-Prot, the archive
size is never 8% more than the size of incremental diffs.

In the graph for Swiss-Prot, the size of our archive grows quadratically or even
faster. This is because the size of each version grows very fast, and as it grows, the
amount of change between two consecutive versions also grows. Compared with
the incremental diff approach, which logically achieves the smallest space cost, our
approach is not doing much worse.

Observe that the data stored in our approach and the diff approach are essentially
the same (although they are organized in different ways, i.e., grouped by elements
versus grouped by time). The small difference between the storage space in the
two approaches mainly comes from the difference between the size of timestamps
in our archives and the size of “markers” in diff scripts. If we have a huge number
of changes of very small data, such as a text data of length 1, the ratio of that
difference to the size of the archive can be considerable. Such an extreme situation,

ACM Transactions on Database Systems, Vol. , No. , 20.

26 · Buneman, Khanna, Tajima, and Tan

however, rarely occurs in the experimental data we used.

Although Swiss-Prot and OMIM were recorded for different periods and at dif-
ferent intervals, it is worth noting that in both cases the space required for the
archive diverges from the space required for the most recent version at about 15%
per year. This is a crude measure of the rate of change in the database, and it
would be interesting to know if other curated databases have a similar rate.

To make a comparison between our approach and the diff-based approach under
various change ratio to the data, we also produced synthetic data sets from XMark
data [Schmidt et al. 2002] under various change ratio. The first version of our
database is the synthetic auction data from XMark. Our change simulator creates
a new version by deleting n% of elements, inserting the same number of elements
with random string values, and modifying string values of n% of elements to random
strings. By repeatedly applying our change simulator, we generated 20 versions with
various values for n.

The graphs in Figure 13 shows the results of the experiments for n = 1.66 and
n = 10. For reference, the deletion/insertion/modification ratios between two ver-
sions of OMIM and Swiss-Prot are roughly 0.02%/0.2%/0.03% and 14%/26%/1.2%,
respectively. Various other statistics of these data can be found in Figure 7. In the
graph for n = 1.66, i.e. 1.66% insertion + 1.66% deletion + 1.66% modification,
the diff approach marginally outperforms our approach again. On the other hand,
in the graph for n = 10, our approach marginally outperforms the diff approach.
The main reason for the improvement is that our change simulator modify string
values to random strings, and when the ratio of the modification is high, a text
sometimes happens to be modified to some of its old values. While incremental
diff approach is forced to store those values multiple times in different deltas, our
approach stores the value only once, and timestamps are augmented appropriately.
Clearly, the former incurs a higher overhead than the latter in most cases.

On the other hand, when highly similar data are deleted and inserted at the
same location, the diff-based approach has the advantage. The diff-based approach
stores only diffs between those two similar elements, while our archiver stores those
two elements separately because their key values are not the same. The graphs in
Figure 14 shows the results of experiments simulating that worst-case scenario for
us. Here, we used XMark data, but our change simulator modifies part of key values
for n% of elements instead of deleting and inserting n% of elements. It is simulating
deletion and insertion of highly similar data at the exactly same location. As shown
in the graphs, the size of our archives grow very fast in this worst scenario, while
the size of the diff repository is only slightly bigger than the size of one version.

By extrapolating the scenario above, one can see that in the extreme case where
the same data is repeatedly deleted and inserted, our approach is likely to outper-
form incremental diff approach by a big margin. On the other extreme, there may
be insertions and deletions of highly similar data (though semantically different
because they have different key values) over the versions. In this case diffs usually
have a compact representation (by storing only the difference between them) while
our approach is forced to store the highly similar elements separately. Both such ex-
treme cases, however, rarely happens in scientific data. With typical scientific data
which are highly accretive, i.e., data where most of changes are addition, the size

ACM Transactions on Database Systems, Vol. , No. , 20.

Archiving Scientific Data · 27

of our archive and the size of the diff-based repository would be roughly the same.
The experimental results with OMIM data, changes to which is mainly addition as
shown in Figure 7, verifies that observation.

5.4 Interaction with Compression

We have seen that incremental diff technique may outperform our technique in
terms of storage space. However, when compression is applied to both our archives
and incremental diff repositories, our archives use less storage space in most of our
experiments. For both OMIM and Swiss-Prot (in Figure 12), we see that XMill
applied on our archive (xmill(archive) line) outperforms any other approaches, i.e.
gzip(incremental-diff), gzip(cumulative-diff), and xmill(V1 + . . . + Vi), even during
the times when the incremental diff repository is clearly smaller than our archive
without compression. For instance, in Figure 12(b), as our archive starts to perform
worse than the incremental diff repository after Version 17, our compressed archive
continues to outperform the compressed diff repository by a growing margin. By
the time Version 20 of Swiss-Prot is added, the storage space used by our archive is
clearly more than incremental-diff. However, gzip(incremental-diff) uses clearly more
storage space than xmill(archive) by about the same magnitude. It seems the margin
between gzip(incremental-diff) and xmill(archive) is bigger when the change ratio is
high. It is bigger in Figure 12(b) than in Figure 12(a), and within Figure 12(b), it
is bigger at Version 10. . . 20 than at Version 1. . . 10. The same characteristic can
also be seen in Figure 13.

This reversal of storage space efficiency occurs because our archive of XML data
sets is again in XML format, and XMill can exploit this specific structure to obtain a
better compression ratio than general compression tools like gzip. XMill groups text
data according to the names of the elements in which they occur and compresses
each group separately. Since text data that belong to elements of the same name
tend to be fairly similar, high compression ratios can usually be achieved.

Higher compression ratio of xmill(archive) can be seen even in the graphs of the
worst-case scenario in Figure 14. In those graphs, xmill(archive) is smaller than
gzip(incremental-diff) up to the points where our archive gets about 1.2 times larger
than the incremental diff repository (ver. 14 in (a) and ver. 3 in (b)). After those
points, the difference of the size of our archive and the diff repository seems outrun
the higher compression ratio of XMill.

Our graphs also show that a simple application of XMill to the concatenation of
all the versions does not work as well as our archive compressed with XMill (see
lines xmill(V1 + ... + Vi) and xmill(archive)). Finally, the combination of gzip and
cumulative diffs achieves a rather high compression ratio. However, it still does not
perform as well as the XMill applied to our archive.

Remarks. In Figure 12(b), we reached the system file size limit of 231 when
trying to add Version 19 to V1+cumulative-diffs repository before applying gzip.
The limit is also reached when trying to add Version 16 to the V1 + ... + V15

repository before XMill can be applied and hence the discontinuation in lines
gzip(V1+cumulative-diffs) and xmill(V1 + ... + Vi) in this graph. In the same way, in
Figure 12(a), xmill(V1 + ...+V80) reaches the limit. In addition, the stepping in the
xmill(V1 + . . . + Vi) is due to the fact that xmill is using “dictionary compression”
and is increasing the space allocation for the dictionary.

ACM Transactions on Database Systems, Vol. , No. , 20.

28 · Buneman, Khanna, Tajima, and Tan

6. EXTERNAL MEMORY NESTED MERGE

The algorithm Nested Merge, presented in Section 4.2, is an “in-memory” algo-
rithm. Nested Merge assumes that the entire archive and version can be read into
memory before deciding which nodes can be merged. The smallest version in Swiss-
Prot has about 2, 037, 292 nodes and can contain as many as 10, 903, 568 nodes. On
a machine with a standard amount of memory, Nested Merge clearly cannot han-
dle such files. To overcome the memory limitation, one solution is to use PDOM
(Persistent Document Object Model) [PDOM]. PDOM provides DOM API to pro-
cess XML documents that far exceed memory limits. However, the performance of
PDOM largely depends on how the XML file is fragmented, what indices are built
according to PDOM implementation and how the XML file is accessed.

In this section, we describe how one can extend Nested Merge to an external
memory algorithm to handle data where the size of data may be much larger than
the available memory. The main steps taken by the external memory archiver,
which we outline here, are essentially the same as that described Section 4.
External Memory Archiver

Input: An archive, a new version (to be merged into the archive), and a set of
key specifications.
Output: A new archive that contains the new version.

(1) Annotate nodes with their key values. Both the archive and new ver-
sion are preprocessed so that, conceptually, every keyed node has its key value
immediately associated with it. (See Section 6.1.)

(2) Sort archive and new version. The archive and new version are each sorted
according to keys, i.e., all sibling nodes are ordered according to key values.
(See Section 6.2.)

(3) Merge sorted archive with version. The archive and version are merged
together by making a single pass through both documents. (See Section 6.3.)

In the ensuing description, we let M be the total memory size and B be the size
of a page (or 1 disk block). Let the total size of a version or archive (whichever is
larger) be N . We are of course interested in the case when M < N . We assume
that every root-to-leaf path (including all key values of nodes along the path) in
our document can fit in one page. This means h < B (which is generally true
in practice), where h is the height of the document. For example, the heights of
OMIM, Swiss-Prot and XMark versions are 5, 6 and 12 respectively. The heights
of the respective archives is at worst twice (due to timestamp tags) the heights of
the respective versions.

6.1 Annotate nodes with their key values

Prior to sorting a document according to key values, we first annotate every keyed
node with its key value. Our implementation makes use of an internal representa-
tion of an XML document similar to that used by XMill [Liefke and Suciu 2000].
This step breaks an input document into three main types of files for subsequent
processing: (1) an internal representation of the document, (2) a dictionary, and
(3) keys files.

ACM Transactions on Database Systems, Vol. , No. , 20.

Archiving Scientific Data · 29

The internal representation of the document is a document with tag names re-
placed by integers. In addition, several bits are used to indicate whether this
element is an open or close tag, and whether it has a key value, attributes, or
timestamp if it is an element node. We create an internal representation of the
XML document as we scan through the document. Whenever a new tag name is
encountered, it is assigned a new number. We represent a tag number with two
bytes in our internal representation and thus storing tag numbers may use less space
than storing tag names. In addition, some bits are used to store the additional in-
formation. The key value of a node is fully determined by the time that node is
exited. If the root-to-node path is p then the key value is appended in file p. Hence,
there are as many key files as the number of keys in the set of key specifications.
The dictionary file consists of the mapping between tag names and numbers and
the same file is used for both the archive and version.

Example 6.1. For example, version 4 of Figure 2 is decomposed into the fol-
lowing files (we omit the marketing department):

Internal representation (“;” represents a close tag):
1 2 3 “finance” ; 4 5 “John” ; 6 “Doe” ; 7 “95K” ; 8 “123-4567” ; ; 4 5 “Jane” ; 6 “Smith”
; 7 “95K” ; 8 “123-6789” ; 8 “112-3456” ; ; ; ;

Dictionary:
1 ↔ db
2 ↔ dept
3 ↔ name
4 ↔ emp
5 ↔ fn
6 ↔ ln
7 ↔ sal
8 ↔ tel

Key files (keys with empty key paths are omitted):
/db/dept:
name=finance
/db/dept/emp:
fn=John ln=Doe
fn=Jane ln=Smith
/db/emp/tel:
123-4567
123-6789
112-3456

Assuming that key path values do not overlap, which is true in all the practical
data we used in our experiments, the size of all key files is proportional to the size
of the original document. The total size of the internal representation, key files,
and dictionary is thus proportional to the size of the original document, it is easy
to see that this step incurs an I/O cost of O(N/B) for reading and writing the
document.

6.2 Sort archive and new version

To sort a document, we first create sorted runs of parts of the document 6. We read
the internal representation of the document in document order until we reach the
memory limit M . Whenever a keyed node is encountered, we read in the appropriate
key values from the relevant key file. When we reach the memory limit, sort the
partial tree in memory and write it out to disk (i.e., a sorted run). At every keyed
level, the nodes at that level are sorted according to their key values. Nodes beyond
the frontier level are not sorted. Repeat the above process until the entire document
has been parsed. Observe that at this stage, we use only the internal representation

6We note here that there is also ongoing work on sorting large XML files [Avilla-Campillo et al.
2002]. However, it is not clear that the work is immediately applicable for our needs.

ACM Transactions on Database Systems, Vol. , No. , 20.

30 · Buneman, Khanna, Tajima, and Tan

and key files of the archive or version. Moreover, we only make a single pass through
these files to create the sorted runs.

In the course of producing sorted runs, many root-to-leaf paths may be duplicated
across the runs. Hence, the total size of all sorted runs may be larger than the size
of the original document. For example, consider a document which has a long stem
a1, ..., am and many leaves b1, ..., bn as shown below.PSfrag replacements

a1 a1 a1
a1

a2 a2 a2
a2

am am
am

am

b1 b1b2 b2bn bn

Original document Run 1 Run 2 Run n

It may happen that the memory limit is reached whenever a bi is read (Recall
that we assume every root-to-leaf path can fit in a page.). Therefore, each sorted
run produced consists of a1/.../am/bi. The stem a1/.../am is copied n times across
each sorted run. Since, in the worst scenario, each sorted runs begins with h units of
memory already occupied by some root-to-leaf path (the point where the algorithm
stops in the previous run), the number of sorted runs is bounded by O(N/(M −
h)). Due to duplication, the total size of all sorted runs may have increased by
O(hN/(M − h)). Hence we have used a total of O(N/B + hN/(B(M − h))) I/Os
so far.

To obtain a sorted tree, we repeatedly merge the sorted runs until we end up
with one sorted run containing the entire tree. We start by placing a marker at
the root of each (M/B) − 1 trees in memory. Consider the markers at height 0
(hence all markers initially), we output the marker node with the smallest label.
Next, for every marker node whose label equals the smallest value, we advance
the marker to the next node of the tree (in document order). Observe that some
markers will advance to their siblings while other markers will advance to their
children nodes. We repeat the process by considering markers occurring at the
deepest level in all runs. Everytime the output buffer is full, we simply write it out
to disk and keep the path from the root to the last node we emitted. During the
merge process, whenever a frontier node is encountered, we write out the subtree
in the order which the runs are created. In this way, we ensure that the relative
order of unkeyed nodes remains unchanged.

Since there are O(N/B+hN/(B(M−h))) number of pages in all sorted runs, each
merge phase of (M/B)−1 sorted runs can be done with O(N/B+hN/(B(M −h)))
I/Os. With N/(M − h) sorted runs at most, we have roughly

log(M/B)−1 N/(M − h) = log(M/B)−1 N/B − log(M/B)−1(M − h)/B

≤ log(M/B)−1 N/B

phases (h ≤ B and M > 2B). Therefore we use a total of O((N/B + hN/(B(M −
h))) log(M/B)−1 N/B) I/Os.

ACM Transactions on Database Systems, Vol. , No. , 20.

Archiving Scientific Data · 31

6.3 Merge sorted archive and version

This step is very much like the previous step except that frontier nodes are han-
dled differently — in a way similar to that described in the basic Nested Merge
algorithm. Given an archive A and version D, the external memory nested merge
algorithm first sorts A and D using the sorting procedure above. Call the sorted
files A′ and D′ respectively. We let x and y denote nodes in A′ and D′, respectively.
Initially, x is the root of A′ and y is a virtual root of D′ with the same key as x
and x and y proceed through A′ and D′ in document order. We keep track of the
timestamp of the current node in A′ as we traverse the document. If label(x) <
label(y), we output x and its entire subtree and attach the current timestamp to
x. If label(x) > label(y) we output y and its entire subtree and attach timestamp
i (the new version number) to y. Otherwise label(x) = label(y). In this case, we
output x and attach the current timestamp together with i if a timestamp originally
exists at x. Otherwise we output only x. If y is a frontier node, we proceed in a
similar way as described in Nested Merge algorithm in Section 4. Subsequently, we
move x and y to the next nodes of A′ and D′ in document order and repeat the
procedure. If we reach the end of A′ first, we output the entire subtree rooted at
y with timestamp i and repeat with the next y until we reach the end of D′. If
we reach the end of D′ first, we output x and its entire subtree together with the
existing timestamp if any. We let x denote the next node in A′ and repeat until
we reach the end of A′. Since this step makes one pass through the archive and
version, it incurs another O(N/B) I/Os.

We remark that a line-diff algorithm could also be extended so that it can handle
large files. Given two versions that each far exceeds the available memory, a line-diff
algorithm can operate on “windows” of text, i.e., break each version into pages and
compute diff on corresponding pages of data of the two versions. Although the diff
result may not be optimal in this way, this method uses only O(N/B) I/Os.

7. EFFICIENTLY RETRIEVING A VERSION OR TEMPORAL HISTORY

We show how to retrieve a version and the temporal history of a keyed element effi-
ciently. Our archive can already support these basic operations efficiently without
building any index structures. Here, we show that the complexity of these oper-
ations can be further reduced by defining simple index structures on our archive:
A version can be retrieved in time roughly proportional to the size of the ver-
sion and the temporal history of a keyed element can be retrieved in time roughly
proportional to the size of its key.

7.1 Retrieving a Version

The structure of the archive is such that a simple scan through the archive can
retrieve any version. Whenever a timestamp tag is encountered, we output the
contents of the timestamp element if the required version number can be found in
the timestamp. This process is likely to be more efficient than the sequence-of-
delta approach whereby reconstructing a version may require many scans over the
data in order to apply all the relevant deltas. Our approach, however, still takes
time proportional to the size of the archive even when the size of the version to be
retrieved is much smaller than the archive. We describe here a simple scheme that

ACM Transactions on Database Systems, Vol. , No. , 20.

32 · Buneman, Khanna, Tajima, and Tan

3−5,
7−9

3−5,
7−9

3−5,
7−9

1−2 1−2 3−543−5 3−5 4−6

1−2 1−2 3−5 4 3−5 3−5 4−6

1−2 3−5 3−6

3−91−5

1−9

PSfrag replacements

a1

a2

am

b1

b2

bn

Original document

Run 1
Run 2
Run n

l1

l1

l2

l2

l3

l3

l4

l4

l5

l5

l6

l6

l7

l7

l8

l8

l0

Fig. 15. An archive (shown on the left) with timestamp tree of node l0 (shown on the right).

allows such retrievals to be performed in time roughly proportional to the size of
the version to be retrieved using auxiliary timestamp binary trees.
Timestamp Trees. The purpose of a timestamp tree is to direct the search for
the relevant nodes of a version in the archive. We will assume a timestamp tree for
each non-timestamp node (node that is not representing the timestamp element)
in the archive. Given a node x in the archive with k children, the corresponding
timestamp tree is a binary tree with k leaves, one for each child of x. Every
leaf of the tree has two kinds of information: a timestamp and an offset to the
corresponding child node in the archive. Each internal node of the tree consists of
the union of timestamps of its children nodes. Figure 15 shows a timestamp tree
corresponding to the root node l0 of the archive shown on the left. For leaf nodes,
the offset of the corresponding nodes in the archive are not shown. We will describe
how to construct this binary tree later.
Retrieval. We wish to retrieve a version i from the archive in time roughly pro-
portional to the size of the version. Consider a node x in the archive and suppose it
has k children of which only α belong to version i. The naive approach checks each
of the k nodes to see if it is relevant to version i, i.e., has timestamp i. With times-
tamp trees, we first look for the timestamp tree corresponding to node x through
the offset in x. Then we search down the the timestamp binary tree by starting
at the root r of the binary tree and check if i ∈ time(r) (where time(x) denotes
the timestamp of node x). If i 6∈ time(r), we stop. This means that neither of the
two children nodes of r is relevant for version i. If yes, we recurse on the two child
nodes to continue the search. We repeat this search down the tree. Assuming that
we have a complete binary tree and k and α are powers of 2, at most α nodes will
be searched in each level after depth log α. Once we reach the leaf nodes, we will
know the relevant α nodes in the archive through the offset values stored at the
leaves in the binary tree. As we are making the search down the tree, we also keep
track of the number of nodes we have searched in the binary tree so far and stop at
the point when we have searched a total of k nodes. If the threshold of k is reached
before reaching the leaf nodes, we simply search all k leaf nodes. Observe that if
i ∈ time(r) then α ≥ 1.

An example is shown in Figure 15. Suppose we wish to retrieve version 2 from
the archive shown on the left of the figure and suppose one already knows l0 con-

ACM Transactions on Database Systems, Vol. , No. , 20.

Archiving Scientific Data · 33

tains timestamp 2. It remains to figure out which of the children nodes l1, ..., l8
in the archive are relevant for time 2. We first check if the number 2 is in the
timestamp associated with the root node of the timestamp tree (shown on the right
of Figure 15) corresponding to l0, i.e., 1−9. Since 1−9 contains the number 2, the
search continues down its children nodes. The left child node contains timestamp
2 and the search continues down its subtree. However, the right child node (with
timestamp 3 − 9), does not contain time 2. Hence, the search stops at that node.
The nodes that are searched are highlighted in the timestamp tree. Using the off-
sets at the leaf nodes, one can pull out the relevant nodes, i.e., l1 and l2, from the
archive.

With this strategy, we will either probe at most 2α− 1 + 2α log(k/α) nodes (the
maximum number of nodes probed when we search all the way down to the leaves of
the timestamp tree) or at most 2k nodes of the binary tree (when we search k nodes
before reaching the leaves of the tree). We search at most 2α − 1 + 2α log(k/α)
nodes when α ≤ k/8 and at most 2k nodes when α > k/8. In the former case, we
are at worst a factor of log k away from the optimal number of probes while in the
latter case, we are a constant factor away from the optimal. In largely accretive
data where data changes infrequently, it is usually the case that α > k/8 when a
version is retrieved.
Constructing Timestamp Trees. Given an archive, one can construct a times-
tamp tree for each non-timestamp node with a single scan through the archive. The
idea is to first collect the k children nodes of a node x along with their respective
timestamps and offsets into the archive file. We build these k leaf nodes into a bi-
nary tree by pairing nodes repeatedly in a bottom-up manner and taking the union
of timestamps of the children nodes for each internal node. Finally we append the
binary tree to another file and write the offset to this binary tree in node x of the
archive. Internal nodes of the binary tree will contain offsets to their children nodes
in order for one to skip to the relevant nodes of the binary tree during the search.
The timestamp trees are created each time a new version arrives and after nested
merge is applied.

The benefit of using timestamp trees over a simple scan of the archive to retrieve
a version depends on many factors. If retrievals are rare and the version to be
retrieved is about the same size as the archive, then it may not make sense to use
timestamp trees. On the other hand, if retrievals happen often and the version to
be retrieved occupies only a small portion of the archive, then it may pay off to
use timestamp trees to look for the relevant nodes. The tradeoff depends not only
on the workload and data characteristics but also largely on how timestamp trees
are laid out on disk. A detailed experimental analysis is beyond the scope of this
paper.

7.2 Retrieving the Temporal History of a Keyed Element

Given the key of an element, one might like to retrieve the temporal history of this
element, i.e., the times at which this element exists. For example, the history of
employee Joe given by the path /db/dept[name=finance]/emp[fn=John, ln=Doe], is
3,4.

We sketch a naive scheme that allows one to answer this query in time O(l log d),
where l is the length of the key and d is the maximum degree of the archive. The

ACM Transactions on Database Systems, Vol. , No. , 20.

34 · Buneman, Khanna, Tajima, and Tan

idea is to maintain, for each keyed node in the archive, a sorted list of key values
of children nodes. Each node in the sorted list contains its key value, an offset to
its sorted list of children nodes (index offset), and an offset to the timestamp node
in the archive in which its timestamps are inherited from (timestamp offset). We
assume that these information are kept in fix size records.

Using the example archive from Figure 4, there is a sorted list of children nodes,
dept[name=finance] and dept[name=marketing] for the node db. There is also a
sorted list emp[fn=Jane,ln=Smith], emp[fn=John,ln=Doe] for node dept[name=finance]
and so on. To retrieve the temporal history of the element
/db/dept[name=finance]/emp[fn=John, ln=Doe], we first use the sorted list of the
db node. A binary search for the node dept[name=finance] is performed on the list.
The index offset in the record dept[name=finance] will lead us to the second sorted
list. A binary search for John Doe is then performed on the second list and the
timestamp offset in the record of will lead us to the desired temporal history.

It is easy to see that to retrieve the temporal history of an element given by a
path, one performs a binary search for every key along the path. If a key along
the path is not found in the sorted list, the required element does not exist in the
archive. Otherwise, we locate the next index list and repeat our binary search. At
the end, we use the timestamp offset in the record of the desired element to locate
the timestamp node in the archive. The process therefore takes O(l log d) time. If
a node has a large number of children nodes, one can also consider building more
sophisticated index structures, such as a B+ tree, for these children nodes.

The sorted lists can be constructed with a single scan through the archive. The
idea is to first collect the key values of all children nodes of each keyed node as we
scan through the archive, keeping track of the timestamp offsets as we go along.
All key values of children nodes of any node x are known by the time x is exited.
The key values are then sorted and the offset to this sorted list can be written as
the index offset in the record corresponding to node x.

Like timestamp trees, the benefit of using an index over a simple scan of the
archive to retrieve the temporal history of a keyed element depends on many factors.
If retrievals are rare and the archive is small, then it may not make sense to create
or use an index. On the other hand, if retrievals happen often and the archive is
huge, then it may pay off to use the index to pinpoint the desired node quickly. A
detailed experimental analysis is beyond the scope of this paper.

8. RELATED WORK

There has been considerable research on version management systems for hierar-
chical data recently [Marian et al. 2001; Chien et al. 2001; Chawathe et al. 1998].
Xyleme system [Marian et al. 2001] takes the sequence-of-delta approach. They
store the latest version together with all forward completed deltas – changes be-
tween successive versions that can also allow one to get to an earlier version by
inverting deltas on the latest version. Additional information has to be kept in
order for deltas to be invertible. Another approach taken by Chien et al. [Chien
et al. 2001] is a reference-based versioning scheme. The first version is always fully
stored. As subsequent versions arrive in the form of updates describing the changes,
only newly inserted objects in the latest version are stored. Objects that remain

ACM Transactions on Database Systems, Vol. , No. , 20.

Archiving Scientific Data · 35

unchanged are stored as references to the corresponding object in the previous ver-
sion. It is shown that this approach provides good support for (temporal) queries
since it preserves the logical structure of every version as opposed to diff-scripts.
Moreover, a usefulness-based storage scheme is shown to give good storage cost and
supports efficient reconstruction of any past version. An earlier versioning scheme
proposed by Chawathe et al. [Chawathe et al. 1998] stores updates as annotations
on nodes and edges of a graph in the DOEM model as edits are made. A special-
ized query language Chorel where annotations can be queried is used to query such
changes.

There has been substantial work on diff-based approaches for tree-like struc-
tures [Tai 1979; Zhang and Shasha 1989; 1990; Chawathe et al. 1996; Chawathe
and Garcia-Molina 1997; Cobena et al. 2001]. The general problem of finding the
minimum cost edit distance between two ordered trees was first studied by [Tai
1979] and subsequently improved by Zhang et al. [Zhang and Shasha 1989; 1990].
Chawathe et al. [Chawathe et al. 1996] made further restrictions to obtain a faster
algorithm for the minimum cost edit distance. A heuristic change detection algo-
rithm for unordered trees is also proposed by [Chawathe and Garcia-Molina 1997]
with a richer set of edit operations. Another diff technique is proposed by [Cobena
et al. 2001] that uses signatures to find matchings and another top down phase
to compute further matchings heuristically. An external memory algorithm for
computing minimum-cost edit script for two ordered trees has has been proposed
by [Chawathe 1999]. Recently, the use of keys in computing diffs has also been
proposed by DeltaXML [Fontaine 2001] as a more systematic way for identifying
corresponding elements between two XML versions. In DeltaXML, if some ele-
ment has a special attribute key (in their namespace), the system uses the value
of key attribute for identifying corresponding elements in different versions. The
key attribute and its value has to be created manually or automatically, e.g. by
using XSL. Moreover since key values must “fit” into the unary attribute key, it
suffers from the same problems as ID attributes of XML standard in expressing
composite keys. Software configuration management systems such as CVS [CVS]
use diff-based techniques that store the last version together with backward deltas
based on line-diffs [Miller and Myers 1985; Myers 1986]. Our archiving system is
more like the Source Code Control System (SCCS) [Rochkind 1975], where the
(non-)existence of lines of text at various versions are indicated with timestamps.
In SCCS, a line-diff is performed between the incoming version and the latest ver-
sion in the repository to determine the forward delta (deletions and insertions only)
from the latest version to the new version. The repository file is then updated ac-
cording to the delta. A single scan through this repository file retrieves any version.
However, changes are not grouped by identical lines. If the same line is repeatedly
inserted and deleted over time, the repository file will contain a series of identical
lines marked as deleted and inserted. With keys, our archive will only contain the
line once and we use timestamps to mark the existence of the lines at the various
times. Nested Merge bears a resemblance to the deep union operator introduced
by [Buneman et al. 1999] in that it is conceptually taking a union of two deter-
ministic trees. It is also similar to the Merge Template of [Tufte and Maier 2001]
that merges two XML documents according to a specified template. The template

ACM Transactions on Database Systems, Vol. , No. , 20.

36 · Buneman, Khanna, Tajima, and Tan

specifies which elements can be merged together, inserted or replaced.

Our work is largely inspired by the work of Driscoll et al. [Driscoll et al. 1989]
who studied methods for making data structures persistent. A data structure is
partially persistent if it supports updates to the latest version and access to past
versions. Linked structures where each node is assumed to hold a set of field name
and value pairs can be made partially persistent by the fat node method. Each node
holds a timestamp of when it is first created and field values within “inherit” this
timestamp. Whenever a field value within a node is modified, the new value along
with its field name and the current timestamp are added to the node. An access
to version i of field f is done by finding among the values of f , the value with
the largest timestamp less than i. Our data structure is that of a key-annotated
tree where each node has a label and outgoing nodes contain distinct labels due to
keys. One can view the set of child labels of a node as a set of field names in the fat
node. However in our case, each field value can be yet another set of field names,
and so on. Another difference concerns updates. Driscoll et al. [Driscoll et al. 1989]
assumes the updates to the latest version are known and hence one is not required
to compute the diff. In our case as well as others [Chawathe et al. 1996; Chawathe
and Garcia-Molina 1997; Marian et al. 2001; Cobena et al. 2001], the input is
yet another version and hence one is required to compute the correspondences (or
difference). One can certainly apply updates to the latest version directly on the
archive if known.

Our technique differs from existing versioning schemes in the several ways. First,
elements in every version are identified by key. A key for an element gives a mean-
ingful identifier to the element and is naturally persistent as opposed to generated
object identifiers. With such persistent identifiers, one can easily detect identical
elements across versions, thus arriving at meaningful change descriptions. Diff tech-
niques are based on minimizing edit costs which may give semantically meaningless
deltas as seen by the Person(Name, BirthDate, Address, Zip) example in Figure 1 of
Section 1. Second, the sequence-of-delta techniques store many deltas separately.
Apart from the ability to quickly answer queries about the difference between two
successive versions, sequence-of-delta approaches do not immediately lend them-
selves to support other (temporal) queries such as the evolutionary history of an
element during a specified time period. Third, although the work by [Chien et al.
2001] supports temporal queries to some extent through special procedures tied to
their storage scheme and Chawathe et al. [Chawathe et al. 1998] supports tem-
poral queries through a specialized query language, they assume that edits that
generate each new version are available. In some cases, edits are not always avail-
able. Although OMIM and Swiss-Prot publish update logs tracking new entries and
entries that have been modified since the last version, they do not publish exact
changes made to each modified entry. It is also not clear whether they keep track
of these changes. Our technique does not assume the existence of edit scripts and
still makes it easy to discover the evolutionary history of any element. Moreover,
since our archive is in XML, existing XML query languages such as XQuery [W3C
2001b] can be used to query such documents. It is also mentioned by [Chien et al.
2001] that the ideal solution is to represent the history of a versioned document as
yet another XML document, for such representation will leverage on web-browsers,

ACM Transactions on Database Systems, Vol. , No. , 20.

Archiving Scientific Data · 37

style sheets, query processors and other tools that already support XML.
Most work on temporal databases are in the relational context [Torp et al. 2000].

Every tuple has a timestamp that indicates the period of time that tuple exists. If
a non-key attribute of some existing tuple is modified, a new tuple with the current
timestamp is created. The new tuple has the same values on all attributes of the
tuple whose values are unmodified and contains the new value only on the attribute
whose value has been changed. In contrast, our approach pushes timestamps as far
down the hierarchy as possible. Therefore, only the new attribute value together
with its timestamp need to be added to the archive. As a result, it would be more
space-efficient to use our archiving technique for keeping a relational database that
undergoes many changes than to rely on a temporal relational database system for
archiving.

9. CONCLUSIONS AND OPEN ISSUES

We have described a novel approach to archiving data based on naturally occurring
keys. Perhaps the most contrasting difference with traditional approaches is that
traditional diff-based approaches are based on minimizing edit distance and may
ignore the historical continuity of elements through time. On the other hand, our
technique is “aware” of semantic continuity of elements and therefore, we are able
to describe the temporal history of these elements easily. We have shown that
such benefit can be achieved without incurring significant space overhead when
compared with delta-based repositories in our experiments with real scientific data
as well as synthetic data. Moreover, it interacts well with existing compression
techniques. For example, the OMIM and Swiss-Prot archives are always within 1%
and 8% of the sizes of their respective diff repositories and the compressed archives
are always smaller than their respective compressed diff repositories. We have also
described how we can extend our archiving tool to an external memory archiver.

We have detailed analysis of the space performance of our archive compared with
other approaches. A detailed performance analysis of the external memory archiver,
the space efficiency of the proposed indexing schemes as well as actual performance
of answering various queries using the proposed indexing schemes, however, have yet
been conducted. Another dimension of analysis would be to conduct experiments,
for different change ratios and different query workloads, to find out how our archive
would perform when compared with delta-based repositories where checkpointing
may occur periodically: In the case of our archive, a fresh archive may be created
at every kth addition and in the case of a delta-based repository, an entire version
of data is stored as a whole for every kth version for some constant k. Our archiver
assumes the keys for the data are provided by experts of the database. A natural
question is whether the keys can be automatically derived, through data analysis
or mining methodologies on various versions. There is also the question on whether
we could relax the various requirements we currently impose on keys. Another issue
involves changing key structures (or changing schemas); Currently, our archiving
technique requires that all versions of the database must conform to the same key
structure. Since schemas tend to change slightly over time, a natural question is
how this technique can be extended to archive data under circumstances where the
key structure may also change.

ACM Transactions on Database Systems, Vol. , No. , 20.

38 · Buneman, Khanna, Tajima, and Tan

10. ACKNOWLEDGEMENTS

The authors are grateful to the anonymous reviewers for many useful comments.
Peter Buneman is formerly of the University of Pennsylvania and was supported
by NSF IIS 99-77408, NSF DL-2 IIS 98-177408 and a Royal Society Wolfson Merit
Award. Sanjeev Khanna is supported by an Alfred P. Sloan Fellowship and by NSF
Career Award CCR-0093117. Part of this work was done while Keishi Tajima was
visiting University of Pennsylvania. Part of this work was done while Wang-Chiew
Tan was a Ph.D. student at University of Pennsylvania and was supported by NSF
IIS 99-77408 and NSF DL-2 IIS 98-177408.

REFERENCES

Altinel, M. and Franklin, M. J. 2000. Efficient Filtering of XML Documents for Selective
Dissemination of Information. In Proceedings of the International Conference on Very Large
Data Bases (VLDB). Cairo, Egypt, 53–64.

Avilla-Campillo, I., Green, T. J., Gupta, A., Onizuka, M., Raven, D., and Suciu, D. 2002.
XMLTK: An XML Toolkit for Scalable XML Stream Processing. In Proceedings of PLAN-X:
Programming Language Technologies for XML. Pittsburg, Pennsylvania.

Bairoch, A. and Apweiler, R. 2000. The SWISS-PROT protein sequence database and its
supplement TrEMBL. Nucleic Acids Research 28, 45–48.

Buneman, P., Davidson, S., Fan, W., Hara, C., and Tan, W. 2001. Keys for XML. In
Proceedings of the International World Wide Web Conference(WWW10). Hong Kong, China,
201–210.

Buneman, P., Deutsch, A., and Tan, W. 1999. A Deterministic Model for Semistructured
Data. In Workshop on Query Processing for Semistructured Data and Non-standard Data
Formats. Jerusalem, Israel, 14–19.

CELLBIODBS. The WWW Virtual Library of Cell Biology.
http://vlib.org/Science/Cell Biology/databases.shtml.

Chawathe, S. S. 1999. Comparing Hierarchical Data in External Memory. In Proceedings of the
International Conference on Very Large Data Bases (VLDB). Edinburg, Scotland, 90–101.

Chawathe, S. S., Abiteboul, S., and Widom, J. 1998. Representing and Querying Changes in
Semistructured Data. In Proceedings of the International Conference on Data Engineering
(ICDE). Orlando, Florida, 4–13.

Chawathe, S. S. and Garcia-Molina, H. 1997. Meaningful Change Detection in Structured
Data. In Proceedings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD). Tucson, Arizona, 26–37.

Chawathe, S. S., Rajaraman, A., Garcia-Molina, H., and Widom, J. 1996. Change
Detection in Hierarchically Structured Information. In Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD). Montreal, Canada, 493–504.

Chien, S., Tsotras, V., and Zaniolo, C. 2001. Efficient Management of Multiversion
Documents by Object Referencing. In Proceedings of the International Conference on Very
Large Data Bases (VLDB). Roma, Italy, 291–300.

Cobena, G., Abiteboul, S., and Marian, A. 2001. Detecting Changes in XML Documents. In
Proceedings of the International Conference on Data Engineering (ICDE). Heidelberg,
Germany.

CVS. Concurrent Versions System: The open standard for version control.
http://www.cvshome.org.

Diao, Y., Fischer, P., Franklin, M. J., and To, R. 2002. Efficient and Scalable Filtering of
XML Documents. In Proceedings of the International Conference on Data Engineering
(ICDE). San Jose, California.

Driscoll, J. R., Sarnak, N., Sleator, D. D., and Tarjan, R. E. 1989. Making Data
Structures Persistent. Journal of Computer and System Sciences 38, 1, 86–124.

ACM Transactions on Database Systems, Vol. , No. , 20.

Archiving Scientific Data · 39

EMBL-EBI (European Bioinformations Institute). SPTr-XML Documentation.

http://www.ebi.ac.uk/swissprot/SP-ML/.

Fontaine, R. L. 2001. A Delta Format for XML: Identifying Changes in XML Files and
Representing the Changes in XML. In XML Europe. Berlin, West Germany.

Liefke, H. and Suciu, D. 2000. XMill: an Efficient Compressor for XML Data. In Proceedings
of the ACM SIGMOD International Conference on Management of Data (SIGMOD). Dallas,
Texas, 153–164.

Marian, A., Abiteboul, S., Cobena, G., and Mignet, L. 2001. Change-Centric Management
of Versions in an XML Warehouse. In Proceedings of the International Conference on Very
Large Data Bases (VLDB). Roma, Italy, 581–590.

Maruyama, H., Tamura, K., and Uramoto, N. 2000. Digest Values for DOM (DOMHASH).
http://www.trl.ibm.com/projects/xml/xss4j/docs/rfc2803.html.

Miller, W. and Myers, E. 1985. A file comparison program. Software-Practice and
Experience 15, 11, 1025–1040.

Motwani, R. and Raghavan, P. 1995. Randomized Algorithms. Cambridge University Press.

Myers, E. 1986. An O(ND) difference algorithm and its variations. Algorithmica 1, 2, 251–266.

OMIM 2000. Online Mendelian Inheritance in Man, OMIM (TM).
http://www.ncbi.nlm.nih.gov/omim/.

PDOM. GMD-IPSI XQL Engine Version 1.0.2. http://xml.darmstadt.gmd.de/xql/index.html.

PHYSICSCONSTANTS. The NIST Reference on Constants, Units, and Uncertainty.
http://physics.nist.gov/cuu/Constants/links.html.

Ramakrishnan, R. and Gehrke, J. 2002. Database Management Systems. McGraw-Hill
Higher Education, 3rd Edition.

Rochkind, M. 1975. The Source Code Control System. IEEE Transactions on Software
Engineering 1, 4, 364–370.

Schmidt, A. R., Waas, F., Kersten, M. L., Carey, M. J., Manolescu, I., and Busse, R.
2002. XMark: A Benchmark for XML Data Management. In Proceedings of the International
Conference on Very Large Data Bases (VLDB). Hong Kong, China, 974–985.

Tai, K. C. 1979. The tree-to-tree correction problem. Journal of the ACM (JACM) 26, 422–433.

Torp, K., Jensen, C. S., and Snodgrass, R. T. 2000. Effective Timestamping in Databases.
The VLDB Journal 8, 3-4, 267–288.

Tufte, K. and Maier, D. 2001. Aggregation and Accumulation of XML Data. IEEE Data
Engineering Bulletin 24, 2, 34–39.

W3C. 1998. Extensible markup language (xml) 1.0. http://www.w3.org/TR/REC-xml.

W3C. 1999a. Namespaces in XML. http://www.w3.org/TR/REC-xml-names.

W3C. 1999b. XML Path Language (XPath). http://www.w3.org/TR/xpath.

W3C. 2000. XML Schema Part 1: Structures. http://www.w3.org/TR/xmlschema-1/.

W3C. 2001a. Canonical XML Version 1.0. http://www.w3.org/TR/xml-c14n.

W3C. 2001b. XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery/.

XMLTREEDIFF. XML TreeDiff. http://www.alphaworks.ibm.com/formula/xmltreediff.

Zhang, K. and Shasha, D. 1989. Simple fast algorithms for the editing distance between trees
and related problems. SIAM Journal of Computing 18, 6, 1245–1262.

Zhang, K. and Shasha, D. 1990. Fast algorithms for unit cost editing distance between trees.
Journal of Algorithms 11, 6, 581–621.

Received September 2002; revised March 2003; accepted;

ACM Transactions on Database Systems, Vol. , No. , 20.

40 · Buneman, Khanna, Tajima, and Tan

APPENDIX

A. KEYS FOR XML

Various forms of key specification have been proposed for XML, for example, in
XML standard [W3C 1998] and XML Schema [W3C 2000]. We use the system of
key specification developed in [Buneman et al. 2001] mainly because it provides a
simple method for specifying relative keys. Relative keys allow one to define keys
in a specified scope and hence one can define a hierarchical set of keys, some of
which are relative to others. Here, we briefly review the concept of keys developed
in [Buneman et al. 2001].

A.1 XML Model

We model an XML document as a tree whose nodes can be one of the three types:
(1) E-node: An E-node is labeled with a tag name, (2) A-node: An A-node is a
pair consisting of an attribute name and value, and (3) T-node: A T-node consists
of text values only. Only E-nodes can be internal nodes.

A.2 Path Expression

A path expression is a sequence of node names — tag or attribute names. For the
purpose of this paper, we consider only the simple fragment of the path language
discussed in [Buneman et al. 2001]. The path language consists of the following:
(1) the empty path “ε”, (2) a node name, and (3) the concatenation of paths P/Q
where P and Q are paths defined by these rules. We use “/” as the path
concatenator just as XPath [W3C 1999b] uses it as a location step separator. In
XPath, “/” alone or at the beginning of an XPath expression selects an element
above the document root. We disallow concatenations where Q begins with “/”.

A.3 Value Equality

The value of a T-node is its data value. The value of an A-node is a pair consisting
of its attribute name and its attribute value. The value of an E-node consists of
its tag name and two things: (1) a possibly empty list of values of its E and T
children nodes according to the document order, and (2) a possibly empty set of
values of its A children nodes. Two nodes are value equal if they agree on their
value, i.e., the trees rooted at the nodes are isomorphic by an isomorphism that is
identity on string values according to the type of E-nodes and A-nodes as defined.
Finally, we use the notation n1 =v n2 to denote the XML value rooted at node n1

is value equal to the XML value rooted at node n2.

A.4 Keys

A key is a pair (Q, {P1, ..., Pk}) where Q and Pi, i ∈ [1, k] are path expressions. Q
is the target path and Pi are the key paths. Informally, Q identifies a set of nodes –
target set – reachable from some context node and the target set satisfies the key
constraints given by the key paths. This is analogous to relational database where
Q is a relation name and Pis form the key for that relation. A formal definition is
given below. We denote by n[[P]] the set of nodes reachable from node n via path
P .
Definition. A node n satisfies a key specification (Q, {P1, . . . , Pk}) if

ACM Transactions on Database Systems, Vol. , No. , 20.

Archiving Scientific Data · 41

—For every n′ in n[[Q]] and for each Pi, (1 ≤ i ≤ k), Pi is unique at n′.

—For any n1, n2 in n[[Q]], if n1[[Pi]] =v n2[[Pi]], (1 ≤ i ≤ k), then n1 = n2.

In the definition above, =v denotes value equality and = denotes node equality
(whether two nodes are the exact same node). This is the definition of strong keys
given in [Buneman et al. 2001].
Example. The document below does not satisfy the key (/DB/A, {B}) since both
A elements have the same key path value, i.e., 1 . However, the
document satisfies the key (/DB/A, {C}). Observe that these keys are specified
with respect to the root of the document.

<DB> <A> 1 <C> 1 </C> <A> 1 <C> 2 </C> </DB>

A.5 Relative Keys

Keys as discussed above are defined with respect to some node. We often would
like to describe the key of some node dependent on the key of an ancestor node
much like weak entities in relational databases [Ramakrishnan and Gehrke 2002].
For example, the key of a weak entity consists of its parent’s key and its key (e.g.,
course Math120, section B). Such dependent keys can be expressed through
relative keys as defined below.
Definition. A document satisfies a relative key (Q, (Q′, S)) if for all nodes n in
[[Q]], n satisfies the key (Q′, S).
The target path Q′ identifies the target set relative to the context path Q and Q is
always defined with respect to the document root. In other words, “/” is always a
prefix of Q. In this paper, we use the word key to mean a relative key.
Example. An example of a set of relative keys can be found in the keys for the
company database in Example 2. Versions 1 to 4 of Figure 2 are examples of
databases that satisfy these keys.

A.6 Value Inequality

A node n1 is less than or equal to a node n2, denoted as n1 ≤v n2, if n1 <v n2 or
n1 =v n2. The nodes n1 <v n2 if

—n1 is a T-node, n2 is not a T-node, or

—n1 is an A-node, n2 is an E-node, or

—n1 and n2 are both T-nodes and text(n1) < text(n2) where text(n) denotes the
text string associated with T-node n,

—n1 and n2 are both A-nodes and (i) l1 < l2, or (ii) l1 = l2 and v1 < v2 where
(l1, v1) and (l2, v2) are the pairs of attribute name and value associated with
nodes n1 and n2 respectively, or

—n1 and n2 are both E-nodes and (i) tag(n1) < tag(n2), or (ii) tag(n1) = tag(n2)
and children(n1) <l children(n2), or (iii) tag(n1) = tag(n2), children(n1) =l

children(n2), and attr(n1) <s attr(n2). Next, we define ≤l and ≤s.
Let children(n1) be [c1, ..., cm] and children(n2) be [c′1, ..., c

′

n] where each child
node is either a T or E-node. Then, [c1, ..., cm] <l [c′1, ..., c

′

n] if

—m < n, or
—m = n and ci =v c′i for all i ∈ [1, k − 1], k ∈ [1, m], and ck <v c′k.

ACM Transactions on Database Systems, Vol. , No. , 20.

42 · Buneman, Khanna, Tajima, and Tan

We have [c1, ..., cm] =l [c′1, ..., c
′

n] if m = n and ci =v c′i for all i ∈ [1, m].

Let attr(n1) and attr(n2) be {l1 = v1, ..., lm = vm} and {l′1 = v′1, ..., l
′

n = v′n}
respectively where lis and l′is are lexicographically ordered. Then,
{l1 = v1, ..., lm = vm} <s {l′1 = v′1, ..., l

′

n = v′n} if
—m < n, or
—m = n, li = l′i, vi = v′i for i ∈ [1, k − 1], k ∈ [1, m], lk < l′k, or
—m = n, li = l′i, vi = v′i for i ∈ [1, k − 1], k ∈ [1, m], lk = l′k, and vk < v′k.
We have {l1 = v1, ..., lm = vm} =s {l′1 = v′1, ..., l

′

n = v′n} if m = n, li = l′i, vi = v′i
for i ∈ [1, m].

ACM Transactions on Database Systems, Vol. , No. , 20.

Archiving Scientific Data · 43

B. SAMPLE DATA

B.1 Sample record and keys from OMIM

A sample OMIM record is shown below. Some fields of OMIM have been omitted
during our translation into XML because they appear in inconsistent formats in
older versions of OMIM.

<ROOT>

<Record>

<Num>102579</Num>

<Title>*102579 REPLICATION FACTOR C, 140-KD SUBUNIT; RFC1</Title>

<AlternativeTitle>REPLICATION FACTOR C1</AlternativeTitle>

<AlternativeTitle>RFC*FIELD* TX</AlternativeTitle>

<Text>Replication factor C is a multisubunit, ... </Text>

<Contributors>

<Name>Paul J. Converse</Name>

<CNtype>updated</CNtype>

<Date> <Month>11</Month> <Day>16</Day> <Year>2000</Year> </Date>

</Contributors>

<Contributors>

<Name>Jennifer P. Macke</Name>

<CNtype>updated</CNtype>

<Date> <Month>8</Month> <Day>27</Day> <Year>1997</Year> </Date>

</Contributors>

<Creation_Date>

<Name>Victor A. McKusick</Name>

<Date> <Month>12</Month> <Day>14</Day> <Year>1993</Year> </Date>

</Creation_Date>

</Record>

...

</ROOT>

Keys for OMIM data are shown below (many fields in the keys are not reflected in
the above sample record):

(/, (ROOT, {}))

(/ROOT, (Record, {Num}))

(/ROOT/Record, (Title, {}))

(/ROOT/Record, (AlternativeTitle, {\e}))

(/ROOT/Record, (Text, {}))

(/ROOT/Record, (Ref, {\e}))

(/ROOT/Record, (Contributors,

{Name, CNtype, Date/Month, Date/Day, Date/Year}))

(/ROOT/Record/Contributors, (Date, {}))

(/ROOT/Record, (Creation_Date, {Name, Date/Month, Date/Day, Date/Year}))

(/ROOT/Record/Creation_Date, (Date, {}))

(/ROOT/Record, (Edit_History, {Name, Date/Month, Date/Day, Date/Year}))

(/ROOT/Record/Edit_History, (Date, {}))

(/ROOT/Record, (Clinical_Synop, {Part, Synop}))

(/ROOT/Record, (See_Also, {Authors, Year}))

(/ROOT/Record, (Allelic_Variants, {Id}))

(/ROOT/Record/Allelic_Variants, (Name, {}))

ACM Transactions on Database Systems, Vol. , No. , 20.

44 · Buneman, Khanna, Tajima, and Tan

(/ROOT/Record/Allelic_Variants, (Text, {}))

(/ROOT/Record/Allelic_Variants, (Mutation, {\e}))

(/ROOT/Record, (Mini_Mim, {\e}))

B.2 Sample record and keys from Swiss-Prot

A sample Swiss-Prot record:

<ROOT>

<Record>

<id>100K_RAT</id>

<class>STANDARD</class> <type>PRT</type> <slen>889</slen>

<pac>Q62671</pac>

<mod>

<date>01-NOV-1997</date><rel>35</rel><comment>Created</comment>

</mod>

:

<protein>

<name>100 KDA PROTEIN (EC 6.3.2.-).</name>

<from>Rattus norvegicus (Rat).</from>

<taxo>Eukaryota</taxo> ...

</protein>

<References>

<Ref>

<num>1</num><pos>SEQUENCE FROM N.A.</pos>

<comment>STRAIN=WISTAR</comment>

<comment>TISSUE=TESTIS</comment>

<xref> <bib_name>MEDLINE</bib_name><id>92253337</id> </xref>

<author>Mueller D.</author> <author>Rehbein M.</author> ...

<title>"Molecular characterization of a novel rat ...</title>

<in>Nucleic Acids Res. 20:1471-1475(1992)</in>

</Ref>

:

</References>

<comment>

<topic>FUNCTION</topic>

<text>E3 UBIQUITIN-PROTEIN LIGASE WHICH ACCEPTS ... </text>

</comment>

:

<copyright>This SWISS-PROT entry is copyright. ... </copyright>

<CrossRefs>

<ref>

<dbid>EMBL</dbid>

<primaryid>X64411</primaryid>

<secid>CAA45756.1</secid>

</ref>

:

</CrossRefs>

<keywords>

<word>Ubiquitin conjugation</word><word>Ligase</word>

</keywords>

ACM Transactions on Database Systems, Vol. , No. , 20.

Archiving Scientific Data · 45

<feature>

<name>DOMAIN</name>

<from>77</from><to>88</to><desc>ASP/GLU-RICH (ACIDIC).</desc>

</feature>

:

<sequence>

<aacid>889</aacid>

<mweight>100368</mweight>

<crc><bits>64</bits><checksum>ABD7E3CD53961B78</checksum></crc>

<seq>

MMSARGDFLN YALSLMRSHN DEHSDVLPVL DVCSLKHVAY VFQALIYWIK AMNQQTTLDT

PQLERKRTRE LLELGIDNED SEHENDDDTS QSATLNDKDD ESLPAETGQN HPFFRRSDSM

TFLGCIPPNP FEVPLAEAIP LADQPHLLQP NARKEDLFGR PSQGLYSSSA GSGKCLVEVT

:

</seq>

</sequence>

</Record>

:

</ROOT>

Swiss-Prot keys (many fields in the keys are not reflected in the above sample
record):

(/, (ROOT, {}))

(/ROOT, (Record, {pac}))

(/ROOT/Record, (sac, {\e}))

(/ROOT/Record, (id, {}))

(/ROOT/Record, (class, {}))

(/ROOT/Record, (type, {}))

(/ROOT/Record, (slen, {}))

(/ROOT/Record, (mod, {date, rel, comment}))

(/ROOT/Record, (protein, {name}))

(/ROOT/Record/protein, (genename, {}))

(/ROOT/Record/protein, (from, {\e}))

(/ROOT/Record/protein, (encoded_on, {\e}))

(/ROOT/Record/protein, (taxo, {\e}))

(/ROOT/Record, (References, {}))

(/ROOT/Record/References, (Ref, {num}))

(/ROOT/Record/References/Ref, (pos, {}))

(/ROOT/Record/References/Ref, (comment, {\e}))

(/ROOT/Record/References/Ref, (xref, {bib_name, id}))

(/ROOT/Record/References/Ref, (author, {\e}))

(/ROOT/Record/References/Ref, (title, {}))

(/ROOT/Record/References/Ref, (in, {}))

(/ROOT/Record, (comment, {\e}))

(/ROOT/Record, (copyright, {}))

(/ROOT/Record, (CrossRefs, {}))

(/ROOT/Record/CrossRefs, (ref, {dbid, primaryid}))

(/ROOT/Record/CrossRefs/ref, (secid, {}))

(/ROOT/Record/CrossRefs/ref, (statusid, {}))

(/ROOT/Record/CrossRefs/ref, (rest, {}))

ACM Transactions on Database Systems, Vol. , No. , 20.

46 · Buneman, Khanna, Tajima, and Tan

(/ROOT/Record, (keywords, {}))

(/ROOT/Record/keywords, (word, {\e}))

(/ROOT/Record, (feature, {name, from, to}))

(/ROOT/Record/feature, (desc, {}))

(/ROOT/Record, (sequence, {}))

(/ROOT/Record/sequence, (aacid, {}))

(/ROOT/Record/sequence, (mweight, {}))

(/ROOT/Record/sequence, (crc, {}))

(/ROOT/Record/sequence/crc, (checksum, {}))

(/ROOT/Record/sequence, (seq, {}))

B.3 Sample record and keys from XMark

A sample record from XMark:

<site>

<regions>

<africa>

<item id="item1">

<location>Moldova, Republic Of</location>

<quantity>1</quantity>

<name>condemn </name>

<payment>Money order, Creditcard, Cash</payment>

<description>

<text> gold promotions despair flow tempest ... </text>

</description>

<shipping>Will ship only within country, Buyer ... </shipping>

<incategory category="category95"/>

<incategory category="category48"/>

:

<mailbox>

<mail>

<from>Javam Suwanda mailto:Suwanda@gmu.edu</from>

<to>Mehrdad Glew mailto:Glew@cohera.com</to>

<date>05/28/2001</date>

<text> back greg flay across sickness ... </text>

</mail>

:

</mailbox>

</item>

:

</africa>

:

</regions>

<open_auction id="open_auction14">

<initial>132.15</initial>

<bidder>

<date>06/23/1998</date> <time>07:37:59</time>

<personref person="person92"/>

<increase>9.00</increase>

</bidder>

ACM Transactions on Database Systems, Vol. , No. , 20.

Archiving Scientific Data · 47

:

<annotation>

<author person="person2160"/>

<description>

<parlist>

<listitem> <text> wart varlet metal dark ... </text> </listitem>

<listitem> <text> modesties marg camp rags ... </text> </listitem>

</parlist>

</description>

<happiness>10</happiness>

</annotation>

:

</open_auction>

:

</site>

XMark keys are shown below (many fields in the keys are not reflected in the
above sample record). In the keys below, we have used “ ” for simplicity to
denote the values africa, asia, australia, europe, namerica, or samerica.

(/, (site, {}))

(/site, (regions, {}))

(/site, (categories, {}))

(/site, (catgraph, {}))

(/site, (people, {}))

(/site, (open_auctions, {}))

(/site, (closed_auctions, {}))

(/site/regions, (africa, {}))

(/site/regions, (asia, {}))

(/site/regions, (australia, {}))

(/site/regions, (europe, {}))

(/site/regions, (namerica, {}))

(/site/regions, (samerica, {}))

(/site/regions/_, (item, {id}))

(/site/regions/_/item, (featured, {\e}))

(/site/regions/_/item, (location, {}))

(/site/regions/_/item, (quantity, {}))

(/site/regions/_/item, (name, {}))

(/site/regions/_/item, (payment, {}))

(/site/regions/_/item, (description, {}))

(/site/regions/_/item, (shipping, {}))

(/site/regions/_/item, (incategory, {category}))

(/site/regions/_/item, (mailbox, {}))

(/site/regions/_/item/mailbox, (mail, {from, to, date, text}))

(/site/categories, (category, {id}))

(/site/categories/category, (name, {}))

(/site/categories/category, (description, {\e}))

(/site/catgraph, (edge, {from, to}))

(/site/people, (person, {id}))

(/site/people/person, (name, {}))

(/site/people/person, (emailaddress, {\e}))

ACM Transactions on Database Systems, Vol. , No. , 20.

48 · Buneman, Khanna, Tajima, and Tan

(/site/people/person, (phone, {\e}))

(/site/people/person, (address, {\e}))

(/site/people/person, (homepage, {\e}))

(/site/people/person, (creditcard, {\e}))

(/site/people/person, (profile, {\e}))

(/site/people/person, (watches, {\e}))

(/site/open_auctions, (open_auction, {id}))

(/site/open_auctions/open_auction, (initial, {}))

(/site/open_auctions/open_auction, (reserve, {\e}))

(/site/open_auctions/open_auction,

(bidder, {date, time, personref/person, increase}))

(/site/open_auctions/open_auction/bidder, (personref, {}))

(/site/open_auctions/open_auction, (current, {}))

(/site/open_auctions/open_auction, (privacy, {\e}))

(/site/open_auctions/open_auction, (itemref, {}))

(/site/open_auctions/open_auction/itemref, (item, {}))

(/site/open_auctions/open_auction, (seller, {}))

(/site/open_auctions/open_auction/seller, (person, {}))

(/site/open_auctions/open_auction, (annotation, {}))

(/site/open_auctions/open_auction/annotation, (author, {}))

(/site/open_auctions/open_auction/annotation/author, (person, {}))

(/site/open_auctions/open_auction/annotation, (description, {}))

(/site/open_auctions/open_auction/annotation, (happiness, {}))

(/site/open_auctions/open_auction, (quantity, {}))

(/site/open_auctions/open_auction, (type, {}))

(/site/open_auctions/open_auction, (interval, {start,end}))

(/site/closed_auctions,

(closed_auction, {seller, buyer, itemref/item, date}))

(/site/closed_auctions/closed_auction, (itemref, {}))

(/site/closed_auctions/closed_auction, (price, {}))

(/site/closed_auctions/closed_auction, (annotation, {}))

(/site/closed_auctions/closed_auction/annotation, (author, {}))

(/site/closed_auctions/closed_auction/annotation/author, (person, {}))

(/site/closed_auctions/closed_auction/annotation, (description, {}))

(/site/closed_auctions/closed_auction/annotation, (happiness, {}))

(/site/closed_auctions/closed_auction, (quantity, {}))

(/site/closed_auctions/closed_auction, (type, {}))

ACM Transactions on Database Systems, Vol. , No. , 20.

Archiving Scientific Data · 49

C. ADDITIONAL EXPERIMENTAL RESULTS

C.1 Storage performance on XMark under different change ratio

Size (bytes) x 106 Size (bytes) x 106

Auction Data (10)

archive
V1 + incremental diffs
version
gzip(V1 + cumulative diffs)
xmill(V1+...+Vi)
gzip(V1 + incremental diffs)
xmill(archive)

size (bytes) x 106

version sequence

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

30.00

0.00 5.00 10.00 15.00 20.00

PSfrag replacements

a1

a2

am

b1

b2

bn

Original document

Run 1
Run 2
Run n

Auction Data (20)

archive
V1 + incremental diffs
version
gzip(V1 + cumulative diffs)
xmill(V1+...+Vi)
gzip(V1 + incremental diffs)
xmill(archive)

size (bytes) x 106

version sequence

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

0.00 5.00 10.00 15.00 20.00

PSfrag replacements

a1

a2

am

b1

b2

bn

Original document

Run 1
Run 2
Run n

V1
+
in
c
di
ffs

ar
ch

ive

g
zi
p
(V

1
+

cu
m

u
d
iff

s)

version

xmill(ar
chive)

xm
ill(V

1
+ ... +

Vi)

gzi
p(V

1
+inc

diff
s)

version gz
ip
(V

1
+
in
c
di
ffs

)

xm
ill(

V1

+
...

+
V i

)

xm
ill(

arc
hiv

e)

gz
ip

(V
1
+

cu
m

u
d
iff

s)

ar
ch

iv
eV
1
+

in
c

di
ff
s

Number of Versions

(a) 3.33%/3.33%/3.33% change ratio (b) 6.66%/6.66%/6.66% change ratio

ACM Transactions on Database Systems, Vol. , No. , 20.

50 · Buneman, Khanna, Tajima, and Tan

C.2 Storage performance on XMark with insertion and deletion of highly similar
elements

Size (bytes) x 106 Size (bytes) x 106

Auction Data (10)

archive
V1 + incremental diffs
version
gzip(V1 + cumulative diffs)
xmill(V1+...+Vi)
gzip(V1 + incremental diffs)
xmill(archive)

size (bytes) x 106

version sequence

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00

17.00

18.00

19.00

20.00

0.00 5.00 10.00 15.00 20.00

PSfrag replacements

a1

a2

am

b1

b2

bn

Original document

Run 1
Run 2
Run n

Auction Data (20)

archive
V1 + incremental diffs
version
gzip(V1 + cumulative diffs)
xmill(V1+...+Vi)
gzip(V1 + incremental diffs)
xmill(archive)

size (bytes) x 106

version sequence

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

22.00

24.00

26.00

28.00

0.00 5.00 10.00 15.00 20.00

PSfrag replacements

a1

a2

am

b1

b2

bn

Original document

Run 1
Run 2
Run n

V1+inc diffs

ar
ch

ive

gzip(V1+cumu diffs)

version

xmill(archive)

xmill(V1 + ... + Vi) gzip(V1+inc diffs)

version

xmill(arch
ive)

gzip(V1+inc diffs)
gzip(V1+inc diffs),

xmill(V1 + ... + Vi)

ar
ch

iv
e

V1+inc diffs

Number of Versions

(a) 3.33%/3.33%/3.33% change ratio (b) 6.66%/6.66%/6.66% change ratio

ACM Transactions on Database Systems, Vol. , No. , 20.

