
On the Expressiveness of Implicit Provenance in
Query and Update Languages

Peter Buneman1?, James Cheney1?, and Stijn Vansummeren2??

1 University of Edinburgh, Scotland
2 Hasselt University and Transnational University of Limburg, Belgium

Abstract. Information concerning the origin of data (that is, its prove-
nance) is important in many areas, especially scientific recordkeeping.
Currently, provenance information must be maintained explicitly, by
added effort of the database maintainer. Since such maintenance is te-
dious and error-prone, it is desirable to provide support for provenance in
the database system itself. In order to provide such support, however, it
is important to provide a clear explanation of the behavior and meaning
of existing database operations, both queries and updates, with respect
to provenance. In this paper we take the view that a query or update im-
plicitly defines a provenance mapping linking components of the output
to the originating components in the input. Our key result is that the
proposed semantics are expressively complete relative to natural classes
of queries that explicitly manipulate provenance.

1 Introduction

The provenance of data – its origins and how it came to be included in a database
– has recently sparked some research interest [4, 12, 14]. The topic is particu-
larly important in those scientific databases, sometimes referred to as curated
databases, that are constructed by a labor-intensive process of copying, correct-
ing and annotating data from other sources. The value of curated databases
lies in their organization and in the trustworthiness of their data. Provenance is
particularly important in assessing the latter. In practice, provenance – if it is
recorded at all – is recorded manually, which is both time-consuming and error-
prone. Automated provenance recording support is desirable, and for this it is
essential to have a proper semantic foundation to guide us on what should be
recorded and to understand what effect database operations have on provenance.

We focus on a specific kind of provenance associated with the copying and
modification of data by query and update languages. We use a formalization
based on the “tagging” or “propagation” approach of Wang and Madnick [15]
and Bhagwat et al. [3]. In this approach, it is assumed that each input data
item has an identifying color. Existing database operations are then given a new
semantics as functions mapping such colored databases to colored databases in
? Supported by the UK EPSRC (Digital Curation) and the Royal Society.

?? Postdoctoral Fellow of the Research Foundation - Flanders (FWO).

c1

c5 c7
c7

c3

c4
c4c6

c6

c3c2

(a)Input

R

1 2 9

A B BA

5 8 9

A B BA

8 1

c3c2 c3

c1

c4 c6 c7c6 c7

(c)(b)

R

1 5 8 9

A B BA

R

1 5 8 9

A B BA

c1

Fig. 1. Color propagation for query (a) and updates (b) and (c).

which colors are propagated along with their data item during computation of
the output. The provenance of a data item in the output is then simply that
input data item with the same color. To illustrate this approach, consider a
table R(A,B) with tuples {(1, 2), (8, 9)}, and consider the following SQL query.

(select * from R where A <> 1)
union (select A, 5 as B from R where A = 1)

(a)

The input tree at the left of Fig. 1 is a representation of R in which the atomic
data values, the tuples and the table R itself are all annotated with colors
c1, c2, We could then define the colored semantics of query (a) to map the
input to the colored table represented by the tree (a) in Fig. 1. This defines the
provenance of the atom 1 in the output to be the corresponding atom in R, the
provenance of the tuple (8, 9) to be the second tuple in R, and so on. The color
⊥ indicates that a data item is introduced by the query itself. Hence, this par-
ticular colored semantics takes the view that queries construct new tables and
that the second select subquery constructs a new tuple rather than copying an
existing one.

Color-propagating functions from colored databases to colored databases can
hence be used to formally define the provenance behavior of existing database
operations. By “color-propagating” we mean that the function should only use
colors to indicate the origin of output items: if the function is applied to a
recolored version of the input, then it should produce an output with the same
recoloring applied. In particular, the input colors cannot influence the uncolored
part of the output and the function’s behavior is insensitive to the actual choice
of colors used in the input. We shall refer to such propagating functions as
provenance-aware operations.

The particular provenance ascribed to query (a) in Fig. 1 has the property
that if an output item j has the same color as an input item i, then i and j are
identical. We shall call provenance-aware operations with this property copying.
A copying operation has the property that if some item is colored ⊥ (“blank”),
all items that contain it will also be colored ⊥.

The provenance of query (a) described in Fig. 1 is exactly the “intuitive” or
“default” provenance of SQL queries proposed by Bhagwat et al. [3], although
they only consider provenance of atomic values. In particular, the default prove-
nance is always copying, as it views constant and tuple constructors in queries as
creating new items. Of course, this default semantics may not be the provenance

semantics that a curator wants to give to a particular query. For this reason, [3]
proposes an extension to query languages that allows provenance to be defined
explicitly. Our first result is to propose a default provenance semantics for query
languages, similar to that given in [15] and [3], and show that it is complete
in the sense that it expresses exactly the explicitly definable provenance-aware
operations that are copying. This shows that the default provenance semantics
is a reasonable semantics for queries.

Turning to updates, we note that simple update languages, such as the expres-
sions of SQL that modify data, do not express more database transformations
than do SQL queries, and they have been largely ignored in database theory.
However, the following examples show that the story is very different when we
take account of provenance.

update R set B = 5 where A = 1 (b)
delete from R where A = 1; insert into R values (1,5) (c)

Since updates do not construct new databases, but modify existing ones in-
place, it is reasonable to define their provenance semantics in a way that agrees
with how tuple identifiers are preserved in practical database management sys-
tems. For example, the provenance of updates (b) and (c) would behave on R
as illustrated in Fig. 1(b) and Fig. 1(c), respectively. Note that this provenance
semantics is no longer copying. For example, the provenance of the tuple (1, 5) in
Fig. 1(b) is the tuple (1, 2) from the input, although they are clearly not identical.
For this reason we introduce a weaker semantic restriction on provenance-aware
operations, and consider the kind-preserving ones. By “kind-preserving” we mean
that if output item j has the same color as input item i, then they are of the
same kind: they are both sets, both tuples, or identical atoms. Kind-preserving
operations allow the output type of an item to differ from its input type, and
this is practically important in considering operations such as SQL’s add column
update, which extends a tuple but does not change its provenance.

We propose a default provenance semantics for updates as kind-preserving
operations, and show this semantics to be complete in the sense that every
explicitly definable kind-preserving provenance-aware operation can be expressed
by the default provenance semantics of an update.

Most previous work on provenance focuses on the relational model. We shall
work in the more general “nested relational” or complex object data model [1,
7] for two reasons. First, as our examples indicate, we are interested in prove-
nance at all levels: atoms, tuples, and tables (sets of tuples); a complex object
model allows us to provide a uniform treatment of these levels. Second, com-
plex object models are widely used in scientific data, where provenance is of
paramount importance. Liefke and Davidson [11] proposed a simple and ele-
gant language that extends SQL-style updates to complex objects. To be more
precise about our completeness result for updates: it is the default provenance
of this language that we show complete with regard to the explicitly definable,
kind-preserving provenance-aware operations. It is therefore a natural choice for
updating complex-object databases when one wants to record provenance.

Related work. There is a substantial body of research on provenance (sometimes
termed lineage or pedigree) in both database and scientific computing settings,
which is nicely surveyed in [4, 12, 14]. In early approaches to provenance [15, 8]
the provenance of an output tuple consists of sets of input tuples that directly
or indirectly influenced the output. These techniques only track the provenance
of tuples in relational data. In [6] a distinction is made between “why” and
“where” provenance for queries in a tree-structured model. More recently, [5] in-
vestigated tracking where-provenance for manual updates to curated databases.
The Trio project [2] has investigated the combination of tuple-level lineage with
uncertainty and accuracy information.

There has also been significant work on the properties of “tagging” or “an-
notation” in databases. Tan [13] studied theoretical issues of query containment
and equivalence in the presence of annotations. The DBNotes system [3] uses
variations on why- and where-provenance to propagate annotations on source
data through queries. Geerts et al. have developed Mondrian [10], a database
system that supports block annotations, in which a color can be associated with
a subset of the fields in a table, not just a single value.

Finally, provenance has also been studied in the geospatial and Grid comput-
ing communities [4, 9, 12]. Here, the motivation is to record the workflow that
constructs large data sets in order to avoid repeated computation.

2 Preliminaries

Let us first sketch the languages used throughout this paper. As query languages,
we employ the nested relational algebra NRA and the nested relational calculus
NRC [7]. We also use the nested update language NUL, based on the complex
object update language CUCA [11], which generalizes familiar SQL updates to
complex objects. All of these languages deal with complex objects in the form
of nested relations, whose types are given by the following grammar:

s, t ::= b | s× t | {s}.

Here, b ranges over some unspecified finite collection of base types like the
booleans, the integers, and so on. We assume this collection to include at least
the special base type unit . Types denote sets of objects. The type unit consists
only of the empty tuple (); objects of s× t are pairs (v, w) with v and w objects
of type s and t, respectively; and objects of {s} are finite sets of objects, each of
type s. We write v : s to indicate that v is an object of type s. Furthermore, we
feel free to omit parentheses and write s1×· · ·×sn for (. . . ((s1×s2)×s3) · · ·×sn).
Our results hold if we use labeled records instead of pairs; but the syntax of pairs
is more manageable.

The expressions of NRA, NRC, and NUL are explicitly typed and are
formed using the typing rules of Fig. 2. Here, we range over NRA expressions
by f, g, and h; over NRC expressions by e; and over NUL expressions by u. We
will often omit the explicit type annotations in superscript when they are clear
from the context.

EXPRESSIONS OF NRA.

Ka : unit → b ids : s → s

h : r → s g : s → t

g ◦ h : r → t

!s : s → unit πs,t
1 : s× t → s πs,t

2 : s× t → t

h : r → s g : r → t

〈g, h〉 : r → s× t

ηs : s → {s} µs : {{s}} → {s} K{}s : unit → {s} ∪s : {s} × {s} → {s}

ρs,t
2 : s× {t} → {s× t}

f : s → t

map(f) : {s} → {t} cond t : s× s× t× t → t

EXPRESSIONS OF NRC.

a : b xs : s

e : t

λxs.e : s → t

e1 : s → t e2 : s

e1 e2 : t

() : unit

e : s× t

π1 e : s π2 e : t

e1 : s e2 : t

(e1, e2) : s× t {}s : {s}
e : s

{e} : {s}
e1 : {s} e2 : {s}

e1 ∪ e2 : {s}
e1 : {s} e2 : {t}S
{e2 | xs ∈ e1} : {t}

e1 : s e2 : s e3 : t e4 : t

if e1 = e2 then e3 else e4 : t

EXPRESSIONS OF NUL.

skips : s → s

u1 : r → s u2 : s → t

u1; u2 : r → t

e : t

repls e : s → t

u : s → t

[xs] u : s → t

e : {s}
insert e : {s} → {s}

e : {s}
remove e : {s} → {s}

u : s → t

iter u : {s} → {t}
u : r → t

updls u : r × s → t× s

u : s → t

updrr u : r × s → r × t

Fig. 2. Expressions of NRL.

Semantics of NRA. The NRA is an algebra of functions over complex objects.
Every NRA expression f : s → t defines a function from s to t. The expression
Ka is the constant function that always produces the atom a; id is the identity
function; and g ◦h is function composition, i.e., (g ◦h)(v) = g(h(v)). For pairs: !
produces () on all inputs; π1 and π2 are respectively the left and right projections;
and 〈g, h〉 is pair formation: 〈g, h〉(v) = (g v, h v). For sets: η forms singletons:
η(v) = {v}; K{} is the constant function that produces the empty set; ∪ is
set union; µ flattens sets of sets: µ({V, . . . , V ′}) = V ∪ · · · ∪ V ′; ρ2 is the right
tensor product: ρ2(v, {w, . . . , w′}) = {(v, w), . . . , (v, w′)}; and map(f) applies f
to every object in its input set: map(f)({v, . . . , v′}) = {f(v), . . . , f(v′)}. Finally,
cond is the conditional that, when applied to a tuple (v, v′, w, w′) returns w if
v = v′, and returns w′ otherwise.

Example 1. Here are some simple examples of the functions that are definable
in NRA. The relational projections Π1 : {s × t} → {s} and Π2 : {s × t} → {t}
on sets of pairs are given by Π1 := map(π1) and Π2 := map(π2), respectively.
The tensor product ρ1 similar to ρ2 but pairing to the left is defined as ρ1 :=
map(〈π2, π1〉)◦ρ2 ◦〈π2, π1〉. Cartesian product of two sets is then readily defined
as cartprod := µ ◦map(ρ1) ◦ ρ2.

Semantics of NRC. The semantics of NRC is that of the first-order, simply
typed lambda calculus with products and sets. As such, expression a denotes
the constant a; xs is the explicitly typed variable that can be bound to objects
of type s; λx.e is standard lambda abstraction; and e1 e2 is function application.
Furthermore, expression () denotes the empty tuple; (e1, e2) is pair construction;
and π1 e and π2 e are respectively the left and right projection on pairs. For sets:
{} denotes the empty set; {e} is singleton construction; e1 ∪ e2 is set union; and⋃
{e2 | x ∈ e1} is set comprehension. That is,

⋃
{e2 | x ∈ e1} = f(v)∪ · · · ∪ f(v′)

where f = λx.e2 and e1 denotes {v, . . . , v′}. Finally, if e1 = e2then e3 else e4 is
the conditional expression that returns e3 if the denotations of e1 and e2 are
equal and returns e4 otherwise.

Example 2. The left relational projection Π1 : {s × t} → {s} on a sets of pairs
is defined in NRC as λU.

⋃
{{π1 x} | x ∈ U}. Right relational projection is

defined similarly. SQL query (a) from the Introduction is defined in NRC as
e(a) :=

⋃
{if π1 x = 1 then {(π1 x, 5)} else {y} | y ∈ R}. Here, the table R(A,B)

is represented as a set of pairs R : {b× b}. Finally the expression,⋃
{
⋃
{if π1 x = π1 y then {((π1 x, π2 x), π2 y)} else {} | y ∈ S} | x ∈ R}

defines the relational join of two sets of pairs R : {r × s} and S : {r × t}.

We note that the power of NRC is not restricted to simple select-project-join
queries. It is well-known that the conditional expression allows definition of all
other non-monotone operations such as difference, intersection, set membership
testing, subset testing, and nesting [7]. Furthermore,

Proposition 1 ([7]). NRA ≡ NRC in the sense that every function definable
by an expression f : s → t in NRA is definable by a closed expression e : s → t
in NRC, and vice versa.

Semantics of NUL. Note that most NUL updates syntactically contain NRC
expressions. Each NUL update u : s → t defines a function that intuitively
modifies objects of type s “in-place” to objects of type t. First, we have some
“control” updates: skip is the trivial update with skip(v) = v; while u1;u2 is
update composition: (u1;u2)(v) = u2(u1(v)). The expression repl e replaces the
input object by the object denoted by e. Next, [x]u binds all free occurrences of
x in NRC expressions occurring in u to the input object and then performs u.
For example, ([x] repl (x, x))(v) = (v, v). Note that the value of x is immutable;
it is not affected by the changes u makes to the input object. In particular,

[x]
(
repl(); repl(x, x)

)
is equivalent to [x] repl(x, x). Next come the set updates:

(insert e)(V) = V ∪W where W is the denotation of e; (remove e)(V) = V −W
where W is the denotation of e; and iter u applies u to every object in its input:
(iter u)({v, . . . , v′}) = {u(v), . . . , u(v′)}. Finally we have the updates on pairs:
(updlu)(v, w) = (u(v), w) and (updr u)(v, w) = (v, u(w)).

Example 3. We express the SQL updates (b) and (c) from the Introduction in
NUL. Here, the table R(A,B) is represented as an object R : {b × b}, which
serves as the context object for the NUL updates. Example (b) is expressed as
u(b) := iter

(
[x] updr repl(if π1 x = 1 then 5 else π2 x)

)
. Example (c) is expressed

as u(c) := [x] remove
⋃
{if π1 y = 1 then {y} else {} | y ∈ x}; insert {(1, 5)}. We

can also express schema modifying updates such as alter table R drop column
B that transforms R : {b× b} into R : {b} in NUL by iter ([x] replπ1 x).

Theorem 1. NRA, NRC, and NUL are all equally expressive.

Hence, we may view expressions in each of the three languages as “syntactic
sugar” for expressions in the other languages. This allows us to freely combine
NRA, NRC, and NUL into the single nested relational language NRL.

3 A Model of Provenance

In this section we begin our study of provenance. Let color be an additional base
type (not included in the unspecified collection of base types of NRL) whose
infinite set of elements we will refer to as colors. Let the color-extended types be
the types in which color may also occur:

s, t := color | b | s× t | {s}.

To avoid possible confusion, r, s and t will range over color-extended types and
r, s and t over ordinary NRL types. Let s ∗ t be the type of objects of type s
that are recursively paired with objects of type t:

color∗t := color × t b∗t := b×t (r× s)∗t := (r∗t×s∗t)×t {s}∗t := {s∗t}×t

We then define the type s of colored objects of type s as s ∗ color . A colored
object is hence an object in which each subobject is paired with a color. Let
⊥ be a special color that describes the provenance of newly created objects. A
distinctly colored object is a colored object in which ⊥ does not occur and in
which each other color occurs at most once.

As we have already illustrated in the Introduction, we can describe the prove-
nance behavior of database operations by color-propagating functions from dis-
tinctly colored objects to colored objects. For our further formalisation it is more
convenient, however, to consider color-propagating functions f : s → t that op-
erate on all colored objects. Here, color-propagating means that f cannot let
input colors influence the uncolored part of the output and that f ’s behavior
is insensitive to the actual colors used in the input. In particular, a function

1 2
C5 C6

C2

1 3
C7 C8

C3

8 9
C9 C10

C4

C1
R

1
C5

1
C7

C1
R’’

8
C9

1
C5

1
C7

R’

8
C9

Fig. 3. The provenance semantics of left relational projection.

g : b× b → b that outputs (1, red) when its two input atoms are colored equally,
but outputs (2,blue) otherwise is not color-propagating. Formally, we require
that f ◦α∗

s = α∗
t ◦ f for any “recoloring” α : color → color that maps ⊥ to ⊥.

Here, α∗
r : r → r is the canonical extension of α to type r:

α∗
b := id ×α α∗

r×r′ := (α∗
r × α∗

r′)× α α∗
{r} := map(α∗

r)× α,

where h×h′ is an abbreviation of 〈h ◦π1, h
′ ◦π2〉. Note that “color-propagating”

is a different concept than “generic w.r.t. colors” since α above is not required to
be bijective. Also note that this definition ensures that all colors in f(v), except
⊥, also occur in v. Finally, note that the behavior of f is fully determined by its
behavior on distinctly colored objects, as the following lemma shows.

Lemma 1. If f : s → t and g : s → t are two color-propagating functions such
that f(v) = g(v) for each distinctly colored v : s, then f ≡ g.

Proof. Let w : s be arbitrary and fix some distinctly colored v : s that equals w
modulo colors. Then there obviously exists some recoloring α such that α∗

s(v) =
w. Hence, f(w) = f(α∗

s(v)) = α∗
t (f(v)) = α∗

t (g(v)) = g(α∗
s(v)) = g(w). ut

Database operations are typically “domain-preserving” and are hence limited
in their ability to create new atomic data values. In particular, if o : s → t is a
query or update that creates atom a (in the sense that a appears in o(v) but
not in v for some v), then a appears as a constant in o. We want our concept
of “provenance-aware operation” to reflect this behavior. We therefore define
f : s → t to be bounded-inventing if there exists a finite set A of atoms such that
for every distinctly colored v : s and every (a, c) : b occurring in f(v), if f says
that it created a (i.e., if c = ⊥), then a ∈ A.

Definition 1. A provenance-aware database operation (pado for short) is a
color-propagating, bounded-inventing function f : s → t.

It is important to note that a pado may define an object in the output to
come from multiple parts in the input. For example, we will define the provenance
semantics of the left relational projection Π1 such that it maps the colored object
R : {b× b} from Fig. 3 to R′ in that figure. Note that atom 1 originated from
both the first and the second pair in the input, as it appears both with colors c5

and c7 in R′.

In what follows, we will consider two natural classes of pados: copying and
kind-preserving. Intuitively, a pado is copying if every object in the output that
was not created by f was copied verbatim from the input.

Definition 2 (Copying). A pado f : s → t is copying if for every v : s and
every colored subobject (w, c) : r of f(v), if c 6= ⊥ then (w, c) occurs in v.

Similarly, a pado is kind-preserving if every subobject in the output that was
not created by f originates from an object in the input of the same kind. In
particular, every copying pado is also kind-preserving.

Definition 3 (Kind-preserving). A pado f : s → t is kind-preserving if for
every v : s and every colored subobject (w, c) : r of f(v), if c 6= ⊥ then there exists
(u, c) in v such that u and v are of the same kind: they are both sets, both pairs,
or the same atom.

Define NRL(color) to be the extension of NRL with the base type color in
which ⊥ is the only color that may appear as a constant. Since NRL(color) can
explicitly manipulate colors, it is a natural language for the “explicit” definition
of pados and a suitable benchmark to compare proposals for “standard” prove-
nance semantics of query and update languages against. Define CP and KP as
the sets of closed expressions in NRL(color) defining respectively copying and
kind-preserving pados:

CP := { f | f : s → t in NRL(color) defines a copying pado },
KP := { f | f : s → t in NRL(color) defines a kind-preserving pado }.

Note that CP and KP are semantically defined. In fact both CP and KP are
undecidable: a standard reduction from the satisfiability problem of the relational
algebra shows that checking if an NRL(color) expression is color-propagating,
bounded-inventing, copying, or kind-preserving are all undecidable.

4 Provenance for Query Languages

In this section we give an intuitive provenance-aware semantics for NRA and
NRC expressions. Concretely, we take the view that queries construct new ob-
jects. As such, all objects constructed by a constant, pair, or set constructor (in-
cluding union and map/comprehension) during a query are colored ⊥. Objects
copied from the input retain their color. The provenance semantics P[f] : s → t
of an NRA expression f : s → t is formally defined in Fig. 4 by translation
into NRL(color). There, we write (g × h) as a shorthand for 〈g ◦π1, h ◦π2〉; ⊥
as a shorthand for K⊥◦ !; Π1 as a shorthand for the left relational projection
map(π1); and vals : s → s for the function that forgets colors:

valb := π1 vals×t := (vals× val t) ◦π1 val{s} := map(vals) ◦π1.

Note that P[cond] ignores colors during comparison: applied to a colored tuple
((v, v′, w, w′), c) it returns w if val(v) = val(v′), and w′ otherwise.

The provenance semantics P[e] : s and P[e′] : s → t of NRC expressions e : s
and e′ : s → t is also defined in Fig. 4 by translation into NRL(color).

PROVENANCE SEMANTICS OF NRA.

P[Ka] := Ka×⊥ P[ids] := ids P[g ◦h] := P[g] ◦P[h]
P[!] := !×⊥ P[π1] := π1 ◦π1 P[π2] := π2 ◦π1

P[〈g, h〉] := (P[g]× P[h])×⊥ P[η] := η×⊥ P[µ] := µ ◦Π1 ×⊥
P[K{}] := K{} × ⊥ P[∪] := ∪ ×⊥ P[ρ2] := ρ2 ×⊥

P[map(f)] := map(P[f])×⊥ P[cond] := cond ◦(val × val × id ×id) ◦π1

PROVENANCE SEMANTICS OF NRC.

P[a] := (a,⊥) P[λxs.e] := λxs.P[e]
P[xs] := xs P[e1 e2] := P[e1]P[e2]
P[()] :=

`
(),⊥

´
P[π1 e] := π1 π1 P[e]

P[π2 e] := π2 π1 P[e] P[(e1, e2)] :=
`
(P[e1],P[e2]),⊥

´
P[{}] := ({},⊥) P[e1 ∪ e2] :=

`
(π1 P[e1] ∪ π1 P[e2]),⊥

´
P[{e}] := ({P[e]},⊥) P[

S
{e2 | xs ∈ e1}] :=

`S
{π1 P[e2] | xs ∈ π1P[e1]},⊥

´
P[if e1 = e2 then e3 else e4] := if val(P[e1]) = val(P[e2]) then P[e3] else P[e4]

PROVENANCE SEMANTICS OF NUL.

P[skips] := skips P[u; u′] := P[u];P[u′]
P[repls e] := repls P[e] P[[xs] u] := [xs]P[u]
P[insert e] := updl insert (π1 P[e]) P[iter u] := updl iter P[u]
P[updl u] := updl updl P[u] P[updr u] := updl updr P[u]

P[remove e] := updl
`
[x] remove {y | y ∈ x, val(y) ∈ val(P[e])}

´
Fig. 4. Provenance semantics of NRA, NRC, and NUL.

Example 4. The provenance semantics P[Π1] of the NRA expression Π1 defin-
ing the left relational projection from Example 1 maps the colored set R : {b× b}
from Fig. 3 to the colored set R′ in that figure. The provenance semantics of the
NRC expression Π1 defining the left relational projection from Example 2 has
the same behavior. The provenance semantics of the NRA expression cartprod
from Example 1 maps the colored pair v : {b} × {b} from Fig. 5 to the colored
set w : {b× b} in that figure. The provenance semantics P[e(a)] of the NRC ex-
pression e(a) from Example 2 that defines query (a) from the Introduction has
already been illustrated: it maps the colored set R from Fig. 1 to the colored set
in Fig. 1(a).

Note that expressions that are equivalent under the normal semantics need
not be equivalent under the provenance semantics. For example, map(id) is
equivalent to id , but P[map(id)] is not equivalent to P[id] as the set returned
by P[map(id)] is colored with ⊥, while P[id] retains the original color from the
input. Likewise, if x is a variable of type s × t then (π1 x, π2 x) is equivalent to
x, but P[(π1 x, π2 x)] is not equivalent to P[x].

1 2
C4 C5

C2

1 3
C6 C7

C3

C1
v

1 1
C4 C6

1 3
C4 C7

2 1
C5 C6

w

2 3
C5 C7

Fig. 5. The provenance semantics of cartesian product.

Define PNRA and PNRC as the languages we obtain by interpreting NRA
and NRC under the new provenance semantics:

PNRA := { P[f] | f expression in NRA },
PNRC := { P[e] | e expression in NRC }.

Proposition 2. PNRA ≡ PNRC in the sense that every function definable
by an expression P[f] : s → t in PNRA is definable by a closed expression
P[e] : s → t in PNRC, and vice versa.

Hence, the equivalence of NRA and NRC (as stated by Proposition 1) continues
to hold under the provenance semantics. In particular, we may continue to view
expressions in NRA and NRC as “syntactic sugar” for expressions in the other
language whenever convenient – even when we consider provenance. On the other
hand, in order to study the expressive power of provenance in these languages
it suffices to study the expressiveness of PNRA or PNRC alone. For example,
the following is straightforward to prove by induction on f :

Proposition 3. Every PNRA expression P[f] : s → t defines a copying pado.

It readily follows from Proposition 2 that every PNRC expression also defines
a copying pado. The key result of this section is that the converse also holds:

Theorem 2. Every function in CP is also definable by a closed expression
P[f ′] : s → t in PNRC.
This theorem essentially follows from the following observations. First, The-
orem 1 continues to hold in the presence of the base type color . Hence, every
pado in CP can be expressed by some closed expression f : s → t in NRC(color).
Second, the color-propagation of f implies that f is “polymorphic on colors” in
the sense that we can substitute the colors in f by objects of some other type
as follows. Let r be an arbitrary type, let g : r be a closed NRC expression, and
let T [f, g] : s ∗ r → t ∗ r be the NRC expression we obtain by replacing every
occurrence of color in a type annotation in f by r and subsequently replacing
every occurrence of the constant ⊥ in f by g.

Example 5. Let f : b× {b} → b× {b} be as below. Then T [f, g] is as shown.

f = λxb×{b}.
((

(5,⊥), (π1 π2 π1 x ∪ {π1 π1 x},⊥)
)
,⊥

)
,

T [f, g] = λx(b×{b})∗r.
((

(5, g), (π1 π2 π1 x ∪ {π1 π1 x}, g)
)
, g

)
.

Note that T [f, g] propagates the objects of type r from input to output in the
same way as f propagates colors, where g takes the role of ⊥. What is more,
P[T [f, g]] : s ∗ r → t ∗ r propagates the colored objects of type r from input to
output in the same way as f propagates colors. The formal statement of this
claim is as follows.

Let r and s be types and let φ : color → r be a function. We define w : s ∗ r
to be a substitution of the colors in v : s relative to φ, denoted by v ≈φ

s w, by
induction on s:

– (a, c) ≈φ
b (((a, c′), φ(c)), c′′) with c′ and c′′ arbitrary;

– ((v, v′), c) ≈φ
s×s′ (((w,w′), φ(c)), c′) if v ≈φ

s w and v′ ≈φ
s′ w′; and

– ({v, . . . , v′}, c) ≈φ
{s} (({w, . . . , w′}, φ(c)), c′) if v ≈φ

s w, . . . , v′ ≈φ
s w′.

Proposition 4 (Color polymorphism). Let f : s → t be a closed expression
in NRC(color) defining a color-propagating function; let g : r be a closed expres-
sion in NRC; and let φ : color → r be a function such that φ(⊥) = P[g]. Then
f(v) ≈φ

t P[T [f, g]] (w) for every v : s and every w : s ∗ r with v ≈φ
s w.

Let us now sketch how color polymorphism allows us to prove Theorem 2.
In general, given a particular copying pado f : s → t in NRC(color) the proof
constructs a type r and closed expressions g : r, enc : s → s∗r, and dec : t∗r → t
such that P[enc] : s → s ∗ r encodes the colors in s as colored objects of type r
in s ∗ r and P[dec] : t ∗ r → t decodes the colored objects of r in t ∗ r back into
their original colors. The copying property of f is crucial for the decoding step.
Theorem 2 then follows as f is expressed in PNRC by P[dec ◦ T [f, g] ◦ enc].

The construction. To illustrate the construction, assume that f : b× {b} →
b× {b} is a copying pado in NRC(color). We will only motivate why f is equiv-
alent to P[dec ◦ T [f, g] ◦ enc] on distinctly colored objects. Equivalence on arbi-
trary colored object then follows by Lemma 1, as both f and P[dec ◦ T [f, g] ◦ enc]
are color-propagating. Furthermore, we will use tuples of arbitrary arity, as these
can readily be simulated in the NRC. For example, (x, y, z) is an abbreviation of
((x, y), z) and the projection πn

i that retrieves the i-th component of an n-tuple
is an abbreviation of π2 π1 x.

Let s abbreviate b × {b}. Roughly speaking, we want P[enc] : s → s ∗ r to
substitute every color in a distinctly colored object v : s by the unique colored
subobject of v that is colored by c. In particular, r must hence be big enough to
store all colored subobjects of v. Hereto, we take r = b×{b}× (b×{b})×{unit},
where the first three components will be used to store colored subobjects from v,
and the last type {unit} will be used as an extra boolean flag that indicates the
encoding of ⊥. The following expressions can then be used to “inject” subobjects
of v into r and to encode ⊥:

putb : b → r := λxb.(x, e{b}, es, {}) put{b} : {b} → r := λx{b}.(eb, x, es, {})
puts : s → r := λxs.(eb, e{b}, x, {}) g : r := (eb, e{b}, es, {()}).

Here, eb : b, e{b} : {b}, and es : s are arbitrary but fixed closed NRC expressions.
For example, es could be (a, {}) with a : b an arbitrary constant.

We now construct enc such that if v : s is distinctly colored and φ : color → r
is the function that maps ⊥ to P[g] and that maps every color c occurring in
v to P[puts′

](vc) where vc : s′ is the unique subobject of v colored by c, then
v ≈φ

s P[enc](v). Hereto, it suffices to let enc be

λxs.
((

(π1 x, putb(π1 x)), (
⋃
{{(y, putb(y))} | y ∈ π2 x}, put{b}(π2 x))

)
, puts(x)

)
.

Let w : s ∗ r abbreviate P[T [f, g] ◦ enc](v). Then f(v) ≈φ
s w by color poly-

morphism since v ≈φ
s P[enc](v). That is, subobjects of type r in w are sub-

stitutions of the colors in f(v) relative to φ. By inspecting these objects we
can decode w back into f(v) as follows. Let c be the color of f(v), i.e., let
c = π2(f(v)). First, we note that we can check in PNRC whether c = ⊥ in
the sense that P[λx.if π2 x = g then e1 else e2](w) executes P[e1] if c = ⊥, and
executes P[e2] otherwise. To prove this claim, it suffices to show that c = ⊥ iff
val(P[π2](w)) = val(P[g]). Suppose that c = ⊥. Because f(v) ≈φ

s w, it is eas-
ily seen that P[π2](w) = φ(c) = φ(⊥) = P[g], and hence also val(P[π2](w)) =
val(P[g]). For the only-if direction, suppose for the purpose of contradiction that
val(P[π2](w)) = val(P[g]) but c 6= ⊥. Since f is color-propagating, every color
different from ⊥ occurring in f(v) must also occur in v. Hence, c occurs in v, and
thus φ(c) = P[puts′

](vc). Because f(v) ≈φ
s w, it is easily seen that P[π2](w) =

φ(c) = P[puts′
](vc). By construction, however, val(P[puts′

](v′)) 6= val(P[g]) for
any s′ and any v′ : s′. Hence, val(P[π2](w)) = val(P[puts′

](vc)) 6= val(P[g]),
which gives us the desired contradiction.

We now claim that P[dec] with dec : s ∗ r → s defined as follows successfully
decodes w back into f(v).

dec := λx. if π2 x = g then
(
decb(π1 π1 x), dec{b}(π2 π1 x)

)
else π4

3(π2 x)
decb := λx. if π2 x = g then inv(π1 x) else π4

1(π2 x)
dec{b} := λx. if π2 x = g then

⋃
{{decb(y)} | y ∈ π1 x} else π4

2(π2 x).

Here, inv := λx. if x = a1 then a1 else . . . else if x = ak then ak else x, where
{a1, . . . , ak} is the finite set of constants testifying that f is bounded inventing.

To see why P[dec](w) = f(v), first consider the case where c 6= ⊥. Because f
is copying, we know that f(v) = vc with vc : s the unique subobject of v colored
by c. Hence, P[dec](w) = P[π4

3](P[π2](w)) = P[π4
3](φ(c)) = P[π4

3](P[puts](vc)).
It is not hard to see that the latter is precisely vc = f(v), as desired.

Next, consider the case where c = ⊥. Then f(v) is a “newly constructed”
colored pair. Hence, to decode w into f(v), P[dec] first decodes w1 := P[π1 π1](w)
and w2 := P[π2 π1](w) into π1(f(v)) and π2(f(v)) respectively, and constructs
a new pair to put them in. Here, P[decb] and P[dec{b}] decode w1 and w2 using
essentially the same reasoning as P[dec]: first they inspect the colors of w1 and
w2, extracting the correct value from the r-component if the color is not ⊥, and
by “reconstructing” the object otherwise.

This concludes the proof illustration of Theorem 2. As a corollary to Propo-
sition 2, Proposition 3, and Theorem 2 we immediately obtain:

Corollary 1. PNRA, PNRC, and CP are all equally expressive.

5 Provenance for Updates

In this section we give an intuitive provenance-aware semantics for updates.
Concretely, we take the view that updates do not construct new objects, but
modify existing ones. As such, objects retain their colors during an update.

The provenance semantics P[u] : s → t of a NUL update u : s → t is formally
defined in Fig. 4 by translation into NRL(color). Here, P[e] is the provenance
semantics of NRC expression e as defined in Section 4 and {y | y ∈ x, val(y) ∈
val(P[e])} abbreviates the expression⋃

{if val(y) ∈ val(P[e]) then {y} else {} | y ∈ x},

where the conditional if e1 ∈ e2 then e3 else e4 is known to be expressible in
NRL [7]. Note in particular that the provenance semantics of remove e ignores
colors when selecting the objects to remove.

Example 6. The provenance semantics of theNUL update iter ([x] replπ1 x) from
Example 3 maps the colored set R : {b× b} from Fig. 3 to the colored set R′′

in that figure. Note in particular that the set itself retains its color. This is in
contrast to the provenance semantics of the relational projection Π1, as we have
explained in Example 4. The provenance semantics of the updates u(b) and u(c)

from Example 3 that express respectively the SQL updates (b) and (c) from
the Introduction has already been illustrated in the Introduction. In particular,
P[u(b)] maps the colored set R from Fig. 1 to the colored set in Fig. 1(b), while
P[u(c)] maps R to the colored set in Fig. 1(c).

Define PNUL as the language we obtain by interpreting NUL under the
new provenance semantics:

PNUL := {P[u] | u expression in NUL}.

It is easy to show that PNUL ⊆ KP; that is, every P[u] defines a kind-preserving
pado. The key result of this section is that the converse also holds. The proof
uses the same “color polymorphism” technique we have used for queries.

Theorem 3. KP ≡ PNUL in the sense that every function definable by an
expression f : s → t in KP is also definable by a closed update P[u] : s → t in
PNUL, and vice versa.

6 Discussion

Our goal in this paper has been to achieve an understanding of how query and
update languages manipulate provenance. Although the completeness results
from Sections 4 and 5 show why our proposed provenance semantics is sensible,
there are several issues that must be tackled before we can build a practical
system that records provenance.

Space and processing overhead are concerns even for simple, manual up-
dates [5]. From a space-efficiency point of view, it may be desirable to “merge”
objects in the same set that differ. For example, we could collapse two edges in
Figure 3 into a single edge labelled {c5, c7}. This is done for annotations in in [15,
3]. Query rewriting is also problematic. In Section 4 we noted that expressions
that are equivalent under traditional semantics are no longer equivalent when
provenance is considered. This may affect query optimisation.

There is also the issue of aggregation queries such as select A, sum(B)
from R group by A. This particular aggregation could be expressed in NRL
by adding a function sum : {int} → int . Since the output of sum is a new data
value, we could define P[sum] := 〈sum,K⊥◦ !〉, but it is surely more satisfactory
to record some form of workflow provenance, as known from the geospatial and
Grid computing communities [4, 9, 12], that tells us how the sum was formed.
Another problem is that P[sum] is no longer bounded-inventing, a problem that
also arises when we want to consider external user-defined functions. We hope
to generalize our approach to address these issues.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations Of Databases. Addison-Wesley,
1995.

2. O. Benjelloun, A. D. Sarma, A. Halevy, and J. Widom. ULDBs: databases with
uncertainty and lineage. In VLDB 2006, pages 953–964, 2006.

3. D. Bhagwat, L. Chiticariu, W. Tan, and G. Vijayvargiya. An annotation manage-
ment system for relational databases. In VLDB 2004, pages 900–911, 2004.

4. R. Bose and J. Frew. Lineage retrieval for scientific data processing: a survey.
ACM Comput. Surv., 37(1):1–28, 2005.

5. P. Buneman, A. Chapman, and J. Cheney. Provenance management in curated
databases. In SIGMOD 2006, pages 539–550, 2006.

6. P. Buneman, S. Khanna, and W. Tan. Why and where: A characterization of data
provenance. In ICDT 2001, volume 1973 of LNCS, pages 316–330. Springer, 2001.

7. P. Buneman, S. A. Naqvi, V. Tannen, and L. Wong. Principles of programming
with complex objects and collection types. Theor. Comp. Sci., 149(1):3–48, 1995.

8. Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of view data in a ware-
housing environment. ACM Trans. Database Syst., 25(2):179–227, 2000.

9. I. Foster and L. Moreau, editors. Proceedings of the 2006 International Provenance
and Annotation Workshop (IPAW 2006). Number 4145. Springer-Verlag, 2006.

10. F. Geerts, A. Kementsietsidis, and D. Milano. Mondrian: Annotating and querying
databases through colors and blocks. In ICDE 2006, page 82, 2006.

11. H. Liefke and S. B. Davidson. Specifying updates in biomedical databases. In
SSDBM, pages 44–53, 1999.

12. Y. Simmhan, B. Plale, and D. Gannon. A survey of data provenance in e-science.
SIGMOD Record, 34(3):31–36, 2005.

13. W. Tan. Containment of relational queries with annotation propagation. In DBPL
2003, volume 2921 of LNCS, pages 37–53. Springer, 2003.

14. W. Tan. Research problems in data provenance. IEEE Data Engineering Bulletin,
27(4):45–52, 2004.

15. Y. R. Wang and S. E. Madnick. A polygen model for heterogeneous database
systems: The source tagging perspective. In VLDB 1990, pages 519–538, 1990.

