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Abstract

I describe my implementation of computational abstract algebra in the

Nuprl system. I focus on my development of multivariate polynomials. I show

how I use Nuprl's expressive type theory to de�ne classes of free abelian monoids

and free monoid algebras. These classes are combined to create a class of all

implementations of polynomials. I discuss the issues of subtyping and compu-

tational content that came up in designing the class de�nitions. I give examples

of relevant theory developments, tactics and proofs. I consider how Nuprl could

act as an algebraic `oracle' for a computer algebra system and the relevance of

this work for abstract functional programming.

1 Introduction

1.1 Aims and Motivation

One aim of the Nuprl project is to explore the use of constructive type theory for

specifying, verifying and synthesizing functional programs. To date, e�ort has been

concentrated on developing programs over concrete data-types. I would like to see

how well Nuprl could support the development of programs using abstract data

types (ADT's); ADT's are widely advocated as an e�ective structuring principle

and support for them is provided in a variety of modern programming languages.

Type theory can provide an e�ective framework for formally reasoning about ADT's.

Type theory is particularly convenient in that both ADT speci�cations and imple-

mentations are described in a single language [MP85, BC93].

In previous work on using Nuprl to verify hardware designs for 
oating-point

arithmetic, I noticed that algebraically-similar kinds of reasoning were coming up

frequently over di�erent concrete datatypes such as the integers, the rationals and

�
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bit-vectors. For example, a signi�cant part of the reasoning concerned iterated sums

over monoids. It was obvious that work could be saved by �rst making de�nitions

and proving theorems in an appropriately abstract setting.

A newer motivation comes from observing the development of computer algebra

systems such as Mathematica, Maple and Axiom. Such systems provide a wealth of

functionality, but not the rigor or the abstractness of a theorem proving environment.

I want to explore possibilities for symbiotic interactions between computer algebra

systems and theorem provers, and speculate on how in the long term they might

be integrated. Already promising work has been done in the area [CZ92, HT93].

Here at Cornell I am currently investigating links between Nuprl and the Weyl

system [Zip93]. In particular I am exploring the use of Nuprl as an algebraic oracle

to Weyl.

Nuprl's type theory provides a certain range of options for making explicit vari-

ous computational aspects of algebra. I would like to understand which options are

worth formalizing and which ones I am missing, both from the point of view of pro-

viding assistance to computer algebra systems and of developing abstract programs.

For example, most computer algebra systems are interested in algebraic structures

with decidable equality relations, so I am reasoning primarily with structures with

boolean-valued equality functions.

1.2 Background

Nuprl [C

+

86, Jac92] is an interactive tactic-based theorem prover in the LCF tradi-

tion. It uses a constructive type theory similar to that of Martin-L�of [ML82]. The

type theory is brie
y reviewed in Section 2.

Nuprl has been developed in the last 10 years by over a dozen people. It has a well

developed user interface and a large collection of tactics for such tasks as forward

and backward chaining, rewriting and arithmetic reasoning. Libraries have been

built up in number theory [How87], analysis [CH92], hardware veri�cation [BV90],

hardware synthesis [AL90] and meta-reasoning [How88]. Many of the tactics and

theory developments mentioned in this paper are covered in greater detail in my

thesis [Jac94].

1.3 Organization of this Paper

To illustrate my work, I have chosen to show a sequence of de�nitions leading up to

the class of multivariate polynomial algebras. Section 2 contains an introduction to

Nuprl's type theory that should be adequate for understanding the de�nitions, and

the de�nitions themselves are presented in Section 3. Section 4 gives some practical

details on my work to date and Section 5 describes applications of the work that we

are actively pursuing. Finally, Section 6 summarizes my accomplishments.

1.4 Related Work

I know of several other e�orts to develop abstract algebra in a theorem proving

environment. Gunter[Gun89] working with HOL has proven group isomorphism

theorems and shown the integers mod n to be an implementation of abstract groups.

Harrison and Th�ery [HT93] have looked at the interaction between HOL and Maple,

where Maple performs algebraic manipulations and integrations that HOL then
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veri�es. The IMPS people have a notion of little theories [FGT92] which they use for

proving theorems about groups and rings. Anthony Bailey has developed a concrete

theory of polynomials in one variable in the LEGO system and has proven the

correctness of Euclid's algorithm over these polynomials [Bai93]. The Mizar project

seems to have done a fair amount in algebra, but hasn't yet tackled polynomials.

Clarke and Xudong have been adding theorem proving capabilities to Mathe-

matica to create their Analytica system [CZ92]. They have impressive results in

proving equivalences of sums of series, but their work has been hindered by the lack

of rigor inherent in the Mathematica environment.

The Larch [GH93] group has worked on program speci�cation and veri�cation

using ADT's in a �rst-order-logic setting.

2 Type Theory Preliminaries

I give here an informal overview of the types in Nuprl's type theory I have been

working with:

� The booleans B and the integers Z.

� A dependent-function (�) type constructor !. If A is a type and B

x

is a

family of types, indexed by x 2 A, then x:A! B

x

is the type of functions f ,

such that f(a) 2 B

a

for all a 2 A. If B

x

is the same for all x 2 A, I write the

type as simply A ! B. I assume that ! associates to the right. Each type

A ! B is considered as containing only the computable functions from A to

B rather than all set theoretic functions.

� A dependent-product (�) type constructor � . If A is a type and B

x

is a

family of types, indexed by x 2 A, then x:A�B

x

is the type of pairs ha; bi,

such that a 2 A and b 2 B

a

. If B

x

is the same for all x 2 A, I write the type as

simply A�B. Sometimes I write A�A as A

2

. I assume that � associates

to the right.

� A set type constructor f : j g. If A is a type and P

x

is a proposition in which

x of type A occurs free, then fx:AjP

x

g is the type of those element x of A for

which P

x

is true. The type of non-negative integers N and positive integers

N

+

are constructed using the subset type constructor.

� Universes of types U

i

for i = 1; 2; 3 : : : . U

i

includes U

j

for all j < i as base

types and is closed under the type constructors listed above. In Section 3 I

drop these universe level indices without risk of confusion, although the indices

must be stated when proving lemmas in the Nuprl system.

Every type has a natural equality relation on it. I write x =

T

y or x = y 2 T

when I want to say that x and y are members of T and are equal by the equality

relation associated with T . I write x = y if T is obvious from context. Functions

always respect type equalities, so if function f has type S ! T , then fx =

T

fx

0

whenever x =

S

x

0

.

The equality associated with a type can be weakened using Nuprl's quotient

type constructor; if R is an equivalence relation on type T , then the quotient type
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constructed from T and R is written x; y:T==xRy. The inhabitants of x; y:T==xRy

are the same as the inhabitants of T ; the quotient type does not group elements of

T into equivalence classes. Inhabitants are considered equal when they are related

by R.

I use fairly usual notation for programming language constructs. Function ap-

plication is designated by juxtaposition. For example, I write f a. Often I use in�x

notation for binary function application. For example, if � 2 (T�T ) ! T , then

for �ha; bi I write a � b.

Logic is injected into type theory using the propositions-as-types correspondence.

Each predicate-logic expression corresponds to a type with the type being inhab-

ited i� the predicate-logic expression is provable. The proof of a logical expression

speci�es exactly how to construct the term that inhabits the corresponding type.

Sometimes the inhabitant is interesting; for example it might be a function that

computes something useful. In this case, we can view the logical expression corre-

sponding to the type it inhabits as a kind of program speci�cation. When I talk

about the computational content of a logical expression, I am referring to the possi-

ble inhabitants of the corresponding type. Nuprl's logic is well-suited to constructive

mathematics, but it also can support classical styles of reasoning.

3 Polynomial Algebra Development

3.1 The Approach

In mathematics, one talks about the ring of polynomials A[S], given some ring A

and some set of indeterminates S. However, a computer algebra system might

have several di�erent implementations of polynomials. Mathematically they are all

isomorphic, but computationally they have distinct characteristics.

I am interested here in using type theory to characterize this practice, so I

de�ne a type PolyAlg(S;A) that is the class of all implementations of polynomials

over indeterminates S and ring A. This de�nition gets at the general properties of

polynomials and abstracts away from the features of particular implementations. At

the same time, I craft the de�nition such that a wide variety of useful computable

functions could be constructed from an arbitrary inhabitant of the class.

My approach is based on the standard abstract approach found in textbooks

such as Lang [Lan84] or Bourbaki [Bou74]:

1. Monomials in S are elements of a free abelian monoid over S.

2. Polynomials over S with coe�cients from A are elements of a free monoid

algebra over the monoid of monomials and the ring A.

From the above two constructions I derive the ring of polynomials and such

functions as the injections fromA and S, and `substitution' function for instantiating

indeterminates with elements of any ring B given an homomorphism from A to B.

I require implementations of classes to provide boolean-valued functions for de-

ciding equality. Without these functions, one is rather limited in the kinds of com-

putable functions that can be de�ned. This is standard practice in most computer

algebra systems. However, the class de�nitions I give don't rely in any essential way

on these functions.
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3.2 The Free Abelian Monoid of Monomials

I start by de�ning EqType, a class for types with associated equality functions:

EqTypeSig

:

= S:U� (S

2

! B)

EqType

:

= fhS; eqi:EqTypeSig j 8a; b:S: a eq b() a =

S

bg :

The class EqType is the set of those elements of the signature EqTypeSig for which

the equality function agrees with the equality relation of the type. I refer to elements

of this class as equality types. I assume in what follows that an element S of EqType

has form hS; eqi.

The class signature for monoids, MonSig is:

MonSig

:

= M :U� (M

2

! B)� (M

2

!M)� M

and the class for abelian monoids AbMon is:

AbMon

:

= fhM; eq; �; ei:MonSigj

8a; b:M: a eq b() a =

M

b

^ 8a; b; c:M: (a � b) � c = a � (b � c)

^ 8a; b; c:M: a � b = b � a

^ 8a:M: (a � e) = a

g :

I assume in what follows that an element M of AbMon has form hM; eq; �; ei.

The de�nition of FAbMon(S), the class of free abelian monoids (with computable

equalities) over the equality type S is:

FAbMon(S)

:

= M:AbMon

� �:S !M

�M

0

:AbMon! �:(S !M

0

)

! f!

^

�:MonHom(M;M

0

) j � =

^

� � � g :

Here,MonHom(M;M

0

), the set of monoid homomorphisms fromM toM

0

, is de�ned

as:

MonHom(M;M

0

)

:

= f�:M !M

0

j � e = e

0

^ 8a; b:M: � (a � b) = � a �

0

� bg

and I use the abbreviation:

f!x:T jP

x

g

:

= fx:T jP

x

^ 8x

0

:T: P

x

0

) x = x

0

g :

f!x:T jP

x

g should be be read as `the type containing the unique x of type T such

that P

x

holds'.

The de�nition of FAbMon(S) is based on the characterization of a free abelian

monoid over some set S as being an abelian monoid M and an injection � of S into

M , such that for any abelian monoid M

0

and mapping � of S into M

0

, there is a

unique abelian monoid homomorphism

^

� fromM toM

0

which satis�es the equation
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� =

^

� � �. This equation can be stated pictorially by saying for each M

0

and �

there is a unique

^

� such that the following diagram commutes:

S

?

�

@

@

@

@

@

@R

�

M

-

^

�

M

0

:

The de�nition of FAbMon(S) captures the requirement that there is an appropriate

mapping into any abelian monoid by insisting that a function be supplied that

generates this mapping. Speci�cally, let the triple hM; �;	i be some element of

FAbMon(S). If 	 is given as arguments an abelian monoid M

0

and a function �, it

must return the unique monoid homomorphism

^

� from M to M

0

that satis�es the

equation � =

^

� � �.

I could have written the de�nition of FAbMon(S) as:

FAbMonSig(S)

:

= M:AbMon�S !M

FAbMon(S)

:

= fhM; �i:FAbMonSig(S) j

8M

0

:AbMon 8�:(S !M

0

)

9!

^

�:MonHom(M;M

0

): � =

^

� � � g;

not requiring 	 to be explicitly supplied, but this would not have been nearly as

computationally interesting.

An example of a useful function that can easily be generated from 	 is as fol-

lows: if S is an equality type of indeterminates, then 	 hZ; eq

Z

;+; 0i (�x:1), is a

function for calculating the total degree of a monomial (the sum of the powers of

the indeterminates).

If one applies 	 to the monoid of monomials and the injection function of some

other implementation of FAbMon(S), one gets a function that translates represen-

tations of monomials into that used by the other implementation. Similarly, one

could use the 	 of that other implementation to translate back. These translation

functions are inverses of one another and hence set up a constructive isomorphism

between the two implementations. (This is just an instance of the fact that in cate-

gory theory, initial objects are unique up to isomorphism.) A computable function

de�ned over one implementation can be lifted to any other implementation using

these translation functions. Therefore, all implementations are equally expressive,

and every implementation is in a sense `computationally complete'. Without the 	

functions being explicitly required of implementations I would not have this com-

putational completeness.

The standard mathematical representation for the carrier of a free abelian monoid

over S is the set of functions of �nite support of type S ! N. (A function has �nite

support if it returns 0 for all but a �nite number of elements of its domain.) A naive

translation of this into type theory gives the type

ff :(S ! N) j f has �nite supportg :
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This type is not good constructively since there is no way of computing a �nite

support of elements of this type and hence giving a computable de�nition for 	. To

make the �nite support explicit, one could use instead the type:

fhs; fi:FinSet(S)� (S ! N) j f has �nite support sg

or the type x; y:A-List(S;N

+

)==x permutation of y, where

A-List(T; T

0

)

:

= fz:(T�T

0

)List j all elements of z have distinct left sidesg:

The quotient type is needed here because my class de�nition for free abelian monoids

expects the equality associated with the carrier type of implementations to be the

monoid equality; for example, it requires that all functions taking elements of the

monoid carrier as arguments to respect this equality. However, one can have two

a-lists that represent the same monomial but that are distinct according to the stan-

dard equality on lists. If type FinSet(S) of �nite sets of elements of S is implemented

using lists, one would similarly have to use a quotient type to hide the list order.

Nuprl's quotient type is an important tool for abstraction because it hides struc-

tural detail. Consider verifying the correctness of functions in a class implementation

that use quotiented alists as described above. Nuprl's type theory forces one to show

that the functions' behaviors are independent of the order of pairs in elements of

the carrier, and so in this case the order is hidden.

3.3 The Polynomial Algebra

The de�nition of the class FMonAlg(G;A) of free monoid algebras over the abelian

monoid G and the ring A is similar in structure to that of the free abelian monoid:

FMonAlg(G;A)

:

= B:A-Algebra

� �:MonHom(G;B #

mmon

)

�B

0

:A-Algebra

! �:MonHom(G;B

0

#

mmon

)

! f!

^

�:A-AlgHom(B;B

0

) j � =

^

� � � g

where A-Algebra is the class of algebras over the ring A, #

mmon

is a forgetful

class morphism that projects out the multiplicative monoid of an algebra and

A-AlgHom(B;B

0

) is the type of A-Algebra homomorphisms from B to B

0

. As with

the free monoid algebra, I require the universal projection function to be an explicit

part of implementations.

I use this class to form polynomial algebras by supplying a free abelian monoid

of monomials for G and considering A as the ring of coe�cients. The addition

and multiplication operations of the free monoid algebra are then the standard

corresponding polynomial operations. A standard mathematical implementation of

the carrier of a free monoid algebra is as the set of functions of �nite support of

type G! A. One constructive implementation is:

x; y:A-List(G;A

�0

)==x permutation of y :

where A

�0

is the type of the non-zero elements of the ring carrier A. If G is a

monoid of monomials, then this implementation is considering polynomials as a-

lists of monomials and their coe�cients with the order of the a-lists quotiented out.
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Finally, by de�ning a polynomial algebra implementation to be a pair of the im-

plementation of monomials and the implementation of polynomials over the mono-

mials, I arrive at a de�nition of an class for polynomial algebras:

PolyAlg(S;A)

:

= M:FAbMon(S)

� FMonAlg(mon(M);A)

where S is an equality type for the indeterminates, A is the coe�cient ring and

mon(M) is a function that selects out the monoid part of the triple M.

I can de�ne functions that project out from implementations of PolyAlg(S;A)

the ring of polynomials and functions related to this ring. For example, injections

from A and S, and a universal summation/evaluation function over polynomials

that given a homomorphism from coe�cient ring A to some other ring B and an

assignment of values in B to the polynomial indeterminates, creates a function that

maps polynomials over A into B.

3.4 Choices in Making De�nitions

In algebra, subtyping relationships between algebraic classes are ubiquitous. With

the simplest form of subtyping, set subtyping, the underlying signatures are the same;

every member of the class of gaussian monoids is a member of the class of monoids.

A richer form of subtyping, forgetful subtyping, involves forgetting components of

signatures; every member of the class of groups can be considered a member of the

class of monoids if one forgets the inverse operation. Algebraic notation without

forgetful subtyping quickly becomes extremely cluttered with trivial forgetful class

morphisms. I can implement set subtyping with Nuprl's set type, but unfortunately,

the rigid nature of � types prevents me from implementing forgetful subtyping. An

ad-hoc partial solution that I've adopted for now is to minimize the number of

class signatures; in my implementation of the abelian monoid class, I actually use

the group signature class rather than a monoid signature class. When specifying

an inhabitant of the abelian-monoid class I then have to supply a dummy inverse

function.

There are numerous proposals [Wir90] for forms of dependent record types that

support forgetful subtyping. I am very interested in trying to adapt one of them to

Nuprl's type theory.

Many algebraic de�nitions have computational content when considered con-

structively. The free class de�nitions in Section 3 have these universal projection

functions. I have experimented with de�ning the permutation relation on lists such

that the computational content of the proposition `list x is a permutation of list y'

when the proposition is true is a permutation function that permutes list x into list

y. The content of a relation expressing membership of an element x of a commuta-

tive ring A in a �nitely-generated ideal ha

1

: : :a

n

i could be a list of elements c

1

: : : c

n

of A such such that x = c

1

a

1

+ : : : c

n

a

n

.

One challenge in writing class de�nitions is in deciding what computational

content to explicitly bring out and what to leave implicit. Consider the discussion

in Section 3.2 of alternative de�nitions for FAbMon(S). De�nitions become very

tedious if one takes a conservative approach and makes explicit all computational
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content. If the equality relation on the carrier type of members of algebraic classes

has computational content, then every predicate involving equality such as 8x; y: x+

y ) y + x or 8x; y: x = y ) y = x also has computational content. When de�ning

classes in Nuprl, I would have to include such predicates in my class signatures rather

than the right-hand-side of set types, and I would lose all set subtyping properties.

In Nuprl's type theory, the equality relation naturally associated with a type

corresponds to a unit type when true and a void type when false; its computational

content is always trivial. I have used these natural equality relations in all my class

de�nitions; I get set subtyping properties and get the bene�t of the built-in support

in Nuprl's type theory for these relations. An example of the built-in support is

that elements of function types always respect these equality relations. This design

decision seems in accord with current practice in constructive algebra [MRR88] and

in the computer algebra system Axiom [JS92] where much attention has been paid

to constructivity.

4 Practical Work

4.1 Theory Development

All the class de�nitions described in Section 3 have been entered into the Nuprl sys-

tem, but as yet I haven't proved much using them. I would like eventually to tackle

reasoning about algorithms in computational algebra and these algorithms assume

much more detailed structure than my de�nitions provide. For example, it is fun-

damental that every polynomial can be uniquely expressed as a sum of monomials.

The standard way of proving this involves �rst constructing a canonical implementa-

tion of the polynomial algebra class involving a representation of functions of �nite

support. I also need to reason about orderings on monomials.

My theory development e�orts to date have been mostly directed at building

up a set of foundational theories that are su�cient to support reasoning about

implementations of polynomials. Relevant theories I have developed include:

1. Permutations: I have shown that the set of permutation functions on a type

is a group and that every permutation on a �nite type can be expressed as

a composition of swaps. I have de�ned a permutation relation on lists and

shown that iterated abelian operations over lists respect this relation. This

theory of permutations supports the de�nition of �nite sets and multisets.

2. Gaussian Monoids: I have proven that every non-unit can be uniquely factor-

ized into primes up to associates and permutations.

3. Quotient algebras: I have developed the basic theory of normal subgroups

and ideals, have de�ned quotienting operations on groups and rings and have

started on proving isomorphism theorems.

One ongoing part of my work is developing a discipline for using Nuprl's quotient

types. Quotient types are needed for the carrier type in implementations of my

algebraic classes, as explained in Section 3. I am also relying on them to form

quotient algebras.
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4.2 Tactic Development

Tactics are functions in the programming language ML for executing proof develop-

ment strategies. Some examples are given in the next section. I identify three kinds

of tactics that I have developed that have been particularly useful in my algebraic

proofs to date.

1. Tactics for arithmetic reasoning. I have implemented a procedure for solv-

ing linear arithmetic problems and have augmented it to automatically take

advantage of the linear properties of non-linear arithmetic expressions (for ex-

ample the list length function). These tactics proved themselves invaluable

when reasoning about permutation functions (bijections on Nn ! Nn) and

the `select' function for picking the ith element from a list.

2. Tactics for rewriting with respect to equivalence relations. These tactics auto-

matically index into Nuprl's library to look up lemmas about which relations

functions respect. Example equivalence relations that I have come across in

algebra are the permutation relation on lists, the `associated' relation that

comes up in divisibility theory, and the `equal mod an ideal' relation that

comes up in ring theory.

3. Tactics for automating the proof of type inclusion relations. Sometimes these

tactics call on other tactics such as the arithmetic reasoning tactics when

integer subrange types were involved.

4.3 An Example Proof

To illustrate the level and style of reasoning in Nuprl I show in Figure 1 a proof

that free abelian monoids over a �xed set are unique up to isomorphism. Figure 2

gives the two lemmas that are explicitly referenced in the proof.

One proves a theorem in Nuprl by �rst entering it as a goal to be proved and

then repeatedly invoking tactics to break goals into simpler subgoals. In Figure 1,

the initial goal is indicated by 
1 and the tactics immediately follow each BY.

The logical formulas are shown exactly as they appeared when the theorem was

interactively proved. Goals and tactics are entered using a structured editor, so there

is no need for the notation to be completely unambiguous. For example, the |�|

is the carrier projection function for both elements of EqType and AbMonoid. Most

of the notation should be self-explanatory. The .inj and .umap post�x operators

project out the second and third components of elements of the FAbMonfig(S) class.

The display of the projection operator for the �rst component has been suppressed

to improve readability since it is obvious where it is used. (Visual notation can

be changed in Nuprl in a matter of seconds, so it is easy if desired to make it

visible.) The fig parameters specify the level of the carrier universe terms in the

class de�nitions and are implicitly universally-quanti�ed over.

At 
2 , univeral quanti�ers were stripped. The ... and ...a indicate appli-

cations of the Auto tactic that does certain obvious steps of inference and solves

well-formedness subgoals. Nuprl's type theory is su�ciently rich that the well-

formedness of expressions is in general undecidable and so well-formedness is checked

by proof. At
3 , the existential quanti�ers were instantiated by the given terms and

the de�nition Invfuns was split open into its two component parts. At 
4 , lemma
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free abmon unique:


1 ` 8S:EqTypefig

| 8M:FAbMonfig(S)

| 8N:FAbMonfig(S)

| 9f:MonHom(M,N). 9g:MonHom(N,M). InvFuns(|M|,|N|,f,g)

|


2 BY (UnivCD...a)

|

1. S: EqTypefig

2. M: FAbMonfig(S)

3. N: FAbMonfig(S)

` 9f:MonHom(M,N). 9g:MonHom(N,M). InvFuns(|M|,|N|,f,g)

|


3 BY (InstConcl ['M.umap N N.inj';'N.umap M M.inj']

| THENM D 0...a)

|n

| ` (N.umap M M.inj o M.umap N N.inj) = Idf|M|g 2 (|M| ! |M|)

| |


4 | BY (BLemma `free abmon endomorph is id`...a)

| |

| ` ((N.umap M M.inj o M.umap N N.inj) o M.inj) = M.inj 2 (|S| ! |M|)

| |


5 | BY (RW CompIdNormC 0

| THENM RewriteWith [] ``free abmon umap properties 1`` 0 ...)

|

` (M.umap N N.inj o N.umap M M.inj) = Idf|N|g 2 (|N| ! |N|)

|


6 BY ...

Figure 1: Proof of uniqueness of free abelian monoid up to isomorphism

free abmon umap properties 1:

8S:EqTypefig

8M:FAbMonfig(S)

8N:AbMonoidfig

8p:|S| ! |N|. ((M.umap N p o M.inj) = p 2 (|S| ! |N|))

free abmon endomorph is id:

8S:EqTypefig

8M:FAbMonfig(S)

8f:MonHom(M,M)

((f o M.inj) = M.inj 2 (|S| ! |M|))

) (f = Idf|M|g 2 (|M| ! |M|))

Figure 2: Supporting lemmas for free-abelian-monoid uniqueness proof
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free abmon endomorph is id was backchained through. In order to verify the in-

stantiation of f in this lemma, the Auto tactic automatically picked up on a lemma

stating that the composition of two homomorphisms is a homomorphism.

At
5 , RW CompIdNormC 0 normalized the function compositions (the o's) in the

conclusion, making them right-associated. CompIdNormC is a rewriting function for

normalizing expressions over the monoid hT ! T; o; Id(T )i for any type T . Its ML

de�nition is:

let CompIdNormC = MkMonoidNormC `comp id monoid wf` ;;

where comp id monoid wf is the name of a lemma that states that for all types

T , hT ! T; o; Id(T )i is a monoid . I have written functions for creating rewriting

function similar to MkMonoidNormC for algebras including groups, abelian groups

and rings. The RewriteWith tactic repeatedly rewrites with the indicated lemmas

and hypotheses. The tactics at 
5 completed this branch of the proof. The other

branch of the proof, 
6 , was proven with tactics identical to those at 
4 and 
5 .

5 Applications

5.1 Interaction with Computer Algebra Systems

I am exploring ways in which Nuprl could usefully interact with the Weyl computer

algebra system being developed here at Cornell [Zip93]. One scenario is for Nuprl

to behave as an algebraic oracle for the computer algebra system. In the course

of calculations, Weyl creates new instances of algebraic structures and sometimes

would like to decide which algorithm to use based on properties of these structures.

However the properties might require some theorem proving work to make them

apparent. This is where Nuprl comes in.

A simple trial example I am looking at concerns reasoning about rings over

integers, rationals and polynomials that have been quotiented by �nitely generated

ideals. A query might proceed as follows:

1. Weyl asks Nuprl Q1:\is the quotiented ring Z=(1009) an integral domain?"

2. Nuprl looks up a lemma about quotienting rings by ideals and reduces Q1 to

Q2:\is the principle ideal (1009) a prime ideal?"

3. Nuprl looks up a second lemma about when principle ideals over the integers

generated by positive numbers are prime ideals and reduces Q2 to Q3:\is the

natural number 1009 prime?"

4. Weyl happens to have an e�cient primality testing algorithm implemented,

so Nuprl asks Weyl Q3.

5. Weyl answers \yes" to Q3, and so Nuprl replies \yes" to Weyl's Q1.

Currently, Nuprl answers such queries by exhaustively forward and backward

chaining through a small database of lemmas. As I increase the size of the database,

I will be interested in exploring more e�cient inference strategies for answering

queries.

12



5.2 Algebraic Programming

I can use Nuprl's � type and set type to construct ADT class de�nitions in a way

similar to that which I used for the abelian monoid class in Section 3.2. I can treat

classes as an abstract speci�cations of submodules of a functional program and

verify the correctness of the program given an arbitrary implementations of these

classes. I also can verify the correctness of particular implementations of the classes.

Nuprl's type theory is therefore a good uniform framework for formally developing

structured functional programs using ADT's.

Moreover, I have shown in this paper that Nuprl's type theory is adequate for

de�ning free or initial classes. Final classes should be no more di�cult to construct.

The importance of this is that in the ADT community there has been a debate going

on about the relative merits of loose, initial and �nal algebraic speci�cations [Wir90].

In Nuprl, all three paradigms can be explored.

6 Conclusions

I have presented here some of the �rst steps I have taken in implementing abstract

algebra in an interactive theorem proving setting. To my knowledge, this is the �rst

attempt at developing a general theory of polynomial algebras in either a classical

or a constructive theorem proving environment. The de�nitions used in developing

the polynomial algebras illustrate the expressiveness of Nuprl's type theory, making

full use of its �,�, set and quotient types.

As I described in Section 5, the work has promising applications in the formal

development of software, as well as in the development of new more powerful and

more rigorous computer algebra systems.
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