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ABSTRACT
In this paper we report on our experiments in using the cur-
rently popular Smt (Sat Modulo Theories) solvers Yices [10]
and Cvc3 [1] and the Simplify theorem prover [9] to dis-
charge verification conditions (VCs) from programs written
in the Spark language [5]. Spark is a subset of Ada used
primarily in high-integrity systems in the aerospace, defence,
rail and security industries. Formal verification of Spark
programs is supported by tools produced by the UK com-
pany Praxis High Integrity Systems. These tools include a
VC generator and an automatic prover for VCs.

We find that Praxis’s prover can prove more VCs than
Yices, Cvc3 or Simplify because it can handle some rela-
tively simple non-linear problems, though, by adding some
axioms about division and modulo operators to Yices, Cvc3
and Simplify, we can narrow the gap. One advantage of
Yices, Cvc3 and Simplify is their ability to produce counter-
example witnesses to VCs that are not valid.

This work is the first step in a project to increase the
fraction of VCs from current Spark programs that can be
proved automatically and to broaden the range of properties
that can be automatically checked. For example, we are in-
terested in improving support for non-linear arithmetic and
automatic loop invariant generation.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—assertion checkers, formal methods; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs—mechanical verification, as-
sertions, invariants, pre- and post-conditions

General Terms
Experimentation, Performance, Verification
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1. INTRODUCTION
Smt (Sat Modulo Theories) solvers combine recent ad-

vances in techniques for solving propositional satisfiability
(Sat) problems [33] with the ability to handle first-order
theories using approaches derived from Nelson and Oppen’s
work on cooperating decision procedures [24]. The core
solvers work on quantifier free problems, but many also
can instantiate quantifiers using heuristics developed for the
non-Sat-based prover Simplify [9]. Common theories that
Smt solvers handle include linear arithmetic over the in-
tegers and rationals, equality, uninterpreted functions, and
datatypes such as arrays, bitvectors and records. Such the-
ories are common in VCs and so Smt solvers are well suited
to automatically proving VCs.

Smt solvers are currently used to prove Java VCs in the
Esc/Java2 [2] tool and C# VCs in the Spec# static program
verifier [6]. The Simplify prover was used to prove VCs in
the Esc/Modula-3 and original Esc/Java tools.

We evaluate here the current releases of two popular Smt
solvers: Cvc3 [1] and Yices [10]. Both these systems fea-
tured in the 2006 and 2007 SMT-COMP competitions com-
paring Smt solvers1 in the category which included handling
quantifier instantiation. We also evaluate Simplify because
it is highly regarded and, despite its age (the latest public
release is over 5 years old), it is still competitive with current
Smt solvers.

One advantage that Smt solvers and Simplify have over
Praxis’s Simplifier is their ability to produce counter-example
witnesses to VCs that are not valid. These counter-examples
can be of great help to Spark program developers and ver-
ifiers: they can point out scenarios highlighting program
bugs or indicate what extra assertions such as loop invari-
ants need to be provided. They also can reduce wasted time
spent in attempting to interactively prove false VCs.

The work reported here is the first step in a project to
improve the level of automation of Spark VC verification
and extend the range of properties that can be automati-
cally verified. Typical properties that Spark users currently
verify are those which check for the absence of run-time ex-
ceptions caused by arithmetic overflow, divide by zero, or
array bounds violations. Particular new kinds of properties
we are interested in include those which involve non-linear

1http://www.smtcomp.org/



arithmetic and which involve significant quantifier reason-
ing. A key obstacle to improving automation is the need
to provide suitable loop invariants. We are therefore inter-
ested in also exploring appropriate techniques for automatic
invariant generation.

Tackling Spark programs rather than say Java or C pro-
grams is appealing for a couple of reasons. Firstly, there is
a community of Spark users who have a need for strong as-
surances of program correctness and who are already writing
formal specifications and using formal analysis tools. This
community is a receptive audience for our work and we have
already received strong encouragement from Praxis. Sec-
ondly, Spark is semantically relatively simple and well de-
fined.

Notable earlier work on improving the verification of Spark
programs is by Ellis and Ireland [18]. They used a proof-
planning and recursion analysis approach to analyse failed
proofs of VCs involving loops to identify how to strengthen
loop invariants.

Some success has been had at NASA in using first-order
automatic theorem provers for discharging VCs [8]. A ma-
jor problem with such an approach is the poor support for
arithmetic in such provers. This work succeeds by axiomat-
ically characterising a fragment of linear arithmetic that is
just sufficient for the kinds of VCs encountered.

Section 2 gives more background on Spark. Section 3 de-
scribes the current implementation of our interface to Yices
and Cvc3. Case study programs are summarised in Sec-
tion 4 and Sections 5 and 6 present the results of experi-
ments on the VCs from these programs. Future work, both
near term and longer term is discussed in Section 7 and con-
clusions are in Section 8.

2. THE SPARK LANGUAGE AND TOOLKIT
The Spark [5] subset of Ada was first defined in 1988 by

Carré and Jennings at Southampton University and is cur-
rently supported by Praxis. The Ada subset was chosen to
simplify verification: it excludes features such as dynamic
heap-based data-structures that are hard to reason about
automatically. Spark adds in a language of program anno-
tations for specifying intended properties such as pre and
post conditions and assertions. These annotations take the
form of Ada comments so Spark programs are compilable
by standard Ada compilers.

A feature of Spark inherited from Ada particularly rel-
evant for verification purposes is the ability to specify sub-
types, types which are subranges of integer, floating-point
and enumeration types. For example, one can write:

subtype Index is Integer range 1 .. 10;

Such types allow programmers to easily include in their pro-
grams extra specification constraints without having to sup-
ply explicit annotations. It is then possible, either dynami-
cally or statically, to check that these constraints are satis-
fied.

The Examiner tool from Praxis generates verification con-
ditions from programs. Annotations are often very tedious
for programmers to write, so the Examiner can generate au-
tomatically some kinds of annotations. For example, it can
generate annotations for checking the absence of run-time
errors such as array index out of bounds, arithmetic over-
flow, violation of subtype constraints and division by zero.

As with Ada, a Spark program is divided into program
units, each usually corresponding to a single function or pro-
cedure. The Examiner reads in files for the annotated source
code of a set of related units and writes the VCs for each
unit into 3 files:

• A declarations file declaring functions and constants
and defining array, record and enumeration types,

• a rules file assigning values to constants and defining
properties of datatypes,

• a verification condition goal file containing a list of
verification goals. A goal consists of a list of hypothe-
ses and one or more conclusions. Conclusions are im-
plicitly conjuncted rather than disjuncted as in some
sequent calculi.

The language used in these files is known as Fdl.
The Simplifier tool from Praxis can automatically prove

many verification goals. It is called the Simplifier because it
returns simplified goals in cases when it cannot fully prove
the goals generated by the Examiner. Users can then resort
to an interactive proof tool to try to prove these remaining
simplified goals. In practice, this proof tool requires rather
specialised skills and is used much less frequently than the
Simplifier. To avoid the need to use the tool or to manually
review verification goals, users are often inclined to limit the
kinds of program properties they try to verify to ones that
can be verified by the Simplifier. They also learn program-
ming idioms that lead to automatically provable goals.

3. SMT SOLVER INTERFACE
Our interface program reads in the VC file triples output

by the Examiner tool and generates a series of goal slices. A
goal slice is a single conclusion packaged with its associated
hypotheses, rules and declarations. After suitable process-
ing, each goal slice is passed in turn to a selected prover,
at present one of Yices, Cvc3 or Simplify. The processing
includes:

• Handling enumerated types.

The Examiner generates rules that define each enu-
merated type as isomorphic to a subrange of the inte-
gers. Explicit functions defining the isomorphism are
declared and the rules for example relate order rela-
tions and successor functions on the enumeration types
to the corresponding relations and functions on the in-
tegers.

We experiment with 3 options:

1. Mapping each Fdl enumerated type to the enu-
merated type of the Smt solver. We keep the
rules since neither solver publically supports or-
dering of the elements of enumerated types.

2. Mapping each Fdl enumerated type to an ab-
stract type in the Smt solver, so the solver has to
rely fully on the supplied enumeration type rules
to reason about the enumeration constants.

3. Defining each enumeration type as an integer sub-
range, defining each type element as equal to an
appropriate integer, and eliminating all rules.



The last option generally gives the best performance,
but the first two are better from a counter-example
point of view: counter-examples involving the enu-
meration types are more readable since they use the
enumeration constants rather than the corresponding
integers.

• Resolving overloaded functions and relations.

For example, Fdl uses the same symbols for the order
relations and successor functions on all types. Reso-
lution involves inferring types of sub-expressions and
type checking the Fdl.

• Inferring types of free variables in rules and adding
quantifiers to close the rules.

Fdl is rather lax in declaring types of these variables
and so types must be inferred from context.

• Resolving the distinction between booleans as individ-
uals and booleans as propositions. The Fdl language
uses the same type for both, as does Yices. However,
Cvc3 and Simplify take a stricter first-order point of
view and require the distinction.

• Adding missing declarations of constants. Fdl has
some built-in assumptions about the definition of con-
stants for the lowest and highest values in integer and
real subrange types and we needed to make these ex-
plicit.

• Reordering type declarations so types are defined be-
fore they are used. Such an ordering is not required in
Fdl, but is needed by Yices and Cvc3.

We carry out all the above processing in a prover indepen-
dent setting as much as possible in order to keep the driver
code for individual provers compact and ease the develop-
ment of further drivers.

The match between the Fdl language of the Spark VCs
and the input languages of both Yices and Cvc3 is good.
The Fdl language includes quantified first-order formulae
and datatypes including the booleans, integers, reals, enu-
merations, records and arrays, all of which are supported by
both solvers.

At present we are interfacing to Yices and Cvc3 using
their C and C++ APIs respectively. An alternative is to
write goal slices to files in the specific input languages of
the respective solvers and call the solvers in sub-processes.
We take this latter approach with Simplify since it does not
have a readily-available C or C++ API.

Simplify’s input language is rather different from Fdl.
All individual expressions in Simplify are untyped except
for those which are arguments to arithmetic relations or are
the arguments or results of arithmetic operations - these
expressions are of integer type. We handle both arrays and
records using Simplify’s built-in axiomatic theory of maps.
For example, one axiom is stated as:

(FORALL (m i x)

(PATS (select (store m i x) i))

(EQ (select (store m i x) i) x)

)

Here the PATS expression is a hint used to suggest to Simplify
a sub-expression to use as a trigger pattern when search-
ing for matches that could provide instantiations. Handling

enumeration types is straightforward: the Fdl generated
by Praxis’s Examiner provides enough inequality predicates
bounding enumeration type values to allow the interpreta-
tion of enumeration types themselves as integers. A prob-
lem with Simplify is that all arithmetic is fixed precision.
We follow the approach taken when Simplify is used with
Esc/Java where all constants with magnitude greater than
some threshold are represented symbolically and axioms are
asserted concerning how these constants are ordered [21].

To aid in analysis of results, we provide various options for
writing information to a log file, as well as writing comma-
separated-value run summaries. These allow easy compar-
ison between results from runs with different options and
solvers.

4. CASE STUDY SPARK PROGRAMS
For our experiments we work with two readily available

examples.

• Autopilot: the largest case study distributed with the
Spark book [5]. It is for an autopilot control system
for controlling the altitude and heading of an aircraft.

• Simulator: a missile guidance system simulator writ-
ten by Adrian Hilton as part of his PhD project. It is
freely available on the web2 under the GNU General
Public Licence.

Some brief statistics on each of these examples and the cor-
responding verification conditions are given in Table 1. The

Autopilot Simulator
Lines of code 1075 19259
No. units 17 330
No. annotations 17 37
No. VC goals 133 1799
No. VC goal slices 576 6595

Table 1: Statistics on Case Studies

lines-of-code estimates are rather generous, being simply the
sum of the number of lines in the Ada specification and body
files for each example. The annotations count is the number
of Spark precondition and assertion annotations in all the
Ada specification and body files. No postconditions were
specified in either example.

In both cases the VCs are primarily from exception free-
dom checks, e.g. checking that arithmetic values and array
indices are always appropriately bounded.

The VCs from both examples involve enumerated types,
linear and non-linear integer arithmetic, integer division and
uninterpreted functions. In addition, the Simulator example
includes VCs with records, arrays and the modulo operator.

5. EXPERIMENTAL RESULTS
Results are presented for the tools

• Yices 1.0.9,

• Cvc3 development version 20071001,

• Simplify 1.5.4,

2http://www.suslik.org/Simulator/index.html



Yices CVC3 Simplify Simplifier
proven 510 88.5% 518 89.9% 516 89.6% 572 99.3%
unproven 66 11.5% 58 10.1% 60 10.4% 4 0.7%
timeout 0 0 % 0 0 % 0 0 % 0 0 %
error 0 0 % 0 0 % 0 0 % 0 0 %
total 576 576 576 576

Table 2: Coverage of Autopilot goal slices

Yices CVC3 Simplify Simplifier
proven 6004 91.0% 6074 92.1% 5940 90.1% 6410 97.2%
unproven 591 9.0% 337 5.1% 646 9.8% 185 2.8%
timeout 0 0 % 184 2.8% 0 0 % 0 0 %
error 0 0 % 0 0 % 9 0.1% 0 0 %
total 6595 6595 6595 6595

Table 3: Coverage of Simulator goal slices

• Simplifier 2.32, part of the 7.5 release of Praxis’s tools.

We needed a development version of Cvc3 as the latest avail-
able release (1.2.1) had problems with a significant fraction
of our VCs.

Unless otherwise stated, the experiments were run on a
3GHz Pentium 4D CPU with 1GB of physical memory run-
ning Linux Fedora Core 6. We used the translation option
to eliminate the enumeration type occurrences, as this yields
the best performance. With Simplify, the threshold for mak-
ing constants symbolic was set at 100,000.

The coverage obtained with each tool is summarised in
Tables 2 and 3. The tables show the results of running
Yices, Cvc3, Simplify and Praxis’s Simplifier on each goal
slice from the VCs in each of the case studies. The proven
counts are for when the prover returned claiming that a goal
is true. The unproven counts are for when the prover re-
turned without having proven the goal. The timeout counts
are for when the prover reached a time or resource limit.
The only limit reached in the tests was a resource limit for
Cvc3: Cvc3 usually reached the set limit of 100,000 in 8-10
sec. This limit was only specified for the Cvc3 runs on the
Simulator VCs. The error counts are for when the prover
had a segmentation fault, encountered an assertion failure or
diverged, never reaching a resource limit after a few minutes.

To indicate the performance of each prover, we have gath-
ered and sorted run times of each prover on each goal slice.
Table 4 shows the run times at a few percentiles. ‘TO’

Autopilot Simulator
Yices Cvc3 Smpfy Yices Cvc3 Smpfy

50% .01 .02 .01 .01 .05 .04
90% .02 .04 .02 .03 .11 .07
99% .02 4.75 .03 .04 TO .08
99.9% .16 .08
max. .03 17.20 .03 .56 >10 .09

Table 4: Run time distributions (times in sec.)

indicates that the timeout resource limit was reached. With
the Cvc3 Simulator runs, this was reached at the 97% level.

Numbers are not given for the Simplifier in this table as it
does not provide a breakdown of its run time on individual
goal slices.

Table 5 provides a comparison of the total run times of

Autopilot Simulator
Yices 5.63 109.6
Cvc3 83.11 2928.0
Simplify 8.09 293.1
Simplifier 6.51 226.9

Table 5: Total run times (sec)

each prover on all goal slices. These times also include the
overhead time for reading in the various VC files and suitably
translating them. For Yices and Cvc3, this overhead is at
most a few percent.

The number for Praxis’s Simplifier running on the Sim-
ulator goal slices is an estimate based on running a Solaris
version of the Simplifier on a slower SPARC machine and ob-
taining a scaling factor by running both Solaris and Linux
versions on the Autopilot goal slices. Praxis only release a
Linux version of the Simplifier for demonstration purposes,
and this version cannot handle the size of the Simulator ex-
ample.

Both the total and individual goal slice times for Simplify
appear to be significant over-estimates of the time spent ex-
ecuting Simplify’s code. For example, a preliminary inves-
tigation shows that for only 15-30% of the total run times
for the Simplify tests is the CPU in user mode executing
the child processes running Simplify. Much of the rest of
the time seems to be spent in file input/output (communi-
cation with Simplify is via temporary files) and sub-process
creation and clean-up.

6. DISCUSSION OF RESULTS

Coverage.
All the goal slices unproven by Yices, Cvc3 or Simplify,

but certified true by Praxis’s Simplifier, involve non-linear
arithmetic with some combination of non-linear multiplica-
tion, integer division and modulo operators. These slices
nearly all involve checking properties to do with bounds on
the values of expressions. It is fairly simple to see these prop-
erties are true from considering elementary bounding prop-
erties of arithmetic functions, for example, that the product
of two non-negative values is non-negative. See the section
below on incompleteness for a discussion of an experiment



involving adding axioms concerning bounding properties.
The 4 Autopilot goal slices unproven by Simplifier are all

true. They all have similar form: for example, one goal slice
in essence in Fdl syntax is:

H1: f > 0 .

H2: f <= 100 .

H3: v >= 0 .

H4: v <= 100 .

->

C1: (100 * f) div (f + v) <= 100 .

The 2.8% Simulator goal slices unproven by Simplifier ap-
pear to be nearly all false. They are derived from 47 of the
330 Simplifier sub-programs. The author of the Simulator
case study code had neither the time nor the need to ensure
that all goal slices for all sub-programs were true.

The slightly better coverage obtained with Cvc3 over Yices
on the Autopilot example is partly because Yices prunes
any hypothesis or conclusion with a non-linear expression,
whereas Cvc3 accepts non-linear multiplication and knows
some properties of it. For example, it proved the goal slices:

H1: s >= 0 .

H2: s <= 971 .

->

C1: 43 + s * (37 + s * (19 + s)) >= 0 .

C2: 43 + s * (37 + s * (19 + s)) <= 214783647 .

Run times.
As can be seen from the distributions, Yices, Cvc3 and

Simplify all have run times within a factor of 5 of each other
on many problems. Cvc3’s total run times at 15-20× those
of Yices seems to be due to it trying for longer on problems
where it returns unproven or timeout results: all but 16 of
the problems it proves are proven in under 0.11s.

The performance of Simplify is impressive, especially given
its age (the version used dates from 2002) and that it does
not employ the core Sat algorithms used in the Smt solvers.
Part of this performance edge must be due to the use of
fixed-precision integer arithmetic rather than some multi-
precision package such as gmp which is used by Yices and
Cvc3. Also, the goal slices typically have a simple proposi-
tional structure and it seems that relatively few goals involve
instantiating quantifiers which brings in more propositional
structure.

Soundness.
The use of fixed-precision 32-bit arithmetic by Simplify

with little or no overflow checking is rather alarming from a
soundness point of view. For example, Simplify will happily
prove:

(IMPLIES

(EQ x 2000000000)

(EQ (+ x x) (- 294967296))

)

As mentioned earlier, an attempt to soften the impact of
this soundness when Simplify was used with Esc/Java in-
volved replacing all integer constants with magnitude above
a threshold by symbolic constants. When we tried this ap-
proach with a threshold of 100,000, several examples of false
goal slices were certified ‘true’ by Simplify. These particu-
lar goals became unproven with a slightly lower threshold of
50,000.

One indicator of when overflow is happening is when Sim-
plify aborts because of an assertion failure. All the reported
errors in the Simplify runs are due to failure of an asser-
tion checking that an integer input to a function is positive.
We guess this is due to silent arithmetic overflow like in the
above example. We investigated how low a threshold was
needed for eliminating the errors with the Simulator VCs
and found all errors did not go away until we reduced the
threshold to 500.

To get a handle on the impact of using a threshold on
provability, we reran the Yices test on the Simulator exam-
ple using various thresholds. With 100,000 the fraction of
goals proven by Yices dropped to 90.8%, with 500 to 90.4%
and with 20 to 89.6%. Since Yices rejects any additional
hypotheses or conclusions which are made non-linear by the
introduction of symbolic versions of integer constants, these
results indicate that under 2% of the Simulator goal slices
involve linear arithmetic problems with multiplication by
constants greater than 20.

Timeouts.
To enable working through large sets of problems in rea-

sonable times, it is very useful to be able to interrupt runs
after a controllable interval. We found the resource limit of
Cvc3 allowed fairly reliable stopping of code.

The Yices developers recommended an approach involving
using timer interrupts and setting a certain variable in the
interrupt handler. However, this feature depended on using
an alternate API to the one we used, and this alternate
API did not support the creation of quantified formulae.
Fortunately, we have not yet needed a timeout feature with
our runs of Yices.

We did implement a timer-driven interrupt feature for
stopping subprocesses which might be useful for stopping
Simplify at some in the future.

Robustness.
When working with an earlier version of Cvc3, we had

significant problems with it generating segmentation faults
and diverging. Because of our interface to Cvc3 through its
API, every fault would bring down our iteration through the
goal slices of one of the examples. We resorted to a tedious
process of recording goal slices to be excluded from runs in
a special file, with a new entry manually added to this file
after each observed crash or divergence. Fortunately the
Cvc3 developers are responsive to bug reports.

We have found Yices pleasingly stable: to date we have
observed only one case in which it has generated a segmen-
tation fault. (This occurred in an experiment not reported
in the figures here.)

One incentive for running provers in a subprocess is that
the calling program is insulated from crashes of the subpro-
cess.

Incompleteness.
As a first step towards improving the coverage possible

with Yices, Cvc3 and Simplify, we added axiomatic rules
describing the bounding properties of the integer division



Yices CVC3 Simplify
proven 554 96.2% 554 96.2% 560 97.2%
unproven 22 3.8% 0 0 % 16 2.8%
timeout 0 0 % 12 2.1% 0 0 %
error 0 0 % 10 1.7% 0 0 %
total 576 576 576

Table 6: Autopilot coverage with div & mod rules

Yices CVC3 Simplify
proven 6216 94.3% 6256 94.9% 6045 91.7%
unproven 379 5.7% 108 1.6% 388 5.9%
timeout 0 0 % 231 3.5% 0 0 %
error 0 0 % 0 0 % 162 2.5%
total 6595 6595 6595

Table 7: Simulator coverage with div & mod rules

and modulo operators:

∀x, y : Z. 0 < y ⇒ 0 ≤ x mod y

∀x, y : Z. 0 < y ⇒ x mod y < y

∀x, y : Z. 0 ≤ x ∧ 0 < y ⇒ y × (x÷ y) ≤ x

∀x, y : Z. 0 ≤ x ∧ 0 < y ⇒ x− y < y × (x÷ y)

∀x, y : Z. x ≤ 0 ∧ 0 < y ⇒ x ≤ y × (x÷ y)

∀x, y : Z. x ≤ 0 ∧ 0 < y ⇒ y × (x÷ y) < x + y

Rules characterising ÷ and mod when their second argu-
ment is negative can also be formulated, but these were not
needed for our examples.

The coverage obtained with these additional rules is shown
in Tables 6 and 7.

The observed total run times of the provers were 15-30%
slower than without the additional rules.

The extra goal slices proven nearly all involve integer divi-
sion with a constant divisor. Such instances of division yield
instances of the axioms with linear multiplications which the
provers can then work with. Most remaining unproven goal
slices that were proved true by the Simplifier involved non-
constant divisors or non-linear multiplications. We have ex-
perimented a little with adding in axioms involving inequal-
ities and non-linear multiplication, but so far have not had
much success. A problem is phrasing the axioms so that the
instantiation heuristics, perhaps guided by explicit identi-
fication of sub-expressions to use for matching, can work
productively.

7. FUTURE WORK

7.1 Near term work with SMT solver inter-
face

One objective in the next month or two is to get the in-
terface code into a state in which we can publically release
it.

We expect that the main initial use will be in exploiting
the counter-example capability to debug code and specifica-
tions. Spark users would be reluctant to trust direct judge-
ment provided by Smt solvers on goal slice truth. However
Praxis’s interactive prover has been through some certifi-
cation process and a worthwhile sub-project would be to
translate proof objects output by e.g. Cvc3 into commands

for the interactive prover. Ellis and Ireland in their work
also generated proof scripts for the interactive prover from
their proof plans that successfully proved VCs.

Another objective is to establish an automatic means for
translating Spark VCs into the SMT-LIB format. This
ought to be straightforward given Cvc3’s capabilities for
dumping problems in this format. This would provide a
useful way of augmenting the SMT-LIB with the VCs from
Spark code examples such as the Simulator and Autopilot
used in our evaluation.

We also eventually would like to try further examples. A
problem is the dearth of medium or large Spark examples
in the public domain. Praxis have access in house to some
suitable interesting examples, and we hope through collab-
oration and site visits to also experiment with these.

7.2 The larger picture
Three areas we are considering exploring are non-linear

arithmetic, improved quantifier support and automatic in-
variant generation. Improvements in these areas would be
of significant help in increasing the level of automation of
VC proof, especially for VCs coming from typical Spark
applications.

Currently we have identified some major lines of relevant
work in each area, but have not yet narrowed down on which
approaches would be most productive to pursue.

Below we survey some of the literature we have come
across on reasoning in these areas and speculate on archi-
tectures we might adopt for a full verification system.

7.2.1 Non-linear arithmetic
We are interested in being able to prove problems involv-

ing non-linear arithmetic over both the integers and reals.
Arithmetic on the reals is of interest for several reasons. Real
problems are easier to decide than integer problems and the
kinds of integer arithmetic problems that frequently come
up in VCs are often also true over reals. Often algorithms
for solving integer problems extend algorithms for real prob-
lems. For example, this is the case with integer linear pro-
gramming and mixed integer real non-linear programming.
Real arithmetic is also of interest because it is often used to
approximate floating-point arithmetic.

The theory of real closed fields (first order formulae over
equalities and inequalities involving polynomials over reals)
is decidable and decision procedures involving cylindrical al-
gebraic decomposition are under active development [16].
These procedures have high time complexities and are usu-
ally only practical on small problems. As we have not yet
identified programs yielding interesting VCs in this class, it
is difficult to say whether such procedures could be useful
to us.

There is much promising work on incomplete proof tech-
niques for quantifier free problems involving polynomials
over real numbers. These techniques are observed to be
sufficient for problems that come up in practice that are
significantly larger than can be handled by complete tech-
niques. For example, Tiwari has investigated using Gröbner
bases [30], Parrilo uses sum of squares decompositions and
semi-definite programming (a non-linear extension of linear
programming) [26] and the Acl2 theorem prover has exten-
sions to support some non-linear resoning [17].

Akbarpour and Paulson are currently exploring heuristi-
cally reducing problems involving functions such as sine, ex-



ponentials and logarithms to real closed field problems [3].
We have not come across specific work addressing reason-

ing with integer division and modulo operators. Since these
operators can be fully characterised in terms of integer ad-
dition and multiplication with a few first order axioms, we
hope that it might be possible to make significant headway
with some appropriate combination of first-order reasoning
and reasoning about integer polynomial arithmetic. Any
such techniques will almost certainly be heuristic in nature,
since the problem of solving equations involving polynomials
with integer coefficients (Diophantine equations) is undecid-
able.

7.2.2 Quantifiers
The support for first-order reasoning in the Simplify prover

and Smt solvers such as Yices and Cvc3 is certainly very
useful, but it falls far short of what automated first-order
provers are capable of.

Integrating refutation complete first-order provers with
reasoning in specific theories such as integer linear arith-
metic is known to be a very hard problem.

A promising new direction in first order theorem prov-
ing research is that of applying instantiation-based meth-
ods [13]. Here the aim is to produce refutation complete
procedures for first order logic which work by running a
Sat solver on successively larger ground instantiations of
first-order problem. Given that Smt solvers also use Sat
solver algorithms at heart, a natural question that several
have asked is whether instance-based and Smt algorithms
could be fruitfully combined. Such a combination may well
be substantially incomplete, but could still be very useful in
practice.

7.2.3 Invariant generation
The need and opportunities for automatic support in the

inference of loop invariants have long been recognised [32].
In the last decade there has been a revival in interest in the
problem [7, 31].

Flanagan and Leino [11] demonstrate a lightweight gen-
erate and test approach for the Esc/Java system: a large
number of candidate annotations are generated, inspired by
the program structure, and the VC prover then prunes these
down.

The technique of predicate abstraction [14], a form of ab-
stract interpretation, has been very useful in software model
checkers such as Microsoft’s Slam [4] and Berkeley’s Blast [15].
Flanagan and Qadeer [12] explain how to use predicate ab-
straction to generate loop invariants. An interesting feature
of their work is the ability to infer loop invariants with quan-
tifiers, something often necessary when verifying programs
involving arrays.

Leino and Logozzo [20] use failure of the VC prover to
guide the refinement of conjectured loop invariants just for
those program executions associated with the failure. Whereas
this work employs abstract interpretation, McMillan [22]
achieves a somewhat similar end through the use of Craig
interpolants.

Nearly all the above cited work focusses on invariants in-
volving only linear arithmetic expressions. Recently Gröb-
ner basis techniques have been used for handling polynomial
arithmetic expressions over the reals [28, 19].

As mentioned in the introduction, Ellis and Ireland [18]
have used proof-planning to identify how to strengthen loop

invariants.

7.2.4 Verification system architectures
How can different approaches to proving VCs be success-

fully integrated? One approach is to use a theorem proving
environment for programming strategies for refining proof
goals and for interfacing to individual provers such as Smt
provers, non-linear arithmetic provers and first-order provers.
Theorem proving environments allow for rapid experimenta-
tion with proof strategies and already have many individual
provers of interest either linked in or built in. This approach
of using a programmable theorem proving environment as a
hub prover was advocated in the Prosper project [23] and
is employed in the Forte system at Intel [29]. Theorem prov-
ing environments that look appealing for such a role include
Isabelle [25], Hol, Hol Light and Pvs.

A finer grain approach might be to investigate adding new
procedures as extra theory solvers within an Smt solver. For
example, maybe a non-linear arithmetic procedure could be
integrated into an Smt solver.

Exploring techniques for invariant generation will require
program analysis capabilities and collaboration between a
variety of different reasoning tools. Sri have proposed an
evidential tool bus as an architecture for linking together
verification components [27]. They have expressed a spe-
cific interest in it being used for generating invariants and
supporting software verification. It would be very interest-
ing if we could make use of this and possibly assist in its
development.

8. CONCLUSIONS
We have presented some preliminary encouraging results

in using the state-of-the-art Smt solvers Yices and Cvc3
and the Simplifier prover to discharge verification conditions
arising from Spark programs.

Around 90% of the problems we examined involved no
non-linear arithmetic reasoning and were usually solved in
under 0.1s by all tools. Another 3-7% were solvable when
simple axioms were added concerning bounding properties
of the modulo and integer division operators. Many of the
remaining true problems are of a slightly more essential non-
linear character and are beyond what is provable by the tools
even with these axioms. However these problems are mostly
still easy to see true, and Praxis’s Simplifier prover appears
able to handle them in most cases.

We expect shortly to publically release the code we have
developed so Spark users can experiment with it. Our
code will also soon provide an easy way of producing Smt
challenge problems in the standard SMT-LIB format from
Spark program VCs.

Longer term, we see this work as a first step in a research
programme to improve the level of automation in the formal
verification of programs written in Spark and Spark like
subsets of other programming languages.
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