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1 Introduction1.1 BackgroundIt is widely believed that we know how to formalize large tracts of classicalmathematics | namely write in the style of Bourbaki [4] using some versionof set theory and �ll in all the details. Indeed, the Journal of FormalizedMathematics publishes results formalized in set theory and checked by theMizar system. Despite this belief and the many formalizations accomplished,massive formalization is not a fait accompli; many challenges remain in suchareas as the organization of large databases of mathematics and the raisingof the level of automation.In contrast, there is no general agreement on how to formalize computationalmathematics. Even worse, few people appreciate that this is a signi�cantnew problem (see [5]). Our interest is in examining whether some kind ofconstructive type theory is an appropriate formalism.There are two immediately-appealing aspects of constructive type theories.Firstly, they have built-in a functional programming language in which al-gorithms can be expressed. Secondly, propositions can be read as claimingthe existence of functional programs and data, and if some proof can be givenof a proposition, the corresponding programs and data can be automaticallysynthesized (or sometimes we say extracted) from the proof. For example,from the proof of 8x 2 S: 9y 2 T: P (x; y), we can synthesize a functionalprogram that, when given any element s of type S as data, can computesome t of type T such that proposition P (s; t) holds. We sometimes call theprograms and data that can be synthesized from proofs of some propositionthe computational content of the proposition.There is a tradeo� in gaining this extra expressivity: fewer truths can beproven in logics based on constructive type theories than in classical logic.For example, the propositions P , ::P , and P _:P are no longer true forarbitrary propositions P . For introductory material on constructive typetheory, consult [30] or [10].The particular constructive type theory we are working with is similar toone of Martin-L�of's [24], and is implemented in the Nuprl proof develop-ment system [6, 20]. Nuprl provides an environment for assembling theoriesconsisting of de�nitions, theorems, and proofs. It also has an interpreter forexecuting the functional programs that users write and that are synthesizedfrom proofs.Previous topics we have experimented with in Nuprl include elementarynumber theory [17], elementary analysis [9], and the algebra of polynomi-als [20]. 2



1.2 Choice of TopicAutomata theory is an appealing topic for formalization because of its cent-ral role in computer science. Recently, we have been considering whetherwe could formalize a whole book on automata theory such as Hopcroft andUllman's Formal Languages and their Relation to Automata [15]. Such aformalization could have signi�cant pedagogical value: it could serve as anovel hypertext reference for students studying automata theory, and wouldstand as a corpus of familiar examples for any computer scientist interestedin formalization techniques.We report in this article on a preliminary step in this direction, namely, theformalization in Nuprl of the Myhill-Nerode theorem on the existence anduniqueness of minimum �nite automata. We based the formalization on thepresentation in the book cited above. We chose this theorem because it isone of the �rst signi�cant theorems in the book, and because it involvescomputationally interesting constructions.Automata theory was previously explored in Nuprl by Christoph Kreitz in1986 [22]. In particular, he proved the pumping lemma for �nite automata.We saw that we needed this lemma for our constructivization of the Myhill-Nerode theorem, and so reproved it using Nuprl's current tactic collection.We therefore could compare the currently achievable level of automationwith that achievable in 1986.An under-explored aspect of Nuprl's type theory is its novel quotient types(see Section 4.3). Jackson, for example, had experimented with these previ-ously [20], but we still didn't have much experience with how best to reasone�ciently with them. The heart of the Myhill-Nerode theorem involves aquotient construction, and so provided a good opportunity to gain moreexperience.1.3 Value of the FormalizationReaders can evaluate the formal text on the Web that resulted from ourformalization e�orts. It is possible to directly judge whether our de�nitionsare faithful to Hopcroft and Ullman's, whether the formal de�nitions helpclarify the concepts, whether the proofs are su�ciently readable and inform-ative, and whether the availability of detail about all proof steps is useful.The formal material also provided the underpinning for this article in thatour de�nitions and proof summaries refer to the complete formal library.The material can be the foundation for other documents that explain thedetailed proofs. We have not yet produced such documents for the automatalibrary (but see Section 9), however, there are examples of this genre of writ-ing in the Formal-Courseware section of the Nuprl home page. For example,3



Stuart Allen has produced a hybrid style of formal and informal proof toaccompany the basic theorems about functions proved by Paul Jackson andused extensively in this formalization.There are other aspects and by-products of our formalization that cannot bedirectly evaluated by reading the formal text; they require experience withthe system. In this category is the experience of con�dence in the results thatcomes from learning to trust Nuprl. We know that reading results checkedby both a human and a machine raises con�dence in their correctness, similarto the added con�dence gained by having a trusted colleague check a result.Another value of the formalization is the interactivity provided by the under-lying system. For example, Nuprl can show dependencies among theoremsand de�nitions, and it can execute algorithms extracted from proofs. Userscan experiment with alternate proofs and can observe the e�ect on the ex-tracted programs.In addition to the readable and highly reliable interactive formal text, theformalization has created an interesting digital artifact. The formal theorybecomes an object that we can manipulate, measure, transform and explore.To experience these capabilities, one must learn to use a system like Nuprl.1.4 Interpretations of the MathematicsNuprl's type theory can be interpreted in several ways. In the semanticsgiven by Allen [1], all functions are computable. The type theory is there-fore compatible with recursive mathematics in which all functions are givenby Turing machines. Every theorem in Nuprl can be seen as a theorem ofrecursive mathematics, but the converse is not true; the type theory is suf-�ciently weak that non-classical results in recursive mathematics, such asthat every function from R to R is continuous, are not provable.Howe has given a set-theoretic interpretation of Nuprl's type theory thatshows that every theorem provable in Nuprl can be read as a theorem of clas-sical mathematics [19]. This interpretation includes all non-computationalset-theoretic functions in the denotation of function types.Having both classical and recursive interpretations makes Nuprl a suitabletool for formalizing constructive mathematics in the style advocated byBishop [2].1.5 Electronic Access to FormalizationThe key ideas of the formalization are presented in this article in a self-contained way. To �nd out more, the reader is invited to browse the full4



formalization on the World Wide Web. Start by visiting the Nuprl project'shome page at URLhttp://www.cs.cornell.edu/Info/Projects/NuPrl/nuprl.htmlFrom there, the reader can access hypertext presentations of both the workpresented in this article and other more recent work in automata theory.Nuprl itself is free software that can be obtained from this web site. It runson a freely-available version Allegro Common Lisp under Linux as well asfree CMU Common Lisp under Unix.1.6 Related workA non-constructive set-theoretic formalization of minimization theorems forMoore and Mealy automata has been done in the Mizar system [21]. Thisclosely follows a presentation in Denning, Dennis Qualitz [8].Theorems asserting the equivalence between deterministic (DFA) and non-deterministic (NFA) �nite state automata, and between NFAs with andwithout epsilon moves, were proven in Nqthm [31], and subsequently inPVS [28]. These formalizations were based on theorems 2.1 and 2.2 in [16].Notably, a 
aw was found in the textbook proof of theorem 2.2. The form-ation of DFA states from sets of NFA states was signi�cantly more com-plicated in the constructive Nqthm proofs than the non-constructive PVSproofs. Part of the di�culty in the Nqthm proofs was in modelling �nitesets using lists, and handling the equality of lists considered as sets. Wewouldn't expect to have this di�culty in Nuprl because, as shown in [20],we can take advantage of Nuprl's quotient type to appropriately rede�ne theequality relation on lists.Quotient types have been explored in the ECC constructive type theoryby Hofmann [14], and probably most of the development presented in thisarticle could be straightforwardly formalized in the LEGO mechanization ofECC [27]. One major di�erence between ECC and Nuprl is that, in ECC,both explicitly written and synthesized programs must be embellished withparts that are unimportant for computation, but necessary for proofs ofcorrectness.1.7 OutlineIn Section 2 we present the basic ideas from Nuprl needed for this article.Section 3 de�nes the notion of a formal language, and Section 4 providesthe preliminaries on automata. Section 5 proves the Myhill-Nerode theorem,5



and Section 6 presents a corollary which makes explicit the construction andproperties of the minimum automata introduced in the course of provingthe Myhill-Nerode theorem. Section 7 discusses various issues that came up,Section 8 summarizes our results, and Section 9 presents our conclusions andoutlines future work. Finally, Appendix A provides an index for notation.All the material on languages and automata closely follows that in Chapter 1and Sections 3.1 and 3.2 of Hopcroft and Ullman [15].2 Type Theory Preliminaries2.1 Basic TypesThe integers Z are a primitive type of Nuprl. De�ned subtypes of the integersinclude the bounded-below range fi : : :g == fj : Z j i � jg, the naturalsN == f0 : : :g, and the �nite types Nk == fn : N j n < kg. (In Nuprlnotation, we use == for de�nitional equality).The Booleans B are de�ned type. For the purposes of this article the exactde�nition is unimportant. The canonical elements of B are tt and � denotingtrue and false respectively. As explained in Section 2.6, boolean expressionsand propositions are distinct. The pre�x operation " converts a booleanexpression to a proposition.2.2 Recursive TypesThe only recursive type relevant here is the list type. Given any type A, thetype A list is the type of �nite sequences of elements of type A. The emptylist is nil . Lists are constructed using an in�x \." constructor, often referredto as \cons". Given an element a of type A and a list l of type A list , consforms a new list a:l. The functions hd (head) and tl (tail) take lists apart.They satisfy the equations hd(a:l) = a and tl(a:l) = l. The boolean-valuedfunction null tests whether a list is empty. The in�x append operation @joins two lists together.2.3 Product TypesIf A and B are types, then so is their cartesian product , A�B. The elementsof A � B are ordered pairs, ha; bi with a 2 A and b 2 B. The product andpairing operation are assumed to associate to the right, so we write A�B�Cfor A� (B � C), and ha; b; ci for ha; hb; cii.The product type is a special case of a dependent product type, also knownas a � type. In this type, the type of the second component of pairs candepend on the �rst component of pairs.6



2.4 Function TypesIf A and B are types, then A! B denotes the type of all total computablefunctions from A to B. The canonical elements of this type are lambdaterms, �x: b. Let b[a=x] denote the substitution of the term a for all freeoccurrences of x in b. For �x:b to be a function from A to B, its value b[a=x]must be of type B for all arguments a of type A. If f 2 A! B and a 2 A,then f a denotes the application of f to argument a.The function type is a special case of a dependent function type, also knownas a � type. The type of an application of a function in a dependent functiontype can depend on the argument the function is applied to. There are noexamples of dependent function types in this article.2.5 Recursive Function De�nitionsA recursive function de�nition in Nuprl is written lhs ==r rhs , where lhs isthe function being de�ned, and rhs may include instances of lhs as subterms.For example, the list append operation @ can be de�ned withu@v ==r if null(u) then v else hd(u):(tl(u)@v):Recursive functions are created using the Y recursion combinator, whichis de�nable since Nuprl's computation language is untyped. Immediatelyafter introducing a recursive de�nition, we prove a well-formedness lemmashowing that evaluation of the de�nition on arguments in speci�ed typesalways terminates and gives a result in a speci�ed type. The lemma for @is ` 8A : U: 8u; v : A list : u@v 2 A list :2.6 Propositions and UniversesIn so-called \classical" accounts of logic, a proposition has a truth value inB , and propositions can be treated as boolean expressions. We are interestednot only in the truth value of propositions, but also in their computationalsense; how they can be seen as speci�cations for programs. To support thiscomputational view, it is necessary for us to have a type P of propositionsdistinct from B .There are two distinguished atomic propositions, > the canonically true oneand ? the canonically false one. Given propositions P;Q we can form com-pounds in the usual way: 7



P ^Q for \P and Q ",P _Q for \P or Q",P ) Q for \P implies Q" also written \P only if Q",P , Q for \P if and only if Q" also written \P i� Q".Negation, :P , is de�ned as P )?.A propositional function on a type T is any map P 2 T ! P: Given such aP , then we can form the propositions:8x :T: P x \for all x of type A; P x holds,"9x :T: P x \for some x of type A; P x holds."Associated with every type T is the atomic equality relation x = y in T .The de�nition of this equality is given with each type. Often, the in T isdropped; it usually can be inferred from consideration of x or y.Types in Nuprl are members of universe types. Nuprl has a hierarchy ofuniverse types to avoid the problem of a universe type being a member ofitself. There happens also to be a corresponding hierarchy of propositiontypes. For the purposes of this article, it is su�cient that we use U to denotesome typical universe type and P to denote some typical type of propositions.See [6] or [20] for fuller accounts of Nuprl's logic and universe types.2.7 SubtypesIf T is a type and P 2 T ! P is a propositional function, then fx :A j P xgdenotes the type of all elements of A satisfying P . Looking at this subsettype from a constructive point of view, it's important to note that when weassume that we have some element a in this type, we don't have any accessto the computational content of the the proposition P x, even though weknow it to be true. Further discussion of the subset type can be found in[6, 20, 25] as well as in Section 2.8.2.8 FinitenessA predicate asserting that a type T is �nite isFin(T ) == 9k :N: 1-1-Corresp(Nk; T );where 1-1-Corresp(Nk;T ) just when there there exist functions f of typeNk ! T and g of type T ! Nk that are mutual inverses.Constructively, if we assume Fin(T ), we are assuming that T 's cardinalityand the computable functions f and g are available for use. Likewise, if weare proving Fin(T ), we have to give T 's cardinality and produce suitablecomputable functions f and g. 8



Because the predicate Fin(T ) has signi�cant computational content, it is notthat constructively useful to form the type of all �nite types fT : U jFin (T )gusing the subset type; if we know some type is in this collection of �nitetypes, we still have no way of �nding out its size, or enumerating its contents.3 Languages and their Representation3.1 Alphabets and LanguagesHopcroft and Ullman begin their book with the question: What is a lan-guage? Their answer starts with a de�nition of an alphabet. They de�ne analphabet to be any �nite set of symbols. The exact structure of symbols isunimportant, so we take an alphabet to be any type Alph, and we alwaysassume Fin(Alph). As noted in Section 2.8, a consequence of �niteness isthat the equality relation on Alph is decidable.In Hopcroft and Ullman we read that a sentence over an alphabet is anystring of �nite length composed of symbols from the alphabet. We use listsof type Alph list to represent strings over an alphabet Alph . We choose toreverse the order of alphabet symbols, so the string abc is represented bythe list c:b:a:nil .Hopcroft and Ullman de�ne a language to be a set of sentences over analphabet. In Nuprl's type theory, though types super�cially resemble sets,they are not as versatile. For example, one cannot take the union or in-tersection of two arbitrary types, and a type membership predicate can beawkward to reason with. So, instead of considering a language L over analphabet Alph to be a subtype of Alph list , we consider L to be a propos-itional function over Alph list , that is, a function of type Alph list ! P.When sets are represented in Nuprl's type theory as propositional functionsover some common domain type, common set operations and predicates arestraightforward to de�ne and use.We let Language(Alph), the type of languages over alphabet Alph , be anabbreviation for Alph list ! P.We de�ne two languages to be equal, written L =M , just when for all x inAlph list , L x,M x.3.2 Representations of LanguagesOur de�nition of a language as a propositional function L 2 Alph list ! Pcaptures the intuition that to know a language is to know the criteria forsaying when a sentence is in it. To say x is in the language L is to know how9



to prove L x. This agrees with Hopcroft and Ullman; they are concernedwith certain special ways of knowing L x.One especially simple kind of representation of L arises when the propositionL x is decidable, i.e. when there is a function RL 2 Alph list ! B such thatL x i� " (RL x):We call the function RL a language recognizer, and the language in this caseis said to be decidable or recursive.4 Finite Automata4.1 De�nitionHopcroft and Ullman de�ne a �nite automaton M to be a systemhK;Alph ; �; q0; F iwhere K is a �nite nonempty set of states, Alph is a �nite input alphabet , �is a mapping of K � Alph into K, q0 in K is the initial state, and F � Kis the set of �nal states.In de�ning a �nite automaton in Nuprl, we �rst assume that some typeAlph is given for an alphabet, and some type St for the set of states. Weassume both Alph and St are �nite, though occasionally we relax theseconstraints when they are not necessary. An automaton A is then a tripleh�(A); I(A); F (A)i, where the next state function �(A) has type St ! Alph !St , the initial state I(A) is a member of St , and F (A) is a function of typeSt ! B that returns tt just when applied to �nal states. By de�ning F (A)as a boolean-valued function, we ensure that we can compute when an auto-maton is in a �nal state. The type of all such automata isAutomata(Alph ;St) == (St ! Alph ! St)� St� (St ! B ):See Section 7.1 for a discussion of the di�erence between our and Hopcroftand Ullman's de�nition.4.2 Semantics of AutomataHopcroft and Ullman extend the automaton transition function � to inputstrings with the recursive de�nition:�̂(q;nil) = q 10



�̂(q; a:x) = �(�̂(q; x); a);where a is a symbol in the alphabet Alph and x is a string over Alph. Theyde�ne the language accepted by the automaton asfx j �̂(q0; x) is in Fg:We make analogous de�nitions in Nuprl. Let A be an automaton of typeAutomata(Alph ;St), let l be an input string in type Alph list , and let s bea state in St . We de�ne the recursive function�0(A)(s; l) ==r if null(l) then s else �(A) �0(A)(s; tl(l)) hd(l);which given A in state s to start, computes the new state of A after inputof l.We then de�ne A(l) which computes the state of A after input of l, startingin the initial state:A(l) == �0(A)(I(A); l):Using the �nal-state function F (A), we de�ne a language recognizer Lb(A)for A asLb(A) == �l :Alph list : F (A) A(l):The language accepted by A is de�ned by a similar function which returnsa proposition rather than a boolean. Using the " function which converts aboolean to the corresponding proposition, L(A), the language accepted byA, is de�ned asL(A) == �l :Alph list : " (Lb(A) l):4.3 Equivalence Relations and Quotient TypesPrior to presenting the Myhill-Nerode theorem, Hopcroft and Ullman givea brief introduction to equivalence relations and how they partition thesets they are over into equivalence classes. They take a binary relationon a set S to be a set of pairs of elements of S. As with representinglanguages (see Section 3.1), we �nd it more convenient to represent relationsas characteristic functions: we consider a binary relation on a type S to bea function of type S ! S ! P (= S ! (S ! P)). To express that elements11



x and y of type S are related by a binary relation R of type S ! S ! P,we use both pre�x application notation R x y and in�x notation x R y.In the Myhill-Nerode theorem, an automaton is constructed that uses theequivalence classes of an equivalence relation as the states of an automaton.This is problematic constructively, because the equivalence classes in ques-tion have in�nite size, and we would like to have �nite representations ofstates on which we can de�ne computable transition functions.The obvious solution is to use some element of an equivalence class as arepresentative for the whole class. We do this with the help of Nuprl'squotient types. Given a type S and an equivalence relation E on S, thequotient type S==E has the same members as S, but has as its associatedequality relation the relation E rather than the equality relation associatedwith S.In Nuprl's type theory, for a function f to be in a type S ! T , it mustrespect the equalities associated with S and T . Speci�cally, if the equalitiesare =S and =T respectively, we have f x =T f y whenever x =S y. If Eis an equivalence relation on S, and we want to show that f also has typeS==E ! T , we have to check that f x =T f y whenever x E y.The quotient type S==E behaves much like a type of the equivalence classesof E. Often when set-theoretically de�ning a function with a set of equival-ence classes as domain, the function mentions representatives of equivalenceclasses, and it is necessary to check that the value of the function is inde-pendent of the particular choice of representatives. With the quotient typeS==E as domain of a function in Nuprl's type theory, the rules for functiontype inhabitation enforce a corresponding constraint.In presentations of quotient types from Nuprl theories, we occasionally usethe notation x; y : S==(x E y) for the type S==E. This more verbose notationis useful when the primary notation for relation E includes its arguments.4.4 Finite Index Equivalence RelationsIn set theory, an equivalence relation E on a set S is is said to be of �niteindex if E has a �nite number of equivalence classes.In Nuprl's type theory, we express that an equivalence relation E on type Shas �nite index by saying Fin(S==E), that is, the quotient type S==E is inone-one correspondence with f0 : : : k � 1g for some non-negative number k.This de�nition works because the functions de�ning the bijection betweenS==E and f0 : : : k � 1g must respect E. Note that when S is in�nite, isis possible for S==E to be �nite, even though S and S==E have the sameelements. 12



4.5 Equivalence Relations on StringsWe introduce here a couple of de�nitions that are useful for stating theMyhill-Nerode theorem.De�nition: An equivalence relation E on Alph list is called extension in-variant 1 just when for all x; y; z in Alph listx E y ) (z@x) E (z@y):De�nition: A language L over alphabet Alph induces an equivalence rela-tion R(L) given byx R(L) y , (8z : Alph list : z@x 2 L, z@y 2 L):5 The Myhill-Nerode TheoremWe reproduce Hopcroft and Ullman's presentation of the Myhill-Nerodetheorem in Section 5.1, and discuss its formalization in the following sections.5.1 Hopcroft and Ullman VersionThe statement and proof of the Myhill-Nerode theorem here is taken almostverbatim from [15]. A few changes have been made to make the notationmore similar to that used in the formal development. The de�nitions ofwhat it means for an equivalence relation to be extension invariant and ofthe equivalence relation induced by a language can be found in Section 4.4.Theorem 3.1. The following three statements are equivalent:(1) The set L � Alph list is accepted by some �nite automaton.(2) L is the union of some of the equivalence classes of an extension in-variant equivalence relation of �nite index.(3) The equivalence relation on Alph list induced by L is of �nite index.Proof(1)) (2).1Hopcroft and Ullman have strings which are extended on the right and call suchrelations right invariant 13



Assume that L is accepted byM = (K;Alph ; �; q0; F ). Let R be the equival-ence relation x R y if and only if �(q0; x) = �(q0; y). R is extension invariantsince, for any z, if �(q0; x) = �(q0; y), then�(q0; z@x) = �(q0; z@y):The index of R is �nite since the index is at most the number of states inK. Furthermore, L is the union of those equivalence classes which includean element x such that �(q0; x) is in F .(2)) (3).We show that any equivalence relation R satisfying statement (2) is a re-�nement of the equivalence relation R(L) induced by L; that is, every equi-valence class of R is entirely contained in some equivalence class of R(L).Thus the index of R(L) cannot be greater than the index of R and so is�nite. Assume that x R y. Then since R is extension invariant, for each zin Alph list , z@x R z@y, and thus z@y is in L if and only if z@x is in L.Thus xR(L)y, and hence, the equivalence class of x in R is contained in theequivalence class of x in R(L). We conclude that each equivalence class ofR is contained within some equivalence class of R(L).(3)) (1).Assume that x R(L) y. Then for each w and z in Alph list , z@w@x isin L if and only if z@w@y is in L. Thus w@x R(L) w@y, and R(L) isextension invariant. Now let K 0 be the �nite set of equivalence classes ofR(L) and [x] the element of K 0 containing x. De�ne �([x]; a) = [x:a]. Thede�nition is consistent, since R(L) is extension invariant. Let q00 = [nil ] andlet F 0 = f[x] j x 2 Lg. The �nite automaton M 0 = (K 0;Alph ; �0; q00; F 0)accepts L since �0(q00; x) = [x], and thus x is in L(M 0) if and only if [x] is inF 0.Qed5.2 Formalizing (1)) (2)The formal statement of the theorem in Nuprl's notation is` 8Alph :U: 8L :Language(Alph):Fin(Alph)) (9St :U: 9Auto :Automata(Alph ;St): Fin(St) ^ L = L(Auto))) (9R :Alph list ! Alph list ! PEquivRel(Alph list ;R)^9g :Alph list==R! BFin(Alph list==R)^ (8l :Alph list : L l,"(g l))^ (8x; y; z :Alph list : R x y ) R (z@x) (z@y))):An English rendering of this is: 14



� Let Alph , an alphabet, be a �nite type and let L be a language overAlph ,� assume there exists a �nite type of states St and an automata Autoover Alph and St that accepts the language L,� then there exists a binary relation R on Alph list that is{ an equivalence relation (EquivRel(Alph list ;R)g),{ right invariant (8x; y; z :Alph list : R x y ) R (z@x) (z@y)),{ and of �nite index (Fin(Alph list==R)),� and there exists a boolean-valued function g with domain Alph list==Rthat returns boolean true (tt) exactly on strings in the language L(9g :Alph list==R! B : 8l :Alph list : L l,"(g l)).The function g here acts as the characteristic function for the set of equi-valence classes of the relation R whose union gives the language L. Asremarked in Section 3.1, it is often more straightforward in Nuprl's typetheory to represent sets as characteristic functions than as types. Note thatthe Nuprl quotient type Alph list==R still contains elements of Alph list asmembers, so it is legitimate to pass the function g an element l of Alph listas an argument.In requiring that g be boolean (B ) valued rather than proposition (P) valued,we are augmenting the statement (2) of the theorem with the requirementthat membership in the language L be decidable. This augmentation isnecessary for the constructive proofs of the other parts of the theorem.Proof1. As with the Hopcroft and Ullman proof, R x y is de�ned as Auto(x) =Auto(y). Showing R is an equivalence relation and is extension invari-ant is straightforward.2. Finiteness of Alph list==R is argued by noting that Alph list==R isisomorphic to the set of accessible states, which is a subset of St .The �niteness argument is �rst carried out abstractly by proving thelemma` 8T; S :U: 8f :T ! S: Fin(S) ^ (8s :S: Dec(9t :T: f t = s))) Fin(x; y :T==(f x = f y))which is then instantiated with T being Alph list , S being St , and fbeing the function �l: Auto(l).In using this lemma, the precondition15



8s :St :Dec(9t :Alph list : Auto(t) = s)has to be discharged. Read constructively, this precondition requiresthat, for any state s, it is possible to compute whether or not s isaccessible, and further, if s is accessible, it must be possible to computesome string t that, when input to the automaton, puts the automatoninto state s.The precondition is proven with the help of a corollary of the pump-ing lemma which states that in searching for a string that puts anautomaton in a certain state, it is only necessary to try strings whoselength is not greater than the number of states of the automaton.3. We de�ne g on Alph list==R to be tt exactly when F (Auto(x)) = tt ,i.e. g x = F (Auto(x)). That g is functional wrt R follows directlyfrom the de�nition of R.Qed5.3 Formalizing (2)) (3)Given a type A representing an alphabet, and a language L over A, thebinary relation R(L) induced by L is de�ned asR(L) == �x; y: 8z :A list: L z@x, L z@yand has type A list ! A list ! P. The display of parameter A to R(L)is suppressed, since A can be inferred from considering the type of L. Weestablish straightforwardly that R(L) is an equivalence relation.The formal statement of (2)) (3) is:` 8n :f1:::g: 8A :U: 8L :Language(A): 8R :A list ! A list ! P:Fin(A)) EquivRel(A list ;R)) 1-1-Corresp(Nn;A list==R)) (8x; y; z :A list: x R y ) (z@x) R (z@y))) (9g :A list==R! B : 8l :A list: L l," (g l))) (9m :N: 1-1-Corresp(Nm;A list==R(L)))^(8l :A list : Dec(L l)):An English reading is:� Let the alphabet A be a �nite type,� let R be a binary relation on A list that is{ an equivalence relation, 16



{ extensionally invariant,{ and of �nite index(1-1-Corresp(Nn;A list==R) where n is a positive integer),� let L be a language over A,� assume L is a union of equivalence classes of R and is decidable(9g :A list==R! B : 8l :A list: L l," (g l)),� then R(L) is of �nite index(9m :N: 1-1-Corresp(Nm;A list==R(L))),� and L is decidable.Note that here both statements (2) and (3) of Hopcroft and Ullman havebeen augmented with a requirement that membership in L be decidable.The augmentation of (3) is necessary for the proof of (3)) (1).ProofThe argument that R is a re�nement of R(L) follows the Hopcroft andUllman argument and is completely straightforward.To show that therefore the index of R(L) is no larger than the index of R,we could instantiate a lemma of formQuotient Index Lemma 1. If P and Q are binary relationsover a type T , and P is a re�nement of Q (x P y ) x Q y forany x and y), and the index of T==P is some natural numbern, then the index of T==Q is some natural number m such thatm � n.For this lemma to be constructive, a precondition requiring S to be a decid-able relation needs to be added.Proving this lemma is tedious; it involves giving the explicit constructionof a bijection between f0 : : : m � 1g and T==S given a bijection betweenf0 : : : n�1g and T==R. It turns out to be simpler to prove a lemma of form:Quotient Index Lemma 2. If Q is a decidable binary relationover a type T , and the index of T is some natural number n, thenthe index of T==Q is some natural number m such that m � n.We instantiate the T of this lemma with the type Alph list==R and the Q ofthis lemma with a binary relation R0(g) which is similar to R(L) in de�nition,but is de�ned over Alph list==R rather than Alph list . The preconditionthat Alph list==R is of �nite index follows by assumption, and we get the17



result that (Alph list==R)==R0(g) is of �nite index. That Alph list==R(L) isof �nite index trivially follows when we use the result that there is a one-onecorrespondence between (Alph list==R)==R0(g) and Alph list==R(L).A remaining precondition of Quotient Index Lemma 2 is to show that R0(g),or equivalently R(L), is a decidable relation. This is not immediately obvi-ous: Since x R(L) y i� z@x R z@y for every z, it seems that we have totry an in�nite number of z to compute if x R(L) y true. (Note that we cantest if z@x R z@y since R is decidable.) Again, the pumping lemma is ofhelp; it shows that it is su�cient to only consider every z of length up to thenumber of states of our automata M which accepts L. Since Alph is �nite,there are only a �nite number of z to try.Qed5.4 Formalizing (3)) (1)The formal statement of the theorem is:` 8Alph :U: 8L :Language(Alph)Fin(Alph)) (Fin(Alph list==R(L)) ^ 8l :Alph list : Dec(L l))) 9St :U: 9Auto :Automata(Alph;St): Fin(St) ^ L = L(Auto):In English,� Let the alphabet Alph be a �nite type, and let L be a language overAlph ,� assume the relation R(L) induced by L is of �nite index,� assume membership of L is decidable,� then there is a �nite type of states St , and an automaton Auto overAlph and St that accepts L.ProofChecking R(L) is extension invariant is straightforward.For the type of states St we take the quotient type Alph list==R(L) insteadof the set of equivalence classes of R(L). Whereas Hopcroft and Ullmande�ne the action of the automata in terms of equivalence classes, writing�([x]; a) = [a:x], here we use a function that works on representatives ofequivalence classes. Speci�cally, given an element x of Alph list and anelement a of Alph, we de�ne �(Auto) x a to be the list a:x.For the start state I(Auto), we use the empty list nil , and for F (Auto) weuse a boolean-valued version of the characteristic function L (remember that18



we represent languages using characteristic functions rather than subtypes).A boolean-valued version of L exists because we have as an assumption thatL is decidable.In type-checking each of these components of Auto, we check that the de�n-ition of Auto is consistent. For example, we check that �(Auto) has typeAlph list==R(L)! Alph ! Alph list==R(L). In checking this, we show thatif x R(L) y, then (�(Auto) x a) R(L) (�(Auto) y a). That is, �(Auto) mapspossibly-di�erent representatives of some equivalence class of R(L) to rep-resentatives of the same equivalence class of R(L).Qed6 State MinimizationWe discuss in this section a corollary to the Myhill-Nerode theorem thatexplicitly states the existence and uniqueness of a minimum �nite automatonfor any language accepted by some �nite automaton.6.1 Textbook ProofThe presentation here is taken almost verbatim from [15, p29]. The mainchange is to adopt the notation for strings used in the Nuprl development.Theorem 3.2. The minimum state automaton accepting L is unique upto an isomorphism (i.e., a renaming of the states) and is given by M 0 ofTheorem 3.1.ProofIn the proof of Theorem 3.1 we saw that any M = (K;Alph ; �; q0; F ) accept-ing L de�nes an equivalence relation which is a re�nement of R(L). Thus thenumber of states ofM is greater than or equal to the number of states ofM 0of Theorem 3.1. If equality holds, then each of the states ofM can be identi-�ed with one of the states of M 0. That is, let q be a state of M . There mustbe some x in Alph list , such that �(q0; x) = q, otherwise q could be removedfrom K, and a smaller automaton found. Identify q with the state �0(q00; x)of M 0. This identi�cation will be consistent. If �(q0; x) = �(q0; y) = q,then, by Theorem 3.1, x and y are in the same equivalence class of R. Thus�0(q00; x) = �0(q00; y).Qed6.2 Formalization of Minimization TheoremFirst we make a few de�nitions. As earlier, let Alph be an alphabet, St bea type for states, and Auto be some automaton over Alph and St .19



The type of statesMinSt(Auto) of the minimum automaton for the languageaccepted by Auto isMinSt(Auto) == Alph list==R(L(Auto))and the minimum automaton itself isMinAuto(Auto) == h(�s; a: (a:s)); nil ; Lb(Auto)i:We show thatMinAuto(Auto) has typeAutomata(Alph ;MinSt(Auto)). Thesede�nitions make explicit the constructions implicit in our proof of the Myhill-Nerode theorem.With the help of various auxiliary lemmas from the Myhill-Nerode devel-opment, we prove such theorems as that MinSt(Auto) is a �nite type andMinAuto(Auto) accepts the same language as Auto.We split our statement and proof of the minimization theorem into twoparts. It is important to note here that the de�nitions of MinSt(Auto)and MinAuto(Auto) depend only on the language accepted by Auto, not onany particular structure of Auto. Without this observation, the two mainstatements will not be seen to claim what we intend them to claim. Thetwo statements are1. The statement that the minimum automaton really has the smallestnumber of states of any automata accepting the same language is` 8Alph :U: Fin(Alph))8St :U: Fin(St))8Auto :Automata(Alph ;St):jSt j � jMinSt(Auto)j:Here we use the de�nitionjSj � jT j == 9f : S ! T: Surj (S;T ; f);that is, a type S is at least as large as a type T if there exists asurjective function from S to T . When S is non-empty and T is empty,this predicate is false, whereas one would ideally want it to be true.We don't need to be concerned with this pathological case since typesof states always include initial states.ProofMost of the argument here is already gone over in the Myhill-Nerodeproof. In a few cases we have to prove some new intermediate lemmasthat make various facts more explicit.Qed 20



2. Our statement that the minimum automata is isomorphic to any otheris̀ 8Alph :U:Fin (Alph))8St :U:Fin (St))8Auto :Automata(Alph ;St)1-1-Corresp(St ;MinSt(Auto)))Auto � MinAuto(Auto):Here we use the de�nitionA1 � A2 ==9f : S1! S2:Bij (S1;S2; f)^ (8s :S1:8a :Alph : f (�(A1) s a) = �(A2) (f s) a)^ f I(A1) = I(A2)^ (8s :S1: F (A1) s = F (A2) (f s)to say that automata A1 and A2 are isomorphic. This de�nition fol-lows the pattern of de�nitions of isomorphisms for algebraic struc-tures. Hopcroft and Ullman omit the de�nition entirely, no doubt onthe grounds that it is the obvious one to use. Bij (S1;S2; f) is theproposition that function f from type S1 to type S2 is a bijection.The de�nition of � takes S1, S2, and Alph as parameters, but thedisplay of these is suppressed because they can easily be inferred fromconsideration of the types of A1 and A2.ProofAs with the Hopcroft and Ullman proof, we argue that we can as-sume without loss of generality that Auto is connected. We then useour analogue of their construction of the identi�cation function f forthe isomorphism. Hopcroft and Ullman state without proof that thisidenti�cation is consistent. We need ourselves to �ll in the tedious butroutine steps of proof showing that the identi�cation function has allthe properties that make it an isomorphism.Qed7 Discussion7.1 Structuring the de�nition of automataOur parameterization of the type of automata by both an alphabet and atype of states is inelegant (See Section 4.1). Parameterization by an alphabethas its merits, but it is clear that the type of states ought to be pairedwith the transition function, the initial state, and the set of �nal states.21



Constructively, a full speci�cation of an automata also requires evidencethat the state type is �nite.One solution is to have automata over a �nite alphabet be tuples of formhFinSt ; �; I; F iwhere �, I, and F are as before, and FinSt is an element of a type of `�nitetypes', of four-tuples of form hT; n; f; gi, where T is a type, n is the size ofT , and f and g de�ne an isomorphism between T and Nn.A similar solution involves writing the type of �nite types asT :U � Fin(T ):(This is the notation for Nuprl's dependent product type, sometimes calleda � type.) From the point of view of classical mathematics this is ill-formed,a proposition Fin(T ), is being used in a position where a type is expected.However, in constructive type theory, this is well-formed because propos-itions are types. Elements of Fin(T ) are tuples of form hn; f; g; �i, andelements of T :U � Fin(T ) are tuples of form hT; hn; f; g; �ii.The � here is a term witnessing the proposition that f and g form anisomorphism. Such witnesses can form signi�cant clutter, and there arestandard techniques, for example using subset types, to de�ne propositionscarefully so that they have minimal or no such witnesses.We avoided taking this approach, using Fin(T ) as a type, partly because ofa wish to keep a straightforward classical reading. Perhaps though this isnot important when so many of our concerns are with constructivity.7.2 Use of quotient typesDue to the richness of Nuprl's type theory, type-checking is undecidable. Inpractice, heuristics help carry out most simpler type checking tasks com-pletely automatically. However, Nuprl's quotient types introduce a new di-mension of variability into the problem. Frequently we use a function withdomain type T where a function with domain type T==E is expected, andwe then repeatedly get proof obligations to show that the function respectsE.We realize that we need to introduce a discipline for use of quotient types,where, as much as possible, such problems are localized to the right-hand-side of de�nitions that are type-checked just once, and then always exploitedin proofs with the help of characterizing lemmas, rather than de�nitionexpansion. We now have several similar proposals for such a discipline, but22



didn't have the time to try one in this formalization. One key aspect of theseproposals is that injections into quotient types are always explicitly tagged.This helps both the type checker in its type-inference, and the reader inunderstanding what terms in Nuprl's computation language are denoting.For example, if x is of type T and E is an equivalence relation over T , wemight have the injection of x into T==E written as [x]fT==Eg. For projec-tions out of quotient types, we might have a projection operator writtenqproj fT==Eg(f) that takes a function f of type T ! S, and turns it into afunction of type T==E ! S. The type checking conditions for qproj wouldinclude the requirement that f be shown to respect E.Using these injection and projection operators does not free us from check-ing that equivalence relations are respected, but it does make the loca-tion of those checks more predictable. Analogous operators are requiredwhen quotient types are implemented in strongly-typed type theories suchas ECC [14], and when working with quotient structures in set theory.7.3 Inadequacies in construction of the minimum automatonA hard-to-understand de�nition in this formalization is that of the MinAutofunction (see Section 6.2). There, the intended meaning of the state trans-ition function mapping equivalence classes to equivalence classes is only ap-parent when we look at the type the function is supposed to have. If wewrite the transition function de�nition asqproj fMinSt(Auto)g(�x : Alph list : �a : Alph : [a:x]fMinSt(Auto)g);instead of�x; a: (a:x);its meaning is more immediately evident. Here we have used the quotienttype injection and projection operators described in Section 7.1 as well astype annotations on the lambda terms, again to help both readability andtypechecking.Another perhaps more serious defect of our construction of MinAuto(Auto)is that it is computationally trivial. If we imagine applying MinAuto(Auto)to some input string, then it does nothing more than copy that string, andpass it to Auto to check if it should be accepted.Creating a minimization function that actually does the work of computing aminimum automaton is not di�cult, though we have not carried this out yet.We need to de�ne a type of automata, MinAuto0 say, in which automata are23



represented by �nite data structures (integers, pairs, and lists, for example),not functions. The key is to exploit the function we can synthesize fromthe proof of Fin(MinAuto(Auto)). Given Auto as argument, this functioncan compute the size n of the minimum automaton accepting the languageAuto accepts and can provide mapping functions between MinSt(Auto) andNn. Using these mapping functions, we can construct a function that, whenevaluated on argument MinAuto(Auto), returns the �nite data structuresfor a minimum automaton that accepts the same language as Auto.7.4 Computational complexity of synthesized algorithmsWith the proofs as we initially completed them, the time complexity ofseveral extracted functions, including the size function described in Sec-tion 7.3, was exponential in the number of states. Aleksey Nogin at Cornellhas recently reworked some of the proofs and introduced alternate auxili-ary functions to reduce the complexity of the size function to a low-orderpolynomial. His work is viewable at the Nuprl web site (see Section 1.5).Folowing the approach described in Section 7.3, we should be able to ex-tend Nogin's work so that we can synthesize an automata miniminizationfunction of low polynomial time complexity.8 Summary of Results� We were successful in formalizing the Myhill-Nerode theorem in con-structive type theory.� We did not �nd errors in the statement or proof of the theorem inHopcroft and Ullman. We did note Hopcroft and Ullman's elision ofmore-routine de�nitions and proofs. For example, they employ butdo not de�ne an isomorphism relation on automata, and they claimbut do not prove that a mapping between the sets of states of twoautomata is an automata isomorphism.� To make the Myhill-Nerode theorem constructively provable, we neededto add conditions on the decidability of language membership to twoof the three equivalent propositions in its statement.Constructivity considerations when reasoning about �niteness forcedus to consider how various automata properties can be computed. Forexample, by a combination of explicit introduction, and synthesis fromappropriate constructive proofs, we introduced functions for{ determining whether a state of an automaton is accessible, and,if so, what input string would put the automaton in that state,24



{ testing whether two states are equivalent.Such functions can form the core of a function for carrying out theminimization procedure. Initially they had time complexity exponen-tial in the number of states, but, in ongoing work, we have introducedalternate functions with low-order polynomial complexity.9 Conclusions and Future WorkWith this article and the accompanying online material, we have a present-ation of a piece of mathematics that is completely precise and that can beviewed at di�ering levels of detail. We have argued that such presentationsare superior to textbook only presentations, and we believe that we havebegun to demonstrate this.At Cornell we are currently experimenting with other examples of suchformally-grounded explanations. We have already formalized other parts ofHopcroft and Ullman, including account of grammars and of nondetermin-istic automata. We judge that it would be possible to formalize Chapters1{9 with our four person team in about eighteen months.The collaboration methods we have learned would extend to larger teams.It would be especially interesting to collaborate with other theorem provingsystems as Howe and his colleagues are doing with HOL and Nuprl [19,18]. Much of a classical treatment of languages can easily be re-interpretedconstructively. It would be especially fruitful to collaborate with teamsusing other constructive provers such as Alf, Coq, Lego, or Isabelle withits Martin-L�of-type-theory object logic. Although these provers are basedon di�erent formalizations of constructive mathematics, they all share thecritical properties that computational notions can be expressed and thatprograms can be synthesized from proofs.One weak point of our online presentation is the readability of proofs. Wesee no reason why online formal proofs should not be at least as clear as anyinformal proofs. Unlike many other provers, Nuprl maintains a proof treedatastructure that already assists us in generating comprehensible present-ations of proofs. Ideas we are currently exploring to improve readabilityinclude the grouping of lower level tactic sequences under user suppliedcomments and the suppression of less-important proof branches. We arealso following the work of the Centaur group to make proofs more read-able [3, 29], and we expect to use the modularity feature of the Nuprl-Lightre�ner [13] to help us better structure theories.
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