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Abstract

We present a constructive formalization of the Myhill-Nerode the-
orem on the minimization of finite automata that follows the account
in Hopcroft and Ullman’s book Formal Languages and Their Relation
to Automata. We chose to formalize this theorem because it illustrates
many points critical to formalization of computational mathematics,
especially the extraction of an important algorithm from a proof as
a method of knowing that the algorithm is correct. It also gave us
an opportunity to experiment with a constructive implementation of
quotient sets.

We carried out the formalization in Nuprl, an interactive theorem
prover based on constructive type theory. Nuprl borrows an imple-
mentation of the ML language from the LCF system of Milner, Gordon,
and Wadsworth, and makes heavy use of the notion of tactic pioneered
by Milner in LCF.

We are interested in the pedagogical value of electronic formal
mathematical texts and have put our formalization on the World Wide
Web. Readers are invited to judge whether the formalization adds
value in comparison to a careful informal account.
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1 Introduction

1.1 Background

It is widely believed that we know how to formalize large tracts of classical
mathematics — namely write in the style of Bourbaki [4] using some version
of set theory and fill in all the details. Indeed, the Journal of Formalized
Mathematics publishes results formalized in set theory and checked by the
Mizar system. Despite this belief and the many formalizations accomplished,
massive formalization is not a fait accompli; many challenges remain in such
areas as the organization of large databases of mathematics and the raising
of the level of automation.

In contrast, there is no general agreement on how to formalize computational
mathematics. Even worse, few people appreciate that this is a significant
new problem (see [5]). Our interest is in examining whether some kind of
constructive type theory is an appropriate formalism.

There are two immediately-appealing aspects of constructive type theories.
Firstly, they have built-in a functional programming language in which al-
gorithms can be expressed. Secondly, propositions can be read as claiming
the existence of functional programs and data, and if some proof can be given
of a proposition, the corresponding programs and data can be automatically
synthesized (or sometimes we say eztracted) from the proof. For example,
from the proof of Vo € S. 3y € T. P(z,y), we can synthesize a functional
program that, when given any element s of type S as data, can compute
some t of type T such that proposition P(s,t) holds. We sometimes call the
programs and data that can be synthesized from proofs of some proposition
the computational content of the proposition.

There is a tradeoff in gaining this extra expressivity: fewer truths can be
proven in logics based on constructive type theories than in classical logic.
For example, the propositions P < == P, and PV =P are no longer true for
arbitrary propositions P. For introductory material on constructive type
theory, consult [30] or [10].

The particular constructive type theory we are working with is similar to
one of Martin-Lof’s [24], and is implemented in the Nuprl proof develop-
ment system [6, 20]. Nuprl provides an environment for assembling theories
consisting of definitions, theorems, and proofs. It also has an interpreter for
executing the functional programs that users write and that are synthesized
from proofs.

Previous topics we have experimented with in Nuprl include elementary
number theory [17], elementary analysis [9], and the algebra of polynomi-
als [20].



1.2 Choice of Topic

Automata theory is an appealing topic for formalization because of its cent-
ral role in computer science. Recently, we have been considering whether
we could formalize a whole book on automata theory such as Hopcroft and
Ullman’s Formal Languages and their Relation to Automata [15]. Such a
formalization could have significant pedagogical value: it could serve as a
novel hypertext reference for students studying automata theory, and would
stand as a corpus of familiar examples for any computer scientist interested
in formalization techniques.

We report in this article on a preliminary step in this direction, namely, the
formalization in Nuprl of the Myhill-Nerode theorem on the existence and
uniqueness of minimum finite automata. We based the formalization on the
presentation in the book cited above. We chose this theorem because it is
one of the first significant theorems in the book, and because it involves
computationally interesting constructions.

Automata theory was previously explored in Nuprl by Christoph Kreitz in
1986 [22]. In particular, he proved the pumping lemma for finite automata.
We saw that we needed this lemma for our constructivization of the Myhill-
Nerode theorem, and so reproved it using Nuprl’s current tactic collection.
We therefore could compare the currently achievable level of automation
with that achievable in 1986.

An under-explored aspect of Nuprl’s type theory is its novel quotient types
(see Section 4.3). Jackson, for example, had experimented with these previ-
ously [20], but we still didn’t have much experience with how best to reason
efficiently with them. The heart of the Myhill-Nerode theorem involves a
quotient construction, and so provided a good opportunity to gain more
experience.

1.3 Value of the Formalization

Readers can evaluate the formal text on the Web that resulted from our
formalization efforts. It is possible to directly judge whether our definitions
are faithful to Hopcroft and Ullman’s, whether the formal definitions help
clarify the concepts, whether the proofs are sufficiently readable and inform-
ative, and whether the availability of detail about all proof steps is useful.
The formal material also provided the underpinning for this article in that
our definitions and proof summaries refer to the complete formal library.
The material can be the foundation for other documents that explain the
detailed proofs. We have not yet produced such documents for the automata
library (but see Section 9), however, there are examples of this genre of writ-
ing in the Formal-Courseware section of the Nuprl home page. For example,



Stuart Allen has produced a hybrid style of formal and informal proof to
accompany the basic theorems about functions proved by Paul Jackson and
used extensively in this formalization.

There are other aspects and by-products of our formalization that cannot be
directly evaluated by reading the formal text; they require experience with
the system. In this category is the experience of confidence in the results that
comes from learning to trust Nuprl. We know that reading results checked
by both a human and a machine raises confidence in their correctness, similar
to the added confidence gained by having a trusted colleague check a result.

Another value of the formalization is the interactivity provided by the under-
lying system. For example, Nuprl can show dependencies among theorems
and definitions, and it can execute algorithms extracted from proofs. Users
can experiment with alternate proofs and can observe the effect on the ex-
tracted programs.

In addition to the readable and highly reliable interactive formal text, the
formalization has created an interesting digital artifact. The formal theory
becomes an object that we can manipulate, measure, transform and explore.
To experience these capabilities, one must learn to use a system like Nuprl.

1.4 Interpretations of the Mathematics

Nuprl’s type theory can be interpreted in several ways. In the semantics
given by Allen [1], all functions are computable. The type theory is there-
fore compatible with recursive mathematics in which all functions are given
by Turing machines. Every theorem in Nuprl can be seen as a theorem of
recursive mathematics, but the converse is not true; the type theory is suf-
ficiently weak that non-classical results in recursive mathematics, such as
that every function from R to R is continuous, are not provable.

Howe has given a set-theoretic interpretation of Nuprl’s type theory that
shows that every theorem provable in Nuprl can be read as a theorem of clas-
sical mathematics [19]. This interpretation includes all non-computational
set-theoretic functions in the denotation of function types.

Having both classical and recursive interpretations makes Nuprl a suitable
tool for formalizing constructive mathematics in the style advocated by
Bishop [2].

1.5 Electronic Access to Formalization

The key ideas of the formalization are presented in this article in a self-
contained way. To find out more, the reader is invited to browse the full



formalization on the World Wide Web. Start by visiting the Nuprl project’s
home page at URL

http://www.cs.cornell.edu/Info/Projects/NuPrl/nuprl.html

From there, the reader can access hypertext presentations of both the work
presented in this article and other more recent work in automata theory.

Nuprl itself is free software that can be obtained from this web site. It runs
on a freely-available version Allegro Common Lisp under Linux as well as
free CMU Common Lisp under Unix.

1.6 Related work

A non-constructive set-theoretic formalization of minimization theorems for
Moore and Mealy automata has been done in the Mizar system [21]. This
closely follows a presentation in Denning, Dennis Qualitz [8].

Theorems asserting the equivalence between deterministic (DFA) and non-
deterministic (NFA) finite state automata, and between NFAs with and
without epsilon moves, were proven in Nqthm [31], and subsequently in
PVS [28]. These formalizations were based on theorems 2.1 and 2.2 in [16].
Notably, a flaw was found in the textbook proof of theorem 2.2. The form-
ation of DFA states from sets of NFA states was significantly more com-
plicated in the constructive Nqthm proofs than the non-constructive PVS
proofs. Part of the difficulty in the Nqthm proofs was in modelling finite
sets using lists, and handling the equality of lists considered as sets. We
wouldn’t expect to have this difficulty in Nuprl because, as shown in [20],
we can take advantage of Nuprl’s quotient type to appropriately redefine the
equality relation on lists.

Quotient types have been explored in the ECC constructive type theory
by Hofmann [14], and probably most of the development presented in this
article could be straightforwardly formalized in the LEGO mechanization of
ECC [27]. One major difference between ECC and Nuprl is that, in ECC,
both explicitly written and synthesized programs must be embellished with
parts that are unimportant for computation, but necessary for proofs of
correctness.

1.7 Outline

In Section 2 we present the basic ideas from Nuprl needed for this article.
Section 3 defines the notion of a formal language, and Section 4 provides
the preliminaries on automata. Section 5 proves the Myhill-Nerode theorem,



and Section 6 presents a corollary which makes explicit the construction and
properties of the minimum automata introduced in the course of proving
the Myhill-Nerode theorem. Section 7 discusses various issues that came up,
Section 8 summarizes our results, and Section 9 presents our conclusions and
outlines future work. Finally, Appendix A provides an index for notation.

All the material on languages and automata closely follows that in Chapter 1
and Sections 3.1 and 3.2 of Hopcroft and Ullman [15].

2 Type Theory Preliminaries

2.1 Basic Types

The integers Z are a primitive type of Nuprl. Defined subtypes of the integers
include the bounded-below range {i...} == {j : Z |i < j}, the naturals
N == {0...}, and the finite types Nk == {n : N|n < k}. (In Nuprl
notation, we use == for definitional equality).

The Booleans B are defined type. For the purposes of this article the exact
definition is unimportant. The canonical elements of B are ¢t and ff denoting
true and false respectively. As explained in Section 2.6, boolean expressions
and propositions are distinct. The prefix operation 1 converts a boolean
expression to a proposition.

2.2 Recursive Types

The only recursive type relevant here is the list type. Given any type A, the
type A list is the type of finite sequences of elements of type A. The empty
list is nil. Lists are constructed using an infix “.” constructor, often referred
to as “cons”. Given an element a of type A and a list [ of type A list, cons
forms a new list a.l. The functions hd (head) and ¢ (tail) take lists apart.
They satisfy the equations hd(a.l) = a and tl(a.l) = [. The boolean-valued
function null tests whether a list is empty. The infix append operation @

joins two lists together.

2.3 Product Types

If A and B are types, then so is their cartesian product, A x B. The elements
of A x B are ordered pairs, (a,b) with a € A and b € B. The product and
pairing operation are assumed to associate to the right, so we write Ax Bx ('
for A x (B x C), and (a, b, c) for (a, (b, c)).

The product type is a special case of a dependent product type, also known
as a % type. In this type, the type of the second component of pairs can
depend on the first component of pairs.



2.4 Function Types

If A and B are types, then A — B denotes the type of all total computable
functions from A to B. The canonical elements of this type are lambda
terms, Az.b. Let bla/z] denote the substitution of the term a for all free
occurrences of z in b. For Az.b to be a function from A to B, its value b[a/z]
must be of type B for all arguments a of type A. If f € A — B and a € A,
then f a denotes the application of f to argument a.

The function type is a special case of a dependent function type, also known
as a Il type. The type of an application of a function in a dependent function
type can depend on the argument the function is applied to. There are no
examples of dependent function types in this article.

2.5 Recursive Function Definitions

A recursive function definition in Nuprl is written lhs ==, rhs, where lhs is
the function being defined, and rhs may include instances of lhs as subterms.
For example, the list append operation @ can be defined with

uw@u ==, if null(u) then v else hd(u).(tl(u)Qv).

Recursive functions are created using the Y recursion combinator, which
is definable since Nuprl’s computation language is untyped. Immediately
after introducing a recursive definition, we prove a well-formedness lemma
showing that evaluation of the definition on arguments in specified types
always terminates and gives a result in a specified type. The lemma for @
is

FYA:U. VYu,v: A list. uQuv € A list.

2.6 Propositions and Universes

In so-called “classical” accounts of logic, a proposition has a truth value in
B, and propositions can be treated as boolean expressions. We are interested
not only in the truth value of propositions, but also in their computational
sense; how they can be seen as specifications for programs. To support this
computational view, it is necessary for us to have a type P of propositions
distinct from B.

There are two distinguished atomic propositions, T the canonically true one
and L the canonically false one. Given propositions P, () we can form com-
pounds in the usual way:



PAQ for “Pand Q 7,

PvQ@ for “Por@Q”,

P =@ for “Pimplies " also written “P only if Q”,

P < @ for “P if and only if Q7 also written “P iff Q7.

Negation, =P, is defined as P = 1.

A propositional function on a type T is any map P € T' — P. Given such a
P, then we can form the propositions:

V:T.P x “for all = of type A, P z holds,”
dx:T.P x “for some z of type A, P z holds.”

Associated with every type T is the atomic equality relation z = y in T.
The definition of this equality is given with each type. Often, the in T is
dropped; it usually can be inferred from consideration of z or y.

Types in Nuprl are members of universe types. Nuprl has a hierarchy of
universe types to avoid the problem of a universe type being a member of
itself. There happens also to be a corresponding hierarchy of proposition
types. For the purposes of this article, it is sufficient that we use U to denote
some typical universe type and P to denote some typical type of propositions.
See [6] or [20] for fuller accounts of Nupr!l’s logic and universe types.

2.7 Subtypes

If T is a type and P € T — P is a propositional function, then {z: A | P z}
denotes the type of all elements of A satisfying P. Looking at this subset
type from a constructive point of view, it’s important to note that when we
assume that we have some element a in this type, we don’t have any access
to the computational content of the the proposition P z, even though we
know it to be true. Further discussion of the subset type can be found in
[6, 20, 25] as well as in Section 2.8.

2.8 Finiteness
A predicate asserting that a type T is finite is
Fin(T) == 3k:N. 1-1-Corresp(Nk; T,
where 1-1-Corresp(Nk; T') just when there there exist functions f of type

Nk — T and g of type T' — Nk that are mutual inverses.

Constructively, if we assume Fin(T), we are assuming that T’s cardinality
and the computable functions f and g are available for use. Likewise, if we
are proving Fin(T), we have to give T’s cardinality and produce suitable
computable functions f and g.



Because the predicate Fin(T') has significant computational content, it is not
that constructively useful to form the type of all finite types {T" : U| Fin(T)}
using the subset type; if we know some type is in this collection of finite
types, we still have no way of finding out its size, or enumerating its contents.

3 Languages and their Representation

3.1 Alphabets and Languages

Hopcroft and Ullman begin their book with the question: What is a lan-
guage? Their answer starts with a definition of an alphabet. They define an
alphabet to be any finite set of symbols. The exact structure of symbols is
unimportant, so we take an alphabet to be any type Alph, and we always
assume Fin(Alph). As noted in Section 2.8, a consequence of finiteness is
that the equality relation on Alph is decidable.

In Hopcroft and Ullman we read that a sentence over an alphabet is any
string of finite length composed of symbols from the alphabet. We use lists
of type Alph list to represent strings over an alphabet Alph. We choose to
reverse the order of alphabet symbols, so the string abc is represented by
the list c¢.b.a.nil.

Hopcroft and Ullman define a language to be a set of sentences over an
alphabet. In Nuprl’s type theory, though types superficially resemble sets,
they are not as versatile. For example, one cannot take the union or in-
tersection of two arbitrary types, and a type membership predicate can be
awkward to reason with. So, instead of considering a language L over an
alphabet Alph to be a subtype of Alph list, we consider L to be a propos-
itional function over Alph list, that is, a function of type Alph list — P.
When sets are represented in Nuprl’s type theory as propositional functions
over some common domain type, common set operations and predicates are
straightforward to define and use.

We let Language(Alph), the type of languages over alphabet Alph, be an
abbreviation for Alph list — P.

We define two languages to be equal, written L = M, just when for all z in
Alph list, L x < M .

3.2 Representations of Languages

Our definition of a language as a propositional function L € Alph list — P
captures the intuition that to know a language is to know the criteria for
saying when a sentence is in it. To say « is in the language L is to know how



to prove L x. This agrees with Hopcroft and Ullman; they are concerned
with certain special ways of knowing L x.

One especially simple kind of representation of L arises when the proposition
L z is decidable, i.e. when there is a function Ry, € Alph list — B such that

L ziff 1 (Ry, 7).

We call the function Ry, a language recognizer, and the language in this case
is said to be decidable or recursive.

4 Finite Automata

4.1 Definition

Hopcroft and Ullman define a finite automaton M to be a system
(Ka Alpha 57 q0, F)

where K is a finite nonempty set of states, Alph is a finite input alphabet, §
is a mapping of K x Alph into K, qg in K is the initial state, and F C K
is the set of final states.

In defining a finite automaton in Nuprl, we first assume that some type
Alph is given for an alphabet, and some type St for the set of states. We
assume both Alph and St are finite, though occasionally we relax these
constraints when they are not necessary. An automaton A is then a triple
(0(A),I(A), F(A)), where the next state function §(A) has type St — Alph —
St, the initial state I(A) is a member of St, and F(A) is a function of type
St — B that returns ¢t just when applied to final states. By defining F'(A)
as a boolean-valued function, we ensure that we can compute when an auto-
maton is in a final state. The type of all such automata is

Automata(Alph; St) == (St — Alph — St) x St x (St — B).

See Section 7.1 for a discussion of the difference between our and Hopcroft
and Ullman’s definition.

4.2 Semantics of Automata

Hopcroft and Ullman extend the automaton transition function ¢ to input
strings with the recursive definition:

d(q, nil) = q

10



0(q,a.z) = 8(3(q,7),a),

where a is a symbol in the alphabet Alph and z is a string over Alph. They
define the language accepted by the automaton as

{z](qo,z) is in F}.

We make analogous definitions in Nuprl. Let A be an automaton of type
Automata(Alph; St), let | be an input string in type Alph list, and let s be
a state in St. We define the recursive function

8 (A)(s; 1) ==, if null(l) then s else §(A) &' (A)(s; t(1)) hd(l),

which given A in state s to start, computes the new state of A after input
of [.

We then define A(l) which computes the state of A after input of [, starting
in the initial state:

A(l) == 3 (A)(I(A); 1).

Using the final-state function F'(A), we define a language recognizer L;(A)
for A as

Ly(A) == \: Alph list. F(A) A(l).

The language accepted by A is defined by a similar function which returns
a proposition rather than a boolean. Using the 1 function which converts a
boolean to the corresponding proposition, L(A), the language accepted by
A, is defined as

L(A) == Xl: Alph list. T (Ly(A) I).

4.3 Equivalence Relations and Quotient Types

Prior to presenting the Myhill-Nerode theorem, Hopcroft and Ullman give
a brief introduction to equivalence relations and how they partition the
sets they are over into equivalence classes. They take a binary relation
on a set S to be a set of pairs of elements of S. As with representing
languages (see Section 3.1), we find it more convenient to represent relations
as characteristic functions: we consider a binary relation on a type S to be
a function of type S - S =+ P (=5 — (S — P)). To express that elements

11



z and y of type S are related by a binary relation R of type S — S — P,
we use both prefix application notation R = y and infix notation = R y.

In the Myhill-Nerode theorem, an automaton is constructed that uses the
equivalence classes of an equivalence relation as the states of an automaton.
This is problematic constructively, because the equivalence classes in ques-
tion have infinite size, and we would like to have finite representations of
states on which we can define computable transition functions.

The obvious solution is to use some element of an equivalence class as a
representative for the whole class. We do this with the help of Nuprl’s
quotient types. Given a type S and an equivalence relation F on S, the
quotient type S//E has the same members as S, but has as its associated
equality relation the relation F rather than the equality relation associated
with S.

In Nuprl’s type theory, for a function f to be in a type § — T, it must
respect the equalities associated with S and T'. Specifically, if the equalities
are =g and =7 respectively, we have f z =7 f y whenever z =g y. If ¥
is an equivalence relation on S, and we want to show that f also has type
S//E — T, we have to check that f z =7 f y whenever z E y.

The quotient type S//E behaves much like a type of the equivalence classes
of E. Often when set-theoretically defining a function with a set of equival-
ence classes as domain, the function mentions representatives of equivalence
classes, and it is necessary to check that the value of the function is inde-
pendent of the particular choice of representatives. With the quotient type
S//E as domain of a function in Nuprl’s type theory, the rules for function
type inhabitation enforce a corresponding constraint.

In presentations of quotient types from Nuprl theories, we occasionally use
the notation z,y : S//(z E y) for the type S//E. This more verbose notation
is useful when the primary notation for relation F includes its arguments.

4.4 Finite Index Equivalence Relations

In set theory, an equivalence relation F on a set S is is said to be of finite
index if E has a finite number of equivalence classes.

In Nuprl’s type theory, we express that an equivalence relation E on type S
has finite index by saying Fin(S//E), that is, the quotient type S//E is in
one-one correspondence with {0...%k — 1} for some non-negative number k.
This definition works because the functions defining the bijection between
S//E and {0...k — 1} must respect E. Note that when S is infinite, is
is possible for S//E to be finite, even though S and S//E have the same
elements.

12



4.5 Equivalence Relations on Strings

We introduce here a couple of definitions that are useful for stating the
Myhill-Nerode theorem.

Definition: An equivalence relation E on Alph list is called extension in-
variant ' just when for all z,y, z in Alph list

z E y= (2Qz) E (2Qy).

Definition: A language L over alphabet Alph induces an equivalence rela-
tion R(L) given by

z R(L)y < (Vz: Alph list. z2Qx € L < zQy € L).

5 The Myhill-Nerode Theorem

We reproduce Hopcroft and Ullman’s presentation of the Myhill-Nerode
theorem in Section 5.1, and discuss its formalization in the following sections.

5.1 Hopcroft and Ullman Version

The statement and proof of the Myhill-Nerode theorem here is taken almost
verbatim from [15]. A few changes have been made to make the notation
more similar to that used in the formal development. The definitions of
what it means for an equivalence relation to be extension invariant and of
the equivalence relation induced by a language can be found in Section 4.4.

Theorem 3.1. The following three statements are equivalent:

(1) The set L C Alph list is accepted by some finite automaton.

(2) L is the union of some of the equivalence classes of an extension in-
variant equivalence relation of finite index.

(3) The equivalence relation on Alph list induced by L is of finite index.

Proof
(1) = (2).

"Hoperoft and Ullman have strings which are extended on the right and call such
relations right invariant

13



Assume that L is accepted by M = (K, Alph, ¢, qo, F). Let R be the equival-
ence relation z R y if and only if §(qo, z) = §(qo,y). R is extension invariant
since, for any z, if d(qo,z) = (qo,y), then

6(q07 Z@x) = 6(Q07 Z@y)

The index of R is finite since the index is at most the number of states in
K. Furthermore, L is the union of those equivalence classes which include
an element x such that d(qo,z) is in F.

(2) = (3).

We show that any equivalence relation R satisfying statement (2) is a re-
finement of the equivalence relation R(L) induced by L; that is, every equi-
valence class of R is entirely contained in some equivalence class of R(L).
Thus the index of R(L) cannot be greater than the index of R and so is
finite. Assume that z Ry. Then since R is extension invariant, for each z
in Alph list, z2Qx R zQy, and thus 2@y is in L if and only if 2@z is in L.
Thus = R(L) y, and hence, the equivalence class of z in R is contained in the
equivalence class of z in R(L). We conclude that each equivalence class of
R is contained within some equivalence class of R(L).

(3) = (1).

Assume that = R(L) y. Then for each w and z in Alph list, zQwQz is
in L if and only if 2Qw@y is in L. Thus w@Qz R(L) wQy, and R(L) is
extension invariant. Now let K’ be the finite set of equivalence classes of
R(L) and [z] the element of K’ containing z. Define §([z],a) = [z.a]. The
definition is consistent, since R(L) is extension invariant. Let g = [nil] and
let F' = {[z] | # € L}. The finite automaton M' = (K', Alph,?¥',q}, F")
accepts L since ¢'(gf, z) = [z], and thus z is in L(M') if and only if [z] is in
F'.

Qed

5.2 Formalizing (1) = (2)

The formal statement of the theorem in Nuprl’s notation is

FYAlph:U. VL: Language(Alph).
Fin(Alph)
= (3St:U. FAuto: Automata(Alph; St). Fin(St) A L = L(Auto))
= (3R: Alph list — Alph list — P
EquivRel (Alph list; R)
A3g: Alph list//|R — B
Fin(Alph list//R)
A (VI: Alph Bist. I 1 &1 (g 1))
A (Vz,y,z: Alph list. R © y = R (2Qz) (2Qy))).

An English rendering of this is:

14



e Let Alph, an alphabet, be a finite type and let L be a language over
Alph,

e assume there exists a finite type of states St and an automata Auto
over Alph and St that accepts the language L,

e then there exists a binary relation R on Alph [list that is

— an equivalence relation (EquivRel(Alph list; R)}),

— right invariant (Vz,y,z: Alph list. R z y = R (2Qz) (2Qy)),
— and of finite index (Fin(Alph list//R)),

e and there exists a boolean-valued function g with domain Alph list//R
that returns boolean true (¢¢) exactly on strings in the language L
(3g: Alph list//R — B. VI: Alph list. L1 <1 (g 1)).

The function g here acts as the characteristic function for the set of equi-
valence classes of the relation R whose union gives the language L. As
remarked in Section 3.1, it is often more straightforward in Nuprl’s type
theory to represent sets as characteristic functions than as types. Note that
the Nuprl quotient type Alph list //R still contains elements of Alph list as
members, so it is legitimate to pass the function g an element I of Alph list
as an argument.

In requiring that g be boolean (B) valued rather than proposition (IP) valued,
we are augmenting the statement (2) of the theorem with the requirement
that membership in the language L be decidable. This augmentation is
necessary for the constructive proofs of the other parts of the theorem.

Proof
1. As with the Hopcroft and Ullman proof, R z y is defined as Auto(z) =
Auto(y). Showing R is an equivalence relation and is extension invari-
ant is straightforward.

2. Finiteness of Alph list//R is argued by noting that Alph list//R is
isomorphic to the set of accessible states, which is a subset of St.

The finiteness argument is first carried out abstractly by proving the
lemma

EVT,S:U.Vf:T — S. Fin(S) A (Vs:S. Dec(Ft:T. ft =3))

= Fin(z,y:T//(f 2= [y))
which is then instantiated with T' being Alph list, S being St, and f
being the function Al. Auto(l).

In using this lemma, the precondition

15



Qed

5.3

Give

Vs:St. Dec(3t: Alph list. Auto(t) = s)

has to be discharged. Read constructively, this precondition requires
that, for any state s, it is possible to compute whether or not s is
accessible, and further, if s is accessible, it must be possible to compute
some string ¢ that, when input to the automaton, puts the automaton
into state s.

The precondition is proven with the help of a corollary of the pump-
ing lemma which states that in searching for a string that puts an
automaton in a certain state, it is only necessary to try strings whose
length is not greater than the number of states of the automaton.

We define g on Alph list//R to be tt exactly when F(Auto(x)) = tt,
ie. g © = F(Auto(x)). That g is functional wrt R follows directly
from the definition of R.

Formalizing (2) = (3)

n a type A representing an alphabet, and a language L over A, the

binary relation R(L) induced by L is defined as

and
is su

R(L) == Az,y. Vz:Alist. L zQz & L zQy

has type A list — A list — P. The display of parameter A to R(L)
ppressed, since A can be inferred from considering the type of L. We

establish straightforwardly that R(L) is an equivalence relation.

The

formal statement of (2) = (3) is:

FV¥n:{l..}.VA:U. VL:Language(A). YR: A list — A list — P.
Fin(A)
= EquivRel(A list; R)
= 1-1-Corresp(Nn; A list // R)
= (Vz,y,z: Alist. * Ry = (2Qz) R (2Qy))
= (Jg:Alist//R — B. Vi:Alist. L1 &1 (g1))
= (Im:N. 1-1-Corresp(Nm; A list//R(L)))
A(VL: A list. Dec(L 1)).

An English reading is:

Let the alphabet A be a finite type,
let R be a binary relation on A list that is

— an equivalence relation,
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— extensionally invariant,

— and of finite index
(1-1-Corresp(Nn; A list//R) where n is a positive integer),

let L be a language over A,

assume L is a union of equivalence classes of R and is decidable
(3g:Alist//R — B. Vi:Alist. L1l<1(gl)),

then R(L) is of finite index
(Im:N. 1-1-Corresp(Nm; A list//R(L))),

and L is decidable.

Note that here both statements (2) and (3) of Hopcroft and Ullman have
been augmented with a requirement that membership in L be decidable.
The augmentation of (3) is necessary for the proof of (3) = (1).

Proof
The argument that R is a refinement of R(L) follows the Hopcroft and
Ullman argument and is completely straightforward.

To show that therefore the index of R(L) is no larger than the index of R,
we could instantiate a lemma of form

Quotient Index Lemma 1. If P and @ are binary relations
over a type T, and P is a refinement of Q (z Py = z Q y for
any z and y), and the index of T///P is some natural number
n, then the index of T'//Q is some natural number m such that
m < n.

For this lemma to be constructive, a precondition requiring .S to be a decid-
able relation needs to be added.

Proving this lemma is tedious; it involves giving the explicit construction
of a bijection between {0...m — 1} and T'//S given a bijection between
{0...n—1} and T//R. Tt turns out to be simpler to prove a lemma of form:

Quotient Index Lemma 2. If () is a decidable binary relation
over a type T', and the index of T' is some natural number n, then
the index of T'//@ is some natural number m such that m < n.

We instantiate the 7" of this lemma with the type Alph list//R and the Q of
this lemma with a binary relation R’(g) which is similar to R(L) in definition,
but is defined over Alph list//R rather than Alph list. The precondition
that Alph list//R is of finite index follows by assumption, and we get the
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result that (Alph list//R)//R'(g) is of finite index. That Alph list//R(L) is
of finite index trivially follows when we use the result that there is a one-one
correspondence between (Alph list//R)//R'(g) and Alph list// R(L).

A remaining precondition of Quotient Index Lemma 2 is to show that R'(g),
or equivalently R(L), is a decidable relation. This is not immediately obvi-
ous: Since z R(L) y iff 2Qz R zQy for every z, it seems that we have to
try an infinite number of z to compute if z R(L) y true. (Note that we can
test if 2@z R 2Qy since R is decidable.) Again, the pumping lemma is of
help; it shows that it is sufficient to only consider every z of length up to the
number of states of our automata M which accepts L. Since Alph is finite,
there are only a finite number of z to try.

Qed

5.4 Formalizing (3) = (1)

The formal statement of the theorem is:

+ VAlph:U. YL: Language (Alph)

Fin(Alph)

= (Fin(Alph list//R(L)) AYI: Alph list. Dec(L 1))

= 3S5t:U. Auto: Automata(Alph; St). Fin(St) A L = L(Auto).
In English,

e Let the alphabet Alph be a finite type, and let L be a language over
Alph,

e assume the relation R(L) induced by L is of finite index,
e assume membership of L is decidable,

e then there is a finite type of states St, and an automaton Auto over
Alph and St that accepts L.

Proof
Checking R(L) is extension invariant is straightforward.

For the type of states St we take the quotient type Alph list//R(L) instead
of the set of equivalence classes of R(L). Whereas Hopcroft and Ullman
define the action of the automata in terms of equivalence classes, writing
d([z],a) = [a.x], here we use a function that works on representatives of
equivalence classes. Specifically, given an element z of Alph list and an
element a of Alph, we define §(Auto) x a to be the list a.z.

For the start state I(Auto), we use the empty list nil, and for F(Auto) we
use a boolean-valued version of the characteristic function L (remember that
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we represent languages using characteristic functions rather than subtypes).
A boolean-valued version of L exists because we have as an assumption that
L is decidable.

In type-checking each of these components of Auto, we check that the defin-
ition of Auto is consistent. For example, we check that d(Auto) has type
Alph list//R(L) — Alph — Alph list//R(L). In checking this, we show that
if x R(L) y, then (0(Auto) z a) R(L) (6(Auto) y a). That is, 6(Auto) maps
possibly-different representatives of some equivalence class of R(L) to rep-
resentatives of the same equivalence class of R(L).

Qed

6 State Minimization

We discuss in this section a corollary to the Myhill-Nerode theorem that
explicitly states the existence and uniqueness of a minimum finite automaton
for any language accepted by some finite automaton.

6.1 Textbook Proof

The presentation here is taken almost verbatim from [15, p29]. The main
change is to adopt the notation for strings used in the Nuprl development.

Theorem 3.2. The minimum state automaton accepting L is unique up
to an isomorphism (i.e., a renaming of the states) and is given by M’ of
Theorem 3.1.

Proof

In the proof of Theorem 3.1 we saw that any M = (K, Alph, 0, qo, F') accept-
ing L defines an equivalence relation which is a refinement of R(L). Thus the
number of states of M is greater than or equal to the number of states of M’
of Theorem 3.1. If equality holds, then each of the states of M can be identi-
fied with one of the states of M'. That is, let ¢ be a state of M. There must
be some z in Alph list, such that §(qo, z) = g, otherwise ¢ could be removed
from K, and a smaller automaton found. Identify ¢ with the state ¢’ (g, z)
of M'. This identification will be consistent. If §(qo,z) = d(q0,y) = q,
then, by Theorem 3.1, z and y are in the same equivalence class of R. Thus
d' (g9, 7) = ' (a5, y)-

Qed

6.2 Formalization of Minimization Theorem

First we make a few definitions. As earlier, let Alph be an alphabet, St be
a type for states, and Auto be some automaton over Alph and St.
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The type of states MinSt(Auto) of the minimum automaton for the language
accepted by Auto is

MinSt(Auto) == Alph list /| R(L(Auto))
and the minimum automaton itself is
MinAuto(Auto) == ((As, a. (a.s)), nil, Ly(Auto)).

We show that MinAuto(Auto) has type Automata(Alph; MinSt(Auto)). These
definitions make explicit the constructions implicit in our proof of the Myhill-
Nerode theorem.

With the help of various auxiliary lemmas from the Myhill-Nerode devel-
opment, we prove such theorems as that MinSt(Auto) is a finite type and
MinAuto(Auto) accepts the same language as Auto.

We split our statement and proof of the minimization theorem into two
parts. It is important to note here that the definitions of MinSt(Auto)
and MinAuto(Auto) depend only on the language accepted by Auto, not on
any particular structure of Auto. Without this observation, the two main
statements will not be seen to claim what we intend them to claim. The
two statements are

1. The statement that the minimum automaton really has the smallest
number of states of any automata accepting the same language is

FVAlph:U. Fin(Alph) =
VSt:U. Fin(St) =
YV Auto: Automata(Alph, St).
|St| > |MinSt(Auto)].

Here we use the definition
|S| > |T|==3f:S = T. Surj(S;T; f),

that is, a type S is at least as large as a type T if there exists a
surjective function from S to T'. When S is non-empty and T is empty,
this predicate is false, whereas one would ideally want it to be true.
We don’t need to be concerned with this pathological case since types
of states always include initial states.

Proof

Most of the argument here is already gone over in the Myhill-Nerode
proof. In a few cases we have to prove some new intermediate lemmas
that make various facts more explicit.

Qed
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2. Our statement that the minimum automata is isomorphic to any other
is

+ YAlph:U.Fin (Alph) =
VSt:U.Fin(St) =
YV Auto: Automata(Alph, St)
1-1-Corresp(St; MinSt(Auto)) =
Auto = MinAuto(Auto).

Here we use the definition

Al = A2 ==
3f: 51— S2.
Bij (S1;.52; f)
A (Vs:S1.Va: Alph. f (6(Al) s a) = 6(A2) (f s) a)
A f I(Al) =1(A2)
A (Vs:S1. F(Al) s = F(A2) (f s)

to say that automata Al and A2 are isomorphic. This definition fol-
lows the pattern of definitions of isomorphisms for algebraic struc-
tures. Hopcroft and Ullman omit the definition entirely, no doubt on
the grounds that it is the obvious one to use. Bij(S1;S52;f) is the
proposition that function f from type S1 to type S2 is a bijection.
The definition of = takes S1, S2, and Alph as parameters, but the
display of these is suppressed because they can easily be inferred from
consideration of the types of A1 and A2.

Proof

As with the Hopcroft and Ullman proof, we argue that we can as-
sume without loss of generality that Auto is connected. We then use
our analogue of their construction of the identification function f for
the isomorphism. Hopcroft and Ullman state without proof that this
identification is consistent. We need ourselves to fill in the tedious but
routine steps of proof showing that the identification function has all
the properties that make it an isomorphism.

Qed

7 Discussion

7.1 Structuring the definition of automata

Our parameterization of the type of automata by both an alphabet and a
type of states is inelegant (See Section 4.1). Parameterization by an alphabet
has its merits, but it is clear that the type of states ought to be paired
with the transition function, the initial state, and the set of final states.
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Constructively, a full specification of an automata also requires evidence
that the state type is finite.

One solution is to have automata over a finite alphabet be tuples of form
(FinSt, 6, I, F)

where 0, I, and F' are as before, and FinSt is an element of a type of ‘finite
types’, of four-tuples of form (T, n, f,g), where T is a type, n is the size of
T, and f and g define an isomorphism between 7" and Nn.

A similar solution involves writing the type of finite types as
T:U x Fin(T).

(This is the notation for Nuprl’s dependent product type, sometimes called
a Y type.) From the point of view of classical mathematics this is ill-formed,
a proposition Fin(T'), is being used in a position where a type is expected.
However, in constructive type theory, this is well-formed because propos-
itions are types. Elements of Fin(T) are tuples of form (n, f,g,*), and
elements of T:U x Fin(T) are tuples of form (T, (n, f,g,*)).

The * here is a term witnessing the proposition that f and g form an
isomorphism. Such witnesses can form significant clutter, and there are
standard techniques, for example using subset types, to define propositions
carefully so that they have minimal or no such witnesses.

We avoided taking this approach, using Fin(T) as a type, partly because of
a wish to keep a straightforward classical reading. Perhaps though this is
not important when so many of our concerns are with constructivity.

7.2 Use of quotient types

Due to the richness of Nuprl’s type theory, type-checking is undecidable. In
practice, heuristics help carry out most simpler type checking tasks com-
pletely automatically. However, Nuprl’s quotient types introduce a new di-
mension of variability into the problem. Frequently we use a function with
domain type T where a function with domain type T//E is expected, and
we then repeatedly get proof obligations to show that the function respects
E.

We realize that we need to introduce a discipline for use of quotient types,
where, as much as possible, such problems are localized to the right-hand-
side of definitions that are type-checked just once, and then always exploited
in proofs with the help of characterizing lemmas, rather than definition
expansion. We now have several similar proposals for such a discipline, but
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didn’t have the time to try one in this formalization. One key aspect of these
proposals is that injections into quotient types are always explicitly tagged.
This helps both the type checker in its type-inference, and the reader in
understanding what terms in Nuprl’s computation language are denoting.

For example, if z is of type T and F is an equivalence relation over T', we
might have the injection of z into T'//E written as [z]{T//E}. For projec-
tions out of quotient types, we might have a projection operator written
qproj{T//E}(f) that takes a function f of type T'— S, and turns it into a
function of type T'//E — S. The type checking conditions for gproj would
include the requirement that f be shown to respect F.

Using these injection and projection operators does not free us from check-
ing that equivalence relations are respected, but it does make the loca-
tion of those checks more predictable. Analogous operators are required
when quotient types are implemented in strongly-typed type theories such
as ECC [14], and when working with quotient structures in set theory.

7.3 Inadequacies in construction of the minimum automaton

A hard-to-understand definition in this formalization is that of the MinAuto
function (see Section 6.2). There, the intended meaning of the state trans-
ition function mapping equivalence classes to equivalence classes is only ap-
parent when we look at the type the function is supposed to have. If we
write the transition function definition as

qproj { MinSt(Auto)}(Azx : Alph list. Aa : Alph. [a.x]{ MinSt(Auto)}),
instead of
Az, a. (a.x),

its meaning is more immediately evident. Here we have used the quotient
type injection and projection operators described in Section 7.1 as well as
type annotations on the lambda terms, again to help both readability and
typechecking.

Another perhaps more serious defect of our construction of MinAuto(Auto)
is that it is computationally trivial. If we imagine applying MinAuto(Auto)
to some input string, then it does nothing more than copy that string, and
pass it to Auto to check if it should be accepted.

Creating a minimization function that actually does the work of computing a
minimum automaton is not difficult, though we have not carried this out yet.
We need to define a type of automata, MinAuto' say, in which automata are
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represented by finite data structures (integers, pairs, and lists, for example),
not functions. The key is to exploit the function we can synthesize from
the proof of Fin(MinAuto(Auto)). Given Auto as argument, this function
can compute the size n of the minimum automaton accepting the language
Auto accepts and can provide mapping functions between MinSt(Auto) and
Nn. Using these mapping functions, we can construct a function that, when
evaluated on argument MinAuto(Auto), returns the finite data structures
for a minimum automaton that accepts the same language as Auto.

7.4 Computational complexity of synthesized algorithms

With the proofs as we initially completed them, the time complexity of
several extracted functions, including the size function described in Sec-
tion 7.3, was exponential in the number of states. Aleksey Nogin at Cornell
has recently reworked some of the proofs and introduced alternate auxili-
ary functions to reduce the complexity of the size function to a low-order
polynomial. His work is viewable at the Nuprl web site (see Section 1.5).
Folowing the approach described in Section 7.3, we should be able to ex-
tend Nogin’s work so that we can synthesize an automata miniminization
function of low polynomial time complexity.

8 Summary of Results

o We were successful in formalizing the Myhill-Nerode theorem in con-
structive type theory.

e We did not find errors in the statement or proof of the theorem in
Hopcroft and Ullman. We did note Hopcroft and Ullman’s elision of
more-routine definitions and proofs. For example, they employ but
do not define an isomorphism relation on automata, and they claim
but do not prove that a mapping between the sets of states of two
automata is an automata isomorphism.

e To make the Myhill-Nerode theorem constructively provable, we needed
to add conditions on the decidability of language membership to two
of the three equivalent propositions in its statement.

Constructivity considerations when reasoning about finiteness forced
us to consider how various automata properties can be computed. For
example, by a combination of explicit introduction, and synthesis from
appropriate constructive proofs, we introduced functions for

— determining whether a state of an automaton is accessible, and,
if so, what input string would put the automaton in that state,
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— testing whether two states are equivalent.

Such functions can form the core of a function for carrying out the
minimization procedure. Initially they had time complexity exponen-
tial in the number of states, but, in ongoing work, we have introduced
alternate functions with low-order polynomial complexity.

9 Conclusions and Future Work

With this article and the accompanying online material, we have a present-
ation of a piece of mathematics that is completely precise and that can be
viewed at differing levels of detail. We have argued that such presentations
are superior to textbook only presentations, and we believe that we have
begun to demonstrate this.

At Cornell we are currently experimenting with other examples of such
formally-grounded explanations. We have already formalized other parts of
Hopcroft and Ullman, including account of grammars and of nondetermin-
istic automata. We judge that it would be possible to formalize Chapters
1-9 with our four person team in about eighteen months.

The collaboration methods we have learned would extend to larger teams.
It would be especially interesting to collaborate with other theorem proving
systems as Howe and his colleagues are doing with HOL and Nuprl [19,
18]. Much of a classical treatment of languages can easily be re-interpreted
constructively. It would be especially fruitful to collaborate with teams
using other constructive provers such as Alf, Coq, Lego, or Isabelle with
its Martin-Lof-type-theory object logic. Although these provers are based
on different formalizations of constructive mathematics, they all share the
critical properties that computational notions can be expressed and that
programs can be synthesized from proofs.

One weak point of our online presentation is the readability of proofs. We
see no reason why online formal proofs should not be at least as clear as any
informal proofs. Unlike many other provers, Nuprl maintains a proof tree
datastructure that already assists us in generating comprehensible present-
ations of proofs. Ideas we are currently exploring to improve readability
include the grouping of lower level tactic sequences under user supplied
comments and the suppression of less-important proof branches. We are
also following the work of the Centaur group to make proofs more read-
able [3, 29], and we expect to use the modularity feature of the Nuprl-Light
refiner [13] to help us better structure theories.
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A Index for Notation

The numbers on the right refer to pages where the notation is first intro-

duced.

Types

{z:T | P}

SxT

S—=T

S list

T//E

z,y:T//z Ey
Automata(Alph; St)

B
Language(Alph)
MinSt(A)

NG'@%Z

integers from 7 upwards

set type

product of types S and T
functions from type S to type T
list type

quotient type

long form for T'//E

automata over alphabet Alph
and states St

booleans

languages over alphabet Alph
states for MinAuto(A)
naturals {0, 1,...}

naturals {0...k — 1}
propositions

universe of types

integers

Predicates and Operators

fa
a.s

@
[]
(a,b)

function application

list building (“consing”)

list append

equivalence class of z

pairing

definitional equality

recursive function definition

language equality

extended next-state function

asserts that boolean expression b is true
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5 Nuprl version of § 11
d(A) next-state function of automaton A 10
Az. b lambda abstraction 6
A(l) state of automaton A after input of / 11
Dec(P) P is decidable 15
EquivRel(T; E) E is an equivalence relation over type T 15
F(A) set of final states of automaton A 10
i boolean false 6
Fin(T) type T is finite 8
hd (1) head of list / 6
I(A) initial state of automaton A 10
L(A) language accepted by automaton A 11
Ly(A) boolean version of L(A) 11
MinAuto(A) minimum automaton for L(A) 20
nil empty list 6
null(l) function testing if list [ is empty 6
1-1-Corresp(S;T) 1-1 correspondence between types S and T 8
R'(9) like R(L) but typing involves quotient type 17
R(L) relation induced by language L 16
t(l) tail of list [ 6
it boolean true 6
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