
BMC 2006

A compact linear translation for bounded
model checking 1

Paul B. Jackson 2

School of Informatics, University of Edinburgh,
Kings Buildings, Edinburgh EH9 3JZ, United Kingdom

Daniel Sheridan 3

Adelard LLP, 10 Northampton Square,
London EC1V 0HB, United Kingdom

Abstract

We present a syntactic scheme for translating future-time LTL bounded model
checking problems into propositional satisfiability problems. The scheme is similar
in principle to the Separated Normal Form encoding proposed in [5] and extended
to past time in [3]: an initial phase involves putting LTL formulae into a normal
form based on linear-time fixpoint characterisations of temporal operators.

As with [3] and [7], the size of propositional formulae produced is linear in the
model checking bound, but the constant of proportionality appears to be lower.

A denotational approach is taken in the presentation which is significantly more
rigorous than that in [5] and [3], and which provides an elegant alternative way of
viewing fixpoint based translations in [7] and [1].

Key words: Bounded Model Checking, Linear Temporal Logic,
Fixpoints, SAT, Denotational Semantics

1 Introduction

Frisch, Sheridan and Walsh [5] proposed a scheme for translating LTL bounded
model checking problems into satisfiability problems that is significantly dif-
ferent from the original bounded model checking encoding scheme presented
in [2]. This scheme involves simplifying temporal formulae using rules based
on fixpoint characterisations of temporal operators to put formulae into a

1 This research was funded in part by UK EPSRC Grant GR/N64243/01
2 Email: pbj@inf.ed.ac.uk
3 Email: dan.sheridan@contact.org.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

separated normal form (SNF) similar to that used by Fisher in his tempo-
ral resolution work [4]. Frisch, Sheridan and Walsh [5] showed that this new
scheme had significant advantages in terms of compactness of propositional
formulae generated and SAT solver run times. This SNF approach smoothly
extends to handle past time LTL [3] and has similarities with automata-based
translations [8].

In this paper, we present an alternate set of simplification rules for fu-
ture time LTL that again exploits fixpoint characterisations, but is simpler to
describe. As with [3] and [7], the size of propositional formulae produced is
linear in the model checking bound, 4 and the constant of proportionality is
smaller than with [7].

A major contribution of the paper is in providing a denotational semantics
approach to justifying the encoding. This justification is much more com-
plete and rigorous than that in [5] and [3], and it enables easy exploration of
variations on these and other encodings.

A minor novelty is that we experiment with using an abstract symbolic
representation of Kripke structures. Most formal presentations of BMC con-
flate a description of the BMC translation from LTL syntax to propositional
logic syntax with a description of its semantics, and only informally refer to
possible symbolic representations (for example, using propositional formulae,
BDDs or Boolean circuits) of Kripke structures. Our approach allows us to
keep the translation and semantics distinct. While our approach is more ver-
bose, we argue that it is easier to understand, especially when handling the
auxiliary variables introduced by our translation.

Our implementation is not yet complete so we do not have empirical data
on SAT solver performance on the resulting encoded problems. We certainly
expect the performance to be no worse than with SNF because of the similarity.

The structure of the rest of the paper is as follows. In Section 2 we present
the foundations of our denotational approach, closely following the logic of the
original BMC translation from [2]. Section 3 then gives a high-level overview of
our new translation. The translation is split into two phases: the normalisation
phase is covered in Section 4 and the translation to propositional logic phase
in Section 5. Section 6 covers related work and we draw our conclusions in
Section 7.

2 Preliminaries

2.1 Syntax for LTL

Fix some set V of Boolean-valued state variables. We use these as the atomic
propositions of our LTL formulae. We initially consider LTL formulae de-

4 The super-linear behaviour of the SNF encoding as noted in [7] was obtained with an
older version of the SNF code than that presented in [3]

scribed by the grammar

φ ::= v | ¬v | φ ∧ φ | φ ∨ φ | Xφ | Fφ | Gφ | φU φ | φR φ

where v ∈ V . Such formulae are in negation normal form (NNF): negations
are only applied to state variables. Any LTL formula can be transformed into
an equivalent NNF formula by pushing negations inwards. We use φ ⇒ ψ as
an abbreviation for ¬φ ∨ ψ.

2.2 Kripke structures

The set of states S associated with a set of state variables V is the set of
valuations V → B of those variables. A Kripke structure M over a set of
state variables V is a pair 〈I, T 〉 where I ⊆ S is a set of initial states and
T ⊆ S × S is a transition relation which has to be total. Many treatments of
Kripke Structures consider the set of states S more abstractly and introduce a
labelling function specifying which atomic propositions are true in each state.
It is straightforward to adapt our presentation to this more general approach,
but, for simplicity, we do not. A similar simplification is common in automata-
based approaches to LTL model checking. An unconstrained path π over M is
an infinite sequence of states π = s0, s1, . . . where si ∈ S. A constrained path
or simply a path over M must satisfy the constraints s0 ∈ I and, for every
i ≥ 0, 〈si, si+1〉 ∈ T . Let Paths(M) be the set of all paths over M . A finite
path is a finite prefix of a path. A finite path s0, s1, . . . , sk−1 has bound k.

We denote distinct copies of the set of state variables using superscripts.
For example, V ′, V i for i ∈ N. If v ∈ V , the corresponding variable in V ′ is v′

and in V i is vi. A symbolic Kripke structure M̂ over a set of state variables
V is a pair 〈Î , T̂ 〉 where Î(V) is a symbolic representation of the set of initial
states and T̂ (V, V ′) is a symbolic representation of the transition relation.
The notation A(V) here indicates that the symbolic representation A is over
the variables V . We then write elsewhere A(W) for A with the variables V
replaced with the variables W . The Kripke structure corresponding to M̂ has
I
.
= {s ∈ S | s |= Î} and T

.
= {〈s, t〉 ∈ S × S | s, t |= T̂}. This definition

uses satisfiability relations |= for single states and pairs of states satisfying a
propositional formula defined in the expected way.

2.3 Infinite path semantics

A common approach to LTL semantics is to define an inductive relation π |=i φ
indicating at which positions i ∈ N on path π the LTL formula φ is satisfied.
We give an exactly equivalent definition in a denotational style. We define the
infinite denotation [[π φ]] of formula φ to be an infinite sequence of a0, a1, . . .
of Boolean values, elements of B = {⊥,>}, such that ai is true just when φ is
satisfied at position i of path π. We write the set of all such infinite boolean
sequences as Bω. We often view a sequence a ∈ Bω as a function of type

N → B, and refer to element i as a(i). When we say that a formula is satisfied
by a path without indicating an explicit position on the path, we mean that
the formula is satisfied at position 0. Formally, the infinite denotation of an
LTL formula is given inductively by:

[[π v]](i) = si(v)

[[π ¬v]] = [[¬]]([[π v]])

[[π Oφ]] = [[O]]([[π φ]]) for O ∈ {X,F,G}

[[π φO ψ]] = [[O]]([[π φ]], [[π ψ]]) for O ∈ {∧,∨,U,R}

where the individual operator denotations are given by

[[¬]](a)(i) .= ¬a(i)

[[∧]](a, b)(i) .= a(i) ∧ b(i)

[[∨]](a, b)(i) .= a(i) ∨ b(i)

[[X]](a)(i) .= a(i+ 1)

[[F]](a)(i) .= ∃j ≥ i. a(j)

[[G]](a)(i) .= ∀j ≥ i. a(j)

[[U]](a, b)(i) .= ∃j ≥ i. b(j) ∧ ∀n ∈ {i .. j−1}. a(n)

[[R]](a, b)(i) .= ∀j ≥ i. b(j) ∨ ∃n ∈ {i .. j−1}. a(n)

Here a, b ∈ Bω are infinite denotations and i ∈ N indexes positions in denota-
tions. These explicit denotations for operators help simplify the presentation
later. Their use emphasises that the meaning of operators is dependent only
on the meaning of subformulae, not on the syntactic structure of subformulae.

Let us write φ ≡ ψ when LTL formulae φ and ψ have the same infinite
denotation for all Kripke structures M and paths π over those structures.

2.4 Finite denotations when paths are looping

In producing finite propositional encodings of model checking problems, bounded
model checking works with finite representations of infinite paths and infinite
denotations. In this subsection we consider loop case representations. In the
next subsection we consider prefix case representations.

In the loop case with bound k and loop start l where 0 ≤ l < k, a fi-
nite path π̇ = s0, . . . , sk−1 such that T (sk−1, sl) represents the infinite path
s0 . . . sl−1(sl . . . sk−1)

ω. We call such infinite paths (k, l) loop paths. Similarly,
finite loop-case denotations such as ȧ = a0, . . . , ak−1 where ai ∈ B represent
infinite denotations a0 . . . al−1(al . . . ak−1)

ω. A loop-case inflation function ↑∞◦
maps finite paths and denotations to the corresponding infinite paths and
denotations. A restriction function |k maps (k, l) loop paths and infinite loop-
case denotations to their finite representations.

When working with loop paths and their finite denotations, we can define

a finite loop-case denotation function π̇
l

F

[[φ]]k with range Bk that exactly mimics
the infinite denotation function:

[[π̇↑∞◦ φ]] = π̇
l

F

[[φ]]k ↑
∞
◦

where π̇ is a k-bounded path representing a (k, l) loop path. The definition is
similar to that of the infinite denotation with the following changes:

l

F

[[X]]k(ȧ)(i)
.=

ȧ(i+1) if i < k−1

ȧ(l) if i = k−1
l

F

[[F]]k(ȧ)(i)
.= ∃j ∈ {min(i, l) .. k−1}. ȧ(j)

l

F

[[G]]k(ȧ)(i)
.= ∀j ∈ {min(i, l) .. k−1}. ȧ(j)

l

F

[[U]]k(ȧ, ḃ)(i)
.= (∃j ∈ {i .. k−1}. ḃ(j) ∧ ∀n ∈ {i .. j−1}. ȧ(n))

∨ ∃j ∈ {l .. i−1}. ḃ(j) ∧ ∀n ∈ {i .. k−1} ∪ {l .. j−1}. ȧ(n)

l

F

[[R]]k(ȧ, ḃ)(i)
.= (∀j ∈ {i .. k−1}. ḃ(j) ∨ ∃n ∈ {i .. j−1}. ȧ(n))

∧ ∀j ∈ {l .. i−1}. ḃ(j) ∨ ∃n ∈ {i .. k−1} ∪ {l .. j−1}. ȧ(n)

where ȧ, ḃ ∈ Bk are finite denotations and index i is in range {0 .. k−1}.
All quantifications in the finite loop-case denotation function are over fi-

nite ranges. Following the denotation function’s structure, we can define an
executable loop-case translation function [l φ]

i
k that can translate a question

concerning the existence of a finite path loop-case satisfying a formula into a
propositional satisfiability question. The relationship between the loop-case
denotation and translation functions is expressed by:

π̇
l

F

[[φ]]k(i) ⇔ π̇ |= [l φ]
i
k

where the relation π̇ |= q for when a finite path π̇ satisfies a propositional
formula q is defined in the expected way. Representative cases of the definition
of the loop-case translation function are

[l v]
i
k

.
= vi [l Fφ]ik

.
=

∨k−1
j=min(i,l) [l φ]

j
k

In the original paper introducing BMC [2] and many other papers in the
BMC literature, symbolic Kripke structures are not explicitly introduced and
confusing semantic notations occur in translation function definitions. For
example, the base case of the translation function might be written as [l v]

i
k

.
=

v(si) where a state variable v is treated as function which it is not, and a state
si is introduced which is part of the semantic presentation, not part of the
language of propositional logic that is being translated into.

2.5 Finite denotations when paths have common prefix

In the prefix case with bound k, a finite path π̇ = s0, . . . , sk−1 represents
the set of all paths that have it as a prefix. Prefix-case denotations such as
ȧ = a0, . . . , ak−1 where ai ∈ B represent infinite denotations ȧ⊥ω. A prefix-case
inflation function ↑∞ maps finite denotations to the corresponding infinite
denotations. The restriction function π|k introduced in the last section is also
used to select the k-bounded prefix of an infinite path π.

We define a finite prefix-case denotation function π̇
F

[[φ]]k (or sometimes

π̇
−

F

[[φ]]k) in a similar way to the the finite loop-case denotation function. In this
case, the denotations for the LTL temporal operators are given by:

F

[[X]]k(ȧ)(i)
.=

ȧ(i+ 1) if i < k−1

⊥ if i = k−1

F

[[F]]k(ȧ)(i)
.= ∃j ∈ {i .. k−1}. ȧ(j)

F

[[G]]k(ȧ)(i)
.= ⊥

F

[[U]]k(ȧ, ḃ)(i)
.= ∃j ∈ {i .. k−1}. ḃ(j) ∧ ∀n ∈ {i .. j−1}. ȧ(n)

F

[[R]]k(ȧ, ḃ)(i)
.= ∃j ∈ {i .. k−1}. ȧ(j) ∧ ∀n ∈ {i .. j}. ḃ(n)

The prefix case denotation underapproximates the standard infinite deno-
tation and so is sound. We can express this by the assertion

π|k
F

[[φ]]k ↑
∞ v [[π φ]]

where π is any infinite path and we are treating the domain of infinite deno-
tations Bω as a lattice with order relation a v b

.
= ∀i ∈ N. a(i) ⇒ b(i). As

with the loop-case, we can derive a prefix translation function [φ]ik (sometimes

written as [− φ]
i
k) from the prefix-case denotation function.

3 The new full translation

We describe here the high-level structure and properties of our translation in
order to motivate the details in subsequent sections. The translation takes
an LTL formula φ, symbolic Kripke structure M̂ and bound k and creates
a propositional formula that is satisfiable just when some path in M̂ with a
k-bounded representation satisfies φ. Conceptually the translation proceeds
in 3 stages:

1. Apply normalisation function N () to φ to create normalised temporal
logic formula ψ.

2. Create a formula

[M̂]k ∧
(
[ψ]0k ∨

k−1∨
l=0

Ll k(M̂) ∧ [l ψ]0k
)

(1)

that brings together the prefix case and loop case translations of ψ and
correspondingly checks that an unconstrained finite path is representing
a prefix case or a loop case path. Here [M̂]k

.
= Î(V 0)∧

∧k−2
i=0 T̂ (V i, V i+1)

generates a proposition for checking that a finite state sequence is a finite
path and Ll k(M̂)

.
= T̂ (V k−1, V l) is a constraint for specifying that a

finite path represents a (k, l) loop path.

3. Apply standard logic transformations so as to collect together common
factors in the disjuncts of Formula (1) and ensure the formula’s size is
linear in k.

The original translation of [2] consists of step 2 without steps 1 and 3. Even
with careful optimisations, the size of the original translation is claimed in
[7] to be cubic in the worst case. Our normalisation in step 1 enables the
factoring for linear size in step 3.

We formally write our full translation as:

Full[M̂, φ]k
.
= body

(
Norm[M̂, N (φ)]k

)
where the normalised-formula translation function Norm[M̂, ψ]k groups to-
gether steps 2 and 3. This translation function produces formulae of form
∃ z. q where z is a vector of propositional variables and q is a propositional
logic formula. The function body() returns the body q of such formulae. This
existential quantification ∃z arises because N () produces formulae in LTL ex-
tended with existential quantification. See Section 4 for a full definition of
N () and Section 5 for a full definition of Norm[M̂, ψ]k.

To state the correctness of our full translation, we introduce a reference
semantics which combines the infinite and finite prefix-case semantics. A
(k, l) loop path π satisfies at bound k an LTL formula φ if π satisfies it in the
standard infinite semantics (if [[π φ]](0) holds). If π is not a (k, l) loop path
for any l, then π satisfies at bound k a formula φ if the k-bounded prefix of π

satisfies φ in the finite prefix case semantics (if π|k
F

[[φ]]k(0) holds). A formula φ
is existentially valid with bound k in Kripke structure M , written M |=k Eφ,
when some path π of M satifies φ at bound k. We can now state the overall
correctness claim for our new translation as follows.

Theorem 3.1 (Correctness of new translation). For any symbolic Kripke
structure M̂ with corresponding semantic structure M , any LTL formula φ and
any bound k > 0, we have that

M |=k Eφ ⇔ Full[M̂, φ]k is satisfiable

4 Formula normalisation

4.1 Overview

Normalisation proceeds in two main stages. Firstly the LTL operators F, G,
Uand R in the input formula are all converted into forms involving greatest
fixpoint operators. Section 4.3 handles how this is done with G and R, oper-
ators with natural greatest fixpoint characterisations and Section 4.4 handles
the more subtle case of F and U which have natural least fixpoint characterisa-
tions. Secondly, as described in Section 4.5, each greatest fixpoint expression is
converted into a form involving existential quantification at the outermost level

of the formula. Section 4.5 also explains why least fixpoint characterisations
cannot be handled. Normalisation also involves some renaming transforms on
X in the input formula and on certain new formulae produced in the first nor-
malisation stage. Section 4.6 covers renaming transforms in general. Finally
Section 4.7 gives a self-contained summary of the normalisation function.

The interesting part of the proof of Theorem 3.1 involves showing the
following two equations concerning normalisation:

[[π̇↑∞◦ φ]] = π̇
l

F

[[N (φ)]]k ↑
∞
◦ (2)

π̇
F

[[φ]]k = π̇
F

[[N (φ)]]k (3)

where φ is any LTL formula and l ∈ {0 .. k−1}. Equation (2) states that the
finite loop-case denotation of normalized formulae is equivalent to their stan-
dard infinite denotation. Equation (3) states that the prefix-case denotation
is preserved by normalisation. The subsections which follow include assertions
of equalities which are intermediate steps in the proofs of Equation (2) and
Equation (3).

We write φ ≡L ψ (φ ≡P ψ) when two formulae always have the same finite
loop-case (prefix-case) denotation, and φ ≡F ψ when they always have the
same denotation under both finite semantics.

4.2 Extending LTL with a greatest fixpoint operator

We add to the syntax of LTL formulae timed variables α (also known as
flexible variables), and greatest fixpoint expressions να. φ with infinite and
finite semantics:

[[π α]]ρ = ρ(α) π
l

F

[[α]]ρ̇k = ρ̇(α)

[[π λα.φ]]ρ = λa ∈ Bω. [[π φ]]ρ[α 7→a] π̇
l

F

[[λα.φ]]ρ̇k = λȧ ∈ Bk. π̇
l

F

[[φ]]ρ̇[α 7→ȧ]
k

[[π να.φ]]ρ = gfp
(

[[π λα.φ]]ρ
)

π̇
l

F

[[να.φ]]ρ̇k = gfp
(

π̇
l

F

[[λα.φ]]ρ̇k
)

where l ∈ {0 .. k−1}∪{−}. Lambda abstractions λα.φ are examples of unary
function formulae. To provide meaning in the semantics for free variables,
we extend the semantic functions with an environment argument ρ or ρ̇. An
unbounded environment ρ maps each free variable to an infinite sequence in
Bω and a k-bounded environment ρ̇ maps each free variable to a finite sequence
in Bk. In the other previously-defined clauses of the semantic functions, the
environments are recursively propagated down unchanged.

The greatest fixpoint operator gfp is given the standard definition from the
Tarski-Knaster construction. Let F be a monotone function of typeD → D on
a complete lattice 〈D,v〉 with least upper bound operator t. We have that
gfp(F)

.
= t{x ∈ D|x v F (x)} . In all our semantics D is of form R→ B. In

the infinite semantics R = N and in both finite semantics R = {0 ..k−1}. The
order relation v and least upper bound operation t are defined pointwise:

x v y
.
= ∀i. x(i) ⇒ y(i) and (tS)(i)

.
= ∃x ∈ S. x(i) where lattice elements

x, y ∈ R→ B, set of elements S ⊆ R→ B and index i ∈ R.

4.3 Greatest fixpoint characterisations for G and R

Fixpoint versions of the globally operator G and the release operator R are

G̃ β
.
= να. β ∧Xα β R̃ γ

.
= να. γ ∧ (β ∨Xα)

Our following discussion focusses the G̃ operator. It extends very straightfor-
wardly to cover the R̃ operator too.

It is well known that the standard G is equivalent to this fixpoint version
in the infinite semantics: G β ≡ G̃ β. It is straightforward to check that this
equivalence also holds in the prefix semantics. For example, it is easy to show
G β ≡P G̃ β once one observes that λα. β ∧ Xα has a unique fixpoint in
the prefix semantics when a binding for β is fixed. Indeed, if one adds least
fixpoint operators µα. φ to LTL, one can also make the definitions

F̃ β
.
= µα. β ∨Xα β Ũ γ

.
= µα. γ ∨ (β ∧Xα)

and show F β ≡P F̃ β and β U γ ≡P β Ũ γ. This provides some justification
for the naturalness of the prefix-case semantics of the LTL operators.

In the proof of Equation (2), an appropriate stage of normalisation for
shifting to the finite semantics is after G̃ and R̃ have been introduced. With
l ∈ {0 .. k−1} and ḃ ∈ Bk, we have the following:

[[G̃]](ḃ ↑∞◦) =
(

l

F

[[G̃]]k(ḃ)
)
↑∞◦

4.4 Greatest fixpoint characterisations for F and U

As noted in the previous section, in the prefix case the fixpoint with operators
F̃ and Ũ is unique, the least and greatest fixpoints are the same. For example,
we have that: F̃ β ≡P να. β ∨Xα. The loop-case is not so simple. Consider
the loop-case semantics for F.

l

F

[[F]]k(ȧ)(i) = ∃j ∈ {min(i, l) .. k−1}. ȧ(j)

The right-hand side here is equivalent to

(∃j ∈ {i .. k−1}. ȧ(j)) ∨ (∃j ∈ {l .. k−1}. ȧ(j))

Each disjunct here is an instance of the prefix semantics for F and, as above,
we know we can switch to greatest fixpoints in the prefix semantics. We craft
some definitions of new operators to take advantage of this observation.

Let us introduce variations X> and X⊥ on the next step operator that
have non-looping semantics even in the loop case. Their finite semantics is

l

F

[[X>]]k(ȧ)(i)
.=

{
ȧ(i+ 1) if i < k−1
> if i = k−1 l

F

[[X⊥]]k(ȧ)(i)
.=

{
ȧ(i+ 1) if i < k−1
⊥ if i = k−1

where l ∈ {0 .. k−1} ∪ {−}. We use these in the definitions

F̃⊥ β
.= να. β ∨X⊥ α G̃> β

.= να. β ∧X> α

β Ũ⊥ γ
.= να. γ ∨ (β ∧X⊥ α)

These newly introduced fixpoint operators have the following semantic char-
acterisations in both the prefix and the loop cases.

l

F

[[F̃⊥]]k(ȧ)(i) = ∃j ∈ {i .. k−1}. ȧ(j)

l

F

[[G̃>]]k(ȧ)(i) = ∀j ∈ {i .. k−1}. ȧ(j)

l

F

[[Ũ⊥]]k(ȧ, ḃ)(i) = ∃j ∈ {i .. k−1}. ḃ(j) ∧ ∀n ∈ {i .. j−1}. ȧ(n)

To force consideration of the semantics of an operator at the loop start in
the loop case, we introduce a unary LTL operator loopstart with semantics

l

F

[[loopstart]]k(ȧ)(i)
.=

{
ȧ(l) if l ∈ {0 .. k−1}
⊥ if l = −

With these new operators at hand, we have the following identities allowing
us to replace F and U with expressions involving greatest fixpoint operators.

Fα ≡F F̃⊥ α ∨ loopstart F̃⊥ α

αU β ≡F α Ũ⊥ β ∨ (G̃> α ∧ loopstart(α Ũ⊥ β))

The identity involving F can readily be derived using facts presented above.
The main steps are:

π
l

F

[[F̃⊥ α ∨ loopstart F̃⊥ α]]k(i) = π
l

F

[[F̃⊥ α]]k(i) ∨ π
l

F

[[F̃⊥ α]]k(l)

= (∃j ∈ {i .. k−1}. π
l

F

[[α]]k(j)) ∨ (∃j ∈ {l .. k−1}. π
l

F

[[α]]k(j)) = π
l

F

[[Fα]]k(i)

These identities are also closely related to those discussed in Section 6.1.

4.5 Expressing greatest fixpoints using existential operators

We focus on the cases of the two finite semantics since these are the cases we
need. A similar discussion applies with the infinite semantics.

Let us augment our LTL syntax with existential quantification over timed
variables ∃α. φ and a globally from the start operator G0 which have finite
semantics

π̇
l

F

[[∃α. φ]]ρ̇k(i)
.= ∃ȧ ∈ Bk. π̇

l

F

[[φ]]ρ̇[α 7→ȧ]
k (i)

l

F

[[G0]]k(ȧ)(i)
.= ∀j ∈ {0 .. k−1}. ȧ(j)

where 0 ≤ i < k, ȧ ∈ Bk and l ∈ {0..k−1}∪{−}. Note that the globally-from-
the-start operator G0 always quantifies over the full time range, no matter
what index i we consider its value at, even in the prefix case.

Using these definitions we can phrase an identity for eliminating greatest
fixpoint expressions occurring in contexts, buried under other operators:

Ψ[να. φ] ≡F ∃α. G0 (α⇒ φ) ∧Ψ[α]

where context expression Ψ is a unary function formula with monotone deno-
tation, and the notation ·[·] is the application operator for such functions.

The existential quantification derives from the least-upper-bound operator
in the definition of the gfp operator, and semantics of the formula G0 (α⇒ φ)
captures the x v F (x) constraint in the definition body (see Section 4.2).

The corresponding identity for an lfp (least-fixpoint) operator involves a
universal quantification derived from the greatest-lower-bound operator in the
lfp operator definition. Since our goal is to eventually produce satisfiability
problems, we cannot make use of this identity.

4.6 Renamings

An LTL formula in some context is renamed if it replaced by a new timed
variable which is asserted equivalent to it. When contexts are monotone, it is
sufficient to assert an implicational relationship between the new variable and
the renamed formula. We have that

Ψ[φ] ≡F ∃α. G0 (α⇒ φ) ∧Ψ[α]

where Ψ is a monotone unary function formula.

In some cases, the formula to be replaced is time invariant : it has deno-
tation ⊥k or >k. In these cases, it is sufficient to replace it by an untimed
variable (sometimes called a rigid variable) and use existential quantification
over untimed variables. Let us add untimed variables x to the LTL syntax
and existential quantification over them ∃x. φ with semantics:

π̇
l

F

[[x]]ρ̇k(i) = ρ̇(x) π̇
l

F

[[∃x. φ]]ρ̇k(i) = ∃a0 ∈ B. π̇
l

F

[[φ]]ρ̇[x 7→a0]
k (i)

where 0 ≤ i < k, ȧ ∈ Bk and l ∈ {0 .. k−1} ∪ {−}, and we extend the notion
of environment ρ̇ to provide Boolean-valued bindings for untimed variables.
We then have:

Ψ[φ] ≡F ∃x. (x⇒ φ) ∧Ψ[x]

where Ψ is a monotone unary function formula and φ a time invariant formula.

4.7 The normalisation function

We assemble here the results from the previous subsections into a single overall
definition of the normalisation function N (). Assume that formulae to start
are in negation normal form. N () applies the following transformation rules:

Ψ[G f] −→ ∃α. Ψ[α] ∧ G0 (α ⇒ f ∧Xα)

Ψ[f R g] −→ ∃α. Ψ[α] ∧ G0 (α ⇒ g ∧ (f ∨Xα))

Ψ[X f] −→ ∃α. Ψ[α] ∧ G0 (α ⇒ X f)

Ψ[F f] −→ ∃α, x. Ψ[α ∨ x] ∧ G0 (α ⇒ f ∨X⊥ α) ∧ (x⇒ loopstartα)

Ψ[f U g] −→ ∃α, β, x. Ψ[α ∨ (β ∧ x)] ∧ G0 (α ⇒ g ∨ (f ∧X⊥ α))

∧ G0 (β ⇒ f ∧X> β) ∧ (x ⇒ loopstartα)

These rules are applied in a single bottom-up pass over the initial formula.
To suggest this bottom-up direction, the subformulae f and g are required
to be propositional, free from temporal operators. Rules are not applied to
any of the new generated structure, for example, new X s. Usual assumptions
are made about variables bound by the existential quantifiers being suitably
renamed to avoid any unintentional capture of variables. An example of ap-
plying the normalisation function is

FG¬p −→ ∃α. Fα ∧ G0 (α⇒ ¬p ∧ Xα) by G rule

−→ ∃α, β, x. (β ∨ x) ∧G0 (β ⇒ α ∨X⊥ β)

∧ (x⇒ loopstartβ) ∧ G0 (α⇒ ¬p ∧Xα) by F rule

where, in the intermediate expression, we have underlined the partially re-
duced input formula that is about to be transformed by a second rule, and,
in the final expression, the propositional residue of the input formula.

The resulting formulae have normal form

∃α, x. R ∧ LS ∧ G0 (X ∧ X∗)

where α is a vector of timed variables, x is a vector of untimed variables,
R is the residual top-level propositional structure of the initial formula, LS
is a conjunction of formulae of form x ⇒ loopstartα, X is a conjunction of
formulae of form α⇒ f [X g] where context f and formula g are propositional,
and X∗ is a conjunction of formulae of form α ⇒ f [X> g] and α ⇒ f [X⊥ g]
where again context f and formula g are propositional.

The function N (φ) can be computed in time linear in the size φ.

5 Translation of normalised formulae

The loop-case and prefix-case translation functions over the syntax of the
components R, LS, X and X∗ of our normalised formulae are as follows:

[l α]ik = αi

[l x]
i
k = x

[l v]
i
k = vi

[l ¬φ]
i
k = ¬ [l φ]

i
k

[l φ ∧ ψ]ik = [l φ]
i
k ∧ [l ψ]ik

[l φ ∨ ψ]ik = [l φ]
i
k ∨ [l ψ]ik

[l Xφ]ik =



[l φ]
i+1
k if i < k−1

⊥ if i = k−1
and l = −

[l φ]
l
k if i = k−1

and l ∈ {0 .. k−1}

[l loopstartφ]ik =

⊥ if l = −

[l φ]
l
k if l ∈ {0 .. k−1}

[l X> φ]ik =

 [l φ]
i+1
k if i < k−1

> if i = k−1

[l X⊥ φ]ik =

 [l φ]
i+1
k if i < k−1

⊥ if i = k−1

where l ∈ {0 .. k−1} for the loop case and l = − for the prefix case. The
translation function for formulae ψ in the normal form described at the end
of the last section is:

Norm[M̂, ψ]k
.= ∃z. [M̂]k ∧ [R]0k ∧

∧k−2
i=0 [X]ik ∧

∧k−1
i=0 [X∗]ik ∧(

([LS]0k ∧ [X]k−1
k) ∨

∨k−1
l=0 (Ll k(M̂) ∧ [l LS]0k ∧ [l X]k−1

k)
)

where [M̂]k and Ll k(M̂) are as defined in Section 3 and the vector of proposi-
tional variables z contains variables α0, . . . , αk−1 for each timed variable α in
α and a variable x for each untimed variable x in x. The resulting formula has
size linear in k, |φ| and |M̂ |. More precisely, its size is O(|Î|+ k · (|φ|+ |T̂ |)).

6 Related work

6.1 Helsinki work

The BMC translations closest to ours are those of [7] and [6]. These transla-
tions are also linear in k and they exploit fixpoint characterisations of oper-
ators. A core observation in [7] from the viewpoint of this paper is that the
loop-case denotations of the LTL operators F, G, U and R are all equivalent
to the restriction to bound k of the denotation of non-looping versions of the
operators at bound k + (k − l)−1. For example:

l

F

[[G]]k(ȧ) =
(

l

F

[[G̃>]]k(ȧ↑
k+(k−l)−1
◦)

)
|k

where ȧ ∈ Bk, l ∈ {0 .. k−1}, ȧ↑k′
◦
.
= ȧ ↑∞◦ |k′ unrolls a loop denotation to

bound k′ and G̃> is as defined in Section 4.4. The justification in [7] for
these identities is rather indirect and involves appealing to arguments about
fixpoints in CTL. However, we note that we can prove them straightforwardly
using some of the same insights as are necessary to prove the identity

[[π̇↑∞◦ φ]] = π̇
l

F

[[φ]]k ↑
∞
◦

introduced in Section 2.4 which is at the heart of the justification of the original
bounded model checking translation of [2].

A major apparent difference is that the approach in [7] introduces very
few auxiliary variables by encoding to reduced Boolean circuits (RBCs), a
DAG representation of Boolean formulae. However, when these circuits are
subsequently translated into CNF, auxiliary variables are introduced for many
of the internal nodes of the circuits, and we guess that one gets roughly one
new auxiliary variable per fixpoint step, the same as what we use.

Comparing the sizes of resulting propositional formulae in the approach
of [7] to ours, we observe that our encoding for G and R involves unrolling
the fixpoint functions for k rather than 2k steps, and so involves introducing
about half the number of ∧s and ∨s. For F and U the number of ∧s and
∨s introduced appears to be more similar, though for F we introduce roughly
half the number of auxiliary variables into the final CNF formulae.

The approach of more recent work [6] from the same group is more similar
to an automata-based approach in that the fixpoint constraints on auxiliary
variables in the loop case also have a loop shape. Ignoring the incremental
and past-time aspects of [6], the numbers of operators and auxiliary variables
introduced seem to be slightly closer to those with our approach.

Experimentation and more detailed analysis are needed to sharpen the
above preliminary remarks and importantly to compare how the approaches
affect SAT run times.

6.2 Other work

The BMC journal paper [1] gives a translation exploiting fixpoint characteri-
sations, though the encoding size is not linear in the bound. As written, the
translation is not sound: it appears to be using a greatest fixpoint charac-
terisation for all the LTL operators which is clearly unsound for F and U.
We speculate that this mistake could have been avoided if the translation had
been derived within a formal framework such as presented in this paper.

We observe that a recent NuSMV release (V2.3.1, Nov 2005) seems to use
a similar translation that is sound. This translation has some similarities to
that of [7] discussed above in Section 6.1 in that the loop case translation is
calculated using non-looping fixpoint constraints.

7 Conclusions

We have presented a translation for future time LTL bounded model checking
that is linear in the bound k and more compact than competing translations,
in particular that of [7].

We have also presented a rigorous framework for analysing translations.
Both the body of the paper and the discussion of related work show the
usefulness of the framework, and it is expected that it will be of significant
use in exploring future variations on and extensions to BMC translations.

References

[1] Biere, A., A. Cimatti, E. M. Clarke, O. Strichman and Y. Zhu, Bounded model
checking, Advances in Computers 58 (2003).

[2] Biere, A., A. Cimatti, E. M. Clarke and Y. Zhu, Symbolic model checking without
BDDs, in: W. Cleaveland, editor, Tools and Algorithms for the Construction and
Analysis of Systems. 5th International Conference, TACAS 99, Lecture Notes in
Computer Science 1579 (1999), pp. 193–207.

[3] Cimatti, A., M. Roveri and D. Sheridan, Bounded verification of past LTL,
in: A. J. Hu and A. K. Martin, editors, Proceedings of the 5th International
Conference on Formal Methods in Computer Aided Design (FMCAD 2004),
Lecture Notes in Computer Science (2004).

[4] Fisher, M., A resolution method for temporal logic, in: Proceedings of the 12th
International Joint Conference on Artificial Intelligence (IJCAI) (1991).

[5] Frisch, A., D. Sheridan and T. Walsh, A fixpoint based encoding for bounded
model checking, in: M. D. Aagaard and J. W. O’Leary, editors, Formal Methods
in Computer-Aided Design; 4th International Conference, FMCAD 2002, Lecture
Notes in Computer Science 2517 (2002), pp. 238–254.

[6] Heljanko, K., T. Junttila and T. Latvala, Incremental and complete bounded
model checkinfg for full pltl, in: K. Etessami and S. K. Rajamani, editors,
Computer Aided Verification: 17th International Conference, CAV 2005, Lecture
Notes in Computer Science 3576 (2005), pp. 98–111.

[7] Latvala, T., A. Biere, K. Heljanko and T. Junttila, Simple bounded LTL model
checking, in: Formal Methods in Computer-Aided Design; 5th International
Conference, FMCAD 2004, Lecture Notes in Computer Science 3312 (2004),
pp. 186–200.

[8] Sheridan, D., Bounded model checking with SNF, alternating automata and
Büchi automata, in: Second International Workshop on Bounded Model Checking,
Electronic Notes in Theoretical Computer Science (2004).

	Introduction
	Preliminaries
	Syntax for LTL
	Kripke structures
	Infinite path semantics
	Finite denotations when paths are looping
	Finite denotations when paths have common prefix

	The new full translation
	Formula normalisation
	Overview
	Extending LTL with a greatest fixpoint operator
	Greatest fixpoint characterisations for G and R
	Greatest fixpoint characterisations for F and U
	Expressing greatest fixpoints using existential operators
	Renamings
	The normalisation function

	Translation of normalised formulae
	Related work
	Helsinki work
	Other work

	Conclusions
	References

