

 1

Expression Coverability Analysis: Improving code coverage with model checking

Graeme D. Cunningham, Institute for System Level Integration, Livingston, Scotland
Paul B. Jackson, Institute for System Level Integration and University of Edinburgh, Scotland

Julian A. B. Dines, Motorola, Livingston, Scotland

Abstract

Code coverage analysis provides metrics to quantify the
degree of verification completeness. It also allows the
designer to identify possible bugs or redundant code
thus speeding verification.

Many verification engineers report that the most time
consuming area of code coverage analysis is the
identification and documentation of intrinsically
uncoverable expression cases. With manual inspection
of the code being especially time consuming and error
prone, automatic methods of identifying uncoverable
expression cases are highly desirable.

Our work extends the model-checking-based
coverability analysis work at IBM [5] to support
analysing the coverability of expression cases.

We present results of applying our implementation on
industrial scale designs provided by Motorola. We also
analyse how coding style can impact the coverability of
expressions and suggest how expression coverability
analysis can be applied within the verification flow.

Introduction

Code coverage analysis measures how thoroughly a

simulation testbench exercises parts of a design. It provides
an indication of the quality of the testbench: if some part of
the design is not exercised by a testbench, then perhaps
some test case is missing from the test specification which
was used to create the testbench. Alternatively, perhaps it is
expected that the part is unexercised because the design is
more general than strictly needed and some mode is unused.
A further possibility is that the part is unexercised because
of a bug in the design.

Because code coverage can highlight missing test cases
and possible bugs, it is incorporated into many verification
methodologies. For example, Motorola has an internal
Semiconductor Reuse Standard (SRS) which all designs
must conform to and which requires that specific levels of
code coverage be attained[9].

There are various kinds of code coverage including

statement coverage, path coverage, FSM coverage and

expression coverage. Of these, expression coverage is the
most fine grain and thorough. We have been particularly
interested in expression coverage because of the difficulty
in obtaining the level required in Motorola�s SRS;
specifically that 100% explained coverage be attained.
Explained coverage means that each uncovered case must
be explicitly explained. Many explanations are required
because it is relatively common that it is logically
impossible to cover certain expression cases. This arises
because parts of expressions are frequently not logically
independent of each other. Determining whether an
uncovered expression case is intrinsically uncoverable, is
only uncovered because of a missing test case, or is
uncovered because of a bug is a tedious and error prone
activity. Projects within Motorola have shown that as many
as 20% of expression coverage cases are logically
uncoverable and that explaining these cases is the most time
consuming aspect of code coverage analysis.

The main contribution of the work described in this
paper is to show how a formal verification technique
(model checking) can automatically determine whether
each expression coverage case for a design is intrinsically
uncoverable or not. This speeds the production of
explanations of when a case is intrinsically uncoverable.
Also, when an expression case is coverable, model
checking can suggest a simulation scenario that achieves
this case, thus helping the testbench writer find missing test
cases. An additional major advantage of our approach is
that it can be deployed early in a design cycle before much
of a simulation testbench has been produced. This permits
early detection of uncoverable cases, early bug
identification, and opens up opportunities to assist the
testbench writer at all stages of producing a testbench.

Our work builds on work at IBM on coverability
analysis that looked at statement coverability (essentially
dead-code detection) and checking if variables attain all
possible values[5,6]. Our work is distinguished by its
engagement with issues raised in expression coverage (such
as the frequency of uncoverable cases) that are not as
common with these simpler kinds of coverage.

The paper is structured as follows. We first give an

introduction to expression coverage, and describe how both
intrinsic design features and design bugs lead to 100%
coverage being unattainable. Next we highlight the

 2

changes to verification methodology and consequent
benefits of using expression coverability analysis. We
move on to an exposition of how expression coverability
works, present our prototype implementation of it and
discuss our experimental results on industry standard
designs provided by Motorola.

Background to Expression Coverage

Expression coverage (also called condition, condition-
decision or multiple condition coverage [7]) provides
coverage statistics for logical expressions. For each
expression a set of cases is identified, each case specifying
how parts of the expression must take on particular values.
Expression coverage then considers whether a simulation
exercises each case of the expression. An expression is
fully covered when all of the individual expression coverage
cases are exercised.

The cases of an expression are usually described by an

expression coverage table, where each row of the table
specifies values for sub-expressions. For example the
Verilog statement
 assign a = x && y && z;
would generate the following expression coverage table

x y z
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Expression tables can be generated from expressions
found in logical assignment statements, either in continuous
assignments or assignments in procedural code.
Expressions with selected reduction and arithmetic
operators also generate coverage tables, as do the
conditional operator and the conditions of if statements.

Fully covering every combination of values for sub-

expressions of every complex expression in a design usually
requires impractically long simulation times. Code
coverage tools allow for different modes of scoring
expressions that require fewer test vectors but still provide
confidence that the design has been thoroughly tested.

Change Scoring

Change scoring checks that each of the sub-expressions
of the expression has been both a 1 and a 0 at some time
during the simulation. If the expression contains a non-
Boolean value it is scored like a scalar with any non-zero
value being scored as a 1. This style of scoring reaches full
coverage with the least stringent tests. It is also known as
Basic Sub-Condition coverage.

Control Scoring
Control scoring only considers only those cases when

the change in value of a single sub-expression can cause a
change in value of the overall expression. The controlling
cases for the logical operators && and || are different and
can be seen in the example below.
 __&&_ __| |__

0 1 0 1
1 0 1 0
1 1 0 0

Multi-Level Expressions

An expression such as (a && b && c) is considered
a first-level expression because it uses only uses one kind
of operator. Expressions with more than one kind of
operator are known as multi-level expressions. Expression
coverage analysis decomposes a multilevel expression into
a set of first-level expressions. For example, the expression

(a && b) || (d && e)
would create three separate expression coverage tables.,
two at the 2nd level for the sub expressions using the &&
operator and one at the first level.
sub-exp1 sub-exp2
a && b d && e sub-exp1 || sub-exp2
0 1 0 1 0 1
1 0 1 0 1 0
1 1 1 1 0 0

With complex expressions the precise details of how an
expression is decomposed is tool dependent. The
expression coverage tables actually generated will depend
on the tool being used and options specified by the user,
the scoring mode used or the level to which the analysis
should be applied, for example. In addition some code
coverage tools will examine other coverage metrics such as
event coverage as part of expression coverage. This often
means that comparing expression coverage analysis results
of the same design but using different tools can yield
different results.

Control Scoring is often referred to as Modified

Condition/Decision Coverage (MC/DC) or as following a
Focussed (or Directed) Expression Coverage
methodology[4]. A more stringent style of expression
scoring exists known as Vector Scoring. It is identical to
change scoring except that there is individual bit scoring for
vectors. A further scoring mode, SOP Scoring, represents
the expression as a minimised Sum-of-Products. Control
scoring is however the most commonly used of all scoring
modes and in all examples we consider a control scoring
methodology has been followed.

How Bugs can be identified by Uncoverable
Expression Cases

As well a providing a measure of verification

completeness, code coverage analysis can also be used in
the identification of bugs. Consider the statement
assign a = mux[0] & mux [1] & mux [2];

 3

If we assume that the sub-expressions mux[0], mux[1] and
mux[2] have no dependency on each other, then obviously it
is possible to fully cover all expression cases.

Now consider the following situation where the right-

hand-side expression has been incorrectly coded.
assign a = mux[0] & mux[1] & mux[1];
The expression here is not fully coverable, as is shown in
the following expression coverage table where the
uncoverable cases are scored through.

mux[0] mux [1] mux [1] ;
 1 1 0
 1 0 1
 0 1 1
 1 1 1

The uncoverable cases draw attention to a possible bug.

Redundant logic doesn�t always lead to functionally
incorrect logic. For example, we might have the statement
assign a = mux[0] & mux[1]&

mux[2] & mux[1];
Only code coverage analysis (or perhaps a code review)
could identify such a situation.

Other ways in which unintended redundancies can be
introduced include the use of wrong operators and
misplaced parentheses.

How Coding Style can lead to Uncoverable

Expression Cases

Although uncoverable expression cases can indicate a

bug in the design, they can also be caused by certain coding
styles. Consider the following code fragment where we
assume that a, b and c are coverable and that no other
dependencies exist between them elsewhere in the design.
if (a && b && c) . . .
else
if (a && b && !c) . . .
else . . .

The expression coverage table for the second condition
expression is as follows.

a b !c
1 1 0
1 0 1
0 1 1
1 1 1

We can see that the first expression case is uncoverable.
Many of the uncoverable expression cases that we found in
our investigation were of this form. It is possible to write
the previous section of code using nested if statements.
if (a)
 if (b)
 if (c) . . .
 else . . .
. . .
Writing code in this style creates no uncoverable cases but
often does not convey design intent as well as when the first
style is used. If one uses the first coding style for n boolean

variables and exhaustively enumerates every case, one ends
up with 2n �1 if condition expressions, and the total
fraction of uncoverable cases for these expressions
approaches 50%. We are therefore not surprised by reports
of designs within Motorola having up to 20% of their
expression cases uncoverable.

We have seen in the previous section examples of where

redundancy within expressions can lead to uncoverable
code. Sometimes redundancy is intentional. We have seen
several examples where it was caused by dependencies
between sub-expressions in different statements. For
example:

assign hold_addr3 =
 addr_inc & siop_addr[3];
assign addr3_inc3 =
 addr_inc & sp_bwidth & !siop_addr[2];
assign addr3_inc64 =
 addr_inc & sp_bwidth & siop_addr[3];
assign inc_addr =
 hold_addr3 & addr3_inc3 & addr3_inc64;

In the fourth assignment, the use of hold_addr3 is
redundant because it is subsumed by addr3_inc64. This
was not at all obvious because the fourth assignment was
separated from the others by several hundred lines of code.
This redundancy was caused by a late design decision. It
wasn�t considered a bug because a further design revision
could have easily removed the dependency. The
redundancy in the fourth assignment shows up in an
uncoverable case of a control-scoring expression coverage
table for this assignment.

hold_addr3 & addr3_inc & addr3_inc64;
1 1 0
1 0 1
0 1 1
1 1 1

Benefits of Expression Coverability Analysis

Expression coverage is an extremely useful coverage

metric because of its thoroughness. However it is
unrealistic to aim for 100% coverage of all expression cases
because some cases can be intrinsically uncoverable.
Rather, the goal for the verification engineer is to write test
vectors that cover all coverable cases and to explain each
case that is intrinsically uncoverable.

To present how coverability analysis changes coverage

methodology, we first run through an example expression
coverage methodology, highlighting where the problems
are.

 4

Example of a Common Expression Coverage Methodology
The left-hand side of Figure 1 shows a simplified

methodology.

Firstly at 1 a coverage simulation identifies which

expression cases are covered by the current testbench. At 2
a verification engineer then makes a manual inspection of
the code and attempts to classify the uncovered expression
cases into the categories:
• coverable by new test cases
• uncoverable due to bugs in the code
• intrinsically uncoverable

These manual inspections are both time consuming and
prone to human error. During the early stages of
verification it is likely that there will be a large number of
uncovered cases and the verification engineer will be unable
to perform a full inspection of the code. Therefore the

coverability of a number of expression cases will be
unknown. This is shown in the diagram by the
Coverability Unknown category.

At 3, any uncoverable cases due to bugs are corrected.

Test cases are then created to cover more of the design and
further coverage simulation is performed. We repeat
further manual inspection, bug fixing and simulation until
the coverage cases are either covered or classified as
intrinsically uncoverable.

A big issue with this methodology is the difficulty and

time consumed in the manual inspection step. In practice
this step is delayed until late in the development of the
design testbench when most test-cases have been
implemented. This minimises the number of uncovered
expressions that have to be considered, but means that any
bug finding capabilities of coverage analysis are not
available earlier in the verification process.

Covered Uncovered

Manual
Inspection

Coverability
Unknown

Coverable by
new

testcases

Uncoverable
due to
bugs

Intrinsically
Uncoverable

Bug Fixing /
Further

Simulation

Automatic
Coverability

Analysis

Coverable by new
test vectors Uncoverable

Manual
Inspection

Uncoverable
due to bugs

Coverable by new
testcases

Covered Intrinsically
Uncoverable

Covered

Coverage
Simulation

Any
Unknown

Cases?

Covered Uncovered

Covered Intrinsically
Uncoverable

Intrinsically
Uncoverable

Covered

Bug Fixing /
Further

Simulation

Manual
inspection of
 test vectors

Coverage
Simulation

Yes

NO

Expression Coverage Cases

Traditional Code Coverage Analysis Code Coverage with Coverability Analysis

Expression Coverage Cases

1

2

3

4

5

67

8

Figure 1. Coverability Analysis Methodology

 5

Adding in Expression Coverability Analysis
On the right hand side of Figure 1 we show how

coverability analysis might be added into a coverage
methodology. Again, at 4, a coverage simulation produces a
list of covered and uncovered expression cases. Now, at 5,
expression coverability analysis automatically determines
whether each uncovered expression case is coverable or not.
For the uncoverable expression cases, manual inspection at
6 now only needs to determine if the uncoverable case is
due a bug or is intrinsically uncoverable. For each
coverable expression case, coverability analysis can suggest
example test vectors to exercise that case. Generally, it
would be unwise to simply augment the testbench with
these test-vectors. Doing so does not address the
observability of the case, nor does it highlight
incompletenesses in the test plan or specification. Rather,
using the test-vectors as a guide, one should go back to the
design specification and the test cases derived from it and
improve the test cases. This is shown in the diagram by step
7. This is an important methodological aspect of code
coverage analysis in general.

We expect the time needed for manual inspection to be
significantly reduced, and consequently there to be much
less need to iterate coverage simulation and inspection. We
show at step 8 in the diagram the ideal case of no iteration
being needed.

A key feature of expression coverability analysis is that

is does not depend on any test vectors or testbench. This
means it could be used at any stage in the verification flow,
and therefore we can exploit bug finding capabilities much
earlier than with traditional expression coverage. Indeed it
would be possible for a designer to use expression
coverability analysis even before a design is complete.

Key Benefits

We summarise here the key benefits of expression
coverability analysis.
• Automatically determines the coverability of a

expression coverage case
• Automatically produces test vectors that can cover

uncovered code
• Reduces required amount of manual code inspection

and thus reduces verification time
• Can be applied at any stage in the design flow. Before

a test plan, testbench or test vectors have been written.
• Immediately draws designer / verification engineer

attention to possible bugs

Introduction to Model Checking

Model checking considers synchronous designs as
Mealy state machines, where current state and input value
information is used to calculate current output values and

the state on the next active clock edge [3]. It provides
automatic techniques for checking if user-supplied
properties hold for such designs. Properties are commonly
specified in temporal logics such as Linear Temporal Logic
(LTL), Computational Tree Logic (CTL) or the Accellera
Property Specification Language (PSL) standard [8]. For
our purposes it is sufficient if one can check simple
invariant properties (properties true at all states of all
execution paths of the design) and such properties are
expressible in any of the previously mentioned logics.
Unlike simulation, model checking is exhaustive; it
considers all sequences of input values. More generally,
when not all input value sequences are valid, model
checking can be constrained to consider just those valid
sequences.

Work in Coverability Analysis by IBM

Our work extends work at IBM Haifa labs on using

model checking for automatic coverability analysis [5].
They focused on checking statement coverability and
determining whether variables attain all possible values.

For checking coverability of a given statement they used

the following procedure.
1. Add a new auxiliary variable V to the design and have it
initialized to 0.
2. Replace the statement with the assignment statement
 V = 1;
3. Use a model checker to check whether the modified
design has the CTL property EF(V == 1).

This CTL property is true just when there exists some
sequence of input values to the design that drives it to a
state in which V has value 1. The change in functionality
here because of the code replacement is not important,
because the model checking completes as soon as the
replaced statement is visited for the first time. The method
used to determine if a variable can attain all possible values
is even simpler: no instrumentation is necessary, and one
checks the property EF(V == k) to establish whether
variable V attains the value k.

IBM created a tool that automates the design

instrumentation and makes use of their RuleBase model
checker. In further work, they explored several
enhancements to make the model checking more efficient
[6].

Calculating Expression Coverability

Expression coverability analysis extends the statement

coverability and variable attainability work discussed
previously. We first introduce the new instrumentation and
the process required for performing coverability analysis.
Then we discuss our implementation.

 6

As with conventional expression coverage analysis,
complex expressions are broken down into sub-expressions
and analysed separately. We discussed earlier that for
expression coverage analysis, an expression generates an
expression coverage table with each line of the table
representing a different expression coverage case. For
expression coverability analysis we use model checking to
determine whether each expression coverage case can be
covered.

The following process is used to determine the

coverability of expression cases generated by procedural
code. For each case i of a coverage table j an auxiliary
variable Vj.i initialised to 0 is added to the design.
Immediately before the execution of the expression being
considered, a statement is inserted that assigns the auxiliary
variable to 1 when the sub-expression values specified by
the expression case are achieved. We then call a model
checker to check whether the modified design has the CTL
property EF(Vj.i==1). As with statement coverability,
this property will be true just when the corresponding
expression coverage case is coverable. For example
consider the procedural statement

z = (x || y);
 Assuming we use control style scoring, we have the
following corresponding expression coverage table

x || y
1 0
0 1
0 0

To perform expression coverability analysis the

following instrumentation would be added just before the
above statement:
 e1_1 = x && ~y;
 e1_2 = ~x && y;
 e1_3 = ~x && ~y;
The following properties would be generated and presented
to the model checker.
 EF(e1_1 == 1)
 EF(e1_2 == 1)
 EF(e1_3 == 1)
If we assume that line 2 of the coverage table is uncoverable
then the results returned from model checking might look at
follows:

MC: formula passed --- EF(e1_1==1)
MC: formula failed --- EF(e1_2==1)
MC: formula passed --- EF(e1_3==1)

For continuous assignment statements a slightly

different method is used. The instrumentation generated is
added in the form of a monitor created from a Verilog
always block. Consider the following assignment statement
assign z = (x || y);
The expression coverage table and the properties checked
are identical to those in the previous example, but the
instrumentation generated would be as follows.

always @(x or y)
begin
 e1_1 = x && ~y;
 e1_2 = ~x && y;
 e1_3 = ~x && ~y;
end

Implementation Details

Traditional code coverage analysis follows three key
stages; Instrumentation, Simulation and Reporting. During
the instrumentation stage modifications are made to the
code to allow the different coverage metrics to be
measured. The changes to the code should not affect the
functionality of the code. Coverage is recorded in the form
of coverage files that are then used to generate reports. The
generated reports can give summary results about the
design or detail exactly which statements, expressions etc.
are uncovered.

We constructed a prototype implementation to analyse
the effectiveness of expression coverability analysis. It
would have been possible to create a parser that could
analyse the code and generate the coverability
instrumentation. However, to minimise our work, we
generated our coverability instrumentation by keying off
the source level coverage instrumentation generated by a
commercial code coverage tool, specifically Summit
Design�s HDLScore[10]. Experience has shown that
different code coverage tools identify expression in slightly
ways often making comparisons impossible. For this
reason we feel it is vital that coverability analysis should be
linked to the code coverage tool of choice. Linking has
obvious other benefits. For example, intrinsically
uncoverable cases identified by coverability analysis can be
removed from explicit further consideration by the
coverage tool.

We show on the left-hand side of Figure 2 a tool flow

for doing code coverage analysis using HDLScore and on
the right-hand side how we fitted expression coverability
analysis into this flow.

Our coverability instrumenter is a series of Perl scripts
which take the normally instrumented HDL code from
HDLScore, add the coverability instrumentation, and
generate the corresponding properties for coverability
checking.

Initially we model checked using VIS, an academic
model checker developed jointly by University of
California at Berkeley and the University of Colorado[1].
This was simple to interface with, but was unable to handle
larger designs and also did not support non-blocking
assignments. Later implementations used RuleBase, a
commercial model checker from IBM[2]. RuleBase

 7

performs a number of reduction methods that allow larger
designs to be verified in a shorter time.

 Figure 2. Our Coverability Tool Flow

Results and Discussion

We evaluated our expression coverability analysis on

two commercial designs provided by Motorola.
Design 1 Design 2

Lines of Code 63436 20932
Total Expression Cases 13702 3615
Intrinsically Uncoverable Cases 105 62

Design 1 was a 3M gate RapidIO network switch. We
had access to this design at a relatively late stage of its
verification when a large amount of manual inspection had
already been performed. Our automatic expression
coverability analysis identified 45 intrinsically uncoverable
expression coverage cases that had been previously found
by manual inspection of the code. In addition a further 60
intrinsically uncoverable cases were identified. Our
analysis also identified an expression coverage case that had
been wrongly classified by manual inspection as
uncoverable.

Design 2 was a decoder module of a reconfigurable DSP
for use in 3G base-stations. The verification of this design
had been completed but we did not have access to any
verification information. As well as identifying a number of
complicated intrinsically uncoverable cases, our analysis
also uncovered a bug where a signal had been incorrectly
included into an expression..

The uncoverable expression cases identified in designs
1 and 2 represent 0.7% and 1.7% respectively of the total
number of expression cases. These values are obviously

design specific and are also related to the coding style
employed, as discussed previously. Because of coding
style, some designs at Motorola have as much as 20% of
their expression cases uncoverable.

Practical experience showed that manually identifying

dependencies between the sub-expressions in related if-
then-else statements was relatively simple due to their
close locality. Identifying the source of uncoverable
expression cases due to dependencies between assignments,
particularly in continuous code, was much more difficult.
These can often take upwards of five minutes to identify.
During our analysis we found one uncoverable expression
case that required the analysis of over 20 related
expressions through 4 levels of hierarchy.

Although our implementation only identified one bug in

the two designs, it should be considered that the analysis
was performed when the designs were at the integration
stage. Bugs of this sort are common at the module level at
the early stages of design.

The size of designs that can have coverability analysis

applied is obviously limited by the size of designs that can
be handled by the target model checker. To simplify and
shorten the time taken to perform our analysis we applied
the analysis on a module by module basis. This is sound
methodologically. Expression cases found uncoverable at
the module level are always going to be uncoverable at the
chip level. There is however the chance that module level
analysis will suggest how to cover an as yet uncovered case
that actually is uncoverable at the chip level because of
poorer controllability.

The majority of the modules could be analysed without

any intervention from the user, although some of the larger
modules required changing options that controlled the
operation of the model checker. The time taken to
determine the coverability of an expression table line varied
from module to module but was generally in the region of 5
seconds per expression case.

The original IBM work on coverability analysis

involved a separate run of their RuleBase model checker for
each statement checked. This model checker like many
others employs cone-of-influence reduction which on each
run cuts down the design to just the parts required to check
the property of interest. This dramatically improves the
model checker performance.

For expression coverability analysis we initially had one

model checking run per expression case. It�s clear that the
cone-of-influence reductions induced by each case of a
given expression should be similar. We were interested in
whether we would get better performance if we checked all
cases of an expression together. We confirmed through
experiment that the reductions are indeed similar and that

 8

performance is significantly better when cases are grouped
together. The table below illustrates this for two different
modules.

Module 1 Module 1 Module 2
Flip Flops 55 246
Gates 4108 1512
Expressions/Exp.Cases 18/ 92 36/188
Cases Run Individually
Total Run Time 3120s 3840s
Average time/Exp. Case 33.9s 20s
Cases grouped by Exp.
Total Run Time 491s 847s
Average time/Exp. Case 5.3s 4.5s
Speed Increase 535% 353%

Suggestions for Future Work

Although our implementation has been successfully

used in the analysis of complex industry standard designs,
further work would obviously be required before an
efficient tool could be created. For example, we never
explored the processing of coverability witnesses provided
by model checking into full input vector sets, as has been
done in [4].

It is now becoming increasing common to integrate

third party IP into designs. Confidence as to the quality of
the design may be under question and it may be necessary to
verify the IP to some extent. This would very likely involve
code coverage analysis. There may however be a situation
where a complex IP block had been integrated even though
much of its functionality will not be used. We believe that
an extension of coverability analysis could be developed
where code that is specific to certain mode of operation
could automatically be excluded from code coverage
analysis.

Conclusion

Our work has shown that, even with a simple

implementation, expression coverability analysis can be
performed on industrial-scale designs. It has the potential to
significantly reduce the time needed to achieve
recommended levels of expression coverage.

References

1. VIS Group (1996), �VIS: A system for Verification and

Synthesis�, in proceedings of 8th International
Conference on Computer Aided Verification (CAV),
pp428-432, Vol. 1102 Lecture Notes in Computer
Science, Springer. July.

2. Ben-David, S., C. Eisner, D. Geist and Y. Wolfsthal
(2003), �Model Checking at IBM�, Formal Methods
in System Design 22(2), pp 101-108 . Kluwer.

3. Clarke, E, O. Grumberg and D. Peled (1999), �Model
Checking�, MIT Press.

4. Hayhurst, K. J., D. S. Veerhusen, J. J. Chilenski and L.
K. Rierson (2001), �A Practical Tutorial on Modified
Condition/Decision Coverage�, Technical
Memorandum TM-2001-210876, NASA.

5. Ratsaby, G., B. Sterin and Y. Wolfsthal (2001),
�Coverability Analysis Using Symbolic Model
Checking�, in proceedings of 11th IFIP WG 10.5
Advanced Research Working Conference on Correct
hardware design and verification methods (CHARME),
Vol. 2144 Lecture Notes in Computer Science, pp155-
160. Springer.

6. Ratsaby, G., B. Sterin and S. Ur (2002),
�Improvements in Coverability Analysis�, in
proceedings of 11th International Symposium of
Formal Methods Europe (FME), Vol. 2391 Lecture
Notes in Computer Science, pp41-56. Springer.

7. Dempster, D and M. Stuart (2002), �Verification
Methodology Manual�, 3rd Edition, Teamwork
International.

8. Accellera (2003), �Property Specification Language
Reference Manual�, Version 1.01, April.
http://www.eda.org/vfv/docs/psl_lrm-1.01.pdf

9. Motorola (2003), �Semiconductor Reuse Standards�.
http://e-
www.motorola.com/webapp/sps/site/prod_summary.js
p?code=SRSSTANDARDS

10. Summit Design (2003), �HDL Score Product
Overview�. http://www.summit-
design.com/HDLScore.htm

