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Abstract 
 
Code coverage analysis provides metrics to quantify the 
degree of verification completeness.  It also allows the 
designer to identify possible bugs or redundant code 
thus speeding verification.   
 
Many verification engineers report that the most time 
consuming area of code coverage analysis is the 
identification and documentation of intrinsically 
uncoverable expression cases.  With manual inspection 
of the code being especially time consuming and error 
prone, automatic methods of identifying uncoverable 
expression cases are highly desirable. 
 
Our work extends the model-checking-based 
coverability analysis work at IBM [5] to support 
analysing the coverability of expression cases. 
 
We present results of applying our implementation on 
industrial scale designs provided by Motorola.  We also 
analyse how coding style can impact the coverability of 
expressions and suggest how expression coverability 
analysis can be applied within the verification flow. 

 
Introduction 

 
Code coverage analysis measures how thoroughly a 

simulation testbench exercises parts of a design.  It provides 
an indication of the quality of the testbench: if some part of 
the design is not exercised by a testbench, then perhaps 
some test case is missing from the test specification which 
was used to create the testbench.  Alternatively, perhaps it is 
expected that the part is unexercised because the design is 
more general than strictly needed and some mode is unused.  
A further possibility is that the part is unexercised because 
of a bug in the design. 
 

Because code coverage can highlight missing test cases 
and possible bugs, it is incorporated into many verification 
methodologies.  For example, Motorola has an internal 
Semiconductor Reuse Standard (SRS) which all designs 
must conform to and which requires that specific levels of 
code coverage be attained[9].   

 
There are various kinds of code coverage including 

statement coverage, path coverage, FSM coverage and 

expression coverage.  Of these, expression coverage is the 
most fine grain and thorough.  We have been particularly 
interested in expression coverage because of the difficulty 
in obtaining the level required in Motorola�s SRS; 
specifically that 100% explained coverage be attained.  
Explained coverage means that each uncovered case must 
be explicitly explained.  Many explanations are required 
because it is relatively common that it is logically 
impossible to cover certain expression cases.  This arises 
because parts of expressions are frequently not logically 
independent of each other.  Determining whether an 
uncovered expression case is intrinsically uncoverable, is 
only uncovered because of a missing test case, or is 
uncovered because of a bug is a tedious and error prone 
activity.  Projects within Motorola have shown that as many 
as 20% of expression coverage cases are logically 
uncoverable and that explaining these cases is the most time 
consuming aspect of code coverage analysis. 
 

The main contribution of the work described in this 
paper is to show how a formal verification technique 
(model checking) can automatically determine whether 
each expression coverage case for a design is intrinsically 
uncoverable or not.  This speeds the production of 
explanations of when a case is intrinsically uncoverable. 
Also, when an expression case is coverable, model 
checking can suggest a simulation scenario that achieves 
this case, thus helping the testbench writer find missing test 
cases. An additional major advantage of our approach is 
that it can be deployed early in a design cycle before much 
of a simulation testbench has been produced.  This permits 
early detection of uncoverable cases, early bug 
identification, and opens up opportunities to assist the 
testbench writer at all stages of producing a testbench. 
 

Our work builds on work at IBM on coverability 
analysis that looked at statement coverability (essentially 
dead-code detection) and checking if variables attain all 
possible values[5,6].  Our work is distinguished by its 
engagement with issues raised in expression coverage (such 
as the frequency of uncoverable cases) that are not as 
common with these simpler kinds of coverage.   

 
The paper is structured as follows.  We first give an 

introduction to expression coverage, and describe how both 
intrinsic design features and design bugs lead to 100% 
coverage being unattainable.  Next we highlight the 
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changes to verification methodology and consequent 
benefits of using expression coverability analysis.  We 
move on to an exposition of how expression coverability 
works, present our prototype implementation of it and 
discuss our experimental results on industry standard 
designs provided by Motorola. 
 

Background to Expression Coverage  
 

Expression coverage (also called condition, condition-
decision or multiple condition coverage [7]) provides 
coverage statistics for logical expressions.  For each 
expression a set of cases is identified, each case specifying 
how parts of the expression must take on particular values.  
Expression coverage then considers whether a simulation 
exercises each case of the expression.  An expression is 
fully covered when all of the individual expression coverage 
cases are exercised.  

 
The cases of an expression are usually described by an 

expression coverage table, where each row of the table 
specifies values for sub-expressions.  For example the 
Verilog statement  
 assign a = x && y && z;  
would generate the following expression coverage table  

x y z 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

Expression tables can be generated from expressions 
found in logical assignment statements, either in continuous 
assignments or assignments in procedural code.  
Expressions with selected reduction and arithmetic 
operators also generate coverage tables, as do the 
conditional operator and the conditions of if statements.   

 
Fully covering every combination of values for sub-

expressions of every complex expression in a design usually 
requires impractically long simulation times.  Code 
coverage tools allow for different modes of scoring 
expressions that require fewer test vectors but still provide 
confidence that the design has been thoroughly tested.  

 
Change Scoring 

Change scoring checks that each of the sub-expressions 
of the expression has been both a 1 and a 0 at some time 
during the simulation.  If the expression contains a non-
Boolean value it is scored like a scalar with any non-zero 
value being scored as a 1.  This style of scoring reaches full 
coverage with the least stringent tests.  It is also known as 
Basic Sub-Condition coverage. 

 

Control Scoring 
Control scoring only considers only those cases when 

the change in value of a single sub-expression can cause a 
change in value of the overall expression.  The controlling 
cases for the logical operators && and || are different and 
can be seen in the example below. 
  __&&_ __| |__        

0 1 0 1 
1 0 1 0 
1 1 0 0 

 
Multi-Level Expressions 

An expression such as (a && b && c) is considered 
a first-level expression because it uses only uses one kind 
of operator.  Expressions with more than one kind of 
operator are known as multi-level expressions.  Expression 
coverage analysis decomposes a multilevel expression into 
a set of first-level expressions.  For example, the expression 

(a && b) || (d && e) 
would create three separate expression coverage tables., 
two at the 2nd level for the sub expressions using the && 
operator and one at the first level.  
sub-exp1  sub-exp2 
a && b  d && e  sub-exp1 || sub-exp2 
0 1 0 1  0 1 
1 0 1 0  1 0 
1 1 1 1  0 0 

With complex expressions the precise details of how an 
expression is decomposed is tool dependent.  The 
expression coverage tables actually generated will depend 
on the tool being used and options specified by the user,  
the scoring mode used or the level to which the analysis 
should be applied, for example.  In addition some code 
coverage tools will examine other coverage metrics such as 
event coverage as part of expression coverage.  This often 
means that comparing expression coverage analysis results 
of the same design but using different tools can yield 
different results. 

 
Control Scoring is often referred to as Modified 

Condition/Decision Coverage (MC/DC) or as following a 
Focussed (or Directed) Expression Coverage 
methodology[4]. A more stringent style of expression 
scoring exists known as Vector Scoring.  It is identical to 
change scoring except that there is individual bit scoring for 
vectors.  A further scoring mode, SOP Scoring, represents 
the expression as a minimised Sum-of-Products.  Control 
scoring is however the most commonly used of all scoring 
modes and in all examples we consider a control scoring 
methodology has been followed.  
 

How Bugs can be identified by Uncoverable 
Expression Cases 

 
As well a providing a measure of verification 

completeness, code coverage analysis can also be used in 
the identification of bugs.  Consider the statement 
assign a = mux[0] & mux [1] & mux [2]; 
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If we assume that the sub-expressions mux[0], mux[1] and 
mux[2] have no dependency on each other, then obviously it 
is possible to fully cover all expression cases. 

 
Now consider the following situation where the right-

hand-side expression has been incorrectly coded.  
assign a = mux[0] & mux[1] & mux[1]; 
The expression here is not fully coverable, as is shown in 
the following expression coverage table where the 
uncoverable cases are scored through. 

mux[0]   mux [1]  mux [1] ; 
     1               1               0 
      1               0               1                      
      0               1               1 
      1               1               1 

The uncoverable cases draw attention to a possible bug.   
 
Redundant logic doesn�t always lead to functionally 
incorrect logic.  For example, we might have the statement 
assign a =  mux[0] & mux[1]&  

mux[2] & mux[1]; 
Only code coverage analysis (or perhaps a code review) 
could identify such a situation. 
 
Other ways in which unintended redundancies can be 
introduced include the use of wrong operators and 
misplaced parentheses.  

 
How Coding Style can lead to Uncoverable 

Expression Cases 
 
Although uncoverable expression cases can indicate a 

bug in the design, they can also be caused by certain coding 
styles.  Consider the following code fragment where we 
assume that a, b and c are coverable and that no other 
dependencies exist between them elsewhere in the design. 
if (a && b && c) . . .  
else 
if (a && b && !c) . . . 
else . . . 

The expression coverage table for the second condition 
expression is as follows. 

a b !c 
1 1 0 
1 0 1 
0 1 1 
1 1 1  

We can see that the first expression case is uncoverable.  
Many of the uncoverable expression cases that we found in 
our investigation were of this form.  It is possible to write 
the previous section of code using nested if statements. 
if (a)  
  if (b) 
    if (c) . . . 
    else . . . 
. . . 
Writing code in this style creates no uncoverable cases but 
often does not convey design intent as well as when the first 
style is used.  If one uses the first coding style for n boolean 

variables and exhaustively enumerates every case, one ends 
up with 2n �1 if condition expressions, and the total 
fraction of uncoverable cases for these expressions 
approaches 50%.  We are therefore not surprised by reports 
of designs within Motorola having up to 20% of their 
expression cases uncoverable. 

 
We have seen in the previous section examples of where 

redundancy within expressions can lead to uncoverable 
code.  Sometimes redundancy is intentional.  We have seen 
several examples where it was caused by dependencies 
between sub-expressions in different statements.  For 
example:  
 
assign hold_addr3 =  
  addr_inc & siop_addr[3]; 
assign addr3_inc3 =  
  addr_inc & sp_bwidth & !siop_addr[2]; 
assign addr3_inc64 =  
  addr_inc & sp_bwidth & siop_addr[3]; 
assign inc_addr =  
  hold_addr3 & addr3_inc3 & addr3_inc64; 
 
In the fourth assignment, the use of hold_addr3 is 
redundant because it is subsumed by addr3_inc64.  This 
was not at all obvious because the fourth assignment was 
separated from the others by several hundred lines of code.  
This redundancy was caused by a late design decision.  It 
wasn�t considered a bug because a further design revision 
could have easily removed the dependency. The 
redundancy in the fourth assignment shows up in an 
uncoverable case of a control-scoring expression coverage 
table for this assignment. 

hold_addr3      &  addr3_inc    &  addr3_inc64; 
1  1  0 
1  0  1 
0  1  1 
1  1  1 

 
Benefits of Expression Coverability Analysis  

 
Expression coverage is an extremely useful coverage 

metric because of its thoroughness.  However it is 
unrealistic to aim for 100% coverage of all expression cases 
because some cases can be intrinsically uncoverable.  
Rather, the goal for the verification engineer is to write test 
vectors that cover all coverable cases and to explain each 
case that is intrinsically uncoverable.   

 
To present how coverability analysis changes coverage 

methodology, we first run through an example expression 
coverage methodology, highlighting where the problems 
are. 
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Example of a Common Expression Coverage Methodology 
The left-hand side of Figure 1 shows a simplified 

methodology. 
 
Firstly at 1 a coverage simulation identifies which 

expression cases are covered by the current testbench.  At 2 
a verification engineer then makes a manual inspection of 
the code and attempts to classify the uncovered expression 
cases into the categories: 
• coverable by new test cases 
• uncoverable due to bugs in the code 
• intrinsically uncoverable  
 

These manual inspections are both time consuming and 
prone to human error.  During the early stages of 
verification it is likely that there will be a large number of 
uncovered cases and the verification engineer will be unable 
to perform a full inspection of the code.  Therefore the 

coverability of a number of expression cases will be 
unknown.  This is shown in the diagram by the 
Coverability Unknown category.  

 
At 3, any uncoverable cases due to bugs are corrected.  

Test cases are then created to cover more of the design and 
further coverage simulation is performed.  We repeat 
further manual inspection, bug fixing and simulation until 
the coverage cases are either covered or classified as 
intrinsically uncoverable.  

 
A big issue with this methodology is the difficulty and 

time consumed in the manual inspection step.  In practice 
this step is delayed until late in the development of the 
design testbench when most test-cases have been 
implemented.  This minimises the number of uncovered 
expressions that have to be considered, but means that any 
bug finding capabilities of coverage analysis are not 
available earlier in the verification process. 
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Figure 1. Coverability Analysis Methodology 
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Adding in Expression Coverability Analysis  
On the right hand side of Figure 1 we show how 

coverability analysis might be added into a coverage 
methodology.  Again, at 4, a coverage simulation produces a 
list of covered and uncovered expression cases.  Now, at 5, 
expression coverability analysis automatically determines 
whether each uncovered expression case is coverable or not.  
For the uncoverable expression cases, manual inspection at 
6 now only needs to determine if the uncoverable case is 
due a bug or is intrinsically uncoverable.  For each 
coverable expression case, coverability analysis can suggest 
example test vectors to exercise that case.  Generally, it 
would be unwise to simply augment the testbench with 
these test-vectors.  Doing so does not address the 
observability of the case, nor does it highlight 
incompletenesses in the test plan or specification.  Rather, 
using the test-vectors as a guide, one should go back to the 
design specification and the test cases derived from it and 
improve the test cases. This is shown in the diagram by step 
7.  This is an important methodological aspect of code 
coverage analysis in general. 
 

We expect the time needed for manual inspection to be 
significantly reduced, and consequently there to be much 
less need to iterate coverage simulation and inspection. We 
show at step 8 in the diagram the ideal case of no iteration 
being needed. 

 
A key feature of expression coverability analysis is that 

is does not depend on any test vectors or testbench.  This 
means it could be used at any stage in the verification flow, 
and therefore we can exploit bug finding capabilities much 
earlier than with traditional expression coverage.  Indeed it 
would be possible for a designer to use expression 
coverability analysis even before a design is complete.    
 
Key Benefits 

We summarise here the key benefits of expression 
coverability analysis. 
• Automatically determines the coverability of a 

expression coverage case  
• Automatically produces test vectors that can cover 

uncovered code 
• Reduces required amount of manual code inspection 

and thus reduces verification time  
• Can be applied at any stage in the design flow.  Before 

a test plan, testbench or test vectors have been written. 
• Immediately draws designer / verification engineer 

attention to  possible bugs 
 

Introduction to Model Checking 
 

Model checking considers synchronous designs as 
Mealy state machines, where current state and input value 
information is used to calculate current output values and 

the state on the next active clock edge [3].  It provides 
automatic techniques for checking if user-supplied 
properties hold for such designs.  Properties are commonly 
specified in temporal logics such as Linear Temporal Logic 
(LTL), Computational Tree Logic (CTL) or the Accellera 
Property Specification Language (PSL) standard [8].  For 
our purposes it is sufficient if one can check simple 
invariant properties (properties true at all states of all 
execution paths of the design) and such properties are 
expressible in any of the previously mentioned logics.  
Unlike simulation, model checking is exhaustive; it 
considers all sequences of input values.  More generally, 
when not all input value sequences are valid, model 
checking can be constrained to consider just those valid 
sequences. 
 

Work in Coverability Analysis by IBM 
 
Our work extends work at IBM Haifa labs on using 

model checking for automatic coverability analysis [5]. 
They focused on checking statement coverability and 
determining whether variables attain all possible values.  

 
For checking coverability of a given statement they used 

the following procedure.   
1. Add a new auxiliary variable V to the design and have it 
initialized to 0. 
2. Replace the statement with the assignment statement 
     V = 1; 
3. Use a model checker to check whether the modified 
design has the CTL property EF(V == 1). 

 
This CTL property is true just when there exists some 
sequence of input values to the design that drives it to a 
state in which V has value 1.  The change in functionality 
here because of the code replacement is not important, 
because the model checking completes as soon as the 
replaced statement is visited for the first time.  The method 
used to determine if a variable can attain all possible values 
is even simpler: no instrumentation is necessary, and one 
checks the property EF(V == k) to establish whether 
variable V attains the value k. 

 
IBM created a tool that automates the design 

instrumentation and makes use of their RuleBase model 
checker. In further work, they explored several 
enhancements to make the model checking more efficient 
[6]. 

 
Calculating Expression Coverability  

 
Expression coverability analysis extends the statement 

coverability and variable attainability work discussed 
previously.  We first introduce the new instrumentation and 
the process required for performing coverability analysis.  
Then we discuss our implementation. 
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As with conventional expression coverage analysis, 
complex expressions are broken down into sub-expressions 
and analysed separately.  We discussed earlier that for 
expression coverage analysis, an expression generates an 
expression coverage table with each line of the table 
representing a different expression coverage case.  For 
expression coverability analysis we use model checking to 
determine whether each expression coverage case can be 
covered. 

 
The following process is used to determine the 

coverability of expression cases generated by procedural 
code.  For each case i of a coverage table j an auxiliary 
variable Vj.i initialised to 0 is added to the design.  
Immediately before the execution of the expression being 
considered, a statement is inserted that assigns the auxiliary 
variable to 1 when the sub-expression values specified by 
the expression case are achieved.  We then call a model 
checker to check whether the modified design has the CTL 
property EF(Vj.i==1).  As with statement coverability, 
this property will be true just when the corresponding 
expression coverage case is coverable.  For example 
consider the procedural statement  

z = (x || y); 
 Assuming we use control style scoring, we have the 
following corresponding expression coverage table 

x       || y 
1 0 
0 1 
0 0 

 
To perform expression coverability analysis the 

following instrumentation would be added just before the 
above statement: 
 e1_1 =  x && ~y; 
 e1_2 = ~x &&  y; 
 e1_3 = ~x && ~y;  
The following properties would be generated and presented 
to the model checker. 
 EF(e1_1 == 1) 
 EF(e1_2 == 1) 
 EF(e1_3 == 1) 
If we assume that line 2 of the coverage table is uncoverable 
then the results returned from model checking might look at 
follows: 

# MC: formula passed   --- EF(e1_1==1)    
# MC: formula failed     --- EF(e1_2==1)   
# MC: formula passed   --- EF(e1_3==1)   

 
For continuous assignment statements a slightly 

different method is used.  The instrumentation generated is 
added in the form of a monitor created from a Verilog 
always block.  Consider the following assignment statement 
assign z = (x || y); 
The expression coverage table and the properties checked 
are identical to those in the previous example, but the 
instrumentation generated would be as follows. 
 
 

 
always @(x or y) 
begin 
  e1_1 =  x && ~y; 
  e1_2 = ~x &&  y; 
  e1_3 = ~x && ~y; 
end 

Implementation Details 
 

Traditional code coverage analysis follows three key 
stages; Instrumentation, Simulation and Reporting.  During 
the instrumentation stage modifications are made to the 
code to allow the different coverage metrics to be 
measured.  The changes to the code should not affect the 
functionality of the code.  Coverage is recorded in the form 
of coverage files that are then used to generate reports.  The 
generated reports can give summary results about the 
design or detail exactly which statements, expressions etc. 
are uncovered.  
 

We constructed a prototype implementation to analyse 
the effectiveness of expression coverability analysis. It 
would have been possible to create a parser that could 
analyse the code and generate the coverability 
instrumentation.  However, to minimise our work, we 
generated our coverability instrumentation by keying off 
the source level coverage instrumentation generated by a 
commercial code coverage tool, specifically Summit 
Design�s HDLScore[10].  Experience has shown that 
different code coverage tools identify expression in slightly 
ways often making comparisons impossible.  For this 
reason we feel it is vital that coverability analysis should be 
linked to the code coverage tool of choice.  Linking has 
obvious other benefits. For example, intrinsically 
uncoverable cases identified by coverability analysis can be 
removed from explicit further consideration by the 
coverage tool. 

 
We show on the left-hand side of Figure 2 a tool flow 

for doing code coverage analysis using HDLScore and on 
the right-hand side how we fitted expression coverability 
analysis into this flow. 
 

Our coverability instrumenter is a series of Perl scripts 
which take the normally instrumented HDL code from 
HDLScore, add the coverability instrumentation, and 
generate the corresponding properties for coverability 
checking. 
 

Initially we model checked using VIS, an academic 
model checker developed jointly by University of 
California at Berkeley and the University of Colorado[1].  
This was simple to interface with, but was unable to handle 
larger designs and also did not support non-blocking 
assignments.  Later implementations used RuleBase, a 
commercial model checker from IBM[2].  RuleBase 
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performs a number of reduction methods that allow larger 
designs to be verified in a shorter time. 
 

 Figure 2. Our Coverability Tool Flow 
  
 

Results and Discussion 
 
We evaluated our expression coverability analysis on 

two commercial designs provided by Motorola. 
Design 1 Design 2 

Lines of Code 63436 20932 
Total Expression Cases 13702 3615 
Intrinsically Uncoverable Cases 105 62 
 

Design 1 was a 3M gate RapidIO network switch.  We 
had access to this design at a relatively late stage of its 
verification when a large amount of manual inspection had 
already been performed.  Our automatic expression 
coverability analysis identified 45 intrinsically uncoverable 
expression coverage cases that had been previously found 
by manual inspection of the code.  In addition a further 60 
intrinsically uncoverable cases were identified.  Our 
analysis also identified an expression coverage case that had 
been wrongly classified by manual inspection as 
uncoverable.  
 

Design 2 was a decoder module of a reconfigurable DSP 
for use in 3G base-stations.  The verification of this design 
had been completed but we did not have access to any 
verification information.  As well as identifying a number of 
complicated intrinsically uncoverable cases, our analysis 
also uncovered a bug where a signal had been incorrectly 
included into an expression..  
 

The uncoverable expression cases identified in designs 
1 and 2 represent 0.7% and 1.7% respectively of the total 
number of expression cases.  These values are obviously 

design specific and are also related to the coding style 
employed, as discussed previously.  Because of coding 
style, some designs at Motorola have as much as 20% of 
their expression cases uncoverable. 

 
Practical experience showed that manually identifying 

dependencies between the sub-expressions in related if-
then-else statements was relatively simple due to their 
close locality.  Identifying the source of uncoverable 
expression cases due to dependencies between assignments, 
particularly in continuous code, was much more difficult. 
These can often take upwards of five minutes to identify.  
During our analysis we found one uncoverable expression 
case that required the analysis of over 20 related 
expressions through 4 levels of hierarchy. 

 
Although our implementation only identified one bug in 

the two designs, it should be considered that the analysis 
was performed when the designs were at the integration 
stage.  Bugs of this sort are common at the module level at 
the early stages of design.  

 
The size of designs that can have coverability analysis 

applied is obviously limited by the size of designs that can 
be handled by the target model checker.  To simplify and 
shorten the time taken to perform our analysis we applied 
the analysis on a module by module basis.  This is sound 
methodologically.  Expression cases found uncoverable at 
the module level are always going to be uncoverable at the 
chip level.  There is however the chance that module level 
analysis will suggest how to cover an as yet uncovered case 
that actually is uncoverable at the chip level because of 
poorer controllability. 

 
The majority of the modules could be analysed without 

any intervention from the user, although some of the larger 
modules required changing options that controlled the 
operation of the model checker.  The time taken to 
determine the coverability of an expression table line varied 
from module to module but was generally in the region of 5 
seconds per expression case. 

 
The original IBM work on coverability analysis 

involved a separate run of their RuleBase model checker for 
each statement checked.  This model checker like many 
others employs cone-of-influence reduction which on each 
run cuts down the design to just the parts required to check 
the property of interest. This dramatically improves the 
model checker performance. 

 
For expression coverability analysis we initially had one 

model checking run per expression case.  It�s clear that the 
cone-of-influence reductions induced by each case of a 
given expression should be similar.  We were interested in 
whether we would get better performance if we checked all 
cases of an expression together.  We confirmed through 
experiment that the reductions are indeed similar and that 
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performance is significantly better when cases are grouped 
together.  The table below illustrates this for two different 
modules. 

 
Module 1 Module 1 Module 2 
Flip Flops  55 246 
Gates 4108 1512 
Expressions/Exp.Cases 18/ 92 36/188 
Cases Run Individually   
Total Run Time 3120s 3840s 
Average time/Exp. Case 33.9s 20s 
Cases grouped by Exp.    
Total Run Time 491s 847s 
Average time/Exp. Case 5.3s 4.5s 
Speed Increase 535% 353% 
 

 
Suggestions for Future Work 

 
Although our implementation has been successfully 

used in the analysis of complex industry standard designs, 
further work would obviously be required before an 
efficient tool could be created. For example, we never 
explored the processing of coverability witnesses provided 
by model checking into full input vector sets, as has been 
done in [4].   

 
It is now becoming increasing common to integrate 

third party IP into designs.  Confidence as to the quality of 
the design may be under question and it may be necessary to 
verify the IP to some extent.  This would very likely involve 
code coverage analysis.  There may however be a situation 
where a complex IP block had been integrated even though 
much of its functionality will not be used.  We believe that 
an extension of coverability analysis could be developed 
where code that is specific to certain mode of operation 
could automatically be excluded from code coverage 
analysis. 

 
Conclusion 

 
Our work has shown that, even with a simple 

implementation, expression coverability analysis can be 
performed on industrial-scale designs.  It has the potential to 
significantly reduce the time needed to achieve 
recommended levels of expression coverage.  
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