
Dynamic Proof Presentation∗

Paul B. Jackson
Paul.Jackson@ed.ac.uk

20th April 2021

Abstract

For several decades there has been significant debate over the for-
mal proof style supported by proof assistants. For example, the merits
of a declarative style rather than a procedural (tactic) style have been
argued. In much of the debate there has been unnecessarily rigid in-
sistence on the languages of proof input and proof presentation being
identified. When these concepts are not shackled together, many op-
portunities are opened up for dynamic proof presentation that take
full advantage of the capabilities of computer user interfaces. With
dynamic proof presentation, the proof viewer can easily focus atten-
tion on particular parts of proofs and change the level of detail pre-
sented. One viewer might be interested in just a proof outline, an-
other might want to see how a large step of inference is composed of
smaller steps. Current proof assistant user interfaces do provide some
dynamic presentation capabilities, but much more could be done. Fur-
ther attention to dynamic proof presentation should help make formal
proofs easier to understand by a wider range of audiences, with mini-
mal need to rewrite proof libraries that are developed with huge time
investments.

1 Introduction

1.1 Proof Presentation Style

The core topic this chapter addresses is that of how formal proofs cre-
ated using interactive theorem provers ought to be presented. Specif-
ically, the concern is with the presentation of the structure of proofs

∗This preprint is published as Chapter 4, pp 63–86, of Michaelson, G. (eds) Mathemat-
ical Reasoning: The History and Impact of the DReaM Group. Springer, Cham. 2021.
https://doi.org/10.1007/978-3-030-77879-8_4

1

Paul.Jackson@ed.ac.uk
https://doi.org/10.1007/978-3-030-77879-8_4

of individual lemmas, rather than the presentation of theories group-
ing lemmas and definitions, or the presentation of terms, types and
formulas.

Over recent decades there has been significant discussion of this
topic [10, 25, 13, 27]. It has long been recognised that tactic scripts
by themselves are poor at communicating proof structure to read-
ers. Tactic scripts describe how the prover should create or check full
proofs, but typically do not show intermediate subgoal formulas and
often obscure the branching structure of proofs. Often, if a reader is
to understand a proof, they need access to a working version of the
prover and they have to re-execute the tactic script step-by-step.

Proofs in declarative proof description languages (for example the
Mizar system language and the Isar language of the Isabelle prover) are
generally much more readable than tactic scripts. With such languages
the proof text explicitly states many of the intermediate formulas in
a proof, nested-blocks describe hierarchical proof structure, and the
syntax is designed to be reminiscent of that found in mathematics
papers and textbooks. These language features help a reader quickly
gain a level of understanding of a proof just from study of its formal
text, without running the relevant prover.

1.2 Ongoing Issues

The tactic style (sometimes called the procedural style) is still the norm
in the user communities of a number of theorem provers (those for Coq,
Hol4 and Hol Light, for example). A disincentive for tactic users to
move to a more declarative style is that the intermediate formulas
needed for a declarative style can be tedious to enter and can make
the proofs scripts considerably more verbose. This is all the more the
case when the formulas get large, as is common in formal verification
applications. The lower comprehensibility of tactic-style proofs is not
so much an issue when proofs are developed using tactics, as then the
prover user interfaces present sufficient subgoal information to orient
developers.

A key limitation of current practices of writing both declarative
and tactic-style proofs is that the level of detail is fixed at proof writing
time. Sometimes this level is determined by the extent of automation
provided by the prover. Some arguments might need to be spelled
out in more detail than a reader might want. Other times automation
might enable large steps whose details are non-obvious to the reader.

In general there will be no one optimal level of detail. Differ-
ent readers might have widely different degrees of familiarity with the
prover and the subject formalised. And readers have different interests

2

in proofs at different times. Sometimes readers are keen to understand
the details; perhaps they wish to reproduce proofs in another prover
or perhaps they are studying the proofs for a mathematics or com-
puter science class. Other times, maybe they just want a high-level
summary.

As mentioned above, replay of tactic-style proofs is usually es-
sential for gaining a good understanding of them. Replay too is often
useful even for declarative proofs, as some details of intermediate proof
formulas are only viewable on replay. This need for replay is a sig-
nificant barrier to any reader who does not wish to go to the trouble
of installing the relevant prover and learning the basics of its usage.
Further, it might take minutes or even hours to get a prover into a
state where some given proof of interest can be replayed.

Additional issues concerning readability include that proof intel-
ligibility varies significantly depending on the proof writer, and that
there is a huge body of existing proofs, many written in a procedural
style, to which it would be good to have better access.

1.3 The Vision

This chapter describes how to improve support for dynamically-choosing
levels of proof presentation detail. The ideas discussed are relevant
to proofs in both declarative and procedural styles, and they could
make the differences between these styles less significant. Nearly all
the ideas have already been experimented with in some way, so their
further development and integration should be relatively straightfor-
ward. This improved support could significantly ease and speed the
understanding of formal proofs.

Interest in using interactive theorem provers has been steadily in-
creasing, both from those wishing to use them for formal verification
and from those exploring their use for education and research in math-
ematics and computer science. Dynamic proof presentation technolo-
gies would be much appreciated by many of these users and could spur
on further growth in theorem prover user communities.

1.4 Structure of Rest of Chapter

Section 1.5 includes a few notes on my interactions with the DReaM
group over the years. Sections 2 to 6 sketch out what dynamic proof
presentation can look like when both procedural and declarative proof
styles are used. A number of DReaM group members have worked on
relevant topics and Sect. 7 describes this work. Sections 8 and 9 are
forward looking, considering desired technical requirements for sup-

3

porting dynamic proof presentation and the relationship between proof
viewing and proof editing. Further related work by DReaM group
associates and others is considered in Sect. 10 and finally Sect. 11
summarises work strands that could be profitable in future.

1.5 My DReaM Group Connections

I came to the University of Edinburgh in 1995, having recently com-
pleted a PhD at Cornell University with Bob Constable on enhancing
the Nuprl interactive theorem prover and using it for formalising some
abstract algebra. Constable had previously visited Edinburgh on sab-
batical, and the DReaM group’s Oyster interactive theorem prover
developed in the late 1980s was strongly inspired by Nuprl. Initially I
had a post-doc in the LFCS (the Laboratory for Foundations of Com-
puter Science) with Rod Burstall and then, from 1998, a lectureship.

My PhD work gave me a keen interest in the central concerns of
the group about the automation of mathematical reasoning. Over the
years I have enjoyed very much attending and participating in DReaM
group talk meetings, and I continue to do so now. I appreciate the
informality of these meetings; there can be as much or even more time
spent in lively discussion as spent by the speaker talking. It is rare
that they are like a regular seminar when there might be just a couple
of polite questions afterwards. More generally, the group for me has
been a welcoming intellectual home.

From 1998 to 2019 I was a co-investigator on grants held by the
group that funded foundational and pump-priming research. For the
most part, my research has followed paths closely related to but dis-
tinct from those of other group members; topics I have pursued in-
clude bounded model checking, the formal verification of software,
automatic theorem proving for non-linear arithmetic, and, most re-
cently, the verification of hybrid dynamical systems. This last topic
is now also of interest to DReaM group member Jacques Fleuriot and
we are currently planning a collaboration in this area.

The issue of how formal proofs should be presented has been an in-
terest of mine ever since starting to work with Nuprl in the late 1980s.
A couple of times I was involved in discussions with DReaM group
members (primarily Alan Bundy and David Aspinall) about pursuing
funding related to the topic of this chapter. Unfortunately, neither
time did we develop ideas to the stage of completing and submitting a
funding proposal. Recently I have been enthusiastic about the rise in
prominence of the Lean theorem prover [7]. It has a rapidly-growing
formal library and has attracted significant interest from mathemati-
cians in using it in both their teaching and their research. This has

4

renewed my interest in formal proof presentation and I might well use
Lean for future work in this area.

2 A Running Example of a Procedural

Proof

To help motivate the discussion throughout this chapter, let us use a
proof of a lemma from the Nuprl system [6] that is the penultimate
step in a proof of the irrationality of

√
2 . This proof was previously

presented in a comparison of 17 theorem provers [26] and it follows
the shape of a proof example used by Lamport when advocating a
structured proof format [15].

Figure 1 shows an automatically-generated tactic-and-subgoal proof-
tree presentation of the proof. Nuprl is an interactive theorem prover
in the LCF family: a proof of a lemma is undertaken by running tac-
tics – procedural proof commands – on goals. Goals are sequents with
numbered variable declarations and hypotheses and a single conclu-
sion. When a tactic is run on a goal, 0 or more subgoals result. If
no subgoals result, then the tactic completely proves the goal. Other-
wise, the goal the tactic is run on is only proven once the subgoals are
completely proven by further tactic runs. As tactics can be combined
using tacticals into larger tactics, it is always possible to compose a
single tactic that completely proves a top-level goal. Traditionally
this is only done in Nuprl when the proof is very straightforward.
Otherwise, proofs are presented in a tree form, with goal nodes and
tactic nodes alternating as one moves down the tree branches. That
is what one sees in Fig. 1: a tree of goals, separated by tactic calls
after occurrences of the BY keyword.

To save space, this proof tree presentation elides the repetition of
variable declarations, hypotheses and conclusions in the goal sequents.
For example, Fig. 2 shows the second step of the Fig. 1 proof presen-
tation, with and without elision of repeated sequent components. To
construct a complete picture of some sequent in this kind of proof
presentation, the reader needs to search up the tree for any elided
components. It helps to know that proof steps in Nuprl might change
existing components of the declaration and hypothesis list, or add new
components, or both, but it is rare that components are deleted and
a subgoal after a step has a shorter list. In the event that a subgoal’s
declaration and hypothesis list is shorter than that of the parent goal,
there is no elision of components in the subgoal, in order to avoid
ambiguity.

In the Fig. 1 proof, the first proof step shows that the proof strategy

5

*T root_2_irrat_over_int

` ¬(∃m,n:Z. CoPrime(m,n) ∧ m * m = 2 * n * n)

|

BY (D 0 THENM ExRepD ...a)

|

1. m: Z
2. n: Z
3. CoPrime(m,n)

4. m * m = 2 * n * n

` False

|

BY Assert d2 | me

|\
| ` 2 | m

| |

| BY (BLemma ‘two_div_square‘ THENM Unfold ‘divides‘ 0

| THENM AutoInstConcl [] ...a)

\
5. 2 | m

|

BY Assert d2 | ne

|\
| ` 2 | n

| |

| BY (BLemma ‘two_div_square‘ THENM All (Unfold ‘divides‘)

| THENM ExRepD THENM Inst [dc * ce] 0

| THENM RWO "6" 4 ...)

\
6. 2 | n

|

BY (RWO "coprime_elim" 3 THENM FHyp 3 [5;6] ...a)

|

3. ∀c:Z. c | m ⇒ c | n ⇒ c ∼ 1

7. 2 ∼ 1

|

BY (RWO "assoced_elim" 7 THENM D (-1) ...)

Figure 1: Tactic-and-subgoal proof tree presentation

6

With elision

...

|

1. m: Z
2. n: Z
3. CoPrime(m,n)

4. m * m = 2 * n * n

` False

|

BY Assert d2 | me

|\
| ` 2 | m

| |

| ...

\
5. 2 | m

|

...

Without elision

...

|

1. m: Z
2. n: Z
3. CoPrime(m,n)

4. m * m = 2 * n * n

` False

|

BY Assert d2 | me

|\
| 1. m: Z
| 2. n: Z
| 3. CoPrime(m,n)

| 4. m * m = 2 * n * n

| ` 2 | m

| |

| ...

\
1. m: Z
2. n: Z
3. CoPrime(m,n)

4. m * m = 2 * n * n

5. 2 | m

` False

|

...

Figure 2: A proof step with and without elision of repeated sequent compo-
nents

7

*A divides b | a == ∃c:Z. a = b * c

*A assoced a ∼ b == a | b ∧ b | a

*A gcd_p GCD(a;b;y) == y | a ∧ y | b ∧
(∀z:Z. z | a ∧ z | b ⇒ z | y)

*A coprime CoPrime(a,b) == GCD(a;b;1)

*T two_div_square ∀n:Z. 2 | n * n ⇒ 2 | n

*T coprime_elim ∀a,b:Z. CoPrime(a,b) ⇐⇒
(∀c:Z. c | a ⇒ c | b ⇒ c ∼ 1)

*T assoced_elim ∀a,b:Z. a ∼ b ⇐⇒ a = b ∨ a = -b

Figure 3: Definitions and lemmas

is to assume the negation of the goal, and from this to show falsity,
i.e. that we have a contradiction. The tree presentation makes clear
that the proof proceeds by first establishing 2 divides m (hypothesis
5) and then that 2 divides n (hypothesis 6). The contradiction then
follows because hypothesis 3 claims that m and n are co-prime, that
they have no non-trivial common divisors. A divisor is trivial if it a
unit as far as divisibility is concerned, i.e. if it is +1 or −1. We also
see two side proofs in the tree presentation: the first establishing that
2 divides m and the second, knowing that 2 divides m, that also 2
divides n.

What do the tactics in Fig. 1 actually do? Nuprl’s tactic language,
and indeed most procedural proof languages, require study to under-
stand. Sometimes names are suggestive (e.g. Assert or Unfold), other
times they are rather abbreviated to save space and typing (e.g. RWO

is short for rewrite once). Also lemma names (e.g. coprime_elim,
assoced_elim) and definition names (e.g. divides for the infix | op-
erator) provide part of the story. Once the reader sees the referenced
lemmas and the definitions used, they can sometimes make a fair guess
as to what is going on. For the lemmas and definitions relevant to the
running example proof, see the fragment of a Nuprl library listing in
Fig. 3. Here, lines starting with *A are for definitions (A is for ab-
straction, Nuprl’s terminology for a definition) and with *T are for
lemmas and theorems. Note that, when doing divisibility theory over
the integers, GCDs are unique only up to associates (as specified by
the assoced relation, with ∼ infix notation).

The next sections explore how dynamic proof presentation capa-
bilities can improve proof readability and understandability.

8

* top 1 2

1. m: Z
2. n: Z
3. CoPrime(m,n)

4. m * m = 2 * n * n

5. 2 | m

` False

BY Assert d2 | ne

1* ` 2 | n

2* 6. 2 | n

` False

Figure 4: A proof refinement step

3 Focussing on Proof Steps in Proce-

dural Proofs

While a tactic-and-subgoal proof tree as in Fig. 1 can provide a good
overview of a proof, such trees become hard to read when spread over
many pages as the vertical linearisation creates distance between a
goal and its immediate subgoals. If our attention is on some subtree,
it is easy to have the presentation start at the root goal of that subtree
rather than the initial goal being proven. If the tree presentation is
in an interactive viewer, a facility for hiding subtrees that are not of
immediate interest is useful. If our attention is on a particular goal,
showing just that goal and its immediate subgoals is helpful. In Nuprl,
such a view is the primary way proofs are interactively presented, both
when viewing proofs and editing proofs. For example, Fig. 4 shows the
view Nuprl would give of the step introducing the 2 | n hypothesis 6.
As with the full tactic-and-subgoal proof trees, subgoals omit repeated
sequent components to save space and enable the reader to focus on
what has changed. A * at the start of a sequent indicates that the
proof below that point is complete. If the proof is incomplete, a #

is used instead. The top 1 2 is the tree address of the top sequent.
Users navigate up and down the proof tree just by clicking on the goal
or one of the subgoals in such a view.

9

4 Condensing Tactic-and-Subgoal Proof

Trees

The length of a proof tree presentation can be reduced by combining
adjacent tactics with tacticals. For example, the two steps at the end
of the presentation in Fig. 1

6. 2 | n

|

BY (RWO "coprime_elim" 3 THENM FHyp 3 [5;6] ...a)

|

3. ∀c:Z. c | m ⇒ c | n ⇒ c ∼ 1

7. 2 ∼ 1

|

BY (RWO "assoced_elim" 7 THENM D (-1) ...)

could be collapsed into the single step:

6. 2 | n

|

BY (RWO "coprime_elim" 3 THENM FHyp 3 [5;6]

THENM RWO "assoced_elim" 7 THENM D (-1) ...)

The reader might be wondering what the ‘...’ and ‘...a’ signify in
the Nuprl tactics shown here and earlier. These are notational short-
hand for calls of Nuprl’s auto-tactic on resulting subgoals. This tactic
undertakes common straightforward reasoning steps such as proving
linear arithmetic facts and checking well-formedness of terms and for-
mulas. (In Nuprl, type checking is undecidable and all type checking
is undertaken using proof.) The ‘...’ variant is for running the auto-
tactic on all subgoals and the ‘...a’ variant is for running the auto-
tactic only on auxiliary subgoals such as well-formedness subgoals.

Collapsing tactic steps together usually decreases hints to the reader
as to what is going on with each step, as intermediate goals are then
no longer visible. It therefore can be helpful if the proof developer
can add comments explaining steps. Indeed, a useful option is to hide
the tactic text when comments are used. This can produce readable
proof outlines that are accessible to those unfamiliar with the tactic
language. Figure 5 shows what an outline of the whole running proof
could look like if some adjacent steps are combined, comments are
inserted and tactics are hidden.

Another possible viewing option could involve the replacement
of tactic text with automatically-generated natural-language expla-
nations of the tactics. One simple way to realise this would be to

10

*T root_2_irrat_over_int

` ¬(∃m,n:Z. CoPrime(m,n) ∧ m * m = 2 * n * n)

|

BY Assume negation of goal and aim for proof by contradiction

|

1. m: Z
2. n: Z
3. CoPrime(m,n)

4. m * m = 2 * n * n

` False

|

BY From hyp 4, deduce that 2 | m

|

5. 2 | m

|

BY From hyps 4 and 5, deduce that 2 | n

|

6. 2 | n

|

BY Observe that hyps 5 and 6 contradict hyp 3

Figure 5: Proof outline

associate every tactic with some natural language description tem-
plate with slots for appropriate printing of any tactic arguments. See
Fig. 6 for a mock-up of how the running proof might look with such
an approach. While this might be more accessible to a reader not
familiar with Nuprl, it still assumes familiarity with concepts such as
forward chaining, back chaining and rewriting, and the reader needs to
understand that to decompose a hypothesis or conclusion is to apply
some relevant left or right introduction rule in a backwards fashion.

There have been more sophisticated investigations of how to pro-
duce natural language versions of whole tactic-based proofs. For exam-
ple, see the work of Holland-Minkley on presenting Nuprl proofs [11].
Even if easily-understandable renditions of tactic text can be auto-
matically generated, there still is a need for supporting display of
human-written comments, as these comments might provide higher-
level motivation for why a proof is being steered some particular way.

5 Expanding Proof Steps

Sometimes a proof reader wishes to explore a proof step in more detail.
For example, they might want to split apart the tactic steps combined

11

*T root_2_irrat_over_int

` ¬(∃m,n:Z. CoPrime(m,n) ∧ m * m = 2 * n * n)

|

BY Decompose the conclusion

| THEN Repeatedly decompose hypotheses,

| including existential quantifiers

|

1. m: Z
2. n: Z
3. CoPrime(m,n)

4. m * m = 2 * n * n

` False

|

BY Assert d2 | me

|\
| ` 2 | m

| |

| BY Back-chain using the lemma two_div_square

| THEN Unfold the definition of divides (|) in the conclusion

| THEN Instantiate the conclusion’s existential quantifier

| by matching the quantifier body against some hypothesis

\
5. 2 | m

|

BY Assert d2 | ne

|\
| ` 2 | n

| |

| BY Back-chain using the lemma two_div_square

| THEN Unfold the definition of divides (|)

| in all hypotheses and the conclusion

| THEN Repeatedly decompose hypotheses,

| including existential quantifiers

| THEN Instantiate the conclusion’s quantifier(s)

| with the term(s) dc * ce

| THEN Rewrite hypothesis 4 using hypothesis 6

\
6. 2 | n

|

BY Rewrite hypothesis 3 using the lemma coprime_elim

| THEN Forward-chain using hypothesis 3,

| matching with hypotheses 5 and 6

|

3. ∀c:Z. c | m ⇒ c | n ⇒ c ∼ 1

7. 2 ∼ 1

|

BY Rewrite hypothesis 7 using lemma assoced_elim

THEN Decompose the last hypothesis

THEN Repeatedly apply straightforward reasoning techniques

Figure 6: Proof tree presentation with simple natural-language rendering of
tactics

12

using the THENM sequencing tactical (‘then on main subgoal’) that are
used to prove the 2 | n goal. See Fig. 7 for a copy of the original
tactic-and-subgoal proof tree fragment followed by a proof tree for
the expanded version of this fragment. Now the reader can see, in
the penultimate step, the definition of this variable c that is used in
the term c * c used to instantiate the existential quantifier in the
conclusion.

Further expansion could be desirable for tactics such as the auto-
tactic that are defined in terms of a number of simpler tactics. Ex-
pansion of the auto-tactic at the very end of the proof could show the
linear integer arithmetic tactic used to prove the main goal and the
type checking tactic used to prove various well-formedness goals that
are a by-product of the rewriting of hypothesis 4 with hypothesis 6.

Nuprl happens to have some support for such expansion, as it
stores the proof tree fragments created by tactic runs, and a proof ed-
itor command enables the replacement of a tactic run by the resulting
proof tree. Unfortunately, by default, these proof tree fragments are
at the primitive rule level which is far too detailed to be of interest
to almost all readers. To arrange that higher-level tactics can expand
into lower level tactics, the code doing the expansion needs access to
the syntax of tactic expressions and tactic definitions. With Nuprl,
these details are hidden away in the ML compiler’s data structures and
are not accessible to the ML runtime. This is a general issue one has
to face whenever tactics are expressed directly in some programming
language. It is avoided when the prover adopts a custom proof com-
mand language and ASTs for commands are readily available. I did
experiment with specially-defined tactics and tacticals that captured
structural information about tactics and enabled incremental expan-
sion of tactic runs into lower level tactics. However it was difficult to
do this for all tactics and this facility never made it into the standard
Nuprl release.

6 Dynamic Presentation of Declarative

Proofs

A declarative version of our running example proof is shown in Fig. 8.
This uses the Isabelle Isar declarative proof language, but, within the
de quotes, keeps the previously-used Nuprl notation for terms and for-
mulas. It has been derived from a proof undertaken using the Isabelle
2020 system.

From a content point of view, this is not so different from our initial
procedural proof-tree presentation in Fig. 1. The high-level flow of

13

Original proof:

1. m: Z
2. n: Z
3. CoPrime(m,n)

4. m * m = 2 * n * n

5. 2 | m

` 2 | n

|

BY (BLemma ‘two_div_square‘ THENM All (Unfold ‘divides‘)

THENM ExRepD THENM Inst [dc * ce] 0

THENM RWO "6" 4 ...)

Expanded proof:

1. m: Z
2. n: Z
3. CoPrime(m,n)

4. m * m = 2 * n * n

5. 2 | m

` 2 | n

|

BY (BLemma ‘two_div_square‘ ...a)

|

` 2 | n * n

|

BY All (Unfold ‘divides‘)

|

5. ∃c:Z. m = 2 * c

` ∃c:Z. n * n = 2 * c

|

BY ExRepD

|

5. c: Z
6. m = 2 * c

|

BY (Inst dc * ce 0 ...a)

|

` n * n = 2 * c * c

|

BY (RWO "6" 4 ...)

Figure 7: Original and expanded proof of 2 | n

14

theorem root_2_irrat_over_int:
d¬(∃m,n:Z. CoPrime(m,n) ∧ m * m = 2 * n * n)e

proof

assume d∃m,n:Z. CoPrime(m,n) ∧ m * m = 2 * n * ne

from this obtain m n where cop: dCoPrime(m,n)e

and eq: dm * m = 2 * n * ne by auto

have tdm: d2 | me

proof (rule two_div_square)

from eq show d2 | m * me by (unfold divides, simp)

qed

have tdn: d2 | ne

proof (rule two_div_square)

show d2 | n * ne

proof (unfold divides)

from tdm obtain c where dm = 2 *ce by (unfold divides, auto)

from this eq have dn * n = 2 * c * ce by simp

from this show d∃k. n * n = 2 * ke by simp

qed

qed

have ta1: d2 ∼ 1e

proof -

from cop coprime_elim have d∀c. c | m ∧ c | n ⇒ c ∼ 1e

by simp

from this tdm tdn show d2 ∼ 1e by auto

qed

show dFalsee

proof -

from ta1 assoc_elim have d2 = 1 ∨ 2 = -1e by simp

from this show dFalsee by arith

qed

qed

Figure 8: Declarative proof

15

the proof with the successively introduced hypotheses CoPrime(m,n),
m * m = 2 * n * n, 2 | m, 2 | n and 2 ∼ 1 is the same. A minor
difference is in how hypotheses are referred to: here they have symbolic
labels rather than numbers and the special name this is used to refer
to an unlabelled immediately-previous hypothesis. Nested proof-qed
blocks capture the side proofs of several of the introduced hypotheses.
The from phrases make clear how earlier assumptions and lemmas
are used in immediately-following proof steps. After the proof and
by keywords are instances of methods, Isabelle’s version of tactics.
Because Isar proofs still involve invocations of procedural tactics to
justify declared steps, they sometimes are referred to as being semi-
declarative. In other more-purely-declarative systems such as Mizar,
virtually all steps are either basic steps of propositional and predicate
logic or involve a single implicitly-invoked procedure.

From a proof creation point-of-view, the difference between declar-
ative proofs and proof-tree presentations of procedural proofs is usu-
ally much more radical, as all of the text in the declarative case has
to be entered in the proof source file. The proof developer has not
only to enter the various keywords defining the shape of the proof and
suggesting what deductions depend on, but also enter all the interme-
diate formulas introduced in the proof. To some extent this further
work by the proof developer is moderated because, knowing the result
of a proof step, automation can do more to figure out how to justify
a step given hints. Also, with Isabelle, the jEdit proof editor has a
command that generate formula text for case splits and inductions,
when the text can get rather tedious to figure out by hand.

With Isabelle, some practices act against readability. For exam-
ple, proof method text automatically generated by the Sledgehammer
tool [4] often contains rather more detail than many proof readers care
about. (Sledgehammer is an all-purpose tool that combines a variety
of automatic reasoning engines such as Smt solvers and first-order
automatic theorem provers.) And there are some conventions for re-
ferring to parts of subgoals resulting from inductions and case splits
that, while easing typing, avoid entry of and therefore also presenta-
tion of the full formulas involved in the subgoals.

Virtually all the ideas for dynamic proof presentation make sense in
this declarative context, and some support is available. For example,
with Isabelle’s jEdit, the user can click at any point in a declarative
proof, and a separate window shows some subgoal and context infor-
mation associated with that position. And jEdit does support folding
of proof-qed blocks, so the viewer has some control over the level of
detail. It would be straightforward to allow source text to include
some marks indicating blocks to be folded by default, so say just some

16

comments on what the blocks do are visible. Expansion of proof com-
mands would probably take some work. It may be that showing some
kind of command execution traces in auxiliary windows would be eas-
ier than generating source text versions with more-detailed proof text.
Indeed, Isabelle currently allows execution traces for its simp rewriting
method to be displayed.

7 DReaM Group Contributions

Several DReaM group researchers have been concerned with the issue
of how best to present partial views of proof plans so that the reader
easily sees relationships between plan parts and is not overloaded with
detail. The first three subsections below survey relevant work by these
researchers.

A key observation in this work was the importance of being able
to view hierarchies of both subgoals and proof methods. Later work
covered in Sects. 7.4 and 7.5 formalised a notion of proof trees with
these two hierarchies and used this formalisation to help reason about
proof transformations that could make proofs easier to understand.

7.1 Barnacle and XBarnacle

Lowe, McLean and Bundy developed the Barnacle [16] and XBarna-
cle [17] graphical user interfaces (GUIs) to the Clam proof-planning
system. These enabled a degree of interactivity when running proof
plans. The GUIs displayed proof plan trees, traces of the executions
of Clam proof methods at some default level of detail. Nodes in these
trees were associated with method applications and were displayed as
boxes labelled with method names. Edges in these trees were asso-
ciated with goals: the parent edge of a method corresponded to the
goal the method was applied to and the child edges of a method to any
subgoals generated by the method. Goal formulas were not displayed
by default, but could be viewed in pop-up windows.

If more information was desired about a method application, a pop-
up window could show a proof plan tree for the method, revealing the
next greater level of detail. Alternatively a method could be expanded
in place into its next-level-down proof tree.

To help the user understand how planning was functioning, the
user could check the status of method preconditions and method scores
that the planner used to select methods.

Barnacle and XBarnacle were used and evaluated not only by re-
searchers, but also by undergraduate students on a formal methods
course. Users appreciated the graphical visualisation of proof trees

17

and liked the ability to increase or reduce the level of detail, as the
default level was often not the most useful [16].

The challenges of displaying tactic-and-subgoal proof trees have
been considered in a number of provers. For example, Pvs can gen-
erate two-dimensional display of proof trees where the text of Pvs
tactics is shown, but goal formulas are only visible in pop-up windows
that appear when goal symbols are clicked on. In my experience of
using both Nuprl and Pvs, I have found it most useful to view the full
story, seeing both goals and tactics at once. I can see what’s going
on more quickly, and a full view can easily be printed and studied
offline. The size of goal text usually forces a one dimensional vertical
layout of tree structure such as used in the proof tree presentations
in this chapter. Hopefully dynamic presentation techniques can help
minimise the disadvantages of a one-dimensional layout.

7.2 The Orthogonal Hierarchies of Method Trees

In 2002 Bundy authored Blue Book Note 1411 with the title Rep-
resenting Orthogonal Hierarchies in Proof Plan Presentations. The
orthogonal hierarchies in question were the hierarchy of subgoals in
the method-and-subgoal proof tree, and the hierarchy of methods and
their constituent methods. He considered several alternative visual
presentations of these two hierarchies. He remarked how the expan-
sion and contraction of method applications in XBarnacle prevented
one seeing at a glance the relationship between a method application
and its expansion. He advanced a preference for presenting higher-
level methods and their constituent methods using nested boxes, and
subgoals using edges between boxes with sequents labelling edges hid-
den by default. See Fig. 1.2 in Chap. 1 for an example of such a
presentation.

Even with goals hidden, he remarked on the challenge of main-
taining the readability of such presentations as the size of the tree
increases. He noted obvious management techniques such as zooming
in, making an internal node the root of the presentation and hiding
certain sub-trees. He observed that such techniques can be applied
both to the method nesting hierarchy and the subgoal hierarchy.

7.3 IsaPlanner

Dixon and Fleuriot’s IsaPlanner [9] was an exploration of import-
ing proof planning ideas into the Isabelle/Isar environment. IsaPlan-
ner’s proof techniques, enhanced versions of tactics, would output
Isar declarative proof scripts when run on a proof goal. Particular

18

techniques were responsible for generating script structure, and Isa-
Planner provided support for unpacking a technique into lower-level
constituent techniques. A graphical viewer was built for the gener-
ated proof plans along the lines Bundy had previously advocated (see
Sect. 7.2), which used nested boxes to show how higher-level technique
instances were composed of instances of more basic techniques.

7.4 Hiproofs and Proof Refactoring

Denney, Power and Tourlas [8] considered mathematical models of
proof trees with hierarchies of both subgoals and methods as described
above in Sect. 7.2. For brevity, they referred to them as hiproofs.
Aspinall, Denny and Lüth [3] defined a simple grammar for hiproofs
and a simple tactic language Hitac for generating hiproofs, and went
on to present small-step and big-step operational semantics for Hitac.
At the time Aspinall had a strong interest in proof re-engineering,
exploring ideas analogous to software re-engineering in the world of
proofs: Whiteside, Aspinall, Dixon and Grov [24] defined a simple
formal declarative proof script language reminiscent of Isabelle/Isar,
and gave it an operational semantics, building on the previous hiproof
and Hitac work. They then consider a number of re-arrangements,
refactorings of declarative proofs (for example, turning a backward
proof into a forward proof) and argued how these refactorings are
formally correct.

Refactoring of software is used to improve its maintainability and
understandability. Proof refactoring is of interest in this chapter be-
cause it could make proofs easier to understand.

7.5 HipCam and Tactician

Obua, Adams and Aspinall [18] produced two systems that can au-
tomatically generate hiproof versions of Hol Light proofs and then
graphically display them. The issue is that the practice in Hol
Light source files is to store the proof of each lemma as a maximally-
condensed single tactic. If our running example lemma were to be
stored as an ML variable binding in the style used in Hol Light source
files, it might look as shown in Fig. 9.

In a further paper [1] Adams explains how to use Tactician to
refactor packed Hol Light proofs into sequences of individual tactic
invocations on Hol Light’s goal stack, with comments identifying the
tree structure of of the proofs. A Hol Light proof is usually initially
produced by running a sequence of separate tactics that successively
refine the top goal on a stack of remaining subgoals to prove. This

19

let root_2_irrat_over_int = prove
d¬(∃m,n:Z. CoPrime(m,n) ∧ m * m = 2 * n * n)e

(D 0 THENM ExRepD

THENM

(Assert d2 | me

THENA (BLemma ‘two_div_square‘ THENM Unfold ‘divides‘ 0

THENM AutoInstConcl []))

THENM

(Assert d2 | ne

THENA (BLemma ‘two_div_square‘ THENM All (Unfold ‘divides‘)

THENM ExRepD THENM Inst [dc * ce] 0

THENM RWO "6" 4))

THENM RWO "coprime_elim" 3 THENM FHyp 3 [5;6]

THENM RWO "assoced_elim" 7 THENM D (-1) ...)

;;

Figure 9: Single tactic proof

refactoring simplifies stepped replay and viewing of Hol Light proofs,
enabling novices to more easily study and learn from legacy Hol Light
proofs, and also helping with proof maintenance as revisions are made
to Hol Light libraries. The refactoring can also be reversed, shortcut-
ting the tedious process of transforming a stepped proof into a packed
proof.

8 Technologies for Proof Presentation

As remarked in the introduction, the hope is that improved dynamic
presentations of formal proofs will help to increase the ease with which
formal proofs can be understood and will broaden the audience for
formal proofs. There is the potential to engage those interested in
learning topics that have been formalised and attracting the attention
of those who initially are just casually interested. There is the poten-
tial too to support active users of theorem provers in rapidly coming
up to speed on libraries in the systems they are using and learning too
from libraries in other systems.

To achieve this, proof presentations must be accessible using stan-
dard universal technologies, i.e. web browsers. Also access must be
fast; delays must be at most seconds. Could this level of performance
be achieved by connecting to a web server running the relevant theo-
rem prover? Would the server need to cache pre-processed presenta-
tion information?

It is desirable that presentations of proofs from a theorem prover

20

be long lasting, remaining accessible even after the theorem prover
itself is no longer actively maintained, and perhaps after the point
when running the prover on up-to-date hardware is problematic. This
might steer the technology towards not relying on the theorem prover
running and instead caching all relevant data. Simple hypertext pre-
sentations of Nuprl theories I developed 25 years ago are still readily
browsable on the web, even though it is unlikely that the version of
Nuprl I used when developing those theories still runs.

Hopefully some presentation technology could be shared across
multiple theorem provers, to speed adapting it to new provers.

Presentation technologies would also need to address many of the
issues not touched on here that are also highly desirable. For ex-
ample, it should handle the pretty printing of formulas and terms,
with control over often-hidden information such as types, implicit ar-
guments and implicit coercions, and the provision of hyperlinks or
tool-tip hover-texts that explain pointed-to proof commands, defini-
tions and lemma names. Modern programming IDEs, e.g. VSCode,
provide good examples of how such features can be engineered. For
example, if a programmer using VSCode wishes to see how a function
being called is defined, they can easily instruct VSCode to insert a
several-line scrollable buffer immediately below the function call po-
sition that displays the function’s definition. Indeed the preferred
front-end for the Lean prover uses VSCode, and a VSCode front-end
for Isabelle is being developed that might eventually replace the cur-
rent jEdit front-end.

9 Relationship Between Viewing and

Editing Proofs

Whether or not fast dynamic presentation of theorem prover libraries
uses a running instance of the theorem prover, it is certainly desir-
able that similar functionality be available to proof developers on the
proofs they are currently working on. Good dynamic proof presenta-
tion should help the developer both focus on individual proof steps
and keep a good awareness of the wider proof context. It also should
help them more quickly understand why a proof step might not be
running or checking as they expect, and so speed the completion of
proofs.

As stressed at this chapter start, good dynamic proof presentation
separates the concerns of how we input proofs, the required keystrokes
and mouse clicks, from the concerns of how we view and understand
proofs. This could lead to simpler, easier to learn, more robust proof

21

guidance approaches than we currently have.

10 Further Related Work

The Acl2 theorem prover [14] has a number of options for controlling
the kind of information and level of detail it shows in proofs. Theo-
rems are proved using a single sophisticated automatic strategy. As
this strategy runs, it prints subgoals with their tree addresses and
between these gives natural language descriptions of the reasoning
techniques applied. When a proof fails, it also prints information on
key steps in the failed proof that the user should first inspect in order
to infer what guidance is missing. Perhaps a missing prior lemma is
needed or perhaps the use of some existing previous lemma for rewrit-
ing needs to be disabled. Various options can reduce the amount of
proof information printed or trace details of particular kinds of rea-
soning steps. Breakpoints can be set if one wants to interactively
examine the prover state in particular parts of a proof attempt. To
help the user appreciate how a proof is progressing, Acl2 can gener-
ate simultaneous alternate views summarising aspects of the evolving
proof such as the subgoal tree structure or the applied rewrites.

A major difference between these dynamic presentation capabili-
ties and those considered in this chapter has to do with the design
purpose of the capabilities. With Acl2, the primary concern is with
quickly figuring out why a proof fails and how to go about fixing it. In
this chapter, a primary concern is for capabilities that help the user
understand successful proofs. However it is expected that capabilities
that are good for this will also help interactive proof developers to
track where they are in partial proofs and to debug faulty lines of
reasoning.

Another difference concerns the extent to which the prover might
construct some proof data-structure which then separately can be tra-
versed and inspected. The dynamic proof presentation discussed in
this chapter assumes that such a data-structure exists. With Acl2
the capabilities seem designed to largely avoid the construction of such
data-structures, perhaps because they would be prohibitively large for
the formal verification applications Acl2 is typically used for. Inter-
estingly the developers of the Imandra theorem prover [19], which
has automation strongly inspired by that of Acl2 and its predeces-
sors, are experimenting with the benefits of creating hiproof-like proof
data-structures.

Siekmann et al. [21] describe a user interface for the Ωmega proof-
planning system. Ωmega has a graph data structure for storing proofs
that holds the multiple levels of detail of hierarchical proofs and addi-

22

tionally supports holding alternative proofs. Different kinds of edges
in the graph record proof tree subgoal hierarchy, how method applica-
tions are related to applications of their constituent methods, and how
there might be multiple proofs of a given subgoal. In one panel the
interface presents a 2D layout of the interleaved subgoals and methods
for a proof tree using different colours and shapes for nodes, but no vis-
ible method or goal information. Node colours and shapes distinguish
whether for example a node represents a goal, a method or a primitive
inference. Another panel shows a linearised natural-deduction view of
the current proof and, when the proof is complete, a pop-up window
can display a natural language version of the proof. Some control is
provided for restricting attention to parts of a proof. The alternate
views in the different panels are hyperlinked so clicking at a point in
one takes the user to the corresponding point in another.

Cairns and Gow [5] explored how students on a topology course
handled semi-formal hierarchical proofs in the structured proof format
advocated by Lamport [15]. This format is similar to formal declar-
ative proofs in that justifications of higher-level steps are provided in
lower-level proof blocks. Of particular interest to us is that the web
presentation of the hierarchical proofs allowed viewers to selectively
hide or expand the more-detailed proof levels. The responses from a
preliminary survey of three students was mixed. The value of being
able to control the level of detail was recognised, but the unfamiliarity
of the format and an awkwardness of a numerical cross-referencing
scheme were obstacles to the hierarchical proofs helping improve un-
derstanding of the proofs.

Wiedijk [25] describes the notion of a formal proof sketch which is
derived from a formal declarative proof by omitting particular details
in order to produce proofs that are easier to read. He illustrates this
using formal proofs from the Mizar system. These formal sketches
always preserve some essential formal structure of the corresponding
full formal proofs.

Kalisyk and Wiedijk [13] describe the ProofWeb system that trans-
lates arbitrary procedural proofs in Coq into the declarative Fitch-
style proofs as used in the Huth and Ryan textbook on formal ver-
ification [12]. Further, it enables users to develop incomplete proofs
either by directly editing the Fitch-style proofs or by running Coq
tactics on statements in the declarative proofs that have not yet been
justified. Related later work by Wiedijk [27] presents a light-weight
front end to Hol Light that runs in the Unix vi editor and that sup-
ports the creation of declarative proofs in the style of the Mizar prover
(the main inspiration for the Isabelle/Isar declarative language). The
user can mix typing the declarative text in full and just typing Hol

23

Light tactics that run on unjustified steps and cause the system to
extend the declarative proof.

Prover developers (e.g. for Isabelle, Hol4, Mizar, Coq, Lean,
Metamath) do make efforts to have libraries browsable on the web,
sometimes with useful hyperlinks for definitions and theorems. How-
ever, only in some cases are versions of libraries with proofs provided,
and, when this happens, the proofs are usually just static proof scripts
as recorded in proof script files. One exception is with the work by
Tankink et al. [22, 23] on the Proviola system for Coq. This displays
Coq source files in a web browser in such a way that clicking on a
tactic step brings up a second pane displaying Coq’s output from that
step, typically a list of the subgoals generated. Another exception is
with Pit-Claudel’s recently-released Alectryon tool [20], again for Coq
libraries. As with Proviola, Coq’s output can be viewed, but here the
output is interleaved with the source, and users can click to unfold the
display of further information or to fold the information currently dis-
played. Special comments can be added to source files to control what
information about subgoals and subgoals parts is folded or unfolded
by default.

11 Conclusions and Future Directions

This chapter has discussed how dynamic proof presentation could help
ease understanding formal proofs and broaden the audience for formal
proofs.

Some ideas for directions in which future research would be worth-
while are as follows.

Source mark-up for presentation
Mark-up conventions are needed to indicate how blocks of proof are
folded or unfolded by default, how comments might replace proof
blocks, and how a proof has hierarchical structure that is not apparent
from the proof syntax. Already provers such as Coq and Isabelle sup-
port mark-up for producing document versions of library files and the
Alectryon work [20] defines further mark-up for dynamic presentation
options.
Exploring further proof presentation techniques
Once proof editors and proof viewers can be engineered to support
dynamic proof presentation, there are opportunities for exploring ideas
for presenting proofs beyond those discussed here, perhaps bringing in
too the proof refactorings and transformations mentioned in Sects. 7.4,
7.5 and 10.
Handling legacy proofs

24

This is vital as many formal proofs have not been developed with the
reader in mind, yet there is interest in understanding these proofs.
Again, some combination of proof transformation technologies such
as described in Sects. 7.4, 7.5 and 10 , and dynamic presentation
technologies is needed.
Proof presentation technologies
As discussed in Sect. 8, proof presentations should be viewable using
web browsers and fast to access and navigate. How should this be
engineered?
Prover input languages
Separating the demands of the languages for entering and displaying
proofs opens up new opportunities for the input languages. In current
proof languages there are compromises between the different needs of
ease of input, readability and suitability for instructing the theorem
prover. With separation of demands, we can imagine simplified in-
put languages suitable for novices and more sophisticated terse input
languages for experts.
Exposing proof-tree structure
Most interactive provers have tactics that transform a proof state con-
sisting of a list or stack of unproven goals. In doing so the tree-shaped
hierarchical structure of proofs is obscured. It would be good if the
presentation technology can expose this tree structure so it can help
with proof understanding.
Handling meta-variables
While Nuprl tactics always refine a single unproven subgoal, tactics
in other provers can simultaneously modify multiple subgoals in the
unproven goal list. This can make creating tactic-and-subgoal tree
presentations of proofs problematic. A prime example of when this
happens is when the prover supports meta-variables – implicitly ex-
istentially quantified variables – in goals. Deep down in one branch
of a proof, a tactic can instantiate a meta-variable that also occurs in
other proof branches. How then should tactic-and-subgoal tree pre-
sentations make such non-local modifications of a proof tree evident?
Extracting explanations from tactic runs
When a tactic encapsulates a significant amount of automation, it is
desirable that the prover be able to explain tactic runs. If the tac-
tic simply unpacks into calls of simpler tactics, then, as discussed in
Sect. 5, showing a tactic-and-subgoal tree involving these simpler tac-
tics could be appropriate. However, if it involves rewriting or involves
calls of automated provers for first order logic or arithmetic, then some
kind of execution trace might be relevant. But such traces can often
be far too detailed. What ways are there of structuring them so detail
can be incrementally revealed?

25

Presenting proof-terms
This chapter has not discussed the use of proof-terms to describe
proofs. This proof style is standard with the Agda proof assistant
and popular with some Lean users. While proof terms precisely ex-
press the logical structure of proofs, they do so in a way less naturally
familiar to most readers, and careful use of syntactic sugar and layout
is needed to produce proofs with some of the readability of declarative
proofs. How could a dynamic proof presentation approach make proof
terms easier to understand?

As pointed out in Sect. 7, current group members Bundy, Aspinall
and Fleuriot all have a significant amount of past experience in areas
closely-related to those discussed here. Further, for many years, As-
pinall was the primary developer of the Proof General user interface
for interactive theorem provers [2] and Fleuriot is a world-class expert
in the Isabelle theorem prover and its Isar proof language. I hope this
chapter will be a spur to some combination of us to now push forward
on some of the topics listed here.

Acknowledgements

I would like to thank the anonymous reviewers for their helpful rec-
ommendations.

References

[1] Mark Adams. Refactoring proofs with Tactician. In
Domenico Bianculli, Radu Calinescu, and Bernhard Rumpe,
editors, Software Engineering and Formal Methods - SEFM
2015 Collocated Workshops: ATSE, HOFM, MoKMaSD, and
VERY*SCART, York, UK, September 7-8, 2015, Revised Se-
lected Papers, volume 9509 of Lecture Notes in Computer Sci-
ence, pages 53–67. Springer, 2015. https://doi.org/10.1007/

978-3-662-49224-6_6.

[2] David Aspinall. Proof General: A generic tool for proof devel-
opment. In Susanne Graf and Michael I. Schwartzbach, editors,
Tools and Algorithms for Construction and Analysis of Systems,
6th International Conference, TACAS 2000, Held as Part of the
European Joint Conferences on the Theory and Practice of Soft-
ware, ETAPS 2000, Berlin, Germany, March 25 - April 2, 2000,
Proceedings, volume 1785 of Lecture Notes in Computer Sci-
ence, pages 38–42. Springer, 2000. https://doi.org/10.1007/

3-540-46419-0_3.

26

https://doi.org/10.1007/978-3-662-49224-6_6
https://doi.org/10.1007/978-3-662-49224-6_6
https://doi.org/10.1007/3-540-46419-0_3
https://doi.org/10.1007/3-540-46419-0_3

[3] David Aspinall, Ewen Denney, and Christoph Lüth. Tactics for
hierarchical proof. Mathematics in Computer Science, 3(3):309–
330, 2010. https://doi.org/10.1007/s11786-010-0025-6.

[4] Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C.
Paulson. Extending Sledgehammer with SMT solvers. J. Autom.
Reasoning, 51(1):109–128, 2013. https://doi.org/10.1007/

s10817-013-9278-5.

[5] Paul A. Cairns and Jeremy Gow. A theoretical analysis of hi-
erarchical proofs. In Andrea Asperti, Bruno Buchberger, and
James H. Davenport, editors, Mathematical Knowledge Manage-
ment, Second International Conference, MKM 2003, Bertinoro,
Italy, February 16-18, 2003, Proceedings, volume 2594 of Lec-
ture Notes in Computer Science, pages 175–187. Springer, 2003.
https://doi.org/10.1007/3-540-36469-2_14.

[6] Robert L. Constable, Stuart F. Allen, H.M. Bromley, W.R.
Cleaveland, J.F. Cremer, R.W. Harper, Douglas J. Howe, T.B.
Knoblock, N.P. Mendler, P. Panangaden, James T. Sasaki, and
Scott F. Smith. Implementing Mathematics with the Nuprl De-
velopment System. Prentice-Hall, NJ, 1986. http://www.nuprl.
org/book/.

[7] Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad,
Floris van Doorn, and Jakob von Raumer. The Lean theorem
prover (system description). In Amy P. Felty and Aart Middel-
dorp, editors, Automated Deduction - CADE-25 - 25th Interna-
tional Conference on Automated Deduction, Berlin, Germany,
August 1-7, 2015, Proceedings, volume 9195 of Lecture Notes
in Computer Science, pages 378–388. Springer, 2015. https:

//doi.org/10.1007/978-3-319-21401-6_26.

[8] Ewen Denney, John Power, and Konstantinos Tourlas. Hiproofs:
A hierarchical notion of proof tree. Electr. Notes Theor. Comput.
Sci., 155:341–359, 2006. https://doi.org/10.1016/j.entcs.

2005.11.063.

[9] Lucas Dixon and Jacques D. Fleuriot. A proof-centric approach
to mathematical assistants. J. Applied Logic, 4(4):505–532, 2006.
https://doi.org/10.1016/j.jal.2005.10.007.

[10] John Harrison. Proof style. In Eduardo Giménez and Chris-
tine Paulin-Mohring, editors, Types for Proofs and Programs,
International Workshop TYPES’96, Aussois, France, Decem-
ber 15-19, 1996, Selected Papers, volume 1512 of Lecture Notes
in Computer Science, pages 154–172. Springer, 1996. https:

//doi.org/10.1007/BFb0097791.

27

https://doi.org/10.1007/s11786-010-0025-6
https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.1007/3-540-36469-2_14
http://www.nuprl.org/book/
http://www.nuprl.org/book/
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1016/j.entcs.2005.11.063
https://doi.org/10.1016/j.entcs.2005.11.063
https://doi.org/10.1016/j.jal.2005.10.007
https://doi.org/10.1007/BFb0097791
https://doi.org/10.1007/BFb0097791

[11] Amanda M. Holland-Minkley. Planning proof content for com-
municating induction. In Proceedings of the International Nat-
ural Language Generation Conference, Harriman, New York,
USA, July 2002, pages 167–172. Association for Computa-
tional Linguistics, 2002. https://www.aclweb.org/anthology/
W02-2122/.

[12] Michael Huth and Mark Ryan. Logic in Computer Science: Mod-
elling and Reasoning about Systems. Cambridge University Press,
2 edition, 2004. https://doi.org/10.1017/CBO9780511810275.

[13] Cezary Kaliszyk and Freek Wiedijk. Merging procedural and
declarative proof. In Stefano Berardi, Ferruccio Damiani, and
Ugo de’Liguoro, editors, Types for Proofs and Programs, Inter-
national Conference, TYPES 2008, Torino, Italy, March 26-29,
2008, Revised Selected Papers, volume 5497 of Lecture Notes
in Computer Science, pages 203–219. Springer, 2008. https:

//doi.org/10.1007/978-3-642-02444-3_13.

[14] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore.
Computer-Aided Reasoning: An Approach. Kluwer Academic
Publishers, June 2000.

[15] Leslie Lamport. How to write a proof. Technical Report 94, DEC
Systems Research Center, February 1993. https://www.hpl.hp.
com/techreports/Compaq-DEC/SRC-RR-94.pdf.

[16] Helen Lowe, Alan Bundy, and Duncan McLean. The use of proof
planning for co-operative theorem proving. J. Symb. Comput.,
25(2):239–261, 1998. https://doi.org/10.1006/jsco.1997.

0174.

[17] Helen Lowe and David Duncan. XBarnacle: Making theorem
provers more accessible. In William McCune, editor, Auto-
mated Deduction - CADE-14, 14th International Conference on
Automated Deduction, Townsville, North Queensland, Australia,
July 13-17, 1997, Proceedings, volume 1249 of Lecture Notes
in Computer Science, pages 404–407. Springer, 1997. https:

//doi.org/10.1007/3-540-63104-6_39.

[18] Steven Obua, Mark Adams, and David Aspinall. Capturing
Hiproofs in HOL Light. In Jacques Carette, David Aspinall,
Christoph Lange, Petr Sojka, and Wolfgang Windsteiger, editors,
Intelligent Computer Mathematics - MKM, Calculemus, DML,
and Systems and Projects 2013, Held as Part of CICM 2013,
Bath, UK, July 8-12, 2013. Proceedings, volume 7961 of Lec-
ture Notes in Computer Science, pages 184–199. Springer, 2013.
https://doi.org/10.1007/978-3-642-39320-4_12.

28

https://www.aclweb.org/anthology/W02-2122/
https://www.aclweb.org/anthology/W02-2122/
https://doi.org/10.1017/CBO9780511810275
https://doi.org/10.1007/978-3-642-02444-3_13
https://doi.org/10.1007/978-3-642-02444-3_13
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-94.pdf
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-94.pdf
https://doi.org/10.1006/jsco.1997.0174
https://doi.org/10.1006/jsco.1997.0174
https://doi.org/10.1007/3-540-63104-6_39
https://doi.org/10.1007/3-540-63104-6_39
https://doi.org/10.1007/978-3-642-39320-4_12

[19] Grant O. Passmore, Simon Cruanes, Denis Ignatovich, Dave
Aitken, Matt Bray, Elijah Kagan, Kostya Kanishev, Ewen
Maclean, and Nicola Mometto. The Imandra automated reason-
ing system (system description). In Nicolas Peltier and Viorica
Sofronie-Stokkermans, editors, Automated Reasoning - 10th In-
ternational Joint Conference, IJCAR 2020, Paris, France, July
1-4, 2020, Proceedings, Part II, volume 12167 of Lecture Notes
in Computer Science, pages 464–471. Springer, 2020. https:

//doi.org/10.1007/978-3-030-51054-1_30.

[20] Clément Pit-Claudel. Untangling mechanized proofs. In Ralf
Lämmel, Laurence Tratt, and Juan de Lara, editors, Proceed-
ings of the 13th ACM SIGPLAN International Conference on
Software Language Engineering, SLE 2020, Virtual Event, USA,
November 16-17, 2020, pages 155–174. ACM, 2020. https:

//doi.org/10.1145/3426425.3426940.

[21] Jörg H. Siekmann, Stephan M. Hess, Christoph Benzmüller, Las-
saad Cheikhrouhou, Armin Fiedler, Helmut Horacek, Michael
Kohlhase, Karsten Konrad, Andreas Meier, Erica Melis, Mar-
tin Pollet, and Volker Sorge. LΩUI: Lovely ΩMEGA User In-
terface. Formal Asp. Comput., 11(3):326–342, 1999. https:

//doi.org/10.1007/s001650050053.

[22] Carst Tankink, Herman Geuvers, James McKinna, and Freek
Wiedijk. Proviola: A tool for proof re-animation. In Serge
Autexier, Jacques Calmet, David Delahaye, Patrick D. F. Ion,
Laurence Rideau, Renaud Rioboo, and Alan P. Sexton, editors,
Intelligent Computer Mathematics, 10th International Confer-
ence, AISC 2010, 17th Symposium, Calculemus 2010, and 9th
International Conference, MKM 2010, Paris, France, July 5-10,
2010. Proceedings, volume 6167 of Lecture Notes in Computer
Science, pages 440–454. Springer, 2010. https://doi.org/10.

1007/978-3-642-14128-7_37.

[23] Carst Tankink and James McKinna. Dynamic proof pages. In
Christoph Lange and Josef Urban, editors, Proceedings of the
ITP 2011 Workshop on Mathematical Wikis, Nijmegen, The
Netherlands, August 27th, 2011, volume 767 of CEUR Work-
shop Proceedings, pages 45–48. CEUR-WS.org, 2011. http:

//ceur-ws.org/Vol-767/paper-08.pdf.

[24] Iain Whiteside, David Aspinall, Lucas Dixon, and Gudmund
Grov. Towards formal proof script refactoring. In James H. Dav-
enport, William M. Farmer, Josef Urban, and Florian Rabe, ed-
itors, Intelligent Computer Mathematics - 18th Symposium, Cal-
culemus 2011, and 10th International Conference, MKM 2011,

29

https://doi.org/10.1007/978-3-030-51054-1_30
https://doi.org/10.1007/978-3-030-51054-1_30
https://doi.org/10.1145/3426425.3426940
https://doi.org/10.1145/3426425.3426940
https://doi.org/10.1007/s001650050053
https://doi.org/10.1007/s001650050053
https://doi.org/10.1007/978-3-642-14128-7_37
https://doi.org/10.1007/978-3-642-14128-7_37
http://ceur-ws.org/Vol-767/paper-08.pdf
http://ceur-ws.org/Vol-767/paper-08.pdf

Bertinoro, Italy, July 18-23, 2011. Proceedings, volume 6824 of
Lecture Notes in Computer Science, pages 260–275. Springer,
2011. https://doi.org/10.1007/978-3-642-22673-1_18.

[25] Freek Wiedijk. Formal proof sketches. In Stefano Berardi, Mario
Coppo, and Ferruccio Damiani, editors, Types for Proofs and
Programs, International Workshop, TYPES 2003, Torino, Italy,
April 30 - May 4, 2003, Revised Selected Papers, volume 3085
of Lecture Notes in Computer Science, pages 378–393. Springer,
2003. https://doi.org/10.1007/978-3-540-24849-1_24.

[26] Freek Wiedijk, editor. The Seventeen Provers of the World, Fore-
word by Dana S. Scott, volume 3600 of Lecture Notes in Computer
Science. Springer, 2006. https://doi.org/10.1007/11542384.

[27] Freek Wiedijk. A synthesis of the procedural and declara-
tive styles of interactive theorem proving. Logical Methods
in Computer Science, 8(1), 2012. https://doi.org/10.2168/

LMCS-8(1:30)2012.

30

https://doi.org/10.1007/978-3-642-22673-1_18
https://doi.org/10.1007/978-3-540-24849-1_24
https://doi.org/10.1007/11542384
https://doi.org/10.2168/LMCS-8(1:30)2012
https://doi.org/10.2168/LMCS-8(1:30)2012

	Introduction
	Proof Presentation Style
	Ongoing Issues
	The Vision
	Structure of Rest of Chapter
	My DReaM Group Connections

	A Running Example of a Procedural Proof
	Focussing on Proof Steps in Procedural Proofs
	Condensing Tactic-and-Subgoal Proof Trees
	Expanding Proof Steps
	Dynamic Presentation of Declarative Proofs
	DReaM Group Contributions
	Barnacle and XBarnacle
	The Orthogonal Hierarchies of Method Trees
	IsaPlanner
	Hiproofs and Proof Refactoring
	HipCam and Tactician

	Technologies for Proof Presentation
	Relationship Between Viewing and Editing Proofs
	Further Related Work
	Conclusions and Future Directions

