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Abstract. The formalization of divisibility theory over cancellation monoids in

Nuprl is described. The main theorems presented concern the existence and unique-

ness of factorisations. Issues addressed include how to make formalized mathematics

readable and the use of automated inference. The constructive nature of mathem-

atics in Nuprl is also discussed.
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1. Introduction

The aim of this paper is to demonstrate that readable formal mathem-

atical developments including readable formal proofs can be produced

without too excessive tedium.

The work was done in the nuprl proof development system (C

+

86;

Jac95a). nuprl has been developed over the past 10 years at Cor-

nell University primarily as a system for reasoning about function-

al programs and exploring the possibilities of synthesizing functional

programs from proofs in constructive mathematics. It features a well-

developed user interface and a large suite of proof commands to assist

in the partial automation of proof.

The paper presents a development of the theory of divisibility in

abelian monoids with a cancellation property. Conditions were derived

under which factorisations in these monoids exist and are unique. The

development tackled some basic concrete issues common in algebra:

reasoning about permutations of �nite sequences and with equival-

ence relations and congruence properties. The fundamental theorem of

arithmetic stating that every natural greater than one can be uniquely

factored into primes was proven as a special case of the main theorem.

When mathematics is formalised and mechanised, there are many

choices that have to be made about what sequence of de�nitions and

theorems to choose, about how exactly to state the theorems, and what

proofs to go for. These choices are always in
uenced to a lesser or

greater degree by the particular formalism used and by the kind of

mechanical support available.

A conscious e�ort was made in the development presented here to

keep the style close in spirit to that which might be found in a math-

ematics text-book. Rather than make choices and �nd proofs which

were most tractable mechanically, I wanted to see how the automation
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in nuprl could be improved to support well argument styles I was

�nding in text-books and that seemed more mathematically natural. I

was also motivated by a desire to make the development as readable as

possible.

The paper has been organized as follows: Section 2 provides an over-

view of the constructive type-theoretic formalism underlying the work.

Much of this section can be skimmed on a �rst reading. Section 3 gives

an introduction to the nuprl system and describes aspects which are

important for understanding the presentation of the nuprl develop-

ment given in this paper and the accompanying development listings.

The next three sections give the an overview of the development.

Section 4 introduces how algebraic classes were de�ned in nuprl's

type theory. Section 5 covers the de�nition of permutation functions

and relations which were subsequently necessary. Section 6 contains a

description of the main development of the factorization theorems and

includes abbreviated proofs.

Section 7 discusses the style of the development and its presenta-

tion. Section 8 highlights what automation helped in the development.

Section 10 comments on the adequacy of constructive type theory for

mathematics. Section 9 covers related work. Section 11 summarizes the

main contributions.

2. Type Theory

2.1. Introduction

The most common formal system studied in logic as a foundation for

mathematics is �rst-order predicate calculus and some set theory, most

commonly Zermelo-Fraenkel set theory. Nuprl uses instead a type theory

which takes the place of both predicate calculus and set theory.

I give here some background on Nuprl's type theory. However, it is

the intent of the author that much of this paper should be comprehens-

ible to readers with little or no knowledge of type theory.

In type theory, one starts out assuming the existence of speci�c base

sets or types like the booleans and the integers. There are then standard

ways for producing richer types, for example, using the operations of

cartesian product and function space formation. Type theories provide

primitive operations for creating elements higher up this hierarchy from

elements lower down. For example, a pairing operation creates elements

of cartesian products and lambda abstraction creates elements of func-

tion spaces.
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Type theories also provide primitive operations for taking apart ele-

ments and de�ne notions of evaluation on elements. For example, the

�

1

function selects the �rst element of a pair ha; bi so that the element

�

1

(ha; bi) evaluates to a.

Type theories are of much interest in computer science because often

at least a subset of the elements of types can be regarded as programs

and data in a functional programming language. The type theories

themselves then provide a formal language for reasoning about these

programs. Theorem-prover designers have found type theories appeal-

ing because they intrinsically impose much more structure on the world

than set theory, and narrow the gap between the theory foundations

and statements about objects of interest. Often too, it is convenient

that a major subject matter for theorem provers is program veri�ca-

tion.

A recently-developed family of type theories is that of constructive

type theories (Gir71; CH88). These exploit a notion that has come to

be known as the `propositions-as-types' correspondence (CF58; Sco70;

Con71) where every logical proposition corresponds to a type, and a

proof of a proposition involves �nding an element of the type corres-

ponding to the proposition. Since elements of types are often programs,

a phrase commonly associated with the `propositions as types' approach

is `proofs as programs' (BC85). These type theories are constructive

because they yield a constructive or intuitionistic logic, and because

they give a recipe for automatically building functions that e�ect the

constructions that theorems in constructive logic and mathematics talk

about.

nuprl's type theory (C

+

86; All87a; All87b) is most closely related

to a type theory proposed by Martin-L�of in 1979 as a foundation for

constructive mathematics (ML82). One signi�cant di�erence is that

Nuprl's type theory has extra types such as its set type (Con85) and

quotient type (Con85). Another is that the computation language is

considered to be untyped and de�ned prior to the type theory itself.

Allen did the basic work on giving a semantics for nuprl's type

theory (All87a; All87b). This semantics amounted to de�ning a rela-

tion between types and terms saying when a term had a given type

and when two terms were considered equal. Howe (How91) has given

a set-theoretic model in which terms denote sets, and has shown by

this model that it is consistent to extend nuprl's type theory with

oracle functions so that the logic created by the propositions-as-types

correspondence is classical. Howe has also proposed much simpli�ed

alternatives to nuprl's current type theory (How93).
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2.2. Basic Types

In nuprl's type theory, the word term encompasses the constructs of

its functional programming language, types and propositions.

The programming language terms include the untyped lambda cal-

culus, and constructors and destructors associated with each of the

types listed below.

A lazy evaluation relation is de�ned on terms. Any term evaluates

to at most one canonical term, and canonical terms always evaluate to

themselves.

The basic type constructors of nuprl's type theory that are relevant

for this paper include:

� The type Void with no elements, the boolean type B with two

elements tt and ff, and the integers Z.

� A dependent-product type constructor � . If A is a type and B

x

is

a family of types, indexed by x 2 A, then x:A�B

x

is the type of

pairs ha; bi, such that a 2 A and b 2 B

a

. If B

x

is the same for all

x 2 A, the type is written as A�B. � is assumed to associate

to the right. Dependent-product types are elsewhere known as �

or dependent sum types.

� A dependent-function type constructor !. If A is a type and B

x

is

a family of types, indexed by x 2 A, then x:A! B

x

is the type of

functions f , such that f(a) 2 B

a

for all a 2 A. If B

x

is the same

for all x 2 A, the type is written as simply A! B. ! is assumed

to associate to the right.

Since all functions constructible in nuprl's type theory are com-

putable, each type A ! B is considered as containing only the

computable functions from A to B rather than all set theoretic

functions.

Dependent-function types are elsewhere known as �, cartesian-

product or dependent-product types.

� A binary (disjoint-) union type +. If A and B are types, then A+B

is a type. Its canonical elements are of form inl(a) (read `in left')

and inr(b) (read `in right') for a 2 A and b 2 B.

� A set type constructor f�: � j�g. If A is a type and P

x

is a proposition

in which x of type A may occur free, then fx:AjP

x

g is the type of

those elements x of A for which P

x

is true.
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� A polymorphic list type A List for �nite sequences of elements

of type A. The operation a::s appends element a to the front of

sequence s, and the empty sequence is denoted by [].

� Universes of types U

i

for i = 1; 2; 3 : : : . U

i

includes as base types

U

j

for all j < i and is closed under the type constructors listed

above. Often if a subscript is the variable i it is dropped, and the

universe U

i+1

is abbreviated as U

0

.

Every type has an equality relation associated with it. A three-place

atomic proposition � = � 2 � is used to refer to this equality. The relation

x = y 2 T means that x and y are members of type T and are equal by

the equality relation associated with T . Often when T is obvious from

context the 2 T is dropped.

Fairly conventional notation is used for programming language con-

structs. Function application is designated by juxtaposition, f a for

example. Application is assumed to associate to the left, so (f a) b is

written f a b. In�x notation is commonly used for the application of

binary curried-functions. For example, if � 2 T ! T ! T , then (� a) b

is written as a � b. It should be obvious whenever in�x notation is being

used.

2.3. Propositions

An often confusing aspect of constructive type theory is that all the

logical connectives and quanti�ers are de�ned in terms of types. Thoughout

nuprl developments logical notation is always used when types are con-

sidered as propositions, so nuprl users and readers of nuprl develop-

ments need not for the most part be familiar with this correspondence

between propositions and types.

The de�nitions of the connectives and quanti�ers are:

? =

def

Void

A ^B =

def

A�B

A _B =

def

A+B

A) B =

def

A! B

8x:A: B

x

=

def

x:A! B

x

9x:A: B

x

=

def

x:A�B

x

P

i

=

def

U

i

The symbol ? denotes falsity. P

i

denotes the type of propositions at

level i, and, as with U

i

, the su�x i is often suppressed. Negation, :A,
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is de�ned as A )?, and bi-implication (if and only if) A () B is

de�ned as (A ) B) ^ (B ) A). Not shown is the de�nition of the

propositional relation a = b 2 T since this is actually a primitive type

in the Nuprl type theory (this type has one element when the equality

is true and is otherwise empty).

Each predicate-logic expression corresponds to a type with the type

being inhabited just when the predicate-logic expression is provable.

The proof of a logical expression speci�es exactly how to construct a

term that inhabits the type corresponding to the logical expression.

Sometimes the inhabitant is interesting; for example it might be a

function that computes something useful. In this case, we can view

the logical expression corresponding to the type it inhabits as a kind

of program speci�cation. When I talk about the computational content

of a logical expression, I am referring to the possible inhabitants of the

corresponding type. In the discussions of computational content in this

paper, I recommend that the reader refer back to the above de�nitions

and try to imagine what kinds of terms might inhabit the types that

correspond to the propositions being discussed.

2.4. Sequents

nuprl's rules are formulated in a sequent calculus. A sequent in nuprl

consists of a list of 0 or more hypotheses H

1

; : : : ; H

n

and a conclusion

C and is often written as:

H

1

; : : : ; H

n

` C:

Each hyphesis H

i

is either a proposition P or a declaration x:T declar-

ing variable x to be of type T . The conclusion is a proposition. If H

i

is a declaration x:T , it binds free occurrences of x in H

i+1

: : : H

n

and

in C. A sequent is considered true if one can prove the conclusion C

under the hypotheses H

1

; : : : ; H

n

.

Type-theoretically, all clauses of a sequent are types. A hypothesis

thought of as a proposition declares the type of a variable which is

normally never visible. A sequent is true just when there exists a com-

putable function from the types of the hypotheses to the type of the

conclusion.

2.5. Well-Formedness Checking

nuprl's type theory is su�ciently complex that the problem of determ-

ining whether a term has a given type is in general undecidable: A

consequence of this is that there is no automatic way to check the
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well-formedness of arbitrary terms, since well-formedness of a term is

expressed in the type theory by saying that the term has a type.

The semantics of sequents and the rules of nuprl's type theory are

set up so that the well-formedness of expressions is shown by proof.

Every complete proof of a theorem in Nuprl contains not only a proof

that the theorem is valid, but also a proof that the theorem is well-

formed. The well-formedness proof is distributed through the proof

of validity by having several Nuprl rules have special well-formedness

premisses.

In practice nearly all well-formedness proofs are automated so the

user need not be concerned with them. Unfortunately checking well-

formedness by proof is much slower than checking by some completely

automatic type checker, and is a major source of ine�ciency in the

Nuprl system. Nearly all other theorem provers do their well-formedness

checking entirely by completely automatic means, distinct from proof

generation.

3. Mechanization

3.1. Overview

The current release of Nuprl, nuprl V4.2 works on Unix-based work-

stations that run X-Windows. nuprl is written in a combination of

Common Lisp and the original Edinburgh version of the functional

language ml. To run e�ciently it requires a commercial implmentation

of Lisp such as Allegro Common Lisp or Liquid Common Lisp from

Harlequin. The release and other information about nuprl is available

from Cornell's web site at URL http://www.cs.cornell.edu/.

Mathematics in Nuprl is organized into blocks called theories. A

theory is a linear list of various kinds of objects including de�nitions,

theorems, and comments. Theories are stored as Unix �les. Users load

theories into the Nuprl environment called the library as and when

needed.

Nuprl is an interactive system. The user develops theories by carry-

ing on a dialog with a Nuprl session via special purpose editors as well

as an ML top-loop.

3.2. Terms

In nuprl parlance, a term is a general-purpose uniform tree-shaped

data-structure. Terms have provisions for specifying variables to be

bound in subterms, and for parameters that allow the injection of fam-

ilies of constants such as natural numbers into the term language. All
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propositions in Nuprl's logic are represented as terms, as are all expres-

sions and types in its type theory. This is not the only use of terms.

nuprl also uses terms to represent the contents of all the kinds of

objects in theories except proofs. In particular text in ML declarations

and comments is kept as terms.

A basic notation for terms uses pre�x names and has subterms sur-

rounded by parentheses and seperated by ;'s. For example, the term

3+4 is add(3;4) in this notation. Parameters to terms are enclosed in

braces and are listed before the subterms. For example, terms can take

strings of characters as parameters. The string of characters "nuprl" is

represented in basic notation as stringfnuprl:sg(). The :s indicates

that `nuprl' should be considered a parameter of string type. Vari-

ables that a term binds in a subterm are listed before that subterm

and seperated from the subterm by a `.' (period). If there is more than

one binding variable for a subterm, they are seperated by `,'s. For

example, the term �x; y:x might be in basic notation lambda2(x,y.x).

3.3. Term Display and Entry

The visual appearance of each term constructor is governed by display

form objects in the nuprl library. Display forms give one complete

control over how the �xed text and arguments of a constructor are

displayed. For conciseness, display forms can be set up to optionally

hide less interesting arguments to terms. Format commands in display

forms control line-breaking and indentation. Parentheses can be gen-

erated based on precedences assigned to terms. Special display forms

can be selected for when similar terms are nested inside one another.

Using display forms the term in basic notation

all(int();i.all(int();j.exists(int();k.ge(k;multiply(i;j)))))

is usually displayed as:

8 i,j:Z. 9 k: Z. k � i * j

Note here that special display form has been used for the nested all

term constructors.

Currently, all displays are generated using characters from a �xed-

width ASCII font, extended with roughly 60 graphics characters. However

it should be straightforward to use more advanced display techniques

to generate displays using multiple sizes and kinds of fonts, and two

dimensional layout of formulae.

All terms shown in this paper have been automatically formatted

by nuprl's display routines.
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Terms are interactively edited and viewed exclusively using a struc-

ture editor. The structure editor supports a variety of tree editing oper-

ations on terms. It also supports the editing of paragraphs of text within

terms, with these paragraphs themselves having term trees embedded

within them. This feature is particularly useful for typing in ML text

that often has terms from nuprl's object language embedded within

it.

There is no requirement that the displayed form of terms be mechan-

ically parseable. This gives the user great versatility in devising concise

display forms. When users are interacting with nuprl they can resolve

ambiguities by selectively suppressing display forms. Unfortunately this

option isn't available when reading printed display forms so extra care

is needed when nuprl developments are presented in print.

Note that for clarity argument suppression is frequently used in the

de�nitions and theorems presented in this paper. De�nitions might be

puzzling because some variable only seems to occur on one side of the

de�nition. In these cases, there is always at least one occurrence of that

variable in some suppressed subterm on the other side of the de�nition.

Note too that parenthesisation assumes that in�x functions have

higher precedence than in�x atomic predicates which in turn have high-

er precedence than in�x logical connectives. Also, binding constructs

such as the logical quanti�ers have scope which extends as far as pos-

sible to the right.

3.4. Theories

The nuprl V4.2 data-base of de�nitions and theorems is divided into

theories. Each theory contains a linear sequence of library objects or

objects for short. The kinds of objects include:

abstraction An abstraction object de�nes a new term constructor or

abstraction in terms of other previously de�ned abstractions and

primitive terms whose meanings are �xed. Abstractions are used

not only for Nuprl's object language, but also for example in terms

that occur in display-form de�nitions and in ml code.

display form de�nition A display form object controls the appear-

ance of a primitive or abstract term.

comment Comment objects can contain arbitrary text and terms.

ML An ML object contains one or more ml declarations. ml code in

theories is commonly used to introduce theory-speci�c ML de�ni-

tions for tactics and rewrite rules, and to provide extra information

about de�nitions to the tactic system.
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theorem A theorem object has several components. These include a

proposition | often called the goal or main goal | which is the

statement of the theorem, and a proof script which is a collection of

ML tactics which prove the proposition. In addition when a proof

script is executed or a proof is initially constructed, a theorem

object contains a proof tree datastructure which records interme-

diate stages of a proof and shows how the proof parts depend on

each other.

Figure 1 shows a listing of part of a theory dealing with functions.

*D compose_df

Prec(inop)::Parens ::

<f:fun:L>{nn?} o <g:fun:L>

== compose{}(<f>; <g>)

*A compose f o g == �x.f (g x)

*T compose_wf

8A,B,C:U. 8f:B ! C. 8g:A ! B. f o g 2 A ! C

*M compose_ml

let rem_composeC,add_composeC =

DoubleMacroC `composeC`

(SemiNormC ``compose``)

d

(f o g) x

e

IdC

d

f (g x)

e

;;

add_AbReduce_conv `compose` rem_composeC;;

*T comp_assoc

8A,B,C,D:U. 8f:A ! B. 8g:B ! C. 8h:C ! D.

h o (g o f) = (h o g) o f 2 A ! D

Figure 1. Partial Listing of Theory on Functions

Object descriptions in theory listings often start with a symbolic char-

acter (usually *) and a capital letter. The symbolic character gives

the status of the object. * means that the object is complete and has

been veri�ed in some appropriate sense. For example, the status of a

theorem object is shown as * just when the theorem has been proven.

Other status characters include # for incomplete, and - for bad in some

sense. An ML object would have - status if it contained a declaration

that didn't parse or type-check. The capital letter gives the kind of the

object. For example: D for display form, C for comment, M for ML, T for

theorem.

Following the kind of an object is the object's name and the contents

of an object. Frequently for conciseness the proof scripts and proof trees

of theorem objects are not shown in listings.
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Currently over 30 theories have been de�ned in nuprl V4.2. See

the nuprl V4.2 distribution for details.

3.5. Definitions

A de�nition in nuprl has at least two parts: an abstraction for the

logical structure of the de�nition and a set of one or more display

forms for controlling the visual appearance of the abstraction. If the

de�nition is for a term in nuprl's type theory, the de�nition also usu-

ally has a well-formedness lemma. Well-formedness lemmas give typing

information about abstractions and are used by nuprl's type checking

tactics.

De�nitions are sometimes presented in this paper by giving just the

abstraction de�nition and sometimes by combining information from

the abstraction de�nition with the well-formedness lemma when it's

helpful to see the typing information. For example, the de�nition for

compose can be presented as:

compose:

8A,B,C:U. 8f:B ! C. 8g:A ! B.

f o g = (�x.f (g x)) 2 A ! C

The structure of most display forms should be obvious. In the more

complicated cases a simpli�ed left-hand-side of a display form de�nition

is shown to make clear what the arguments are and what is the �xed

text of the display form. For example, a simpli�ed left-hand side of

the compose display form is <f> o <g> | arguments to display forms

always being surrounded by `<>'s.

3.6. Proofs

Proofs in nuprl are constructed using a paradigm introduced in the

lcf system (GMW79) and adopted in other systems such as hol (GM93)

and isabelle: in this paradigm all proofs are ultimately constructed

by a �xed core set of functions which implement the rules of logical

calculus of the prover, in nuprl's case its type theory. A suite of func-

tions are built on top of this core set to provide users with varying

degrees of automated inference. However no matter how complex these

are, the soundness of the prover only relies on the correctness of the

implementation of the core set.

lcf introduced the functional language ml for writing these higher-

level functions which it called tactics. nuprl adopted both the ml

language and the tactic notion from lcf. nuprl's tactics are described

in the next section.
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Proofs are constructed in a re�nement style: a proof editor presents

the user with an unproven sequent and the user enters a tactic which

can either prove the sequent or re�ne it into one or more easier-to-prove

sequents from which it follows. The proof process starts with the user

entering a conjectured theorem. this becomes the initial goal. The user

then repeatedly applies tactics to this goal and subsequent subgoals

until hopefully none remain. The theorem is then proven.

An unusual feature of nuprl is that proof-tree data-structures are

maintained as proofs progress that record the subgoals at all interme-

diate stages of proofs. Most other interactive provers only maintain

the unproved subgoals at the fringe of partial proof trees. Maintaining

whole proof trees makes interactive development of proofs consider-

ably easier; at any stage it's straightforward to review the structure

of a proof and go back to experiment with alternate proof strategies.

Proof trees also serve to document and explain proofs.

3.7. Tactics

There are 4 main classes of tactics that users explicitly invoke in nearly

all nuprl developments.

Decomposition For breaking apart the outermost structure of of the

conclusion or hypotheses of a sequent. Tactics for instantiating

quanti�ers are included in this class.. Typical names have D or

Inst as roots.

Structural Assert invokes the cut rule; it introduces intermediate

stages in proofs. Decide and Cases are for doing case splits. Thin

deletes hypotheses which are no longer needed and clutter the

hypothesis list.

Chaining Backward-chaining tactics BLemma, BHyp, Backchain apply

lemmas and hypotheses to the conclusion to reduce it to 0,1 or

more easier to prove subgoals. Forward-chaining tactics FLemma

and FHyp apply lemmas and hypotheses to hypotheses to infer new

hypotheses.

Rewriting Tactics with the names involving RW or Rewrite apply

equations to carry out substitutions in hypotheses and the conclu-

sion. Particular instances of rewrite tactics are Unfold for opening

de�nitions and AbReduce for simpli�cation.

Hypotheses are referred to by number. 0 refers to the conclusion and

negative numbers index into the hypothesis list from the right-hand

end. Optional arguments to tactics and variants on the basic ones allow
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for �ne control over their behaviour. Explicit instantiating arguments

can be provided for lemmas and hyps when using them for chaining.

Rewrite rules can be targeted to single positions even when they apply

in several places. Both rewriting and chaining tactics employ second-

order pattern matching (BD77) to smoothly handle expressions with

binding structure.

Tactics are combined using tacticals: the in�x THENM sequences tac-

tics, as does SeqOnM which takes a list of tactics as arguments. Other

tacticals allow for repetition of tactics or trying alternative tactics. The

tactic Auto is run after virtually every invocation of the tactics above.

It takes care of type-checking, reasoning about type inclusions, call-

ing decision procedures for arithmetic and binary relations and trivial

propositional reasoning. It is good for checking auxiliary conditions on

rewrite rules and chaining lemmas. Its presence is usually indicated by

a ... following tactic text. This is a display form for the invocation.

Subgoals created by tactics are labelled with their kind (for example

main, well-formedness). Some tacticals allow the steering of tactics to

subgoals of di�erent kinds. The THENM tactic steers its second argument

to only main subgoals.

Section 8 describes some of the features of the rewrite tactics and

the decision procedures in more detail.

4. Monoid Classes

Nuprl's dependent product type can be used to create types for algeb-

raic classes of objects. The product type GrpSig which underlied the

the monoid class had de�nition

grp_sig:

GrpSig ==

car:U

� eq:(car ! car ! B)

� le:(car ! car ! B)

� op:(car ! car ! car)

� id:car

� (car ! car)

Elements of this type were 6-tuples of form <car,eq,le,op,id,inv>

where the types of eq and components to the right depended on the

component car. When a monoid with carrier car, binary operation

op, and identity id was represented as such a 6-tuple, dummy values

were supplied for the eq, le, and inv components. These components

were useful in other class de�nitions: inv was used for the inverse oper-

ation of a group, eq for a computable equality function, and le for
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a computable inequality function . De�ning a monoid as a 6-tuple as

above rather than more obviously as 3-tuple simpli�ed reasoning about

subclass relationships. For example, using the GrpSig type as shown

above, every group and every monoid with a decidable equality was

also automatically a member of the monoid class.

GrpSig was automatically created by the class declaration shown

in Figure 2. This class declaration was an ml object in the groups 1

nuprl theory. Various nuprl de�nitions hid less-readable underlying

ml syntax. The g 2 GrpSig and the text in parentheses in the �eld

section (e.g. (|g|)) were comments; they didn't translate to anything

in the ml syntax.

The class declaration also automatically created de�nitions for select-

or functions for each of the �elds of class members. For example, the

de�nition for the selector of the op �eld was:

grp_op:

8g:GrpSig. *g = g.2.2.2.1 2 |g| ! |g| ! |g|

where the post�x .1 and .2 notation is for the selector functions for �rst

and second components of pairs. The display forms for the selectors of

GrpSig components were often set up to suppress the post�x arguments

g.

Class Declaration for: g 2 GrpSig

Long Name: grp_sig

Short Name: grp

Parameters:

Fields:

(|g|) car : U

(=

b

g) eq : car ! car ! B

(�

b

g) le : car ! car ! B

(*g) op : car ! car ! car

(1g) id : car

(�g) inv : car ! car

Universe: U'

Figure 2. Declaration for GrpSig Class

Basic classes for monoids IMonoid and IAbMonoid were introduced

by the de�nitions
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Ident(T;op;id)

== 8x:T. x op id = x ^ id op x = x

Assoc(T;op) == 8x,y,z:T. x op (y op z) = (x op y) op z

Comm(T;op) == 8x,y:T. x op y = y op x

IsMonoid(T;op;id) == Assoc(T;op) ^ Ident(T;op;id)

IMonoid == {g:GrpSig| IsMonoid(|g|;*;1)}

IAbMonoid == {g:IMonoid| Comm(|g|;*)}

The I pre�x stands for indiscrete, a term used in constructive math-

ematics for sets when the equality relation on the set is not known to

be computable.

Most theorems in Section 6 assume that the monoid has a cancella-

tion property. This was expressed using the predicate

Cancel(T;S;op) ==

8u,v:T. 8w:S. w op u = w op v ) u = v

with both S and T set to the monoid carrier.

5. Permutations

The factorisation work required reasoning about permutations of �nite

sequences represented as lists. Speci�cally a relation was needed for

saying when one list was a permutation of another. Such a relation can

be de�ned in several ways. Constructively, some of these de�nitions only

work when a computable equality function is available on list elements.

I chose to work with a de�nition in terms of permutation functions that

didn't require such a function.

5.1. Permutation Functions

Classically, a permutation on a set T is a bijection of type T ! T .

Implicit in the de�nition of any bijection f of type A ! B is the

existence of an inverse function b of type B ! A. There is no way in

general of computing b from f , even though b is a useful function, so

constructively a bijection is commonly de�ned as a pair of functions

hf; bi that are mutual inverses.

The de�nition for the type of permutations Perm(T) over type T was:
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Perm(T) == {p:PermSig(T)| InvFuns(T,T,p.f,p.b)}

where the de�nitions for PermSig type

PermSig(T) == (T ! T) � (T ! T)

and for selector functions with post�x notation .f and .b were intro-

duced by the class declaration shown in Figure 3.

Class Declaration for: PermSig(T)

Long Name: perm_sig

Short Name: perm

Parameters:

T : U

Fields:

f : T ! T

b : T ! T

Universe: U

Figure 3. Signature Class for Permutation Functions

Other relevant de�nitions were

Id == �x.x

f o g == �x.f (g x)

InvFuns(A;B;f;g) == g o f = Id ^ f o g = Id

Sym(n), the symmetry group on n elements, was de�ned as:

Sym(n) == Perm(Nn)

where N was a special display form with simpli�ed de�nition

N<j>== {0..<j>

�

}

and

{i..j

�

} == {k:Z| i � k < j}

it.tex; 25/01/1997; 13:30; no v.; p.17



18 Paul B. Jackson

5.2. Permutation Relation

The de�nition of the permutation relation permr on lists said that

two lists as and bs were a permutation of each other if they were the

same length and the forward permutation function permuted the bs

into the as. The de�nition was:

permr:

as � bs

== (|as| = |bs|) c^ (9p:Sym(|as|)

8i:N|as|. as[(p.f i)] = bs[i])

where |�| was the length function for lists, and as[i] was the select

function for selecting the ith element from list as (counting the head

of as as the 0th element). The de�nitions of these functions were

length:

|as|==r case as of [] => 0 | a::as' => |as'| + 1 esac

nth_tl:

nth_tl(n;as)

==r if n �z 0 then as else nth_tl(n - 1;tl(as)) fi

select:

l[i] == hd(nth_tl(i;l))

Confusion of the length function with the monoid carrier selector func-

tion which has the same notation should be should be easy to resolve

by considering context and the type of the argument.

The notation c^ was for a conditional and constructor. Its de�ni-

tion was the same as the usual ^ of Nuprl's type theory, but it was

type checked slightly di�erently. To prove P c^ Q well-formed, it was

su�cient to prove P well-formed, and then assume P true to prove Q

well-formed. With P ^ Q, Q had to be proved well-formed irrespective

of th truth of P. The conditional `and' was needed to guarantee that the

index argument to the select functions were always in range: select

had typing lemma

8A:U. 8l:A List. 8n:Z. 0 � n ) n < |l| ) l[n] 2 A

The length and nth tl de�nitions above were recursive de�nitions.

This is indicated by the ==r rather than the == notation in their

presentations above. General recursive function de�nitions are encoded

in nuprl by using the Y combinator; the computation language of

nuprl is untyped so the Y combinator is expressible in it. Recursions

were shown to well-founded when the well-formedness lemmas for the

de�nitions were proven.

A useful lemma involving the permr relation was
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mon_reduce_functionality_wrt_permr:

8g:IAbMonoid. 8xs,ys:|g| List.

xs � ys ) � xs = � ys

where the generalized list product function � had the de�nition:

reduce:

8A,B:U. 8f:A ! B ! B. 8k:B. 8as:A List.

reduce(f;k;as)

= case as of [] => k | a::as' => f a reduce(f;k;as') esac

2 B

mon_reduce:

8g:IMonoid. 8as:|g| List. �(g) as = reduce(*g;1g;as) 2 |g|

Note that the monoid argument to� was often suppressed. The mon reduce functionality wrt permr

lemma was proven using an induction lemma

perm_induction_a:

8n:N. 8Q:Sym(n) ! P.

Q[id_perm()]

) (8p:Sym(n)

Q[p] ) (8i:{1..n

�

}. Q[txpose_perm(i;0) O p]))

) {8p:Sym(n). Q[p]}

which reduced the problem to one of checking that products were

unchanged by transpositions.

6. Divisibility Theory

Divisibility theory is commonly �rst presented abstractly in integral

domains though the basics of the theory can �rst be more concisely

introduced over abelian monoids satisfying a cancellation law. The non-

zero elements of an integral domain under multiplication always have

such a structure.

The development presented here derived a couple of characterisa-

tions of when factorizations into atoms (irreducible elements) exist in

cancellation monoids and when in a certain way they are unique. It was

based closely on that of Jacobson (Jac74, pp114-120). At the end the

fundamental theorem of arithmetic was derived as a corollary of one of

the main theorems.

6.1. Basic Definitions

The basic de�nitions for divisibility theory over an abelian monoid g

were:
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a � b == a | b ^ b | a

b | a == 9c:|g|. a = b * c

unit(u) == u | 1

a p| b == a | b ^ :(b | a)

Here, | is the divides relation, � is the associate relation and p| is the

properly divides relation. All these relations take a suppressed argument

g. Basic properties were derived about these relations including that the

divides relation is a preorder and the associate relation an equivalence

relation.

All factorization theory over monoids is modulo associates: the basic

predicates and functions respect the associate relation � and predic-

ates concerning equality lift to predicates concerning associates. For

example:

grp_op_ap2_functionality_wrt_massoc:

8g:IAbMonoid. 8a,a',b,b':|g|.

a � b ) a' � b' ) a * a' � b * b'

massoc_cancel:

8g:IAbMonoid

Cancel(|g|;|g|;*) ) (8a,b,c:|g|. a * b � a * c ) b � c)

De�nitions were introduced for reducibility, atomicity (irreducibility)

and primeness. It was convenient to de�ne both types and predicates

for atomicity and primeness.

IsPrime(a)

== :unit(a)

^ (8b,c:|g|.

a | b * c ) a | b _ a | c )

Prime == {x:|g|| IsPrime(x)}

Reducible(a)

== 9b,c:|g|. :unit(b) ^ :unit(c) ^ a = b * c

Atomic(a) == :unit(a) ^ :Reducible(a)

Atom == {a:|g|| Atomic(a)}

Alternate characterizations of reducibility and atomicity were
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mreducible_elim:

8g:IAbMonoid

Cancel(|g|;|g|;*)

) (8a:|g|

Reducible(a) () (9b:|g|. :(unit(b)) ^ b p| a))

and

matomic_char:

8g:IAbMonoid

Cancel(|g|;|g|;*)

) (8x,y:|g|. Dec(x | y))

) (8a:|g|

Atomic(a)

() :(unit(a)) ^ (8b:|g|. b | a ) b � 1 _ b � a))

The predicate Dec is for decidability. Its de�nition was

Dec(P) == P _ :P

Classically this is a tautology. Constructively, Dec(P) asserts the exist-

ence of a computable function that can decide whether P is true or

false. Further, when P is true, it asserts that the constructive content

of P can be computed. The constructive content of the assertion x |

y can be seen from the de�nition of the divides relation to be some c

such that y = x * c.

Every prime is an atom.

mprime_imp_matomic:

8g:IAbMonoid

Cancel(|g|;|g|;*g)

) (8a:|g|. Prime(a) ) Atomic(a))

The notions of of primeness and atomicity are not in general equival-

ent. For example, consider the set of complex numbers of form a+b

p

�5

with a and b drawn from the integers and both not equal to zero. This

set forms a cancellation monoid under normal multiplication. In this

monoid, 9 has two factorizations: 3 � 3 and (2 +

p

�5)(2�

p

�5). Each

of the factors is atomic, but none are prime ((Jac74), p136).

6.2. Greatest Common Divisors

A predicate stating that y is the greatest common divisor (GCD) of a

and b had the expected de�nition:

GCD(a;b;y) ==

y | a ^ y | b ^ (8z:|g|. z | a ) z | b ) z | y)
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GCDs are only unique up to associates:

mgcd_unique:

8g:GrpSig. 8a,b,y1,y2:|g|.

GCD(a;b;y1) ) GCD(a;b;y2) ) y1 � y2

Theorems involving a function for computing GCDs were stated by

explicitly assuming the existence of such a function in the contexts of

the theorems. For example:

mgcd_comm:

8g:GrpSig. 8f:|g| ! |g| ! |g|.

IsGCDFun(f) ) (8a,b:|g|. (a,b) � (b,a))

mgcd_assoc:

8g:IAbMonoid. 8f:|g| ! |g| ! |g|.

IsGCDFun(f) ) (8a,b,c:|g|. ((a,b),c) � (a,(b,c)))

The de�nition of IsGCDFun was

IsGCDFun(f) == 8x,y:|g|. GCD(x;y;f x y)

The notation (a,b) was for the application of the GCD function f to

arguments a and b. Its de�nition read

(a ,{f} b) == f a b

and an alternate display form was usually used which suppressed the

argument f. Other properties proven of GCD functions included:

mgcd_mul:

8g:IAbMonoid

Cancel(|g|;|g|;*)

) (8f:|g| ! |g| ! |g|

IsGCDFun(f)

) (8a,b,c:|g|. c * (a,b) � (c * a,c * b)))

mgcd_op_coatomic:

8g:IAbMonoid

Cancel(|g|;|g|;*)

) (8f:|g| ! |g| ! |g|

IsGCDFun(f)

) (8a,b,c:|g|.

(a,b) � 1 ) (a,c) � 1 ) (a,b * c) � 1))

If a GCD function exists then atoms and primes amount to the same

thing. This follows from
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matom_imp_prime_with_gcds:

8g:IAbMonoid

Cancel(|g|;|g|;*)

) (8x,y:|g|. Dec(x | y))

) (8f:|g| ! |g| ! |g|

IsGCDFun(f) ) (8a:|g|. Atomic(a) ) IsPrime(a)))

6.3. Existence Theorem

It was shown that if the `properly divides' relation is well-founded and

if reducibility is decidable then every non-unit factors into atomic ele-

ments. `Decidable' here means constructively not only that it is possible

to compute whether or not any element of the monoid is reducible, but

also that in the case that the element is reducible it is possible to com-

pute two proper factors whose product is that element. The statement

of this theorem was:

mfact_exists:

8g:IAbMonoid

Cancel(|g|;|g|;*)

) WellFnd(|g|;x,y.x p| y )

) (8c:|g|. Dec(Reducible(c)))

) (8b:|g|. :unit(b) ) (9as:Atom List. b = � as))

where the WellFnd predicate was de�ned as:

WellFnd(A;x,y.R[x; y])

== 8P:A ! P

(8j:A. (8k:A. R[k; j] ) P[k]) ) P[j]) ) {8n:A. P[n]}

In classical mathematics, this predicate is equivalent to the statements

that there are no in�nite descending chains, and that every subset has a

minimal element. Constructively, all three statements are inequivalent;

the one above is the strongest. It is not implied by either of the other

two. The advantage of the one above is that provides a means of doing

a constructive well-founded induction in the proof of the theorem.

An abbreviated listing of the proof is shown in Figure 4. The listing

starts after a trivial initial step in which outermost universal quanti�ers

and implications were decomposed.

nuprl sequents are displayed here with numbered hypotheses and

with turnstiles (`) separating the hypotheses and the conclusion. At

each BY, one or more inference steps are explained which re�ne the goal

immediately above the BY into zero or more subgoals below the BY. For

compactness, the listing shows only those parts of sequents that have

been changed by the re�nements immediately above. The contents of

a suppressed part at some proof node can always be determined by
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following the proof path towards the proof-tree root looking for the

last point in the proof when that part changed.

The full proof when printed out is less than two pages long, but

the formal tactic language makes it less accessible. It can be found in

Section A.1 of Appendix A.

A trivial corollary did away with the restriction about non-units,

providing that being a unit was decidable.

mfact_exists_a:

8g:IAbMonoid

Cancel(|g|;|g|;*)

) WellFnd(|g|;x,y.x p| y)

) (8c:|g|. Dec(Reducible(c)))

) (8c:|g|. Dec(unit(c)))

) (8b:|g|. 9as:Atom List. b � � as)

The mfact_exists and mfact_exists_a theorems had the 89 structure

typical of theorems with interesting computational content: read con-

structively, both theorems claim that given a monoid satisfying the

various preconditions, and given an arbitrary element b of that mon-

oid, a factorization into atomic elements can be computed. The nuprl

system is set up to be able to actually synthesize such programs.

6.4. Uniqueness Theorem

The main uniqueness theorem stated that in any cancellation monoid,

if the `divides' relation is constructively decidable, then every element

of the monoid factors into primes in an essentially unique way. `Essen-

tially' here means up to permutations and associates. The statement

was

unique_mfact:

8g:IAbMonoid

Cancel(|g|;|g|;*)

) (8a,b:|g|. Dec(a | b))

) (8ps,qs:Prime List. � ps � � qs ) ps � qs upto �)

Here, the notation `ps � qs upto �' is for a `permutation and asso-

ciates' relation. It should be read as saying \ps is equal to qs up to

permutations and associates." Its de�nition was:

as � bs upto � == as � bs upto x,y.x � y

where

as � bs upto x,y.R[x; y]

== (|as| = |bs|) c^ (9p:Sym(|as|)

8i:N|as|. R[as[(p.f i)]; bs[i]])
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1. g: IAbMonoid

2. Cancel(|g|;|g|;*)

3. WellFnd(|g|;x,y.x p| y)

4. 8c:|g|. Dec(Reducible(c))

5. b: |g|

6. :(unit(b))

` 9as:Atom List. b = � as

?

BY Induction on b using hyp 3.

?

5. j: |g|

6. 8k:|g|. k p| j ) :(unit(k)) ) (9as:Atom List. k = � as)

7. :(unit(j))

` 9as:Atom List. j = � as

BY Decide if j is atomic or reducible.

�

-

8. Reducible(j)

?

BY Hyp 8 implies that j has two proper divisors: b and c.

?

8. b: |g|

9. c: |g|

10. :(unit(b))

11. :(unit(c))

12. j = b * c

13. b p| j

14. c p| j

?

BY Apply hyp 6 to b and c

?

15. as1: Atom List

16. b = � as1

17. as2: Atom List

18. c = � as2

?

BY Use '(as1 @ as2)' for as in concl.

Concl then follows by hyps 12, 16 and 18.

�

-

8. :Reducible(j)

?

BY Use 'j::[]' for as in concl and then concl is obvious.

Figure 4. Abbreviated Proof of Existence of Atomic Factorizations

An abbreviated proof of the theorem is shown in Figure 5. The full proof

printout is less than 3 pages long and can be found in Section A.2 of

Appendix A.
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1. g: IAbMonoid

2. Cancel(|g|;|g|;*)

3. 8a,b:|g|. Dec(a | b)

4. ps: Prime List

` 8qs:Prime List. � ps � � qs ) ps � qs upto �

?

BY List induction on ps.

�

-

5. qs: Prime List

6. e � � qs

` [] � qs upto �

BY hyp 6 says that � qs is a unit. This can only happen if q = []

�

-

5. p: Prime

6. ps': Prime List

7. 8qs:Prime List. � ps' � � qs ) ps' � qs upto �

8. qs: Prime List

9. p * � ps' � � qs

` p::ps' � qs upto �

?

BY Hyp 9 implies that p divides � qs

Since p is prime, p divides an element i of qs.

?

10. i: N|qs|

11. p | qs[i]

?

BY Since p non-unit and qs[i] atomic, hyp 11 can be strengthened.

?

11. p � qs[i]

?

BY Move hyp 9 to end of hyps to put in scope of i.

Bring qs[i] to front of qs in moved hyp 9 and concl.

?

9. i: N|qs|

10. p � qs[i]

11. p * � ps' � qs[i] * � qsn[i]

` p::ps' � qs[i]::qsn[i] upto �

?

BY Decompose :: in concl and apply cancellation hyp 2 to hyp 11.

?

11. � ps' � � qsn[i]

` ps' � qsn[i] upto �

?

BY Concl follows from hyp 11 using induction hyp 7.

Figure 5. Abbreviated proof of Uniqueness of Prime Factorizations
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Constructively, this theorem asserts the existence of a function which

when given two factorisations of some element will compute exactly how

one is a permutation of the other and in addition will give the units by

which each pair of associated elements di�er.

6.5. Unique Factorization Monoid Existence

Previous theorems about the existence and uniqueness of factorizations

were combined into the single theorem:

ufm_char:

8g:IAbMonoid

Cancel(|g|;|g|;*g)

) WellFnd(|g|;x,y.x p| y in g )

) (8a:Atom. IsPrime(a))

) (8a:|g|. Dec(Reducible(a)))

) (8a,b:|g|. Dec(a | b in g ))

) IsUFM(g)

The de�nitions involved in the IsUFM predicate were as follows. Firstly

a uniquely satis�es up to predicate (uni_sat_upto) was de�ned as

:

a r !x:T. Q[x] == Q[a] ^ (8a':T. Q[a'] ) a' [r] a)

Given a type T, an equivalence relation r on T, and an element a of type

T, the expression `a r !x:T. Q[x]' should be read as \upto r, a is the

unique x of type T such that Q[x] holds". The notation a' [r] a was

an in�x version of the second-order-variable application r[a';a].

An exists unique up to predicate (exists_uni_upto) was de�ned in

terms of the `uniquely satis�es up to' predicate as:

(r)9!x:T. Q[x] == 9a:T. a r !x:T. Q[x]

Given a type T and an equivalence relation r on T, the expression

(r)9!x:T. Q[x] can be read as \upto r, there exists a unique x of type

T such that Q[x] holds".

The IsUFM predicate was then de�ned as

IsUFM(g)

== 8b:|g|. :(unit(b)) ) (��)9!as:Atom List. (b = � as)

Here the�� notation denotes the `permutation and associates' relation

on g, so this de�nition can be read as \g is a unique factorization monoid

just when every non-unit can be factored uniquely (up to permutations

and associates) into atomic elements".

An alternate characterization of when UFMs exist was derived from

the lemma matom_imp_prime_with_gcds shown in Section 6.2.
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Need to prove lemma and insert here

6.6. The Fundamental Theorem of Arithmetic

The fundamental theorem of arithmetic essentially says that the

monoid of the positive integers under multiplication form a UFM. With

the de�nition of the multiplicative monoid of positive integers:

<Z

+

,*>

== <N

+

, �x,y.(x =

z

y), �x,y.x �z y, �x,y.x * y, 1, �x.x>

and a set of lemmas, verifying that <Z

+

,*> satis�ed all the precondi-

tions of the ufm_char lemma in the previous section, the theorem:

IsUFM(<Z

+

,*>)

was established.

From this theorem a program was extracted for computing factor-

izations. Here are a couple of examples of execution of this program.

Generate examples and insert here

7. Discussion of Development Style

7.1. Style of Definitions and Theorems

A major choice involved the de�nition of the permutation relation on

�nite sequences. There are many alternatives. Two that were useful in

other nuprl developments (Jac95a) were a recursive function de�ni-

tion:

bpermr:

as �

b

bs

==r case as of

[] => null(bs)

a::as' => a 2

b

bs ^

b

as' �

b

bs n a

esac

where the function bs n a removes one occurrence of a from the list bs

(if there are any occurrences at all) and a characterization

permr_iff_eq_counts:

8s:DSet. 8as,bs:|s| List.

as � bs () (8x:|s|. x #2 as = x #2 bs)

where the function call x #2as returns the number of occurrences of x

in as.
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The advantage of the �rst was that it permitted the computation of

whether two lists were permutation equivalent. Boyer and Moore used a

similar de�nition when they proved the fundamental theorem of arith-

metic (BM79). A great advantage to them of this de�nition was that its

recursive structure suggested good induction schemes. There are also no

auxiliary constructs which require any complicated type checking with

this de�nition. A minor disadvantage from the constructive viewpoint

was that it required the equality of list elements to be decidable.

The second expresses the permutation relation in terms of a simpler

permutation-invariant function. If �nite sequences are used to model

�nite sets of multisets, this turns out to be a useful form.

The de�nition I chose for this development | which started with the

notion of permutation functions | does seem though to be a more nat-

ural and direct from a mathematical viewpoint. This de�nition turned

out to be more troublesome from the mechanization point of view.

Firstly, the de�nition put greater demand on the arithmetic capabil-

ities of nuprl's type-checking tactic, and extensions had to be made

to the tactic to assist matters (see Section 8). Secondly, there were

some de�nite awkwardnesses dealing with functions whose domain of

totalness was non-trivial. For example one function for restricting a

permutation from Sym(n) to Sym(n-1) had typing lemma:

restrict_perm_wf:

8n:N. 8p:Sym(n + 1).

p.f n = n ) restrict_perm(p;n) 2 Sym(n)

Manual guidance had to be given to proofs involving this function to

solve the p.f n = n antecedent.

Some choices were in
uenced by mechanical considerations: for example,

the use of lists to model �nite sequences rather than arrays where the

lengths would be always carried around explicitly and elements would

always be explicitly indexed. This desire to avoid index notation is of

course common in mathematical practice; it's found in preferences for

matrix notation in linear algebra for instance.

7.2. Style of Proofs

The nuprl proofs presented in Section 6 and elsewhere demonstrate

that using a sequent calculus and appropriate tactics it is possible to

create proofs which are a good approximation of detailed proofs one

might expect in mathematical texts: the state in intermediate steps of

proofs is clear and inferences are largely ordered in a forward direc-

tion when reading down the proofs (facts lower down follow from facts

higher up). Importantly though, backward inferences are also possible.
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Applications of induction rules are usually most clearly presented in

backward form.

By way of contrast note that in natural-deduction presentation styles

(for instance used by mizar (Rud92)) inferences are restricted to being

only in a forward direction, and that automation concerns often res-

ult in systems which have a strong preference for backward inference

(nqthm (BM88) or lego (Pol90) for example.

One continuing stumbling block to proof comprehension is under-

standing what tactics do. The tactic language is terse to ease input

and the grammar is somewhat stilted because it a subset of the ml

language. Hopefully the brief introduction to tactics in Section 3.7 and

study of their e�ect should be of some help to readers following the

proofs in this development. Even if natural language versions were per-

mitted as input or could be automatically generated, there still would

be di�culty: the tactics describe the operational mechanics of proofs

but don't describe the higher-level motivation for proof steps.

Another problem is nuprl tactics are still working on a �ner gran-

ularity than anyone who wanted a detailed proof would be probably

interested in. The solution I adopted in presenting the proofs in this

paper was to shrink groups of usually between 2 and 5 tactic steps

down to higher-level natural language comments. This is not just an

ad-hoc solution for a paper presentation. Work is currently underway in

nuprl to support this step grouping and annotating so such abbrevi-

ated proofs would be permanently part nuprl databases. Users viewing

proofs would see the abbreviated proofs by default and could ask when

desired to see not only the group of tactics that underly the comment,

but also the proof subtree. This grouping could be repeated so proof

creators could provide several readings of proofs at di�erent levels of

detail. Proof step grouping would also be a great aid when developing

proofs because it would ease review of where a proof has got to. In

recent work I've done in pvs | a system which also maintains proof

trees | I would have found such a feature very useful, despite the fact

that pvs tactics are often more powerful than nuprl and make larger

steps.

Sometimes when using higher-level tactics it's not clear how or why

the tactic generated the subgoals it did. With nuprl's Auto tactic, one

can turn on a tracing facility which gives a rather verbose transcript of

its actions each time it is run. A cleaner alternative exploits the ability

to attach proof subtrees to each proof node: nearly any tactic can be

set up so that whenever it is called, whether by a user directly or by

another tactic, it creates a single proof node containing both the text

of the tactic call the proof subtree created by the tactic being executed.

If the lower-level tactics called by some high-level tactic such as Auto
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are set up in this way, then the actions of runs of the high-level tactic

can be viewed when desired at an appropriate level of detail.

This scheme relies on tactics being able to generate textual repres-

entations (or more precisely, representations in nuprl's term language)

of themselves and their arguments. This rules out for instance applying

the scheme to tactics which take functional arguments. In practice, this

probably isn't a signi�cant limitation.

Care is needed in controlling which subtrees are retained to avoid

the memory requirements for theories become excessive. For example,

users can avoid asking for every proof in a large development to be

simultaneously expanded out to the �nest level of detail.

An experimental version of this scheme is available in the nuprl V4.2

distribution, though no use has been made of it yet in any of the

nuprl V4.2 theories.

8. Automation

Here I highlight some of the more distinctive aspects of the automation

of the proofs in this development. For more information on nuprls tac-

tics, consult my thesis (Jac95a) and the nuprl V4.2 reference manu-

al (Jac95b).

8.1. Type Checking

The use in nuprls type theory of an untyped programming language

and of a rich set of type constructors gives users great latitude in the

kinds of de�nitions they can introduce. In practice however users limit

themselves to types and de�nitions which can be type-checked auto-

matically by the type-checking tactic.

In this development I made widespread use of de�nitions which

required their arguments to be in types which were subranges of integers.

For example, consider the typing lemmas

txpose_perm_wf:

8n:N. 8i,j:Nn. txpose_perm(i;j) 2 Sym(n)

select_wf:

8A:U. 8l:A List. 8n:Z. 0 � n ) n < |l| ) l[n] 2 A

Also the functions in Sym(n) required their arguments to be in the type

Nn.
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To automate type-checking of instances of such de�nitions, I had to

add a procedure for solving sets of arithmetic inequalities. The particu-

lar procedure happened to be based around the `Sup-Inf' algorithm (Sho77),

though there are other competing algorithms which need investigating

further. This algorithm is designed for determining the validity of sets

of inequalities involving linear arithmetic expressions over the rationals

or reals. It also works reasonably well in practice over the integers.

The procedure needed to be extended to deal with the arithmet-

ic properties of non-linear and non-arithmetic functions. For example,

when type-checking applications of a permutation function from Sym(n),

it exploited the fact that range values were in the type Nn. When type-

checking the select function several lemmas were referenced such as

map_length:

8A,B:U. 8f:A ! B. 8as:A List. |map(f;as)| = |as|

length_append:

8T:U. 8as,bs:T List. |as @ bs| = |as| + |bs|

length_nth_tl:

8A:U. 8as:A List. 8n:{0...|as|}.

|nth_tl(n;as)| = |as| - n

which gave the arithmetic properties of the list length function on com-

mon list constructor functions.

Though these extensions worked reasonably well, they signi�cantly

slowed down the type-checking tactic which was never fast to start

with. Where convenient, de�nitions were introduced with more relaxed

requirements on their arguments than one could imagine. For example

in the typing lemma:

reject_wf:

8A:U. 8l:A List. 8n:Z. ln[n] 2 A List

the argument n is required to have type Z rather than Nn.

In general when working with a type theory with subtypes there is a

tradeo� between creating de�nitions more stringent typing properties

which place more demands on type-checking programs and embellish-

ing de�nitions with complicating bounds-checking code on arguments.

There is also the issue of whether a result to return when arguments

are out-of-bounds is conveniently available.

8.2. Rewriting

nuprl has a rewrite package for applying equational propositions con-

tained in hypotheses and previously-proven lemmas.

Users can apply rewrite equations singly or in groups or write pro-

grams to selectively apply equation sets. For example, programs MonNormC
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and AbMonNormC for putting expressions over monoids and abelian mon-

oids into normal form were frequently used.

The package builds proofs that the applications of rewrite equa-

tions are valid by exploiting its knowledge of the equality-respecting

properties of the term constructors it �nds surrounding expressions

being rewritten. These justi�cations of rewrites are simplest when the

rewrite equations only involve the built-in equality relation of nuprl's

type theory. However the package also supports rewriting with other

user-de�ned equivalence relations.

This ability was exploited extensively in this development to rewrite

with equations which involved the associated relation (�) and list per-

mutation relation (�). For example, Figure 6 shows the step of the

uniqueness where the element qs[i] of the occurrence of list qs in

hypothesis 11 and the conclusions was brought to the front of the list.

The lemma referred to was

select_reject_permr:

8T:U. 8as:T List. 8i:N|as|. ((as[i]::asn[i]) �(T) as)

1. g: IAbMonoid

2. Cancel(|g|;|g|;*)

3. 8a,b:|g|. Dec(a | b)

4. ps: Prime List

5. p: Prime

6. ps': Prime List

7. 8qs:Prime List. � ps' � � qs ) ps' � qs upto �

8. qs: Prime List

9. i: N|qs|

10. p � qs[i]

11. p * � ps' � � qs

` p::ps' � qs upto �

|

BY (OnMCls [0;-1] (RWH

| (IfIsC

d

qs

e

(RevLemmaWithC [`i',

d

i

e

] `select_reject_permr`))) ...a)

|

11. p * � ps' � � qs[i]::qsn[i]

` p::ps' � qs[i]::qsn[i] upto �

Figure 6. Step in Proof of Uniqueness of Prime Factorizations

The automatic justi�cation for the conclusion rewrite included refer-

ences to the lemmas
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permr_massoc_weakening:

8g:IAbMonoid. 8as,bs:|g| List. as � bs ) as � bs upto �

and

permr_massoc_functionality:

8g:IAbMonoid. 8as,as',bs,bs':|g| List.

as � bs upto �

) as' � bs' upto �

) (as � as' upto � () bs � bs' upto �)

and for the hypothesis the lemma

mon_reduce_functionality_wrt_permr:

8g:IAbMonoid. 8xs,ys:|g| List. xs � ys ) � xs = � ys

When the package doesn't �nd a functionality lemma that applies

exactly (as when the conclusion was rewritten in this example) it

chooses the lemma which requires the least amount of weakening of

the relation being rewritten with respect to.

8.3. Relational Reasoning

nuprl has a tactic RelRST which attempts to solve goals by exploiting

common properties of binary relations such as re
exivity, transitivity,

symmetry, linearity, antisymmetry and irre
exivity. The heart of this

tactic is a routine that builds a directed graph based on the binary

relations found in a sequent and �nds shortest paths in the graph.

Extensions allow it to cope with strict order relations and relations of

di�ering strengths (for example, the � and �� relation in this devel-

opment. Several uses were made of this tactic to eliminate tedious steps

of reasoning. For example, it solved the goal:

1. g: IAbMonoid

2. a: |g|

3. a': |g|

4. b: |g|

5. b': |g|

6. a � b

7. a' � b'

8. a | a'

` b | b'

|

BY (RelRST ...)

in the theorem mdivides functionality wrt massoc.

This is a rather weak example. If all applications in this development

are as trivial, is it worth devoting a section to this tactic?
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9. Related Work

The restriction of the factorisation theorem to the naturals where it

becomes the fundamental theorem of arithmetic has been proven in

several systems, nqthm (BM79, pp311{328) by Boyer and Moore, and

nuprl (How86) by Howe for example.

The nqthm development is most similar in that a permutation rela-

tion is de�ned and and similar existence and uniqueness theorems are

proven. The details of the expression of the de�nitions and theorems

there was quite di�erent because of working in a quanti�er-free logic.

As discussed in Section 7.1, the recursive de�nition they chose for the

permutation relation gave strong hints to nqthm on how to carry out

inductions.

Should this next paragraph be relegated to the theory listing?

Interestingly, Boyer and Moore chose to prove the analog of the lemma

matom imp prime with gcds using a general proof which applies in any

cancellation monoid, though there exist shorter proofs (HW78, p21)

which exploit the more speci�c property which naturals enjoy : namely

that the gcd (a; b) can be expressed as a linear sum of a and b.

Howe's previous nuprl development avoided reasoning about per-

mutations by requiring that factorisations always be given in a normal

form where distinct factors were listed in ascending order together with

their exponents. Neither development had to work with reasoning about

associates.

Having readable proofs is a serious concern of the designers of the

mizar system (Rud92). mizar proofs are laid out in linearized natural-

deduction style. As noted in Section 7.2, arguments are constrained to

being presented in a forward inference style. When creating proofs the

user commonly gives the text of each new hypothesis explicitly. While

this can be a tedious exercise, it makes the formal input text for proofs a

readable record of the proofs. A declarative proof style helps to keep the

proof command language simple. Often a user states a new hypothesis

and lists the previous hypotheses and lemmas it should be deduced

from. mizar then justi�es the new hypothesis using model elimination

and equality reasoning procedures.

A current �eld of investigation is proof planning (Bun88) where

automated decisions are made on the higher level structures of proofs.

Here, as with earlier work in nqthm, motivation for proof steps is avail-

able and readable high-level explanations can be more automatically

generated than is possible currently in nuprl.

One other system that explicitly maintains proof trees is pvs. Users

a graphical display of the proof tree is generated while proofs progress.
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For space reasons the tree only shows the proof commands at the tree

nodes, users must mouse-click on a node to see the subgoal appear in

an alternate window. When proofs grow large, these trees become hard

to read and some grouping mechanism as discussed in this paper would

be of help.

On the issue of automation it has been interesting to note the adop-

tion in pvs of a hybrid type-checking discipline where the simpler type-

checking is carried by a dedicated procedure and then more complic-

ated typing properties are dealt with by tactics. They are then able

to exploit the advantages of having subtypes including arithmetic sub-

types without as severe a performance penalty.

The isabelle prover (Pau94) has a rewrite package capable of hand-

ling general equivalence relations, though this has been little used and

it is not clear how well it works in practice when working with a mix-

ture of di�erent kinds of relations (one can only specify one congruence

lemma per term constructor). Boyer, Moore and Kaufmann in the acl2

prover, the successor to nqthm, have also introduced support for equi-

valence relations, though it is not known how much use they have made

of this to date.

10. Adequacy of Constructive Type Theory

This de�nitely needs more work. How about cutting it down to a few

lines or leaving it out altogether?

Its not clear at all what future rôles constructive type theories will

play in formal proof.

Constructive mathematics by its very nature has a host of concerns

which are absent in nearly all classical mathematics. In some inher-

ently in�nitary �elds of mathematics such as analysis or topology deep

thought has to go into whether and how topics can be constructivised.

When there is success in these �elds, the new mathematics often is

quite distinctive. The proof theory part of logic seems to be one of the

easier to constructivize partly because of its more �nitary nature. Cat-

egory theory also seems to be an easier �eld, perhaps due to its very

abstractness. Though the development in this paper isn't too di�erent,

algebra in general seems to be a very challenging �eld for constructive

mathematics.

A particular appeal of constructive type theories is that they permit

the realisation of the computational possibilities in constructive math-

ematics. However it seems very unlikely at present that the possibility of

being able to synthesize programs in constructive type theories is going

to have any practical signi�cance in the foreseeable future, though it

it.tex; 25/01/1997; 13:30; no v.; p.36



Formalization of Divisibility Theory in Nuprl 37

does seem that ideas for program synthesis can be inspired by how the

synthesis works in constructive type theories.

Even with �elds of mathematics with strong computational sub-

�elds such as algebra or numerical analysis, current opinion is that it is

far more fruitful to keep with classical mathematics and reason about

algorithms explicitly.

Other drawbacks to the pursuit of formalizing constructive as oppose

to classical mathematics include that there is much much less source

material that can be straightforwardly formalized, there are far fewer

people who might be interested or capable of doing the work and the

audience for such formalized mathematics is also going to be far far

more restricted.

One response of researchers in mechanizing constructive type theor-

ies to criticism of constructivism has been to explore smooth classical

extensions of their formalisms and systems. Also when looking at the

major application areas of hardware and software veri�cation where

again things are reasonably �nitary, constructivism doesn't seem to

matter too much. The success of nqthm with its `computational logic'

is worth bearing in mind here, though the explicit computational de�n-

itions are far easier to work with than the computations implicit in type

theories.

However it seems unlikely that constructive-type-theory systems

with classical extensions or that are tuned for applications work will

ever be as easy to understand and work with as systems designed from

the outset with classical formalisms.

Fortunately many automation concerns are orthogonal to the issue

of the underlying formalism being constructive or classical so system

development work in constructive-type-theory systems can have a wider

impact.

11. Conclusions

This work has demonstrated how highly-readable formal derivations of

signi�cant theorems can be interactively produced. This readability is

of bene�t both to the developers of the mathematics and subsequent

viewers.

The factors leading to this readability are quite general and could be

exploited in a variety of other theorem proving systems. They include

� the use of a sequent calculus and a proof-tree data-structure. The

sequent calculus supports both forward and backward inference

styles and the proof-tree data-structure helps for interactively explor-

ing proofs and generating readable proof listings.
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� having tactics which 
exibly support common reasoning styles (rewrit-

ing, chaining) and provide convenient automation for more tedious

operations in proofs. The more novel examples in this development

of this are the support for rewriting with equivalence relations and

the automation of reasoning about arithmetic inequalities and gen-

eral equivalence and order relations.

� the use of a structure editor and a display form mechanism to

support concise editable representations of expressions.

Grouping tactics under hand created comments seems a good work-

ing solution to the problems of the granularity of the tactic steps being

�ner than readers might wish and the tactic language being obscure

to the uninitiated. As discussed in Section 7.2, the grouping of proofs

steps, both by hand and automatically, permits hypertext presentation

of proofs where both developers and viewers can shift back and forth

between multiple levels of detail.

This and other work has demonstrated the adequacy of Nuprl's type

theory for some elementary abstract algebra. While there is room for

further progress using similar type theories, it is thought that there are

inherent di�culties in the constructive approach which seriously limit

its usefulness for formalizing mathematics.
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Appendix

A. Divisibility Theory

This appendix reproduces in full the proofs abbreviated in Figure 4 and

Figure 5 of Section 6. The numbers interspersed in the vertical bars of

the proof branches serve to help trace branches when proof printouts

such as these run over several pages.

A.1. Existence Theorem

` 8g:IAbMonoid

Cancel(|g|;|g|;*)

) WellFnd(|g|;x,y.x p| y)

) (8c:|g|. Dec(Reducible(c)))

) (8b:|g|. :(unit(b)) ) (9as:Atom List. b = � as))

?

BY (UnivCD ...a)

?

1. g: IAbMonoid

2. Cancel(|g|;|g|;*)

3. WellFnd(|g|;x,y.x p| y)

4. 8c:|g|. Dec(Reducible(c))

5. b: |g|

6. :(unit(b))

` 9as:Atom List. b = � as

?

BY (WFndHypInd 3 5 THENM D 0 ...a)

?

5. j: |g|

6. 8k:|g|. k p| j ) :(unit(k)) ) (9as:Atom List. k = � as)

7. :(unit(j))

` 9as:Atom List. j = � as

?

BY (Decide

d

Reducible(j)

e

...a)

�

-

8. Reducible(j)

??

1 BY UnfoldTopAb 8 THEN ExistHD 8

?

8. b: |g|

9. c: |g|

10. :(unit(b))

11. :(unit(c))

12. j = b * c

??

1 BY (SwapEquands 12

THEN FLemma `non_munit_diff_imp_mpdivides` [12] ...a)

?

12. b * c = j

13. b p| j

??

1 BY (RWH (LemmaC `abmonoid_comm`) 12
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THENM FLemma `non_munit_diff_imp_mpdivides` [12] ...a)

?

12. c * b = j

14. c p| j

??

1 BY (FHyp 6 [13] THENM FHyp 6 [14] ...a)

?

15. 9as:Atom List. b = � as

16. 9as:Atom List. c = � as

??

1 BY New [`as2'] (D 16) THEN New [`as1'] (D 15)

?

15. as1: Atom List

16. b = � as1

17. as2: Atom List

18. c = � as2

??

1 BY (With

d

as1 @ as2

e

(D 0)

THENM RewriteWith [] ``mon_reduce_append`` 0 ...a)

?

` j = � as1 * � as2

??

1 BY (RWH (RevHypC 18 ORELSEC RevHypC 16) 0

THENM RW AbMonNormC 12 ...)

�

-

8. :Reducible(j)

?

BY (With

d

j::[]

e

(D 0) THENM AbReduce 0 ...a)

�

-

` j 2 Atom

??

1 BY (MemTypeCD ...)

` Atomic(j)

??

1 BY (Unfold `matomic` 0 ...)

�

-

` j = j * e

?

BY (RW MonNormC 0 ...)
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A.2. Uniqueness Theorem

` 8g:IAbMonoid

Cancel(|g|;|g|;*)

) (8a,b:|g|. Dec(a | b))

) (8ps,qs:Prime List. � ps � � qs ) ps � qs upto �)

?

BY (RepeatMFor 4 (D 0) ...a)

?

1. g: IAbMonoid

2. Cancel(|g|;|g|;*)

3. 8a,b:|g|. Dec(a | b)

4. ps: Prime List

` 8qs:Prime List. � ps � � qs ) ps � qs upto �

?

BY (New [`p';`psn''] (ListInd 4)

THEN OnAll AbReduce ...)

�

-

5. qs: Prime List

6. e � � qs

` [] � qs upto �

??

1 BY D 6 THEN Thin 6 THEN FoldTop `munit` 6

?

6. unit(� qs)

??

1 BY MoveToConcl 6

THEN New [`q';`qsn''] (D 5)

THEN (D 0 ...a)

THEN OnAll AbReduce

�

-

6. unit(e)

` [] � [] upto �

???

1 2 BY (StrengthenRel ...)

�

-

6. q: Prime

7. qs': Prime List

8. unit(q * � qs')

` [] � q::qs' upto �

? ?

1 BY Assert

d

False

e

THENM Trivial

THEN D 6 THEN D 7

?

6. q: |g|

7. :(unit(q))

8. 8b,c:|g|. q | b * c ) q | b _ q | c

9. qs': Prime List

10. unit(q * � qs')

` False

? ?

1 BY (FLemma `munit_of_op` [10] ...)

�

-

5. p: Prime
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6. ps': Prime List

7. 8qs:Prime List. � ps' � � qs ) ps' � qs upto �

8. qs: Prime List

9. p * � ps' � � qs

` p::ps' � qs upto �

?

BY Assert

d

p | � qs

e

�

-

` p | � qs

??

1 BY OnCls [9;9] D

9. c: |g|

10. � qs = (p * � ps') * c

11. � qs | p * � ps'

??

1 BY (With

d

� ps' * c

e

(D 0)

THENM RW MonNormC 10 ...)

�

-

10. p | � qs

?

BY (FLemma `mprime_divs_list_el` [-1] ...a)

THENM (Thin (-2) THEN D (-1))

�

-

` IsPrime(p)

??

1 BY (D 5 THEN NoteConclSqStable ...)

�

-

10. i: N|qs|

11. p | qs[i]

?

BY Assert

d

p � qs[i]

e

THENM Thin 11

�

-

` p � qs[i]

??

1 BY (Backchain ``mdivisor_of_atom_is_assoc

mprime_imp_matomic`` ...)

�

-

` :(unit(p))

???

1 2 BY (D 5 THEN Unhide THENM D 6 ...)

�

-

` IsPrime(qs[i])

? ?

1 BY (Assert

d

qs[i] 2 Prime

e

THENM MemTypeHD (-1) ...a

)

?

12. qs[i] = qs[i]

[13]. IsPrime(qs[i])

? ?

1 BY (NoteConclSqStable ...)

�

-

11. p � qs[i]

?
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BY MoveToEnd 9

THEN (OnMCls [0;-1] (RWH

(IfIsC

d

qs

e

(RevLemmaWithC [`i',

d

i

e

] `select_r

eject_permr`))) ...a)

THEN AbReduce (-1)

?

9. i: N|qs|

10. p � qs[i]

11. p * � ps' � qs[i] * � qsn[i]

` p::ps' � qs[i]::qsn[i] upto �

?

BY (SeqOnM

[RWH (HypC 10) 11;FLemma `massoc_cancel` [11];Thin (

-2)

;RelArgCD] ...)

?

11. � ps' � � qsn[i]

` ps' � qsn[i] upto �

?

BY (BHyp 7 ...)
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