
Auditing User-Provided Axioms
in Software Verification Conditions

Paul Jackson1, Florian Schanda2, and Angela Wallenburg2

1 School of Informatics, University of Edinburgh, UK
pbj@inf.ed.ac.uk

2 Altran, Bath, UK
{Florian.Schanda,Angela.Wallenburg}@altran.com

Abstract. A common approach to formally checking assertions inserted
into a program is to first generate verification conditions, logical sen-
tences that, if then proven, ensure the assertions are correct. Sometimes
users provide axioms that get incorporated into verification conditions.
Such axioms can capture aspects of the program’s specification or can be
hints to help automatic provers. There is always the danger of mistakes in
these axioms. In the worst case these mistakes introduce inconsistencies
and verification conditions become erroneously provable.
We discuss here our use of an SMT solver to investigate the quality of
user-provided axioms, to check for inconsistencies in axioms and to verify
expected relationships between axioms, for example.

1 Introduction

1.1 Use of Verification Conditions

One common approach to the formal verification of software involves the genera-
tion of verification conditions (VCs). VCs are typed first-order sentences that, if
proven, assure the correctness of assertions that annotate programs. Often asser-
tions check for the absence of exceptions, that arithmetic operations do not over-
flow or array indices are not out of bounds, for example. Sometimes assertions
capture information from program specifications about intended behaviour. Typ-
ically one tries to discharge VCs using automatic theorem provers. SMT solvers
such as Z3 [16], CVC4 [2] and Alt-Ergo [1] are popular choices. More rarely,
particularly when the assertions are more complex, interactive semi-automated
theorem provers such as PVS, Coq or Isabelle [17] are employed. Current exam-
ples of VC-based software verification tools and frameworks include Why3 [9],
Boogie [6], Perfect Developer [13] and the SPARK tool-set [5]. These support
verification of programs in (subsets of) such languages as C, C#, Java and Ada.

1.2 The Need for Axioms

It is often necessary for users of VC-based tools to write axioms which are added
as assumptions to VCs. We describe below two classes of axioms: specification
axioms and prover-hint axioms.

Specification axioms provide essential specification-related information. For
example, such axioms can capture information about the environment a program
is to operate in, information that might be difficult to capture in the precon-
ditions of individual functions and procedures. Such axioms can also describe
properties of constants, functions and relations that are introduced to help with
program specification. For example, if verifying a sorting program, relations are
needed to describe how the output is sorted and how the output is a permutation
of the input.

Prover-hint axioms address incompletenesses in automatic provers, their fail-
ure to prove VCs that are logically valid. VCs frequently include quantified as-
sumptions and can involve non-linear integer or real arithmetic. In general such
VCs are intractable or undecidable. While automatic provers are continually im-
proving, it is usually unrealistic to expect them to prove all VCs that might be
generated for a program.

Sometimes VCs not proved automatically are verified by human inspection.
Unfortunately this can be an exceptionally tedious and error prone process. An
alternative to human inspection is the use of an interactive theorem prover such
as PVS, Coq or Isabelle. Such systems rarely have soundness issues. However
they have steep learning curves and place huge demands on the patience and
mathematical sophistication of users.

Another approach is to use a combination of automatic proving, human in-
spection and axioms. The idea is to figure out why an automatic prover is failing
to prove some given VC, and then to add one or more axioms that summarise
logically-valid facts that the prover is missing and that are sufficient to enable
the prover to complete the VC proof. Often these missing facts concern just a
small part of the reasoning needed to justify the VC, so it is significantly simpler
to manually check their correctness than to manually check the whole VC.

Sometimes, the automatic prover can be used to check the missing facts, even
though the prover is not able to derive them or their equivalent when attempting
the proof of the whole VC. Other times, it may be practical to use an interactive
prover to check just these facts added as hints to the automatic prover.

In practice, this process of analysing failed automatic proofs is useful not
only for identifying logically-valid prover-hint axioms, but also for discovering
overlooked specification axioms.

Sometimes, because of the general nature of an axiom or because VCs are
often similar, an axiom can turn out to be useful for multiple VCs.

One benefit of the user axiom approach to addressing VCs that fail to
be automatically proved is that it potentially reduces the maintenance work
needed when programs or program annotations change. If such VCs are manu-
ally checked, it is likely that they will need rechecking on every program or as-
sertion change. If such VCs are discharged using an interactive theorem prover,
the proofs might break and need fixing. However, commonly prover-hint axiom
states a general truth that is independent of the particular context of the VCs it
is needed in, so it remains valid as the program and program annotations evolve.

1.3 Problems with using Axioms

A major issue with adding axioms is the possibility of introducing an inconsis-
tency. Sometimes software verification engineers will not be experienced in the
use of formal logic and in how to phrase axioms appropriately. Also, needed ax-
ioms often have much detail that is tedious and awkward to work through, and
mistakes are consequently easy.

Introducing an inconsistency into a VC is obviously a bad thing: it makes the
VC trivially true. If the automatic prover detects the inconsistency, the VC and
corresponding program assertion will be claimed true by the prover, irrespective
of whether they are actually true or not.

Diagnosing why a VC is not proven and crafting appropriate axioms takes
time. In our experience, while this process is sometimes fast, taking just a fraction
of an hour, other times it can be 1–2 hours or sometimes even days. On a large
verification project, there could be several 100s of unproven VCs and perhaps
100s of axioms needed. In such cases, the extra time and cost can be significant,
and support for reducing this time could be very useful.

As remarked above, sometimes user-provided axioms remain valid as pro-
grams and annotations change, but other times they need reworking and re-
reviewing. For example, axioms might refer to specification constants or func-
tions whose definitions change. So user-provided axioms can still present a sig-
nificant maintenance burden to any SPARK development project.

1.4 Formal Support for Auditing Axioms

The core issue we explore in this paper is the use of an automatic theorem
prover to investigate the quality of axiom sets. Most critically we are interested
in identifying inconsistencies, but also we investigate relationships between ax-
ioms. If these relationships are not as expected, then there might be mistakes
in the phrasing of axioms. For example, we might discover that some axiom is
derivable from two others, when we previously thought it was independent of
those axioms. This study of relationships could help axiom writers find errors
in their axioms more quickly. It could both boost confidence in the correctness
of axiom sets and reduce their development time. Additional aspects we discuss
include the determination of minimal sets of axioms needed for proving VCs and
the resolution of ambiguities in axiom definitions.

Our specific context for the work reported is the tool-set from Altran UK
(formerly Praxis) and AdaCore for the formal verification of programs in the
SPARK 3 subset of Ada [5]. This tool-set allows the user to associate a set of
axioms with each section of code being verified. These axioms are then added as
extra assumptions to each VC associated with the relevant section.

We have extended this tool-set with features for investigating the quality of
user-provided axioms. We describe in this paper our experiences of using these

3 The SPARK Programming Language is not sponsored by or affiliated with SPARC
International Inc and is not based on the SPARC R© architecture.

features to audit user-provided axioms employed in several case-study SPARK
programs.

2 Related Work

Systems for verifying programs by proving VCs have been around since the 1960s.
For example, King’s PhD thesis [15] is the first description of such a system. In
these early systems the theorem provers were poor at discharging VCs. Boyer and
Moore, in the preface to their 1979 book on their NQTHM inductive theorem
prover [10], take aim the dangers in the practice of assuming as axioms any
simplified VCs that could not be automatically proved. They remark that often
such axioms are seen as obvious facts when they are not obvious to many, and
sometimes are even false.

Aspects of the approaches we investigate here have been implemented in
both the Boogie-based VCC tool for verifying concurrent C [12] and the Why3
software verification framework [8, 9]. VCC has an option for enabling the gener-
ation of smoke test VCs. These VCs are phrased as the unreachability of control
points in code. However, if proven for obviously reachable control points, they
indicate inconsistencies in specifications and axioms. VCC’s documentation4 re-
marks that these tests are useful, especially early in the verification/development
cycle. Why3 supports a bisect feature for finding minimal subsets of declarations
that can prove a given VC. Declarations in Why3 not only include declarations
of constants, functions and relations, but also include user-asserted axioms. The
Why3 documentation does not comment on the provision of the feature. How-
ever, its very existence suggests that someone thought it might be useful.

Beckert, Bormer and Klebanov [7] review the uses of in-program annotations
in VC-based program verification systems. Some of these annotations have a
function similar to the user axioms we consider. They make a distinction be-
tween requirement annotations that capture specification information and aux-
iliary annotations that are needed to guide proofs. They further sub-divide the
auxiliary annotations into those needed only for efficiency reasons, e.g. hints for
quantifier instantiation and intermediate lemmas, and those that are logically
essential, e.g. loop invariants. The prover-hint axioms we identify serve the same
purpose as their first class of auxiliary annotations.

Ahn and Denney [3] use both an SMT solver and random testing to analyse
axioms in a program verification system for verifying aerospace flight code. The
approach tries to find false instances of axioms of form ∀x. A ⇒ B. While
A typically involves theories within the scope of an SMT solver (in their case
Yices [14]), B often uses richer theories beyond the solver’s capabilities, so they
cannot use the SMT solver to check satisfiability of ¬(A ⇒ B). They find that
they can compute the truth value of ground instances of the axioms, so they
exploit the Haskell-based QuickCheck library [11] to try a random search for
falsifying instances. However, they observe this does not work well when random

4 http://vcc.codeplex.com

instances of A are rarely true. In this case they first use the SMT solver to find
satisfying instances of A and then use a random search of instantiations of the
remaining variables in x to try to find an instantiation that makes B false and
hence A⇒ B false.

A QuickCheck-based approach is also used in the Isabelle interactive theorem
prover [17] for attempting to show conjectures false before users spend effort
trying to prove the conjectures.

We have not yet ourselves investigated a testing approach for axiom auditing,
but are considering it in future work.

Consistency checking is of importance in many other formal approaches to
software and systems verification. For example, in model checking, it can be
worth checking that at least some run satisfies the model and any environment
assumptions, before going on to check temporal logic properties of runs: if there
are no such runs, there is a problem with the combination of the model and the
assumed environment.

3 Framework for Investigations

3.1 The SPARK language

SPARK is an Ada subset extended with an annotation language for expressing
program specification information. It is designed for use in high-integrity appli-
cations. The Ada subset is tailored to make verification more straightforward.
For example, it does not allow recursion, nor does it support heap-based data-
structures. Several of the constraints of the SPARK language also correspond
to common language constraints employed for embedded software in critical
systems. For example, the no recursion and no heap restrictions ensure that a
program’s memory requirements are statically known.

SPARK has been used for high-integrity applications in sectors including
aerospace, railways, automotive and nuclear. For example, it is currently being
used in the development of the iFACTS support system for UK air traffic control,
over 200K SLOC.

SPARK functions and procedures are collectively referred to as subprograms.
Subprograms are grouped together into packages, and together subprograms and
packages are examples of program units.

3.2 The SPARK formal verification tool-set

Virtually all developments in SPARK make use a formal verification tool-set
developed by Altran UK. Traditionally the most-used tools are the Examiner
which generates VCs from SPARK programs and the Simplifier automatic prover
for discharging VCs. These VCs typically include system axioms which give
definitions to standard constants and functions introduced by the VC generation
process.

In addition, the user can provide user axioms which typically contain prover
hints and information related to the specification of the particular program being

verified. The SPARK language has been recently extended to allow axiomatic
information to be included in the bodies of program definitions and as anno-
tations for specification functions declared in the SPARK program files. This
improves the visibility of the axioms and helps software developers keep them
synchronised with program changes. However, all user axioms considered in this
paper were supplied in separate user-axiom files associated with each program
unit.

3.3 The Victor VC translator and prover driver

Recently the SPARK tool-set incorporated a program Victor5 developed by the
first author which enables SMT solvers to be used as automatic provers for
discharging VCs. Victor translates VCs in the FDL language output by the Ex-
aminer into API calls or standard languages accepted by SMT solvers. It also
manages running the solvers and collecting results. Victor is most commonly
used with the solvers Z3, CVC4 and Alt-Ergo. Of these, Z3 gives the best perfor-
mance, and we report here only on experiments with Z3. Generally SMT solvers
perform significantly better than the Simplifier. However Victor has only become
a fully supported component of the tool-set in the past year, and many ongoing
industrial users of the tool-set are still using the Simplifier as the primary tool
for VC discharge.

Victor’s translation typically involves introducing axiomatisations for vari-
ous types such as the array, record and ordered enumeration types of the FDL
language that do not have standard correspondences in the SMT solver input
languages we use (SMTLIB 1.2 and 2.0). In this paper, we consider the axioms
introduced by Victor as additional system axioms.

The prover driver component of Victor has been adapted to enable the ex-
ploration of the axiom auditing features introduced in Section 4 of this paper.

4 Axiom Analysis

4.1 Exploring Properties of Axioms

We describe here how we approach examining the consistency and inter-dependency
of user-provided axioms.

A VC sentence generated by the SPARK tool-set has the general structure

S ∧ U ∧H ⇒ C

where S, U , H and C are each an implicitly-conjoined set of closed formulas
expressed in a typed first-order logic. More specifically:

– S is a set of system axioms,
– U is a set of user axioms,

5 http://code.google.com/p/vct/

– H is a set of hypotheses,
– C is a set of conclusions.

A VC is considered to be valid when it is satisfied by all possible interpretations
for uninterpreted functions, constants and types, and by standard interpretations
for interpreted functions, constants and types. A standard example of interpreted
constants, functions, and types is natural number literals, integer arithmetic
operations and the integer type.

The SPARK tool-set groups VCs according to the program unit they are
associated with. Across a set of VCs for given program unit, the Hs and Cs
vary, but the Ss and Us are the same.

To explore issues of consistency and inter-relatedness between user-provided
axioms, Victor generates special kinds of goals, and attempts proof of each using
a designated automatic theorem prover. The kinds of goals are shown in Table 1.
In the table, we assume that the set of user axioms for some given program unit

Kind Goal shape Description

S-incon S ⇒ ⊥ Are system axioms inconsistent?
U-incon S ∧ U ⇒ ⊥ Are user axioms inconsistent?
u-incon S ∧ ui ⇒ ⊥ Is user axiom ui inconsistent?
u-taut S ⇒ ui Is user axiom ui always true?
u-deriv S ∧ (U \ {ui})⇒ ui Does user axiom ui follow from other user axioms?

Table 1. Kinds of Axiom Audit Goals

is U = {u1, . . . , un}, so, for that program unit, n goals of each of kinds u-incon,
u-taut and u-deriv are generated, but only 1 goal of each of kinds S-incon and
U-incon is generated. The symbol ⊥ is for falsity. Note that no use is made of
the hypotheses H and conclusions C of each original VC.

Validity of all goals is considered with the system axioms S assumed, i.e.
validity is considered in the combination of theories described both by these
axioms and built-in to the prover used. Examples of built-in theories are theories
of integer and real arithmetic.

The S-incon goals are baseline checks. We expect inconsistencies in system-
provided axioms very rarely and the main focus of our work has been to examine
the user axioms. In other VC-based verification environments, the system axioms
can be much richer than the system axioms we encounter, and in such cases it
would definitely make sense to also audit the system axioms more thoroughly.

The U-incon goals directly look for some inconsistency involving one or more
goals, whereas u-incon goals consider the consistency of each axiom on its own.
The u-taut goals check whether axioms are tautologies. We hope that most ax-
ioms added as prover hints are tautologies. The u-deriv goals look at relationships
between axioms, whether each axiom depends on the others. Generally u-deriv
goals are only relevant if the corresponding u-incon and u-taut goals are unproven
and there are no inconsistencies in the user-provided axioms.

It is useful to know not just whether an auditing goal is provable but also, if
it is provable, which formulas are needed for the proof. Automatic provers can
provide this information in various ways. Some, like the Simplifier prover pro-
vided with the SPARK tool-set, output a trace of their deductions, and this trace
includes information on the formulas used. Several SMT solvers have facilities
for outputing proof certificates. These certificates are independently checkable
and provide evidence for the correctness of their deductions. The formulas used
can be read off these deductions.

Another approach is to make use of a facility some SMT solvers have for
generating unsat cores. When an SMT solver is used as a prover, the negation
of the sentence to be proved is passed to the solver. This negation usually has
the form of a conjunction. For example, for a VC sentence of the form shown
above, it has form

S ∧ U ∧H ∧ ¬C .

Here, as before, each set of formulas is implicitly conjoined. If the solver finds
this negated sentence to be unsatisfiable, i.e. it deduces there are no models of
the negated sentence, then the sentence itself is true in all models, i.e. it is valid.
An unsat core is a (usually) minimal subset of the conjuncts of the conjunction
that itself is unsatisfiable. From the point of view of provability of the original
sentence, this subset is those formulas whose consideration is sufficient to show
the sentence’s validity. In our work we have experimented with generating and
examining these unsat cores for provable auditing goals.

Interpretation of the results of these tests has to bear in mind the usual
incompleteness of the used prover. Proved goals indicate validity of the goals,
but if a goal is unproven, the goal might or might not be valid - we don’t know.
Failure for a goal to be proven is just a suggestion that it might not be valid.

4.2 Finding Minimal Sets of Axioms

It is useful to be able to identify minimal sets of user axioms needed for the proof
of individual VCs or collections of VCs. Issues with axioms can be diagnosed if
these sets are not as expected. And, once minimal sets are identified, unrequired
axioms can be deleted in order to reduce the future axiom maintenance burden.
Also, the fewer axioms there are, the more likely it is that axioms will be well
written, compact and general, and the less likely it is that anything will need
changing.

The minimal set for a VC can be smaller than the set that might be identified
from a proof certificate or unsat core. The reason has to do with the fact that
a user axiom is sometimes added to make proofs easier, but the VC is still
valid without the axiom. In these cases a prover might be able to prove the
VC without the axiom, but, if the axiom is present, it might use it because it
provides a short-cut.

In our experiments, we worked with SPARK case studies where the user
axioms had originally been added when the Simplifier SPARK tool-set prover

had been used. However, we checked the auditing goals using stronger SMT-
solver-based provers, principally Z3. This made it all the more likely that we
would encounter user-provided axioms that were unnecessary.

As each user axiom file is associated with a whole program unit, not an
individual VC, each user axiom potentially could be used in the proof of multiple
VCs. In order to identify unused axioms, we identify user axioms that do not
feature in the minimal sets for any of the VCs for a program unit.

We adopt a simple approach to computing a minimal set of user axioms
needed for proving a given VC. First we establish whether the original VC of
form

S ∧ U ∧H ⇒ C

is provable. If it is, we then in turn try removing each user axiom from U and
see whether the resulting goal is provable: when it is, we leave the axiom out,
when it is not, we add the axiom back in.

In general of course there might be multiple minimal sets, and the minimal
set we find might not be a set of smallest size. However, we decided to start with
just one minimal set to explore its potential usefulness.

4.3 Resolving Ambiguities in Axioms

A particular issue we ran into with user-provided axioms was that they were not
always unambiguous. Typically user-provided axioms are of form

∀x1 : T1, . . . , xn : Tn. P ,

where T1, . . . , Tn are the types of variables x1, . . . , xn. However the concrete syn-
tax for axioms permits these outermost universal typed quantifiers to be implicit,
and the common practice to date by user-rule writers has been almost always to
leave these quantifiers implicit. In some scenarios this is not a problem: one can
always deduce the types of the quantified variables from the immediate context
of their occurrences. However, with the concrete syntax for VCs, many operators
are overloaded. For example, the same successor function is used for integer, real
and enumeration types. With this overloading, variable types sometimes cannot
be deduced from their immediate context. And further, sometimes the overload-
ing cannot be resolved until types of free variables have been deduced.

We implemented an algorithm that combines operator overload resolution
and variable type inference. This tries to make as much progress on both fronts,
and warns the user when it does not complete. The expectation is then that the
user goes in and adds sufficient explicit quantifiers to the user axioms that both
overload resolution and type inference can complete.

All the experiments we report on here were run on axiom sets where we first
had gone through the process of making sure all the axioms were unambiguous.

Resolving this ambiguity carefully is critical for soundness reasons. It is easy
to construct examples where there are multiple ways of resolving operator over-
loading and variable typing, and some ways yield a sound axiom, other ways an
unsound axiom.

The general lesson here for designers of languages for expressing logical for-
mulas is that they should be very wary of adopting convenient notational ambi-
guities.

5 Experimental Results

5.1 General Setup

The evaluation we present here is based on our examination of recent SPARK
program developments that we have access to and that make use of user ax-
ioms. We select two developments that provide interesting illustrations of the
potential of rule auditing. For each development, we first resolved variable type
and operator overloading ambiguities in the axioms as described in Section 4.3,
before running the two kinds of analysis described in Sections 4.1 and 4.2.

We have found the Z3 SMT solver currently the best to use for proving VCs.
It is generally faster than the competition and can almost always prove more
VCs than the others. We ran Z3 both its default mode for checking satisfiability
and in an unsat core generation mode. We used a development version of release
4.3.2 from March 2013 that included patches to fix a bug we encountered in the
unsat core functionality of the 4.3.1 release

5.2 Case study 1: Tokeneer ID Station

Overview The Tokeneer ID Station (TIS) [4] was a research project commis-
sioned by the US NSA (National Security Agency) to develop part of an existing
secure system in accordance with a high-integrity development process advo-
cated by Altran UK. One phase of the project involved developing and verifying
SPARK code. This comprised about 10k lines of declarations and executable
code, and 2k lines of SPARK proof annotations. All materials from this project
are now publically available.

In the formal verification of the absence of runtime errors, 7001 verification
conditions were generated and 107 user axioms were written. 40 of these user
axioms were hints to the Simplifier prover of the SPARK tool-set. All these
prover-hint axioms had outermost universal quantifiers surrounding quantifier-
free formulas involving propositional variables, equalities, function symbols and
integer arithmetic operators and constants. Some of the arithmetic involved in-
teger division operators and non-linear multiplication. The truth of the axioms
did not rely on the interpretation of any of the function symbols. It was clear
from their form that all these prover-hint axioms were expected to be tautolo-
gies. The other 67 axioms concerned properties of SPARK subprograms and of
specification functions and relations.

Inconsistency Checking Checks of u-incon goals with Z3 directly identified
two inconsistent prover-hint user axioms. One of the inconsistent axioms, in the
form in which it was written, is:

B1 and Op = Op_1 -> B2

may_be_deduced_from

[St = St_1 or (St = St_2 or St = St_3),

St_1 <> St_2,

St_1 <> St_3,

St_2 <> St_3,

St = St_1 or St = St_2 -> B1 and (B3 and Op = Op_2),

Op_1 <> Op_2,

St = S_3 -> not B1].

In this SPARK syntax for axioms, -> is implication, may_be_deduced_from is
reverse implication, <> is disequality, formulas within the [] list are implicitly
conjoined, and all the variables are implicitly universally quantified. The reason
this axiom is inconsistent is that it contains a typo: in the last line the S_3 should
be St_3. As written, the types of the equalities and inequalities are ambiguous.
Before we carried out the rule audit, we added extra type constraints to this
axiom to ensure the ambiguities were resolved.

This inconsistency was not detected with the VC of kind U-incon where all 6
user axioms for the relevant program unit were included as hypotheses. We often
observe that Z3’s performance with problems involving quantified hypotheses is
sensitive to the number and ordering of these hypotheses.

This inconsistency was only detected when we ran Z3 in its unsat-core gen-
eration mode. When we ran it in its normal mode this inconsistency was missed.
When producing unsat cores, Z3 is inhibited from making certain preprocessing
simplifications to input problems. In our case, the change happened to make a
difference to the way Z3 explored the problem search space and helped it find
the inconsistency.

The other inconsistency picked up by Z3 concerned an axiom expressing a
property of the integer division operator. Again, in SPARK axiom syntax, we
have:

X - (Y - 1) * 100 <= 200 -> Y + 1 = (X - 1) div 100 + 1

may_be_deduced_from

[100 < X - (Y - 1) * 100,

goal(checktype(X, integer)),

goal(checktype(Y, integer))] .

Here, we see how one expresses constraints on the type of variables X and Y.
Without the constraint on Y, it is unclear if Y is integer or real. To see the
falsity, consider when X = 0, Y = -1, and note that integer division in the FDL
language is real division rounded towards zero.

With the VCs of kind u-taut, Z3 demonstrated that 37 of the 40 prover-hint
axioms were indeed tautologies. Two of the 3 remaining are those shown above.
The other remaining was a false statement of non-linear arithmetic:

(B - 1) * X + A < Z may_be_deduced_from

[A < X or B < Y,

A <= X,

B <= Y,

X >= 0,

X * Y = Z] .

To see the falsity of this, consider the axiom when X = Z = A = B = 0, Y =
1. While Z3 could not prove the u-incon check for this axiom, it could prove a
variation of this check where all the system axioms were deleted. It is easy to
see that these axioms were a significant distraction: there were over 300 system
axioms, including over 100 with universal quantifiers.

These latter two axioms shown above are incorrect over-generalisations of
two VC subgoals the Simplifier prover could not prove. For example, the axiom
concerning division should have had a pre-condition that X >= 1.

The VCs the above axioms were intended as hints for are all valid. Indeed,
Z3 is able to prove them all (without these inconsistent axioms) in 10s of mil-
liseconds.

Axiom inter-relationships The u-deriv checks along with unsat cores revealed
a number of relationships between the specification axioms. For example, among
one set of axioms A1, . . . A9 for a package program unit, we had

A2 ⇒ A1,
A1 ∧A7 ⇒ A2,
A4 ⇒ A3,
A3 ∧A8 ⇒ A4,
A6 ⇒ A5,
A5 ∧A9 ⇒ A6,
A2 ⇒ A7,
A4 ⇒ A8,
A6 ⇒ A9.

Here the relationships are in the context of the system axioms. These relation-
ships can be more succinctly expressed as:

A2 ⇔ A1 ∧A7,
A4 ⇔ A3 ∧A8,
A6 ⇔ A5 ∧A9.

While one might think that axioms A2, A4 and A6 would be sufficient hints, it
appears that the Simplifier prover needed more of the axioms. For example, its
proofs made use of both A2 and A1, though A7 was unused.

Redundant Axioms The redundant axiom analysis identified 50 redundant
axioms, including the 40 prover-hint axioms. The u-deriv checks indicated that
7 of the remaining 10 specification axioms were subsumed by other specification
axioms.

5.3 Case study 2: Mixed floating-point and integer arithmetic

Overview This case study considered SPARK code of industrial origin that
comprised a collection of around 30 functions and procedures for carrying out
computations in a mix of floating point and integer arithmetic. Assertions and
user axioms were added by the company developing the SPARK code as part of
the company’s evaluation of Altran’s SPARK tool-set. Of particular interest to
us was a collection of 25 or so specification axioms that concerned conversions
from floating point numbers to integers.

In the SPARK tool-set, computations with floating-point numbers are rea-
soned about approximately by using the mathematical reals in VCs.

Inconsistency Checking The floating-point to integer conversions were char-
acterised by floor and ceiling functions which rounded towards −∞ or +∞ re-
spectively. For example, the ceiling axioms had form

c0 : ∀x : R. x ≤ k − 1⇒ ceil(x) ≤ x + 1

c1 : ∀x : R. x ≤ k − 1⇒ ceil(x) ≤ k

c2 : ∀x : R. x ≤ k − 1⇒ x ≤ ceil(x)

c3 : ∀x : R. x ≤ k − 1⇒ −k ≤ ceil(x)

Here k was an integer constant for the largest representable floating point num-
ber.

The U-incon check identified that axioms c0 and c3 were mutually contradic-
tory: consider instantiating both with −k − 2. c0 then says that ceil(−k − 2) ≤
−k−1, but c3 says that ceil(−k−2) ≥ −k. However Z3 missed a very similar U-
incon check for inconsistency between axioms for a floor function. Interestingly,
a u-deriv check succeeded involving the 2 mutually-inconsistent floor axioms as
hypotheses and an axiom involving a round to nearest function as conclusion,
though the unsat core showed the conclusion playing no formal part in the truth
of the check. Nevertheless, we suspect that the conclusion provided a hint to Z3
as to how to instantiate the hypotheses to obtain the contradiction.

Inter-relationship Checking This identified for example that c0 ⇒ c1, i.e.
that c1 is redundant if c0 is retained in sorting out the inconsistency.

6 Discussion

There are different scenarios in which one could envisage undertaking axiom au-
diting. Firstly, after a SPARK development has reached some milestone, as part
of a review process. Here the identification of inconsistencies would be of definite
interest, as would unused axioms. However, it’s not clear how much use inter-
relationship information would be. Secondly, during a SPARK development, as
user axioms are being written. Here it seems that the the axiom creator could

perhaps benefit more from the feedback provided by the inter-relationship anal-
ysis, as the feedback would help confirm and correct expectations about the
axioms.

There are questions about how representative the examples are of issues from
the previous section. The examples partly relied on the fact that the user axioms
had originally been developed with provers with significantly weaker arithmetic
capabilities than Z3. Still, non-linear arithmetic reasoning is a real challenge area
for SMT solvers, and one could expect users in the near future will still need to
provide some help with more complex non-linear VCs.

As noted, Z3 sometimes struggles and has unpredictable behaviour with han-
dling the quantifiers in axioms. This is not just an issue with Z3, all SMT solvers
have similar issues.

7 Conclusions and Future Work

We have discussed here several approaches we have investigated for checking the
quality of user-provided axioms employed in the formal verification of SPARK
Ada programs. The main approaches are to check for inconsistencies, tautologies
and dependencies in axiom sets, and to derive minimal axioms sets. We also
needed to resolve ambiguities in the axioms that were a consequence of the
particular language they were expressed in.

We have shown the value of these approaches on two case study SPARK
programs, most significantly finding inconsistent axioms in both cases.

We hope shortly to experiment with axiom auditing on much larger SPARK
examples than those case studies we have considered to date. We are also looking
for an opportunity to engage with SPARK verification engineers on a live project,
to have them explore how axiom auditing might improve their confidence in the
correctness of the axioms.

The results obtained with main approaches are dependent on the theorem
proving power of the selected prover. We have had good results with the Z3 SMT
solver, but also have seen its behaviour is not always consistent.

It is clear that large sets of system axioms can be a significant distraction to
Z3, and we need to look at pruning these axiom sets to those of obvious relevance
to the user axioms being investigated.

It would be interesting to investigate the use of other provers such as resolution-
based automated theorem provers which have more mature technology for han-
dling quantifiers, though their arithmetic support is not as strong as that of SMT
solvers. We also will consider experimenting with a testing-based approach for
attempting to falsify axioms, as described in Section 2. A relatively lightweight
way of doing this would be to exploit a feature of Victor for generating VCs in the
theory language of the Isabelle/HOL theorem prover [17], and using Isabelle’s
built-in QuickCheck procedures.

References

1. Alt-Ergo: an OCAML SMT solver for software verification, homepage at http://alt-
ergo.lri.fr/

2. CVC3: an automatic theorem prover for Satisfiability Modulo Theories (SMT),
homepage at http://cvc4.cs.nyu.edu

3. Ahn, K.Y., Denney, E.: A framework for testing first-order logic axioms in program
verification. Software Quality Journal 21, 159–200 (2013)

4. Barnes, J., Chapman, R., Johnson, R., Widmaier, J., Cooper, D., Ev-
erett, B.: Engineering the Tokeneer enclave protection software. In: Secure
Software Engineering, 1st International Symposium (ISSSE). IEEE (2006),
http://www.adacore.com/sparkpro/tokeneer

5. Barnes, J., with Altran Praxis: SPARK: the proven approach to high Integrity
Software. Altran Praxis (2012)

6. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented program. In: Formal Methods for
Components and Objects: 4th International Symposium, FMCO 2005. Lecture
Notes in Computer Science, vol. 4111, pp. 364–387. Springer (September 2006),
visit http://research.microsoft.com/en-us/projects/boogie/ for current informa-
tion on Boogie.

7. Beckert, B., Bormer, T., Klebanov, V.: On essential program annotations and com-
pleteness of verifying compilers. In: Filliâtre, J.C., Freitas, L. (eds.) Proceedings,
Workshop on Verified Software: Theory, Tools, and Experiments (VSTTE) (2009)

8. Bobot, F., Filliâtre, J.C., Marché, C., , Melquiond, G., Paskevich, A.: The why3
platform, version 0.80. Tech. rep., University Paris-Sud, CNRS, Inria (October
2012), http://why3.lri.fr

9. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd
of provers. In: Leino, K.R.M., Moskal, M. (eds.) Boogie 2011: First Interna-
tional Workshop on Intermediate Verification Languages. pp. 53–64 (August 2011),
http://proval.lri.fr/publications/boogie11final.pdf

10. Boyer, R.S., Moore, J.S.: A Computational Logic. Academic Press (1979),
http://www.cs.utexas.edu/users/boyer/acl.pdf

11. Claessen, K., Hughes, J.: Quickcheck: A lightweight tool for random testing of
haskell programs. In: Proceedings of the ACM SIGPLAN international conference
on functional programming. pp. 268–279 (2000)

12. Cohen, E., Dahlweid, M., Hillebrand, M.A., Leinenbach, D., Moskal, M., Santen,
T., Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In:
Theorem Proving in Higher Order Logics, 22nd International Conference. Lecture
Notes in Computer Science, vol. 5674, pp. 23–42. Springer (2009)

13. Crocker, D., Carlton, J.: Verification of c programs using automated reasoning. In:
Fifth IEEE International Conference on Software Engineering and Formal Methods
(SEFM). pp. 7–14. IEEE Computer Society (2007)

14. Dutertre, B., de Moura, L.: The Yices SMT solver (August 2006), tool paper at
http://yices.csl.sri.com/tool-paper.pdf

15. King, J.C.: A Program Verifier. Ph.D. thesis, Carnegie-Mellon University (1969)
16. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms for

the Construction and Analysis of Systems, TACAS. LNCS, vol. 4963, pp. 337–340.
Springer (2008)

17. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, Lecture Notes in Computer Science, vol. 2283. Springer (2002),
see http://www.cl.cam.ac.uk/research/hvg/Isabelle/ for current information

