
T
H
E

U
N I V E R

S
I
T
Y

O
F

E
D
I N B

U

R
G
H

Improved Automation for SPARK Verification Conditions

Paul Jackson and Grant Olney Passmore

Paul.Jackson@ed.ac.uk,G.Passmore@ed.ac.uk

Background

Spark is a subset of Ada which adds in assertions

such as pre-conditions, post-conditions and loop in-

variants. It is used for high-integrity applications in

the aerospace, defence, rail and security industries.

The current automatic prover for Spark program

verification conditions (VCs) typically proves fewer

than 100% of VCs. Proving the rest by manual

means or interactive prover takes specialist skills and

is very tedious. Typically assertions are restricted to

checks of exception freedom in order to keep the level

of proof automation reasonable.

Goal

The goal is to broaden the range of automatically-

checkable properties, thus speeding VC verification

and supporting use of richer assertions.

SMT solvers

An initial line of investigation has been to see how

well Smt (Sat modulo theories) solvers perform on

Spark VCs. Smt solvers are a new breed of auto-

matic prover, well suited to the kinds of problems

arising in VCs. For example they can handle lin-

ear arithmetic over the integers and reals, bit-vector

operations, and datastructures such as records and

arrays. They leverage off Sat technology for propo-

sitional reasoning and combine decision procedures

for different theories using a generic Nelson-Oppen

architecture.

VC Translator

A tool has been developed for translating Spark

VCs into a variety of different formats. The transla-

tion is 2 phase, firstly to a prover-independent stan-

dard form with full typing information, secondly to

particular prover languages. The translator can work

in an offline mode where translated VCs are written

to files or an online mode where solvers are immedi-

ately invoked on the translated VCs. For the online

mode, results are output in a database-friendly tab-

ular format, and analysis is aided by command-line

functions for merging and filtering tables.

Provers Considered

•Z3: Smt solver from Microsoft

•Yices: Smt solver from SRI

•CVC3: Smt solver from NYU and U. Iowa.

•Simplify: Legacy prover. Used in ESC/Java.

•Simplifier: Current VC prover from Praxis UK.

Case Studies

Autopilot Simulator Tokeneer

Lines of code 1075 19259 30441

No. funcs & procs 17 330 286

No. annotations 17 37 114

No. VCs 133 1806 1880

Tokeneer is a just-released case study commissioned

by NSA for evaluating Praxis’s Spark-based high-

integrity software development methodology.

Experimental Results

Smt solvers can be 10× faster than Simplifier and

can provide comparable coverage.

Z3 Yices Cvc3 Simplify Simplifier

Autopilot 96.2 95.5 96.2 96.2 97.0

Simulator 94.5 93.9 94.5 92.6 95.5

Tokeneer 94.6 94.8 94.1

Coverage of VCs (%):

Simplifier’s better coverage is because of its better

support for non-linear arithmetic.

Z3 Yices Cvc3 Simplify Simplifier

Autopilot 29 9 248 24 44

Simulator 32 12 452 26 163

Tokeneer 46 25 197

Timing (msec per VC)

VC Examples

•Proven only by Cvc3 and Simplifier

H1: s >= 0 .

H2: s <= 971 .

->

C2: 43 + s * (37 + s * (19 + s)) <= 214783647 .

•Proven only by Simplifier

->

C1: (e1 mod 971) * (e2 mod 971) >= 0 .

C2: (e1 mod 971) * (e2 mod 971) <= 2147483647 .

•Unproven by any

H1: f > 0 .

H2: f <= 100 .

H3: v >= 0 .

H4: v <= 100 .

->

C1: (100 * f) div (f + v) <= 100 .

Remarks on Experiments

•Supplementary axioms: It was useful to provide

such axioms as

∀x, y : Z. 0 < y ⇒ 0 ≤ x mod y

∀x, y : Z. 0 ≤ x ∧ 0 < y ⇒ y × (x div y) ≤ x

•Soundness: Simplify will ‘prove’
(IMPLIES

(EQ x 2000000000)

(EQ (+ x x) (- 294967296)))

because of use of machine arithmetic. A common

workaround of making large constants symbolic

was found to reduce but not eliminate instances

of unsoundness.

•Exceptions: While Z3 and Yices were generally

robust, Cvc3 and Simplify sometimes aborted on

run-time assertion failures, and Cvc3 occasionally

had a segmentation fault.

Current Activities

•Building bridges with Spark users

•Deeper analysis of prover incompletenesses.

•Further case studies

•Release of VCs in SMT-LIB, HOL, PVS formats

•Release of VC translator

Possible Directions

• Invariant generation (following Ellis and Ireland?)

•Counter-example presentation

•Proof explanation

•Tool integration architectures

Research Priorities

•Developing a HOL-Light based VC prover, inte-

grating Smt solvers and other automated provers

• Improving support for non-linear arithmetic

Non-Linear Arithmetic

Support is desired for features such as integer divi-

sion and modulus, non linear multiplication, tran-

scendental functions, axiomatically characterised

functions (e.g. square root). While problems can be

in general undecidable, often actual problems have

structure that heuristics can exploit.

Currently, Passmore has a system RAHD (Real

Algebra in Higher Dimensions) which heuristically

combines Gröbner basis calculations, semi-definite

programming and real quantifier elimination (QEP-

CAD). He is developing RAHD while visiting SRI:

RAHD is already integrated into an internal version

of SRI’s theorem prover PVS and there are plans to

integrate it into the Yices Smt solver.

Passmore is working through a corpus of problems

from John Harrison and others, and is proving goals

that up till now were unproven by automatic means.


