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Chapter 1

Introdu
tion

1.1 Purpose

This manual is a referen
e manual for version 4.1 of the Nuprl system. It is aimed at beginning

and intermediate users of the system. Version 4.1 runs on Unix-based workstations that use the X

window system.

Note that this manual is still under development and is in
omplete. Most importantly, it is

missing information on Nuprl's type theory, and the stru
ture of the primitive rules as per
eived

by users when exe
uting low-level ta
ti
s.

Information on the ML language 
an be found in a separate Nuprl ML manual. Tutorials on

the use of Nuprl's term and proof editor are also available.

1.2 Conventions

We give the 
onventions we use in this manual for presenting user input and Nuprl output.

Input whi
h you should type is presented typewriter font. For example this is in typewriter

font. The following symbols are also used:

�
spa
e

for the spa
e-bar.

�

return

for the return key (sometimes marked as \enter").

�

linefeed

for the linefeed key.

�
tab

for the tab key.

�

delete

for the delete key (sometimes marked as rubout). On some keyboards the

ba
kspa
e

has the same e�e
t.

�

mouse-left

for the left mouse button.

�
mouse-middle

for the middle mouse button.

�

mouse-right

for the right mouse button.

Modi�ed keys are presented as follows:
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� h
-xi read as \
ontrol x". Hold down a 
ontrol key and simultaneously press key x.

� hm-xi read as \meta x". Hold down a meta key and simultaneously press key x.

� h
m-xi read as \
ontrol meta x". Hold down both a 
ontrol key and a meta key, and simul-

taneously press key x.

� hs-xi read as \shift x". Hold down a shift key and simultaneously press key x.

Note that x is either a keyboard key or a mouse button; for example both h
-ai and hm-

mouse-right

i are valid modi�ed keys.. On some keyboard's (for example, those of Spar
-stations) the usual

meta keys are the keys marked 3 either side of the spa
e-bar. The hs-xi modi�er is only used with

non-printing 
hara
ters (for example,
return

).

When we say \
li
k
mouse-left

" on some part of a window, we mean that the mouse 
ursor

should be pointed at that part, and then the
mouse-left

button should be pressed.

Be aware that Nuprl 
an be quite slow to respond to keystrokes, sometimes taking several

se
onds. Don't hold keys down till you get a response. You might easily make the keys autorepeat,

whi
h 
ould be rather annoying.

For 
larity when presenting input whi
h a user might type, or output whi
h Nuprl generates, we

sometimes en
lose the input or output text in spe
ial pq quotes. For example pthis is example

outputq.

Some 
ursors in Nuprl highlight a part of window. The highlighting is indi
ated on the s
reen

by swapping the foreground and ba
kground 
olors of the display. For example, if normally the

display has bla
k 
hara
ters on a white ba
kground , then a highlighted part has white 
hara
ters

on a bla
k ba
kground. In this do
ument we indi
ate a highlighted region of the s
reen by drawing

an outline around it. For example, in the window

ML top loop

M> ' [int℄ * [int℄ ' ;;

the [int℄ * [int℄ is 
onsidered to be highlighted.

1.3 Pra
ti
al Details

1.3.1 Getting Set Up

The Nuprl system is written in a 
ombination of Common Lisp and and older diale
t of ML. We

assume here that your Nuprl administrator has already done the following:

1. Installed the Nuprl dire
tories and 
ompiled the various Nuprl �les.

2. Compiled the Nuprl Lisp and ML �les and 
reated a Lisp image (disksave) that has these

�les loaded as well as some initial Nuprl theories.

3. Set up a shell s
ript that both starts up this Lisp image and starts up Nuprl's window system.

Below, we assume that the alias nuprl has been set up for this s
ript.
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4. Installed the Nuprl font �les for X in some dire
tory font-dir where your workstation 
an

a

ess them.

To set-up, do the following:

1. Add the following lines to the start of your .xinitr
 after any initial 
omments (in parti
ular

after the �rst line if it starts #! /bin/
sh).

xset fp+ font-dir

xset fp rehash

These 
ommands tell X the font path to the nuprl fonts. The �rst time you run Nuprl you

should also run these 
ommands intera
tively in some shell to add the font path to your


urrent X environment. The 
urrent Nuprl fonts in order of size from smallest to largest are

named nuprl-8x13, nuprl-13 and nuprl-20. If you want to look at one of the fonts, use the

xfd 
ommand. For example, run in a shell:

xfd -font nuprl-13 &

2. Familiarize yourself with some editor that supports 8-bit fonts and has a 
apability for starting

sub-shells. For example, lu
id-ema
s, epo
h and ema
s version 19. Vanilla 18.xx versions

of ema
s do not support 8-bit fonts, although there are several 8-bit pat
hes available. You

should run this editor with one of the nuprl fonts.

Su
h an editor is not stri
tly ne
essary, but is a good idea for several reasons:

� Nuprl frequently writes output to Lisp's `standard output' whi
h is almost invariably

the same window as that whi
h Nuprl is started up from. If Nuprl is started up from an

editor sub-shell, it be
omes easy to review this output and save portions of it to �les.

� This output is in Nuprl's 8-bit font.

� Listings of theory �les use Nuprl's 8-bit font. These �les 
ontain de�nitions, theorems

and proofs, and it is often useful to be able to browse them.

1.3.2 Starting Up

We assume you have set things up as des
ribed in the previous se
tion.

� Start up the 8-bit ema
s you have 
hosen to use.

� Start a sub-shell. For ema
s-related editors type

hm-xishell

return

� In the sub-shell, start up nuprl. Type:

nuprl
return

8



It will take a few se
onds for Nuprl to start up. When it does, Nuprl's two main windows, the

ML-Top-Loop window and the Library window should open up on your display. The ML-Top-Loop

window should look like

ML Top Loop

M> ;;

The Lisp underlying Nuprl is running in the window in whi
h you typed nuprl. Sin
e output from

the ML Top Loop and error messages are written to this window, it is a good idea to keep it visible.

Nuprl is now ready for use.

1.3.3 Hints on Using the System

Nuprl's windows are at the \top-level" in the X environment. The windows 
an be managed

(positioned, sized, et
.) in the same way as other top-level appli
ations su
h as X-terminals.

Creation and destru
tion of Nuprl windows, and manipulation of window 
ontents, is done solely

via 
ommands interpreted by Nuprl. Nuprl will re
eive mouse 
li
ks and keyboard strokes whenever

the the input fo
us is on any of its windows. Exa
tly one window is \a
tive" at any given time;

this window is identi�ed by the presen
e of Nuprl's 
ursor. This appears either as a verti
al bar or

as a highlighted region. The spe
i�
 lo
ation of the 
ursor determines the semanti
s of keyboard

strokes and mouse 
li
ks, and is independent of the lo
ation of the mouse 
ursor.

The two main windows| the ML-Top-Loop window and the library window| remain through-

out the session and you 
annot 
reate new versions of them. Chapter 2 des
ribes use of the ML-Top-

Loop window and Chapter 3 des
ribes the format of the library window. Chapter 3 also des
ribes

the kinds of obje
ts that 
an be found in the library.

There are two other kinds of windows; term editor windows and proof editor windows. Both are

used for editing obje
ts in the library. Terms and the term editor is des
ribed in Chapter 4 and

the proof editor is des
ribed in Chapter 7.

Most Lisps allow 
omputations to be interrupted. This is usually done by sending h
-Ci to the

Lisp pro
ess. (If Lisp is started up from an ema
s sub-shell, you usually 
an do this by typing

h
-Cih
-Ci to the sub-shell window). This will 
ause Lisp to enter its debugger, from whi
h the


omputation 
an be resumed or aborted. Aborting Nuprl is almost always safe. When Nuprl is

restarted, the state should be exa
tly as it was when Nuprl was killed, ex
ept that any 
omputations

within Nuprl will have been aborted.

See Chapter A for how to use the Lisp debugger, and in parti
ular, for what to if Nuprl 
rashes.

Nuprl is a 
ontinually-evolving experimental resear
h system, and it is inevitable that it will 
ontain

bugs. Please report any behavior you think is due to a bug, or in
onsisten
ies between the operation

of the system and the do
umentation. Also report any break-points that you hit; they have either

been left in the 
ode a

identally, or they are there to help tra
k down the sour
e of bugs. We

wel
ome suggestions for improvement. Send e-mail to nuprlbugs�
s.
ornell.edu.

If the system appears to be inexpli
ably stu
k, 
he
k the window running Lisp; it is very possible

that Lisp is garbage-
olle
ting. This sometimes takes a few minutes.
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1.3.4 Exiting

When you are ready to stop, 
li
k

mouse-left

in the ML-Top-Loop window, and enter h
-zi.

This should give you a Lisp prompt (>) in the shell from whi
h you started up Nuprl. To exit Lisp,

enter

(quit)

return

in this window. It is important that you expli
itly type quit, rather than just for example quit out

of the editor Nuprlis running under. In the latter 
ase, the Lisp pro
ess 
an be left 
oating around

in a hung state, hogging memory resour
es. (This 
ould also happen if your editor 
rashes). You


an use the Unix 
ommand ps to 
he
k for a hung Lisp and the 
ommand kill to kill it.

1.3.5 Alternative Setups

Intermediate and experien
ed users will probably want to 
reate their own initialization pro
edures

for Nuprl. These 
ould allow 
ustomizations su
h as:

� Changing the initialization of Nuprl's X windows.

� Changing key-bindings for the term and proof editors.

� Loading more / di�erent theories.

� Loading more / di�erent ta
ti
s.

Depending on how signi�
ant the 
hanges are, these initialization pro
edures 
ould be run after

starting up some pre-prepared disksave, or after starting up an plain Lisp pro
ess. Users 
an of


ourse too make their own disksaves for future use.

To get an idea of how you might set up an initialization pro
edure, look at the �les in the

sys/utils/ dire
tory. You probably will want to put all your initialization 
ommands into a Lisp

�le that is automati
ally loaded whenever a plain Lisp image or disksave is started up.

Note that Nuprl runs in the nuprl pa
kage. All symbols entered in Lisp will be interpreted

relative to this pa
kage. The pa
kage inherits all the symbols of Common Lisp, but does not


ontain the various implementation-spe
i�
 utilities found in the pa
kage user (or 
ommon-lisp-

user). To refer to these other symbols, either 
hange pa
kages using (in-pa
kage "USER"), or

expli
itly qualify the symbols with a pa
kage pre�x. If you 
hange pa
kages, you 
an 
hange ba
k

to the Nuprl pa
kage using (in-pa
kage "NUPRL").

If you plan to do signi�
ant amounts of programming in Lisp, you might want to look into using

Lisp sub-shell pa
kages su
h as ILISP rather than vanilla sub-shells.

1.4 Customization

1.4.1 Window System Options

The Lisp fun
tion 
hange-options 
an be used to set various parameters a�e
ting Nuprl's window

system. The 
hange-options fun
tion takes an argument list 
onsisting of keywords and asso
iated

values. For example, to set the options :host and :font-name to moose and nuprl-20 respe
tively,

put the form
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(
hange-options :host "moose" :font-name "nuprl-20")

in your init �le. The options, together with their default values (in parentheses) are given below.

:host (NIL). The host where Nuprl windows should appear.

:title-bars? (NIL). If T then Nuprl will draw its own title bars.

:host-name-in-title-bars? (T). If T, then the title of ea
h window will in
lude a

substring indi
ating what host the Lisp pro
ess is running on.

:no-warp? (T). If T then Nuprl will never warp the mouse. (Mouse warps apparently

annoy some users.) In environments where the position of the mouse determines input

fo
us, setting this option to NIL will guarantee that Nuprl retains input fo
us when

windows are 
losed.

:frame-left (30), :frame-right (98), :frame-top (30), :frame-bottom (98). Ea
h

of these should be a number between 0 and 100. They give the boundaries, in terms

of per
entage of s
reen width or height, of an imaginary frame within whi
h Nuprl will

attempt to pla
e most new windows.

:font-name ("nuprl-13"). The name (a string) of a font to use for the 
hara
ters in

Nuprl windows. Nuprl uses a spe
ial 8-bit font. Currently two are available: nuprl-13

and nuprl-20.

:
ursor-font-name ("
ursor"), :
ursor-font-index (22). The name of the font to

use for the mouse 
ursor when it is over a Nuprl window, and an index into that font.

The default font should always be available.

:ba
kground-
olor ("white"). The 
olor for the ba
kground in Nuprl windows. The

value must be a string argument naming a 
olor. Any 
olor in the X-server's default


olormap may be used. Nuprl will get a Lisp error (entering the Lisp debugger) if the


olor does not exist.

:foreground-
olor ("bla
k"). The 
olor for 
hara
ters et
. in Nuprl windows.

1.4.2 Editor Options

The key bindings for the term and proof editors 
an be altered by 
reating your own key ma
ro

�les and loading them instead of the standard ones in a Lisp initialization �le.

1.5 Dire
tory Stru
ture

Nuprl is 
urrently maintained with the help of the CVS version 
ontrol system. All the Nuprl 
ode

resides in a single CVS module 
alled nuprl4. The main parts of the dire
tory stru
ture as of

January 29th 1994 are as follows:
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Dire
tory Contents

lib/

lib/ml/ All ML 
ode

lib/ml/standard/ Standard ML sour
e fun
tions and ta
ti
s

lib/theories/ All Nuprl Theories

lib/theories/standard/ Basi
 Theories

lib/theories/algebra/ Abstra
t Algebra Theories

lib/theories/reals/ Real Analysis Theories

sys/ All Lisp 
ode

sys/ml/ Lisp for ML 
ompiler and interpreter

sys/prl/ Lisp for Editors and Re�ner

sys/utils/ Utilities for loading system

ma
ro/standard/ Editor 
ustomization

do
/ Do
umentation

do
/man/ This Referen
e Manual

do
/ml/ Nuprl ML Manual

do
/tutorials/ Introdu
tory Tutorials

do
/sys/ System do
umentation

All dire
tories should eventually 
ontain a =README �le that des
ribe their 
ontents.

1.6 Learning to use the System

1.6.1 Tips

A few tips are as follows:

� We re
ommend that you run through the Nuprl term and proof editing tutorials before trying

to do anything else with the system.

� The Nuprl ML manual 
ontains a tutorial in the use of ML. Use this as an introdu
tion to

ML.

� In learning the proof and term editors, 
he
k out all the mouse 
ommands. Many editing

operations 
an be done most easily with the mouse.

� Familiarize yourself with where Nuprl theories are kept and how they are organized. (See

Se
tion 1.5 and Se
tion 10.1.) Existing theories are an ex
ellent resour
e for learning about

how to do proofs. In parti
ular, you 
an use the Unix grep 
ommand to sear
h theory listings

to �nd examples of uses of ta
ti
s you are 
urious about.

We re
ommend that fairly early on, you at least browse through this manual, familiarizing

yourself with the general 
ontents of ea
h 
hapter. This will help you know where to look if you

have questions.
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1.6.2 The Nuprl Book

The Nuprl book Implementing Mathemati
s with the Nuprl Proof Development System, Constable

et al, published in 1986, is still a good ba
kground referen
e. However, the system has 
hanged

suÆ
iently that none of the tutorials given in the book will work in the 
urrent system. The

\referen
e" portion, ex
luding the parts of Chapter 8 on the type system and its semanti
s, is

superseded by this referen
e manual. Chapter 9 in the referen
e portion also 
ontains some useful

examples and dis
ussions of ta
ti
 writing that are not reprodu
ed here. The \advan
ed" portion

of the book deals with appli
ation methodology, gives some extended examples of mathemati
s

formalized in Nuprl, and also des
ribes some extensions to the type theory whi
h have not been

implemented.

Substantial 
hanges have been made to Nuprl sin
e the book was written. The most major ones

are:

� An X-windows interfa
e has been added.

� All Nuprl terms now have a uniform term stru
ture.

� Rules are now alterable library obje
ts, rather than being hard-wired.

� New display form and abstra
tion fa
ilities repla
e the old de�nition fa
ility.

� A substantial ta
ti
 
olle
tion has been added.

� ML utilities have been added to format library and proof listings for Latex.
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Chapter 2

ML Top Loop

2.1 Introdu
tion

The ML Top Loop provides an intera
tive interfa
e to ML. You 
an use it to evaluate ML expressions

and de
larations. Spe
i�
 Nuprl-related uses for the ML Top Loop in
lude:

1. 
ontrolling the library window,

2. loading and dumping theories,

3. editing library obje
ts,

4. exploring the Nuprl state,

5. experimenting with Nuprl fun
tions.

6. loading ML �les,

The ML-Top-Loop runs in its own Nuprl window whi
h is 
reated when Nuprl is started up.

This window is a term editor window, so most of the 
ommands des
ribed in Chapter 4 work in it.

The rest of this se
tion is divided in two. The �rst part introdu
es you to the ML Top Loop,

and tells you enough about it to get started with the Nuprl system. This part does not assume

familiarity with Chapter 4. It should be suÆ
ient for you to work through the ML examples in the

tutorial se
tion of the Nuprl ML Manual. The se
ond part des
ribes in more detail the fun
tionality

of the top loop, and does assume you have some familiarity with the 
ontents of Chapter 4.

2.2 Basi
 Top-Loop Operation

Initially the top loop window looks like:

ML Top Loop

M> ;;
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The M> is the ML prompt. The ;;'s are the usual termination 
hara
ters for ML expressions and

de
larations. The top loop always supplies these; you never have to type them yourself. The is

the 
ursor. To di�erentiate it from other kinds of 
ursors we 
all it a text 
ursor. You 
an type

text whenever you have a text 
ursor. Other kinds of 
ursors are s
reen 
ursors and term 
ursors.

These have redily distinguishable appearan
es; a s
reen 
ursor outlines a single 
hara
ter, and a

term 
ursor highlights a region of the s
reen.

The basi
 top loop 
ommands are summarized in Table 2.1.

x insert-
har-x insert 
hara
ter x

return

ml-evaluate 
all ML evaluator

hs-

return

i insert-newline add line-break

mouse-left

set-point-to-mouse move 
ursor to mouse position

h
-Fi s
reen-right move 
ursor right 1 
hara
ter

h
-Bi s
reen-left move 
ursor left 1 
hara
ter

h
-Pi s
reen-up move 
ursor up 1 
hara
ter

h
-Ni s
reen-down move 
ursor down 1 
hara
ter

h
-Di delete-
har-right delete 
har to right of 
ursor

delete

delete-
har-left delete 
har to left of 
ursor

h
-Ri ml-history-prev s
roll ba
k through history

hm-Ri ml-history-next s
roll forward through history

h
-Zi exit-top-loop return to Lisp Listener

Table 2.1: Basi
 Top Loop Commands

For 
onvenien
e, many of the key bindings for the basi
 
ommands have been made similar to

those used in ema
s. Some of these bindings are 
ontext senstive; spe
i�
ally the insert-
har-x,

ml-evaluate, insert-newline,delete-
har-right and delete-
har-left all rely on there

being a text 
ursor.

Output from evaluation is usually printed out to the shell from whi
h Nuprl has been invoked.

For this reason you will want to keep the shell window visible and perhaps immediately above the

ML-Top-Loop window.

To evaluate an ML expression, type in the expression at a text 
ursor, just after the M> prompt,

and then use ML-evaluate. For example, if you type:

2+2
return

Nuprl responds by evaluating the expression, and printing to the prl-shell the value of the expression

(4) and its type (int):

M> 2+2 ;;

4 : int

To 
orre
t input you type, use the delete-
har-before and delete-
har-after 
ommands.

To move the 
ursor around, you 
an use s
reen-up,s
reen-down,s
reen-left and s
reen-

right. Alternatively you 
an use the mouse: To get a text 
ursor between two given 
hara
ter
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positions, 
li
k
mouse-left

with the mouse pointing at the 
hara
ter position to the right. Using

the 
ursor motion 
ommands you will doubtless en
ounter the other kinds of 
ursors. Nuprl uses

these other 
ursors when a text 
ursor is inappropriate. These 
ursors don't destru
tively modify

the display. If you get one, 
ontinue to use the s
reen-* 
ommands or

mouse-left

to get ba
k

to a text 
ursor.

To get a 
ontinuation line for a 
ommand, key hs-

return

i. The 
ontinuation prompt is >.

For example, if you entered:

1+2+hs-

return

i3+4

you would get:

ML Top Loop

M> 1+2+

> 3+4 ;;

The 
ontinuation prompt behaves mu
h like a 
hara
ter, in that you 
an use the delete-
har-*


ommands to delete it.

The ML Top Loop maintains a 
ommand history going ba
k to the start of a session. Use the

ml-history-* 
ommands to s
roll ba
k and forth through the history.

To exit the ML Top Loop and return to Lisp, use the exit-top-loop 
ommand.

O

asionally you 
an get the ML Top Loop into an unexpe
ted state. In this 
ase, you 
an

re-initialize the ML-Top-Loop window by deleting the existing term in the window, and then using

the initialize 
ommand. The keystroke sequen
e for doing this from any position in the window

is hm-<ih
m-Kih
m-Ii. This will not disrupt your 
ommand history.

Nuprl error messages are both output to the shell and for 
onvenien
e displayed in highlighted

text in the ML-Top-Loop window. These messages don't 
hange the 
ontents of the window in

any way, and any keystroke or mouse-
li
k dire
ted at the ML-Top-Loop window 
auses the error

display to go away.

Errors 
an 
ome from various sour
es. For example, a message is generated if you type an

expression for evaluation into ML Top Loopand the expression doesn't parse or type-
he
k prop-

erly. In this event, the most appropriate keystroke is ml-history-prev to re
all the in
orre
tly

entered expression. Error messages are also 
reated when, during the 
ourse of evaluation of an

ML expression, an ex
eption is generated and un
aught.

Similar error messages appear in rulebox windows when something goes wrong with the entry or

evaluation of a ta
ti
. In this 
ase, harmless keystrokes to use to make the message vanish in
lude

the s
reen motion 
ommands and
mouse-left

.

2.3 More Advan
ed Top-Loop Operation

The ML-Top-Loop is 
on�gured to support in general a sequen
e of ML prompts. Prompts 
an be

inserted and deleted using the usual sequen
e 
ommands des
ribed in Se
tion 4.4.6.

With more than one prompt, there are several alternatives for evaluating an ML expression.

The relevant 
ommands are summarized in Table 2.2.
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return

ml-eval-s
roll-update

h
-
return

i ml-eval-s
roll

hm-
return

i ml-eval-update

h
m-
return

i ml-eval

Table 2.2: Additional Top Loop Commands

the e�e
t of

return

(now ml-eval-s
roll-update) is to evaluate the ML text in the prompt


ontaining the 
ursor, e
ho the result of the valuation in a �eld just beyond the prompt, and then

s
roll the sequen
e up one prompt so that the topmost prompt is deleted and a fresh prompt is

added at the bottom.

ml-eval-s
roll is like ml-eval-s
roll-update ex
ept that the result of evaluation is not

reported. This is useful when for instan
e you don't 
are about the value of the evaluation, or

the display of the result would be rather large and would undesirably alter the formatting of the

ML-Top-Loop window.

ml-eval-update is likeml-eval-s
roll-update ex
ept that the prompt sequen
e isn't s
rolled.

With ml-eval the ML expression at the prompt is evaluated and left in pla
e. The output

isn't inserted after the prompt and the prompt sequen
e is not s
rolled.

The above 
ommands 
an be used to evaluate the ML expression at any ML prompt in a prompt

sequen
e, not just the last one. New output text generated by evaluating a 
ommand overwrites

old output text.

The result of every ML expression evaluation is always also e
hoed to the shell window from

whi
h Nuprl is started up. Also, every evaluated expression is still always inserted onto the history

list and still always 
an be retrieved using the history s
rolling 
ommands.

2.4 Alternative Top Loops

If the lisp �le ml-
md is loaded at a lisp prompt in the shell window before starting up Nuprl's

window system (or after resetting it by evaluating the Lisp expression (reset) ), then starting up

Nuprl does not 
ause the 
reation of an ML-top-loop window, and instead, an ML top loop to be

established in the shell window.

The ML prompt in the shell is ML> . ML expressions typed at this prompt should be terminated

with ;;

return

to have them evaluated.

Input fo
us must be manually transferred between the shell window and Nuprl's own windows:

to transfer from the shell to Nuprl, use x

return

. To transfer ba
k, use

tab

. To move from

Lisp to the ML prompt, evaluate (nuprl) at the Lisp prompt as before, and to move ba
k to Lisp,

evaluate exit()

return

at the ML prompt.

Of 
ourse, none of the term-editing fa
ilities are available at this ML prompt.

Though rather rudimentary, this top loop is sometimes useful. For example, when developing

ML 
ode, ML expressions and de
larations for evaluation 
an be 
ut and pasted into this top loop.

To work with both kinds of top loop, view the 
omment obje
t 
md. This 
ontains an ML

prompt term, and fun
tions virtually exa
tly as the term-editor top loop des
ribed above.

In general, ML prompt terms 
an be 
opied into other term editor obje
ts, and they still

fun
tion as top loops. It is straightforward to set up obje
ts that 
ontain sequen
es of prompts

already initialized with frequently evaluated ML expressions.
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If you want to swit
h ba
k to having a dedi
ated top loop window and no top loop in the shell

window, then reset Nuprl, load the �le ml-edit-
md and restart Nuprl.
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Chapter 3

The Library

3.1 Introdu
tion

Nuprl's library is a mathemati
al and logi
al database. The library is 
omposed of obje
ts. There

are obje
ts for theorems and de�nitions, and also for example obje
ts whi
h 
ontrol the visual

appearan
e of the mathemati
al notation. See Se
tion 3.2 for a list of obje
t types.

Library obje
ts are grouped into theories. Every obje
t belongs to exa
tly one theory. As

yet, there is no nesting of theories. The dependen
ies of theories on one-another forms a partial

order. Within ea
h theory, obje
ts are ordered linearly. The dependen
ies of library obje
ts on one

another is dis
ussed more in Se
tion 3.5. Theories are kept in �les. In a Nuprl session, one usually

loads into the library only those theories that one needs to referen
e. These theories would in
lude

the theories of immediate interest together with the all the an
estors of those theories.

The library window shows information on a segment of the library. The format of the window

is dis
ussed in Se
tion 3.3. Commands for 
ontrolling the library window, editing the library and

loading and dumping theories are dis
ussed in Se
tion 3.4.

Note that proofs are stored in a 
ompressed format in �les, and expansion of proofs loaded from

�les is only on demand. Expansion 
an often be quite slow. See Se
tion7.7 for details.

3.2 Obje
ts

There are seven kinds of obje
ts:

rule

A rule obje
t de�nes a primitive rule of the obje
t logi
.

theorem

A theorem obje
t 
ontains a proposition and a proof. If the proof is 
omplete, the proposition

is a theorem. If in
omplete, a 
onje
ture. A proof maybe 
ompressed or expanded. Theorems

are sometimes referred to as lemmas. A theorem obje
t for a 
omplete theorem also 
ontains

the extra
t term of the theorem.

abstra
tion

An abstra
tion obje
t introdu
es the de�nition of a new term.
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ml

An ml obje
t 
ontains ML 
ode.

display

A display obje
t de�nes display forms for primitive terms and abstra
tions.

pre
eden
e

A pre
eden
e obje
t assigns pre
eden
es for terms. Pre
eden
es 
ontrol the automati
 paren-

thesization of terms.


omment

A 
omment obje
t 
ontains a 
omment. Comments have no logi
al signi�
an
e.

Theorem obje
ts are dis
ussed more in Chapter ?? and the rest of the kinds of obje
t are

dis
ussed more in Chapter 4.

Every obje
t has asso
iated with it a status, either raw, bad, in
omplete or 
omplete, indi
ating

the 
urrent state of the obje
t. A raw status means an obje
t has been 
hanged but not yet 
he
ked.

A bad status means an obje
t has been 
he
ked and found to 
ontain errors. An in
omplete status

is meaningful only for theorem obje
ts and signi�es that its proof 
ontains no errors but has not

been �nished. A 
omplete status indi
ates that the obje
t is 
orre
t and 
omplete.

3.3 Library Window

The library window displays a linear segment of the library, one obje
t per line. When theories are

loaded into the library, they are always pla
ed in a linear order.

An example library display is shown in Figure 3.1. From left to right ea
h line 
ontains:

status

One 
hara
ter: ? for raw, - for bad, # for in
omplete and * for 
omplete.

kind

One 
hara
ter: R for rule, t and T for theorem, A for abstra
tion, M for ML, D for display, L

for latti
e (the old name we used for the pre
eden
e obje
t) and C for 
omment. The lower


ase \t" is used for 
ompressed theorems and the upper 
ase \T"for expanded theorems.

name

The name of the obje
t.

summary

The �rst few 
hara
ters of the obje
t's 
ontents.

3.4 Library ML Fun
tions

These fun
tions are all most 
ommonly typed in at the ML Top-Loop. One is free to de�ne

abbreviations or alternative ML fun
tions in terms of these primitives

1

The fun
tions take the

following kinds of arguments:

1

The user should 
onsult the ML �le 
ommands.ml for details on writing his or her own library fun
tions.
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Library � leo

*C num thy 1 begin ************ NUM THY 1 ************�

*D divides df <b:int:*> | <a:int:*>== dividesfg(<b>;

*A divides b | a == 9
:Z. a = b * 


*t divides wf 8a:Z. 8b:Z. (a | b 2 Pf1g)

*t 
omb for divides wf (�a,b,z.a | b) 2 (a:Z ! b:Z ! #fTrueg ! Pf1g)

*t zero divs only zero 8a:Z. 0 | a ) a = 0

*t one divs any 8a:Z. 1 | a

*t any divs zero 8b:Z. b | 0

*t divides invar 1 8a:Z. 8b:Z. a | b() -a | b

*t divides invar 2 8a:Z. 8b:Z. a | b() a | -b

*t divisors bound 8a:N. 8b:N

+

. a | b ) a � b

*t divides of absvals 8a:Z. 8b:Z. |a| | |b|() a | b

*t divides reflexivity 8a:Z. a | a

*t divides transitivity 8a:Z. 8b:Z. 8
:Z. a | b ) b | 
 ) a | 


*t divides anti sym n 8a:N. 8b:N. a | b ) b | a ) a = b

*t divides anti sym 8a:Z. 8b:Z. a | b ) b | a ) a = � b

*t divisor of sum 8a:Z. 8b1:Z. 8b2:Z. a | b1 ) a | b2 ) a | b1 + b2

*t divisor of mul 8a:Z. 8b:Z. 8
:Z. a | b ) a | b * 


*t divides mul 8a:Z. 8b:Z. a | b ) (8n:Z

�0

. n * a | n * b)

*t divisor bound 8a:N. 8b:N

+

. a | b ) a � b

*t divides iff rem zero 8a:Z. 8b:Z

�0

. b | a() a rem b = 0

Figure 3.1: The Library Display Window

obname

An ML string. The name of an obje
t. A

eptable names are 
omposed from the alphabet

pa�zA�Z0�9 q. The �rst 
hara
ter should be a letter.

pla
e

An ML string. The name of an obje
t. The library position understood is immediately before

the obje
t named. "last" may be used to refer to a �
titious obje
t after the last obje
t in

library.

n

A non-negative number.

()

This is the unique inhabitant of the ML type unit.

Remember that ML strings are always en
losed in p"q 
hara
ters, and that ML fun
tions are

always terminated by p;;q. Some 
ommands take lists as arguments; ML Lists are delimited by

p[℄'sq and use p;q to separate items. Further utility fun
tions related to the library are des
ribed

in Appendix ???.

3.4.1 Library Window Motion

jump obname

Position obje
t obname at the top of window.

up n
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S
roll window up n lines.

down n

S
roll window down n lines.

top ()

Position window at top of library

bottom ()

Position window at bottom of library

3.4.2 Library Editing

view obname

The obje
t obname is displayed in a new window. If the obje
t is not already being viewed

the new view will be fully editable; otherwise, it and all other views of the obje
t will be made

read-only. The header line of the view will say SHOW for a read-only view and EDIT for an

editable view.

The editor used depends on the kind of obje
t. The proof editor is used on theorem obje
ts,

while the term editor is used for all other obje
ts. For more information on the proof editor see

Se
tion 7.6 and on the term editor, see Se
tion 4.4

If view is used on a theorem obje
t with an 
ompressed proof, expansion of the proof is for
ed.

This may take some time, espe
ially if the proof is large.


reate rule obname pla
e


reate thm obname pla
e


reate abs obname pla
e


reate ml obname pla
e


reate disp obname pla
e


reate 
om obname pla
e


reate lat obname pla
e

Create new obje
ts of the appropriate kind with name obname, and position it before obje
t

pla
e.

rename old-obname new-obname

Rename obje
t old-obname to new-obname.

delete obname

Delete obje
t obname from the library.

delete obje
ts from-obname to-obname

Delete the range of obje
ts from from-obname to obje
t to-obname in
lusive.


he
k obname

Che
k obje
t obname. If ne
essary, the library window is redisplayed to show the obje
t's new

status.

Che
king a rule, abstra
tion, pre
eden
e or display form obje
t 
auses the obje
t's 
ontents

to be veri�ed. See Se
tion ??? for a des
ription of what veri�
ation involves. If the obje
t is

well-formed, it is in
orporated into the Nuprl environment.

When is 
he
king ne
essary??? After all one always 
he
ks on loading and exiting an obje
t...

Che
king an ML obje
t invokes the ML reader on the obje
t's 
ontents.
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Che
king a theorem obje
t, for
es expansion of its proof, if the proof was initially 
ompressed.

Note that this might take a while. See Se
tion7.7 for details.

What is e�e
t on extra
tion???

Che
king a 
omment obje
t has no e�e
t, other than to 
hange the status of a raw 
omment

obje
t to 
omplete.


he
k obje
ts from-obname to-obname

Che
k from obje
t from-obname to obje
t to-obname in
lusive. Stop if the status of any obje
t


hanges on 
he
king. This prevents a 
as
ade of further status 
hanges whi
h might be 
aused

by this status 
hange.

move obname pla
e

Move obje
t obname before obje
t pla
e.

move obje
ts from-obname to-obname pla
e

Move the range of obje
ts from from-obname to obje
t to-obname in
lusive to immediately

before obje
t pla
e.

3.4.3 Theory Commands

Ea
h theory has an identi�er and is asso
iated with a �le. Ea
h theory also has a set of immediate

an
estors whi
h it is dependent on. Commands are provided to set up new theories, load theories,

dump theories, and print theories.

Theories are named by ML strings. The 
onventions for naming theories are the same as for nam-

ing library obje
ts explained at the beginning of this se
tion. Ea
h theory is asso
iated with a �le.

The value of the ML referen
e variable theory filenames : (string # string) list is a list of

pairs of theory names and names of asso
iated �les. The �lenames in
lude a full pathname, but do

not have any extension. For example, a valid �lename string is p nuprl/lib/standard/
ore 1q.

The a
tual �le asso
iated with a theory is this name with a p.thyq extension. Examine the

theory filenames variable to �nd out the theories that Nuprl knows about at a given time.

set theory filename theory-name �le-name

Add entry in theory filenames list for theory-name. If an entry already exists for theory-name,

update that entry.

show theory filename theory-name

Show entry in theory filenames list for theory-name.

Theory dependen
ies are re
orded by the value of the theory an
estors : (string # string

list) list referen
e variable. Ea
h entry in this list is a pair of a theory's name and a list of

names of other theories that the theory is immediately dependent on. There are ML fun
tions to


ompute the 
losure of this graph as and when ne
essary.

set theory an
estors theory-name theory-an
estor-list

Add entry in theory an
estors list for theory-name. If an entry already exists for theory-name,

update that entry.

show theory an
estors theory-name

Show entry in theory an
estors list for theory-name.
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Typi
ally one adds a few dummy theories to theory an
estors to simplify the des
ription of the

ordering of theories.

The theories loaded in a Nuprl session are generally a subset of the theories that Nuprl knows

about. Between sessions, modi�ed theories should always be expli
itly saved. The fun
tions for

loading and dumping theories are:

load theory theory-name

Load theory-name at the end of the library from the asso
iated �le. If theory-name has already

been loaded, this fun
tion has no e�e
t. Every non-theorem obje
t is 
he
ked as it is loaded.

load theories with an
estors theory-name-list

Load the theories named in theory-name-list at the end of the library, together with any an
estor

theories that haven't yet been loaded. Theories are loaded in an order 
onsistent with their

dependen
ies. Every non-theorem obje
t is 
he
ked as it is loaded.

dump theory theory-name

dump theory-name to the asso
iated �le. This leaves the theory theory-name in pla
e in the

library.

Other utility fun
tions are:

list theories ()

List all the 
urrently loaded theories. This is very useful if you are not sure whi
h theories are

loaded and whi
h not.

delete theory theory-name

Delete theory-name from the 
urrent library. Does not a�e
t the �le asso
iated with the theory.

short print theory theory-name

Create print-�les for theory-name. theory-name must be loaded for this to work. If the asso-


iated �le-name is �le-name, then two �les are 
reated; �le-name.prl and �le-name.tex. �le-

name.prl is a �le viewable by an editor running with Nuprl's spe
ial 8-bit font. �le-name.tex

is a self-
ontained L

a

T

E

Xversion of the theory listing.

long print theory theory-name

This is similar to short print theory ex
ept that proofs and extra
ts of all theorems are also

in
luded. The �les 
reated have names �le-name long.prl and �le-name long.tex.

The theory theory-namealways begins with 
omment obje
t theory-name begin and ends with


omment obje
t theory-name end. The names of these obje
ts are important. Most of the theory

fun
tions rely on these delimiter obje
ts being named the way they are. However, the user is free

to alter the 
ontents of these obje
ts to his or her liking. A useful fun
tion is:

add theory delimiters theory-name

Add delimiter obje
ts for the new theory theory-name to the end of the library.

There are variants on the load fun
tions whi
h 
he
k (and therefore expand) theorem obje
ts at

load time. They are:

load fully theory theory-name

Load theory-name at the end of the library from the asso
iated �le. If theory-name has already

been loaded, this fun
tion has no e�e
t. Every obje
t is 
he
ked as it is loaded.
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load fully theories with an
estors theory-name-list

Load the theories named in theory-name-list at the end of the library, together with any an
estor

theories that haven't yet been loaded. Theories are loaded in an order 
onsistent with their

dependen
ies. Every obje
t is 
he
ked as it is loaded.

3.5 Obje
t Dependen
ies and Ordering

A 
orre
t library in Nuprl is one where every de�nition and theorem refers only to obje
ts o

urring

previously in the library. Unfortunately, Nuprl does not guarantee that this property is maintained

when fun
tions are used that modify the library. For example, it is possible to 
reate a 
ir
ular


hain of lemma referen
es.

There is only one way to guarantee that a theory (or 
olle
tion of theories) is 
orre
t. This is

to load it (them, sequentially) using one of the load-fully fun
tions des
ribed at the end of the last

se
tion. This will for
e a theorem's proof to be expanded before the theorem is loaded into the

library, and so guarantee that proofs only referen
e theorems that o

ur previously in the library.

Loading without using these load-fully fun
tions and then using 
he
k obje
ts or 
he
k theory

will not guarantee that the library is 
orre
t, sin
e during the 
he
king of a theorem, all later the-

orems will be present in the library and will retain the statuses they had when they were dumped.

However it is re
ommended that one always pre
eed a load-fully 
he
k, by loading the relevant

theories without expanding theorems, and then using 
he
k obje
ts or 
he
k theory. There are

two reasons for this. Firstly, just to 
he
k that all proofs do indeed expand properly. Se
ondly,

the 
urrent load-fully fun
tions will blithely 
ontinue loading a library after an error has o

urred,

often 
reating a 
as
ade of further errors. This bad behaviour will be 
orre
ted in the near future.

Nuprl does do some dependen
y 
he
king with de�nitions. For example, if a de�nition is deleted

then the status of any entry depending on these obje
ts is set to bad.

Be
ause of the general la
k of dependen
y 
he
king, a user must be 
areful to keep library

obje
ts 
orre
tly ordered or reloading may fail. The move fun
tion 
an be used to repair in
orre
t

orderings and ensure that obje
ts o

ur before their uses.

Here is a list of some of the main obje
t dependen
ies one should be aware of:

� Theorems on other theorems. Ea
h theorem should only depend on theorems o

urring earlier

in the library. Note that several kinds of theorems are referen
ed automati
ally by Nuprl

ta
ti
s. For example, well-formedness theorems (theorems whose names end in p wfq) and

various support lemmas used by the rewrite pa
kage.

� Theorems on abstra
tions. A theorem shouldn't refer to an abstra
tion before it is de�ned.

� Abstra
tions on abstra
tions. The right-hand-side of an abstra
tion should only refer to

absta
tions de�ned earlier in the library. Note that abstra
tions should not be re
ursive.

� ML obje
ts on theorems, abstra
tions and other ML obje
ts ML obje
ts frequently assume

the existen
e of 
ertain theorems and abstra
tions. For example, one might in
lude in an

ML obje
t a rewrite ta
ti
 whi
h referen
es a set of lemmas. One should always 
onsider the

introdu
tion of su
h dependen
ies 
arefully. Continuing the example, if one were to 
hange

one of the lemmas would one want the rewrite ta
ti
 to automati
ally use this 
hange? Many

fun
tions whi
h a

ess obje
ts in the library 
an be written in a lazy fashion, su
h that they
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look up the obje
t, only when they are 
alled. Su
h fun
tions however might be 
onsiderably

less eÆ
ient than ones whi
h do need to do a fair amount of prepro
essing. Ideally, one wants

to just do this prepro
essing on
e. Below we dis
uss the use of 
a
hes to resolve this partial

evaluation problem.

� Theorems on ML obje
ts Theorems 
an be proved using ta
ti
s and other ML fun
tions de�ned

in ML obje
ts, so needless to say, those theorems should o

ur later in the library than the

ML obje
ts they are dependent on.

In addition, there are other dependen
ies one should be aware of:

� ML �les on theories. It is desirable to be able to 
ompile all ML �les without having to

have all theories a-priori loaded, so in general any dependen
ies should be of the lazy variety

as explained earlier. It is a very bad idea to have 
ompiled ML �les dependent on fun
tions

de�ned in ML obje
ts; whenever an ML fun
tion is 
ompiled, it is timestamped, and referen
es

between ML fun
tions keep tra
k of these timestamps. All fun
tions in ML obje
ts are


ompiled afresh every time the obje
ts are loaded, so if one were to load ML �les 
ompiled in

an earlier session, one 
ould have stale fun
tion referen
es whi
h would result in ML 
rashing.

� Theories on ML �les This is �ne. We will soon be extending the theory me
hanism so that

one 
an spe
ify optional ML �les to only be loaded when 
ertain theories are loaded.

� Ca
he Dependen
ies. The ML ta
ti
 system maintains a fair amount of state, mu
h in the

form of prepro
essed lemmas. We have an in
remental update strategy for many of these


a
hes to ensure that they tra
k 
hanges in the library state, so for most purposes these


a
hes are invisible to the user. However, to date, not all the 
ode for 
a
hes has been

updated to use this in
remental strategy, so for example, one might run into situations where

the system refuses to a
knowledge that one has added a missing lemma. In these situations,

exe
uting the fun
tion reset 
a
hes : unit -> unit might help. Ca
hes are dis
ussed in

Chapter 9.

3.6 Future Developments

The theory me
hanism was only added to Nuprl fairly re
ently and there are some obvious en-

han
ements whi
h need to be made. For example,

� namespa
e management

� automati
 dependen
y 
he
king

� support for maintaining sets of 
onje
tured theorems, so one 
an develop theories in other

orders than foundations �rst in a sytemati
 way.
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Chapter 4

Terms

4.1 Introdu
tion

In Nuprl, a term is a tree data-stru
ture. The stru
ture of terms is explained in detail in Se
tion 4.2.

Terms have a variety of uses.

� All propositions in Nuprl's logi
 are represented as terms, as are all expressions and types in

its type theory. We refer to them sometimes as obje
t-language terms.

� Nearly all library obje
ts are represented as terms. We refer to these terms as system-language

terms.

Terms are Nuprl's equivalent of Lisp's S-expressions; they are used as a general-purpose uniform

data-stru
ture.

Terms are either primitive or abstra
t. Primitive terms have �xed pre-de�ned meanings. Ab-

stra
t terms or abstra
tions are de�ned in abstra
tion library obje
ts as being equal to other terms.

An abstra
tion is unfolded when it is repla
ed by the right-hand side of its de�nition. Abstra
tions

are dis
ussed in Chapter 5.

The visual appearan
e of a term is governed by its display forms. These are de�ned in display-

form library obje
ts. Display forms are des
ribed in detail in Chapter 6.

Terms are intera
tively edited and viewed using a stru
tured editor. This editor is des
ribed in

Se
tion 4.4.

4.2 Term Stru
ture

4.2.1 Overview

Here we give an abstra
t view of the term data-stru
ture. Details follow in Se
tion 4.2.2.

Let variables be some in�nite 
lass of atomi
 individuals. The 
lass of terms as the least set of

expressions su
h that:

� if v is a variable, then v is a term,
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� if for 1 � i � n we have that x

i

1

; : : : ; x

i

a

i

are variables, t

i

is a term, and we de�ne

s

i

= x

i

1

; : : : ; x

i

a

i

:t

i

then

opidfp

1

:k

1

; : : : ; p

m

:k

m

g(s

1

; : : : ; s

n

)

is a term.

We name the parts of a term as follows:

� opidfp

1

:k

1

; : : : ; p

m

:k

m

g is the operator.

The parts of the operator are:

{ opid is the operator identi�er.

{ p

j

:k

j

is the jth parameter. p

j

is its value, and k

j

is its type.

� The tuple ha

1

; : : : ; a

n

i where a

j

� 0 is the arity of the term.

� s

i

= x

i

1

; : : : ; x

i

a

i

:t

i

is the ith bound-term of the term. This bound-term binds free o

urren
es

of the variables x

i

1

; : : : ; x

i

a

i

in t

i

.

When writing terms, we sometimes omit the bra
kets around the parameter list if it is empty.

4.2.2 Details

Terms are implemented in the 
urrent Nuprl system in Lisp. You should rarely have to work with

terms at the Lisp level. Rather you either use the term editor to view and edit terms, or a set of

term-related fun
tions in ML.

We des
ribe here the the 
urrent parameter types, the a

eptable strings for opids, parameters,

and variables, and the implementation of these strings from the ML point of view.

The 
urrent parameter types and asso
iated values are:

natural

natural numbers (in
luding 0). Implemented using ML type int. A

eptable strings are

generated by the regular expression [0� 9℄

+

.

token


hara
ter strings. Implemented using ML type tok. A

eptable strings 
an draw from any

non-
ontrol 
hara
ters in Nuprl's font.

string


hara
ter strings. Implemented using ML type string. A

eptable strings 
an draw from

any non-
ontrol 
hara
ters in Nuprl's font.
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variable

Names of variables. Implemented using ML type var. A

eptable strings draw on the alpha-

bet pa�zA�Z0�9 -%q. The % 
hara
ter

has a spe
ial use. See Se
tion 7.2. The empty string is not an a

eptable name for a variable

parameter.

level-expression

Universe level expressions. These are used to index universe levels in Nuprl's type theory.

Implemented using ML type level exp. The syntax of level expressions is des
ribed in

Se
tion 9.1.2.

The names of parameter types are usually abbreviated to their �rst letters.

Opids are 
hara
ter strings drawn from the alphabet pa�zA�Z0�9 -!q. (Here p-q is the ASCII


hara
ter, px�yq indi
ates the 
hara
ters from x to y in
lusive.) An p!q at the start of a 
hara
ter

string indi
ates that the term does not belong to Nuprl's obje
t language. Opids are implemented

using ML type tok.

Binding variables are 
hara
ter strings drawn from the same alphabet as variable parameters.

In addition, the empty string 
an be used. We 
all the binding variable with the empty string as

its name, the null variable. Null variables 
an never bind. Binding variables are implemented using

ML type var.

Earlier, when we des
ribed the term type, we said that variables were 
onsidered to be terms.

This was a slight simpli�
ation of the a
tual state of a�airs; In Nuprl, we 
onsider variables and

terms to be distin
t. We have a spe
ial term kind, variablefvg for inje
ting variables into the

term type. So when we talk of the variable foo as a term, we are really thinking of the term

variableffoo:vg. When we write terms, this inje
tion if often impli
it. So for example, we write

bar(x;y) instead of bar(variablefx:vg; variablefy:vg).

We often assume a similar impli
it inje
tion for natural numbers. So for example, the term

bar(10;11)when written out in full is the term bar(natural numberf10:ng; natural numberf11:ng).

Some examples of terms in both pretty and plain notation are shown in Table 4.1.

Pretty Notation Plain Notation

Z int()

x + y add(x;y)

"ab
" token{ab
:t}()

�x.x lambda(x.x)

8x,y:T. A all(T; x,y.A)

Table 4.1: Examples of term notation

4.3 Term Display

4.3.1 Notation and Logi
al Stru
ture

This se
tion introdu
es the approa
h we use for entering and displaying terms.
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We distinguish between logi
al stru
ture of terms, and the notation in whi
h terms are pre-

sented. When we talk of the logi
al stru
ture of a term, we are thinking of some abstra
t obje
t

of mathemati
s. We are not just thinking of the term in uniform syntax, though the regularity of

the uniform syntax for a term does re
e
t the regularity of the underlying abstra
t obje
t. When

we talk of notation, we are thinking of the visual presentation of abstra
t obje
ts on the printed

page, or on the 
omputer s
reen. When you read mathemati
al or logi
al expressions in familiar

notation, you often mentally 
onstru
t the abstra
t obje
t in your mind so readily that you forget

the distin
tion between abstra
t stru
ture and notation.

Notation understandable by ma
hines be
ame a fo
us of study when people started to design

programming languages. The languages had to not only be easily understandable by humans, but

also easily parseable by ma
hine. The study of notation be
ame the study of regular expressions

and grammars. People devised sophisti
ated te
hniques for designing parsers.

In the programming language world, sour
e texts in ASCII �les 
orrespond to our idea of

notation, and abstra
t-syntax-trees get 
lose to our notion of logi
al stru
ture.

In mathemati
s notation is 
ru
ial issue. Many mathemati
al developments have heavily de-

pended on the adoption of some 
lear notation, and mathemati
s is made mu
h easier to read

by judi
ious 
hoi
e of notation. However mathemati
al notation 
an be rather 
omplex, and as

one might want an intera
tive theorem prover to support more and more notation, so one might

attempt to 
onstru
t 
leverer and 
leverer parsers. This approa
h is inherently problemati
. One

qui
kly runs into issues of ambiguity. Often to read mathemati
al notation one has to be aware

of the immediate 
ontext it is presented in. A simple example is that juxtaposition of symbols


an mean fun
tion appli
ation in one pla
e and multipli
ation in another. A notion introdu
ed in

programming languages to address ambiguity has been that of overloading operators; one assumes

that the type-
he
ker 
an sort out what is meant, even if the parser 
annot. Closely related to

this notion, is the notion of impli
it 
oer
ions. There is also the question of what notation is sup-

ported by editors; mathemati
s presented in ASCII 
hara
ters is not anywhere as easy to read as

mathemati
s in books and papers.

A half-way solution that is sometimes taken (for example with Mathemati
a), is to do what one


an with a parseable syntax in ASCII 
hara
ters for input, and then use pretty-printing routines

for formatted output (say in Display PostS
ript).

The approa
h whi
h we have taken

1

is to design an editor that presents terms in pretty notation,

and groups the notation in 
hunks that 
orrespond to parts of the underlying tree stru
tures. One

edits the tree stru
ture dire
tly, so there is no need for a parser. Su
h editors are often 
alled

stru
tured editors.

The advantages of a stru
tured editor are:

� We don't have to worry about making the notation be umambiguous to a ma
hine. It just

has to unambiguous to a human, who is aware of the full 
ontext the notation is used in.

� We have the opportunity to break away from the presentation of mathemati
s in ASCII


hara
ters. Nuprl 
urrently uses a single 8-bit font of up to 256 
hara
ters, but the possibilities

exist for using L

a

T

E

X and Display PostS
ript -like te
hnology to generate almost text-book

quality displays.

� Notation 
an be freely 
hanged without altering the underlying logi
al stru
ture of terms.

1

and whi
h others have taken too, for example in the Cornell Synthesizer-Generator proje
t
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� The possibility is opened up for 
ontext dependent notation. We 
ould have presentations of

theorems, de�nitions and proofs de
orated with information on lo
al abbreviations.

� If you �nd notation 
onfusing, you need only point and 
li
k the mouse on the notation in

question for an explanation.

Stru
tured editors do have their disadvantages. The most major one is that they are quite

di�erent from 
onventional text editors su
h as vi or ema
s, and so it 
an take a while to learn how

to use them. We have tried to design the Nuprl editor to redu
e this startup time. We wel
ome

suggestions from users for further improvements. Another disadvantage is that you have less 
ontrol

over formatting, sin
e all display formatting is done automati
ally. Again we have been working to

enhan
e the pretty-printing algorithm that Nuprl uses so that the formatting is a

eptable.

4.3.2 Display Forms

We des
ribe here our notion of a display form.

A display form de�nition asso
iates a 
hunk of notation with a term. For example 
onsider the

term add(x;y) for binary addition. The usual notation for this is to use an in�x p+q. We 
ould

write the notation 
hunk as:

2 + 2

where the 2's are holes for the two subterms, and the outer box shows the extent of the 
hunk.

We 
all these holes term slots be
ause in they 
an be �lled by terms. Later on we shall en
ounter

text slots whi
h 
an only be �lled with text strings. Usually we need to indi
ate how term slots


orrespond to the logi
al subterms of a term so we label term slots. For example, the de�nition of

the notation 
hunk for add(x;y) 
an be written:

x + y =

dform

add(x; y)

Here, we read a =

dform

b as saying that a is de�ned as the atomi
 notation 
hunk or display form

for b. Throughout this se
tion, we use re
tangular boxes to delimit terms and term slots.

Term slots stret
h to a

omodate the terms inserted in them. For example say we have the

term mul(1;2) whi
h is displayed as p1 * 2q. Then the term add(mul(1;2);3) will be displayed

as:

1 * 2 + 3

Nuprl automati
ally adds parentheses a

ording to display form pre
eden
es. When a display

form of lower pre
eden
e is inserted into the slot of display form with higher pre
eden
e, parentheses

are automati
ally inserted to delimit the slot. For example, we assign the display form for mul(x;y

a higher pre
eden
e than the display form for add(x;y). The term add(mul(1;2);3) is displayed

as

1 * 2 + 3

but the term mul(1;add(2;3)) is displayed as
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1 * (2 + 3)

Let us move on to a more 
ompli
ated display form; that for universal quanti�
ation. The

term all(T;x.P) means that \for all x of type T , the proposition P is true". Note that the term

all(T;x.P) binds free o

urren
es of x in P . We would normally write all(T;x.P) as

8x:T. P

The display form de�nition for the all(T;x.P) 
ould be written as:

8 x

n

: T . P =

dform

all(T; x.P)

Here, p

n

q is used to indi
ate a text slot. A text slot is �lled with a text string rather than a

term. Text slots are used for term parameter values, and binding variables.

A few more display form de�nitions are:

1. 9 x

n

: T . P =

dform

exists(T; x.P)

2. x = y =

dform

equal int(x; y)

3. x

n

=

dform

variablefx:vg

4. i

n

=

dform

natural numberfi:ng

The last two display form de�nitions are rather spe
ial; 3 is the display form de�nition for variable

terms, and 4 is the display form de�nition for natural numbers. Both the display forms de�ned for

these terms have only a single text slot, and no other printing or whitespa
e 
hara
ters.

Using these display forms the term

all(int(); i.exists(int(); j.equal(int(); j; add(i;1))))

has the notation:

8 i

n

: Z . 9 j

n

: Z . j

n

= i

n

+ 1

n

or leaving out the bounding boxes and 
ir
les for the slots and the term as a whole:

8i:Z. 9j:Z. j = i + 1
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In general, a display form for a term is made up of 0 or more text and term slots, interspersed

with printing and spa
e 
hara
ters. We 
an annotate display forms with whitespa
e formatting


ommands whi
h spe
ify where linebreaks 
an be inserted, and how to 
ontrol indentation. Chap-

ter 6 des
ribes in detail the stru
ture and appearan
e of the display form de�nitions whi
h are


ontained in display obje
ts in Nuprl theories. Chapter 6 also 
ontains information on how to set

pre
eden
es, and how to 
ontrol how pre
eden
e a�e
ts parenthesization.

The notation for some term tree is built up from the display forms asso
iated with ea
h node

of the tree | so the stru
ture of the notation mirrors the stru
ture of the term, and it makes sense

to talk about the display form tree of a term.

The display form tree is the tree stru
ture that you edit with Nuprl's term editor. Nuprl takes


are of translating ba
k-and-forth between the two kinds of trees. In a display form tree, ea
h

display form and ea
h slot is 
onsidered a node of the tree If a text (term) slot is not empty, it is

identi�ed with text string (display form) �lling it. All the slots of a display form are 
onsidered

to be the immediate 
hildren of the display form. The editor 
onsiders slots ordered in the order

they appear, left to right, in display form de�nitions, not in the order in whi
h they o

ur in the

uniform syntax.

In most of this manual, we refer to terms by their display notation rather than their uniform

syntax, unless we want to emphasize their logi
al stru
ture. Also, in talking the term editor, we talk

informally about nodes of terms, when we are referring to nodes of the 
orresponding display-form

trees.

When one enters a new terms using Nuprl's stru
tured editor, one most often enters the term

in a top-down fashion, starting with the root of the term tree and working on down to the leaves.

This means that one has to work with in
omplete terms. For example, at an intermediate stage of

entering the term

8i:Z. 9j:Z. j = i + 1

you might be presented with term:

8i:Z. 9[var℄:[type℄. [prop℄.

Here [var℄, [type℄ and [prop℄ are pla
e-holders for slots. [var℄ is a pla
e-holder for a text slot,

and [type℄ and prop are pla
e-holders for term slots. If a slot has a pla
e-holder, we say that the

slot is empty, or uninstantiated. The labels whi
h appear in the pla
e-holders for a display form

(the var, type or prop in the example above) are 
ontrolled by the display form's de�nition. If a

text (term) slot 
ontains a a text string (term) we say that slot is �lled or instantiated. If a display

form has no uninstantiated slots, then it is 
onsidered 
omplete. Pla
eholders re-appear when the


ontents of slots are removed.

4.3.3 Editor Cursors

One navigates around a term by moving a 
ursor, sometimes 
alled the point by analogy with

ema
s. The 
ursor 
an be in one of three modes:

term mode

A term mode 
ursor is always positioned at some term node of the term tree. The term node

33



it indi
ated, by highlighting its notation and the notation for all its subtrees. The highlighting

is usually a
hieved by using reverse video; swapping foreground and ba
kground 
olors. In

this do
ument we indi
ate a highlighted region of a term by drawing an outline around it.

For example,

8i:Z. 9j:Z. j = i + 1

indi
ates that a term 
ursor is at the subterm j = i + 1. O

asionally a term has no width,

and a term 
ursor on su
h a term is displayed as a thin verti
al line. In this do
ument, we

indi
ate su
h a 
ursor by .

text mode

The text 
ursor is used for editing text in text slots. The 
ursor is represented as pq. It is

positioned either between two adja
ent 
hara
ters of a text slot, or before the �rst 
hara
ter,

or after the last. For example, 
onsider a text slot 
ontaining the text string pab
defq. Valid

text 
ursors for this string in
lude

ab
def ab
def ab
def

The text 
ursor is the insertion point for new 
hara
ters.

There is a potential ambiguity as to whi
h text slot a text 
ursor is at: 
onsider two adja
ent

text slots 
ontaining the strings paaaq and pzzzq and the following text 
ursor:

aaazzz.

Display forms are designed so this kind of situation should never o

ur.

The text 
ursor is signi�
antly thinner than the term 
ursor on a no-width term, so it should

be easy to distinguish the two.

s
reen mode

Certain 
ursor motion 
ommands are designed for moving around a term's display 
hara
ter-

by-
hara
ter in mu
h the same way as with a 
onventional text editor. When moving with

these 
ommands the 
ursor always o

upies a single 
hara
ter position on the s
reen. If

possible, the editor uses a text 
ursor. Otherwise it uses a s
reen 
ursor. A s
reen 
ursor on

a 
hara
ter is displayed by outlining the 
hara
ter.

For example, if we had the following text 
ursor in a term:

8i:Z. 9j:Z. j = i + 1

then a `move-left-one-
hara
ter' 
ommand would leave a s
reen 
ursor (indi
ated by a box)

over the p8q.

8 i:Z. 9j:Z. j = i + 1

In the rest of this do
ument we'll never have to expli
itly represent a s
reen 
ursor, so all

outlined terms should be interpreted as term 
ursors.
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4.3.4 Sequen
es

The term editor has spe
ial features for handling 
ertain kinds of sequen
es of terms. It makes

sequen
es appear mu
h like terms with variable numbers of subterms. The kinds of sequen
es

supported are des
ribed below.

Sequen
es are 
onstru
ted by the right-asso
iated use of pairing terms. Ea
h kind of sequen
e

has its own pairing term, and also a spe
ial term to represent the empty sequen
e. Eventually,

we'll relax the right-asso
iation restri
tion. Often there is no need to distinguish between a term

and a one element sequen
e 
ontaining that term. So, in spe
i�
 
ontexts, the editor treats a term

as a one element sequen
e. These 
ontexts are pointed out at relevant points in this do
ument.

The term tree 
ursor motion 
ommands skip over this internal stru
ture, and for nearly all

purposes the internal stru
ture of sequen
es 
an safely be ignored.

4.3.4.1 Term Sequen
es

A term sequen
e has a linear sequen
e of term slots. For example, one kind of sequen
e whi
h

happens to have 4 empty slots might be displayed as:

([elmnt℄,[elmnt℄,[elmnt℄,[elmnt℄)

. All the term slots of the sequen
e are 
onsidered siblings in the display form tree, and the whole

sequen
e is their immediate parent.

The editor has spe
ial 
ommands for inserting and deleting both elements and segments of term

lists.

Di�erent kinds of term sequen
es have di�erent left and right delimiters, (the p(q and p)q

respe
tively in the example) and di�erent element separators (the p,q in the example). Delimiters

and separators in term sequen
es always 
onsist of at least one 
hara
ter.

4.3.4.2 Text Sequen
es

A text sequen
e is a text string in whi
h zero or more 
hara
ters are repla
ed with terms. Text

sequen
es are primarily used for ML 
ode, for 
omments, and for the left-hand sides of display

forms.

The editor presents a text sequen
e as a display form with alternating text and term slots. A

text sequen
e normally has no left or right delimiters or element separators, in 
ontrast to term

sequen
es. Text sequen
es are however easily identi�ed be
ause they usually o

ur in well-de�ned


ontexts.

An example of a text sequen
e is the ML expression:

With 'n + 1' (D 0)~

THENW TypeChe
k~

This text sequen
e 
onsists of 3 term slots �lled with the terms p'n + 1'q, p~q, and p~q, and 4

text slots �lled with the text strings pWith q, p (D 0)q, pTHENW TypeChe
kq, and pq (the null or

empty text string). The p~q's are new-line terms. Keeping new-line 
hara
ters out of text strings

simpli�es the display formatting algorithm. Usually we make new-line terms invisible, but here we

show them with a printing 
hara
ter for 
larity.
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The editor supports spe
ial operations on text sequen
es. For example, you 
an 
ut out sub-

sequen
es delimited by any text 
ursor positions, and paste in at any text 
ursor position.

4.4 Term Editor

4.4.1 Introdu
tion

Term editor windows are used for viewing and editing terms. The ML Top Loop window is a term

editor window, as are the windows opened when you view most kinds of Nuprl library obje
ts.

Ea
h window displays a single display form tree representing a single term. The editor a

epts

input from both the keyboard, keypad and the mouse. All editing operations 
an be 
arried out

from the keyboard alone, though frequently the mouse and keypad 
ommands are far simpler and

easier to remember. Mouse 
ommands are des
ribed in Se
tion 4.4.9.

With a text 
ursor, keystrokes 
orresponding to printing 
hara
ters 
ause those 
hara
ters to be

inserted. With a term or s
reen 
ursor, printing 
hara
ters 
an form part or all of editor 
ommands.

Input 
hara
ters typed at the keyboard in multi-
hara
ter 
ommands are e
hoed as highlighted

text near the position of the 
ursor, and 
an be 
orre
ted by using

delete

.

The default key bindings are intended to be reminis
ent of ema
s's key bindings. You may wish

to use alternative key bindings. See the editor 
ustomization se
tion for details (not yet written).

The editor adjusts the display of an obje
t in a window to the size of the window. If the window

is too small, not all the obje
t 
an be displayed at on
e. In this event, one 
an resize the window, or

s
roll the window up and down. Sometimes, if the window is to narrow, some subterms are elided.

The display form tree for an elided subterm is repla
ed by p...q. Eventually, you will be able to

examine elided subterms by moving the root display form of an editor window to some term tree

position other than the term root. Currently, the only way to en
ourage the system to un-elide a

subterm is to widen the window as mu
h as possible.

4.4.2 Cursor/Window Motion

Also see Se
tion 4.4.9 for how to use the mouse to move around.

4.4.2.1 S
reen Oriented

The s
reen motion 
ommands are des
ribed in Table 4.2.

These 
ursor motion 
ommands ignore the stru
ture of the term in the window. They allow

one to qui
kly navigate to parts of the s
reen. After a s
reen 
ursor 
ommand the 
ursor is always

either in text mode or s
reen mode. A useful 
ommand to use when ending up with the 
ursor over

the printing 
hara
ter of a display form is the swit
h-to-term 
ommand. If one tries to moves

the 
ursor over the top or bottom of the display, the window s
rolls appropriately. There are also

expli
it window s
rolling 
ommands.

4.4.2.2 Tree Oriented

The tree walking 
ommands are summarized in Table 4.3.
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h
-Pi s
reen-up move 
ursor up 1 
hara
ter

h
-Ni s
reen-down move 
ursor down 1 
hara
ter

h
-Bi s
reen-left move 
ursor left 1 
hara
ter

h
-Fi s
reen-right move 
ursor right 1 
hara
ter

h
-Ai s
reen-start move to left side of s
reen

h
-Ei s
reen-end move to right side of s
reen

h
-Li s
roll-up s
roll window up 1 line

hm-Li s
roll-down s
roll window down 1 line

h
-Vi page-down move window down 1 page

hm-Vi page-up move window up 1 page

h
-Ti swit
h-to-term swit
h to term mode

Table 4.2: S
reen Motion Commands

hm-Pi up move up to parent

hm-Bi left stru
tured move left

hm-Fi right stru
tured move right

hm-Ni down-left move to leftmost 
hild

hm-Mi down-right move to rightmost 
hild

hm-Ai leftmost-sibling move to left-most sibling

hm-Ei rightmost-sibling move to right-most sibling

hm-<i up-to-top move up top of term

h
-

linefeed

i right-leaf next leaf to right

hm-
linefeed

i left-leaf next leaf to left

return
right-empty-slot next empty slot to right

h
-
return

i right-empty-slot next empty slot to right

hm-
return

i left-empty-slot next empty slot to left

Table 4.3: Tree Motion Commands

up, left, right, down-left, down-right are the basi
 walking 
ommands. Within text slots,

left and right stop at ea
h word. (Use s
reen motion 
ommands to move by 
hara
ter.) These


ommands re
ognize text and term sequen
es, and skip over their internal stru
ture.

right-leaf, left-leaf, right-empty-slot, left-empty-slot are parti
ularly good for

rapidly moving around terms, sin
e you 
an often get where you want to go by just repeatedly

using one of them. Note that the binding of
return

to right-empty-slot doesn't work in text

sequen
es. In that 
ase, you need to use h
-
return

i.

4.4.3 Adding New Text

These 
ommands are for inserting text whenever you have a text 
ursor. The 
ommands are

summarized in Table 4.4.

Standard ASCII printing 
hara
ters (in
luding spa
e) self insert whenever one has a text 
ursor.

Non-standard 
hara
ters 
an be inserted using insert-spe
-
har-num. num is the de
imal 
ode

for the 
hara
ter. (See Appendix ?? for a table of spe
ial 
hara
ter 
odes, or exe
ute in a unix

shell window
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x insert-
har-x insert 
har x

h
-#inum insert-spe
-
har-num insert spe
ial 
har x

return
insert-newline insert newline

Table 4.4: Text Insertion

xfd -font nuprl-13 &

to bring up a display of the font. Cli
king
mouse-left

on a 
hara
ter results in its de
imal 
ode

being displayed.) Alternatively, spe
ial 
hara
ters 
an be 
opied from the obje
t FontTest in the


ore-1 theory.

The insert-newline is only appropriate in text sequen
es, sin
e the newline `
hara
ter' is

a
tually a term. This restri
tion simpli�es the display layout algorithm and should not prove to be

an in
onvenien
e.

4.4.4 Adding New Terms

The insertion 
ommands for terms are shown in Table 4.5. These 
ommands are only appropriate

with a term 
ursor.

name insert-term-name insert name

h
-Iiname insert-term-left-name insert name

hm-Iiname insert-term-right-name insert name

h
-Siname substitute-term-name repla
e with name

h
m-Ii initialize-term initialize term slot

h
m-Si sele
t-dform-option sele
ts dform variations

Table 4.5: Term Insertion

name in these 
ommands is a string of 
hara
ters, naming a new term to be inserted. The

interpreter for name strings 
he
ks ea
h of the following 
onditions until it �nds one whi
h applies.

1. name is an editor 
ommand enabled in a parti
ular 
ontext. See se
tions for examples.

2. name is an alias for some display form, de�ned in in the library obje
t for that display form.

3. name is the name of a display form obje
t. It refers to the �rst display form de�ned in that

obje
t.

4. name is of the form ni where n is the name of a display form obje
t and i is a natural number.

ni refers to the ith display form de�nition in the obje
t named n. De�nitions in obje
ts are

numbered starting from 1.

5. name is the name of an abstra
tion obje
t, then name refers to the earliest display form in

the library for that abstra
tion.

6. name is all numerals, then the term referred to is the natural-number{name:n}() term of

Nuprl's obje
t language.
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7. name refers to the variable term variable{name:v}().

Names always have a

eptable extensions as variable names, so the editor doesn't interpret

name until some expli
it terminator is typed. For example, this 
an either be no-op (

spa
e

) or

a 
ursor motion 
ommand. next-empty-slot (h
-
return

i) is a parti
ularly useful terminator.

insert-term-name is only appli
able at empty term slots. It results in the display form referred

to by name being inserted into the slot. If name is terminated by a no-op, then a term 
ursor is

left at the new term. If name is teminated by some 
ursor motion 
ommand, then that 
ommand

is obeyed.

insert-term-leftname is intended for use at a �lled term slot. Its behavior is to:

1. save the existing term in the slot, leaving the slot empty,

2. insert the new display form referred to by name into the slot,

3. paste the saved term into the left-most term slot of the new display form. If the new display

form has no term slots, then the saved term is lost.

insert-term-rightname behaves in a similar way to insert-term-left ex
ept that in step

3, the saved term is pasted into the right-most term slot of the new display form.

substitute-term-name allows you to repla
e one display form with another whi
h has the

same sequen
e of 
hild text and term slots. The 
hildren of the old display form be
ome the 
hildren

of the new display form. In the event that the new display form has a di�erent sequen
e of 
hildren

substitute-term-name tries something vaguely sensible. In general, in these 
ases, it is safer to

expli
itly 
ut and paste the 
hildren.

initialize-term initializes a term slot to some default term if one is appropriate. The term

slot must initially be empty. initialize-term is automati
ally invoked by Nuprlto initialize new

windows. If you want to re-initialize a window, pla
e a term 
ursor at the root of the term in

the window, delete the term, and then give the initialize-term 
ommand. The default terms

for parti
ular 
ontexts are des
ribed in various se
tions of this do
ument. If no default has been

designated, initialize-term does nothing.

sele
t-dform-option when the term 
ursor is at 
ertain terms, sele
ts an alternative display

form for that term. For example, if term 
ursor is positioned at an independent fun
tion type, it

sele
ts the more general dependent-fun
tion display form.

4.4.5 Cutting and Pasting

The 
ut-and-paste 
ommands work on terms, segments of text slots, and segments of text and term

sequen
es. In this se
tion we refer to these 
olle
tively as items. Cut items 
an be saved on a save

sta
k. All items on the save sta
k are represented as terms, and it is often possible to 
ut one kind

of item and then paste into another kind of 
ontext. For example, one 
an 
ut a term, and paste

into text sequen
e, or 
ut a segment of text from a text slot, and paste into a term sequen
e.

We de�ne the following kinds of 
ommands:

� save: does not remove an item, but does push a 
opy onto the save sta
k. Same idea as


opy-as-kill in ema
s.

� delete: remove an item from a bu�er, not saving it anywhere.
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� 
ut: (= save + delete) removes an item from a bu�er and pushes it onto the top of the

save sta
k. Same idea as kill in ema
s, although Nuprl does not append together items 
ut

immediately one after the other.

� paste: inserts the item on top of the sta
k ba
k into a bu�er, removing it from the sta
k.

� paste-
opy: inserts the item on top of the sta
k ba
k into a bu�er, not removing it from

the sta
k. Same idea as yank in ema
s.

� paste-next: Only used immediately after a paste. Removes the item just pasted from the

bu�er, and then does a paste. Same idea as yank-next in ema
s.

4.4.5.1 Basi


The basi
 
ut and paste 
ommands are shown in Table 4.6.

delete

delete-
har-to-left delete 
har to left of text 
ursor

h
-Di delete-
har-to-right delete 
har to right of text 
ursor

hm-Di 
ut-word-to-right 
ut word to right of text 
ursor

h
-Ki 
ut 
ut term

hm-Ki save save term

h
m-Ki delete delete term

h
-Yi paste paste item

hm-Yi paste-next delete item then paste next item

h
m-Yi paste-
opy paste 
opy of item

Table 4.6: Basi
 Cutting and Pasting

delete-
har-to-left and delete-
har-to-right are 
onventional 
hara
ter deletion 
om-

mands. They 
an be used in any text slot of a term or in a text sequen
e. They will also work on

newline terms in text sequen
es. They do not save the 
hara
ter on the save sta
k.


ut-word-to-right 
uts the word to the right of a text 
ursor. For 
onvenien
e if a term is

to the immediate right of a text 
ursor in a text sequen
e, then that term is 
ut.


ut, save, and delete all work on a term underneath a term 
ursor. save pushes a 
opy of

the term onto the save sta
k leaving the term itself in pla
e, delete deletes the term, leaving an

empty term slot, and 
ut is the same as a save followed by a delete. These 
ommands work �ne

on terms in text and term sequen
es.

When a term 
ursor is at an empty term slot, the paste and paste-
opy 
ommands paste the

term on top of the sta
k into the slot. paste always removes the term from the top of the save

sta
k, so su

essive pastes retrieve su

essively-earlier 
ut terms. paste-
opy is like paste, ex
ept

the item pasted is also left on top of the save sta
k. This is useful if you want to make several


opies of an item.

paste-next is only intended to be used immediately after a paste or a previous paste-next.

It deletes the last term pasted, and repla
es it with the term before on the save sta
k. By repeating

paste-next, you 
an sear
h ba
k through the save sta
k for some desired term.
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4.4.5.2 Region

A region is a segment of any text slot, or a segment of a text or term sequen
e. The region 
ut and

paste 
ommands are shown in Table 4.7.

h
-
spa
e

i set-mark set mark at point

h
-Xih
-Xi swap-point-mark swap point and mark

h
-Wi 
ut-region 
ut region

hm-Wi save-region save of region

h
m-Wi delete-region delete region

h
-(Yi paste paste region

hm-Yi paste-next repla
e last paste with new paste

h
m-Yi paste-
opy paste 
opy of region on save-sta
k top

Table 4.7: Region Cutting and Pasting

A region is delimited by the editor's term or text 
ursor and an auxiliary text or term 
ursor

position. Following ema
s's terminology, we 
all the 
ursor's position the point and the auxiliary


ursor position the mark.

The set-mark 
ommand sets the mark to the 
urrent 
ursor position. and the swap-point-

mark 
ommand 
an be used to 
he
k the mark's position. It doesn't matter whether mark is to

the left or the right of point when sele
ting a region. In what follows, we 
all the left-most of point

and mark the left delimiter, and the right-most, the right delimiter. If a term is used a region

delimiter, the term is understood to be in
luded in the region.

Various regions are a

eptable: for sele
ting a text string in a text slot, both delimiters must

be text 
ursor positions. For sele
ting a segment of a term sequen
e, both delimiters must be term


ursor positions. For sele
ting a segment of a text sequen
e, you 
an use either a text 
ursor or a

term 
ursor position for ea
h delimiter.

save-region saves a region on the save sta
k. delete-region deletes the region. The kind

of 
ursor it leaves depends on the kind of region sele
ted. If the region is of a text slot, or a text

sequen
e, delete leaves a text 
ursor at the old position of the region. If the region is of a term

sequen
e, an empty term slot is left in pla
e of the region. 
ut-region has the same e�e
t as a

save-region followed by a delete-region.

The paste 
ommands for regions are the same as the basi
 paste 
ommands. You 
an paste

with a text 
ursor in a text slot or text sequen
e, and a term 
ursor at any empty term slot. If you

paste a sequen
e into another sequen
e of the same kind, paste merges the pasted sequen
e into the

sequen
e being pasted into. In this event, the point is set to be the left-delimiter for the just pasted

sequen
e, and the mark is set to be the right-delimiter. This ensures proper fun
tionality for the

paste-next operation. Otherwise, if you are pasting into a sequen
e, the pasted item always is

in
orporated as a single sequen
e element, and both the mark and point are set to that element.

Note that it doesn't make sense to try to paste a term or a text sequen
e 
ontaining a term into a

text slot that is not in a text sequen
e.

4.4.6 Adding and Removing Slots in Sequen
es

The 
ommands are summarized in Table 4.8.
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h
-Ui open-seq-to-left open slot to left of 
ursor

hm-Ui open-seq-to-right open slot to right of 
ursor

h
-Oi open-seq-left-and-init open slot to left and init

hm-Oi open-seq-right-and-init open slot to right and init

h
-Ci 
lose-seq-to-left 
lose slot and move left

hm-Ci 
lose-seq-to-right 
lose slot and move right

Table 4.8: Sequen
e Term Slot Editing

If a term 
ursor is at an element of either a term or a text sequen
e, then open-seq-to-left

and open-seq-to-right add a new empty slot to the left and right respe
tively of the 
ursor.

The 
ursor is left at the new empty slot. On an empty term sequen
e, the two 
ommands have the

same e�e
t; they simply delete the nil sequen
e term. If a text 
ursor is in a text sequen
e, both


ommands open up an empty term slot at the text 
ursor, and leave the 
ursor at the new slot.

With text or term sequen
es represented by a single term, these 
ommands infer the kind of

sequen
e to 
reate from 
ontext. O

asionally with term sequen
es, more than one kind of sequen
e

is permitted in a given 
ontext (for example, in pre
eden
e obje
ts) and in su
h 
ases you 
an use

expli
it term insertion 
ommands to 
reate the sequen
e. Su
h ambiguity shouldn't arise with text

sequen
es.

open-seq-left-and-init and open-seq-right-and-init are similar, but if there is some ob-

vious term to insert in the opened up slot, then that term is automati
ally inserted and the 
ursor

is left at an appropriate position in the new term.

If a term 
ursor is at an empty term slot in a term sequen
e, the 
lose-seq-to-left and


lose-seq-to-right 
ommands delete the slot, and then (if possible) move the 
ursor to the

element to the left or right respe
tively of the slot just deleted. If the term slot is �lled with a

term, that term is �rst deleted. If the term slot is in a text sequen
e, these 
ommands leave a text


ursor at the position of the deleted slot.

4.4.7 Opening, Closing, and Changing Windows

The relevant editor 
ommands are shown in Table 4.9

h
-Qi quit 
lose window without saving

h
-Zi exit save, 
he
k, and 
lose window

h
-Ji jump-next-window jump to next window

tab

jump-ml jump to ML top loop

Table 4.9: Commands For Changing and Closing Windows

Term editor window are opened by using the ML view 
ommand on a library obje
t. They are

also opened by the proof editor, when then proof editor sele
t 
ommand is issued on sequents

and ruleboxes, and when the proof editor transform 
ommand is given.

exit �rst saves a 
opy of the obje
t. It then 
he
ks the obje
t before 
losing the window. This


he
king has the same e�e
t on library obje
ts as using the ML 
he
k 
ommand. If the 
he
k fails,

then the window is left open. If you still want to 
lose the window, use quit. Seperate save and


he
k 
ommands are des
ribed in Se
tion 4.4.8.
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quit is an abort 
ommand. It 
loses the window, abandoning any 
hanges made to the window

sin
e it was last 
he
ked by attempting exit.

jump-next-window allows one to 
y
le around all the 
urrently open windows, in
luding any

proof editor windows.

jump-ml moves the 
ursor over to the ML top-loop window.

4.4.8 Utilities

h
-Xiid identify-term gives info on term at 
ursor

h
-Xisu suppress-dform suppress display form at 
ursor

h
-Xiun unsuppress-dform unsuppress display form at 
ursor

h
-Xiex explode-term explode term at 
ursor

h
-Xiim implode-term implode term at 
ursor

h
-Xi
h 
he
k-obje
t 
he
k obje
t

h
-Xisa save-obje
t save obje
t

h
-Xiab view-abstra
tion view abstra
tion def of term

h
-Xidf view-dform view display form def for term

h
-Xins insert-empty-string insert empty string in text slot

Table 4.10: Utility Commands

Various utility 
ommands are shown in Table 4.10 The identify-term, suppress-dform and

unsuppress-dform 
ommands assist one in interpreting unfamiliar or ambiguous display forms.

identify-term will print out in the ML Top-Loop window information on the term and display

form at the 
urrent 
ursor position. If one likes, one 
an then go and view the appropriate display

form and abstra
tion obje
ts.

suppress-dform suppresses use of the display form the 
ursor is sitting at for the whole obje
t

one is viewing. If multiple display forms are de�ned for a term, a single suppress-dform might

result in some other more general display form being sele
ted. In this 
ase one 
an repeat suppress-

dform. When all appropriate display forms for a term are suppressed, the term is displayed in

uniform syntax.

unsuppress-dform restores a suppressed display form, when the editor 
ursor is at a term to

whi
h that suppressed display form belongs. Display forms remain suppressed until one expli
itly

unsuppresses, or until one 
loses the editor window.

explode-term repla
es the term the 
ursor is at with a 
luster of terms whi
h display the term

in uniform syntax, and allow one to 
hange the operator stru
ture. For example one 
an 
hange

the opid name,the number and types of the parameters, or the term's arity. See Se
tion 4.5.2 for

details on how to edit an exploded term's stru
ture.

implode-term repla
es an exploded term at the 
ursor by the term whi
h the exploded term

represents.

insert-empty-string is useful for inserting empty text strings into text slots. Normally, when

all the 
hara
ters in a text slot that is outside of a text sequen
e are deleted, a text slot pla
eholder

is left rather than an empty string. This is be
ause usually su
h slots are used for things like

variable names, and using the empty string for su
h entities 
an be 
onfusing. Use this 
ommand

when an empty text string is what is really wanted.
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4.4.9 Mouse Commands

The mouse 
ommands are shown in Table 4.11

mouse-left

mouse-set-point set mark then point

h
-

mouse-left

i mouse-set-term-point set mark then point to term

mouse-middle
mouse-view-disp view display form of term

h
-
mouse-middle

i mouse-paste as paste

hm-
mouse-middle

i mouse-paste-next as paste-next

h
m-

mouse-middle

i mouse-paste-
opy as paste-
opy

mouse-right

mouse-view-ab view abstra
tion de�nition of term

h
-

mouse-right

i mouse-
ut 
ut term or region

hm-

mouse-right

i mouse-save save term or region

h
m-

mouse-right

i mouse-delete delete term or region

Table 4.11: Mouse Commands

The mouse 
ommands are designed to allow easy jumping around terms, 
ut-and-pasting, and

viewing of information on terms.

mouse-set-point �rst sets the mark at the 
urrent editor 
ursor position, (not the mouse

position) and then sets the point, the editor's 
ursor, to where the mouse is pointing. mouse-set-

point sets point to either a term 
ursor or text 
ursor. It 
hooses a text 
ursor if one is valid

between the 
hara
ter pointed to by the 
ursor and the 
hara
ter to the immediate left. If there is

a null width term to the immediate left of the mouse, the 
ursor is set to that term. Otherwise, the


ursor is set to the most immediate surrounding term whi
h 
ontains the 
hara
ter being pointed to

by the mouse. This 
ommand is set up so that one 
an sele
t a region by using mouse-set-point at

one end of the region and then mouse-set-point at the other; after the se
ond mouse-set-point

the mark will be at one end of the region and point will be at the other.

mouse-set-term-point is like mouse-set-point ex
ept that point is always set to the term

immediately surrounding the 
hara
ter being pointed to.

mouse-
ut is the same as 
ut-region in text sequen
es. and text slots. Otherwise it behaves

the same as 
ut. Likewise with mouse-save. mouse-paste is the same as paste, and mouse-

paste-
opy is the same as paste-
opy.

4.5 Editing Term Stru
ture

4.5.1 New Term Entry

The term editor re
ognizes 
ertain input sequen
es as indi
ating that a new term should be 
reated.

A new term stru
ture 
an be 
reated as follows:

� Position a term 
ursor and an empty slot.

� Enter the letters of the new term's opid

� Enter a (possibly empty) list of single letters, designating the new term's parameter types.

The list should be delimited by pfq and pgq 
hara
ters, and elements should be seperated by

p,q 
hara
ters. Empty lists of parameter types are optional.

44



� Enter a (possibly empty) list of numbers, designating the number of binding variables for

ea
h subterm. The list should be delimited by p(q and p)q 
hara
ters, and elements should

be seperated by p;q 
hara
ters. This list spe
ifying the arity of the term must be entered,

even when it is empty.

For example, if you enter

myidfn,tg(0;1)

the term myidf[natural℄:n, [token℄:tg([term℄; [binding℄.[term℄) is 
reated.

4.5.2 Exploded Terms

A term 
onstru
tor is exploded when it is repla
ed by a spe
ial 
olle
tion of terms, so arranged so

that you 
an edit the stru
ture of the term 
onstru
tor; 
hange its opid, 
hange the number and

kind of its parameters, or 
hange its arity. Note that in pra
ti
e, the only time you usually edit

exploded terms is when you add or 
hange the de�nition of an abstra
tion.

The 
ommands for editing exploded terms are summarized in Table 4.12.

h
-Xiex explode-term explode term at 
ursor

h
-Xiim implode-term implode term at 
ursor

exterm insert-term-exterm insert new exploded term

lparm insert-term-lparm insert level exp parm

vparm insert-term-vparm insert variable parm

tparm insert-term-tparm insert token parm

sparm insert-term-sparm insert string parm

nparm insert-term-nparm insert natural number parm

h
-Oi open-seq-to-left open bterm / parm / bvar slot to left

hm-Oi open-seq-to-right open bterm / parm / bvar slot to right

Table 4.12: Exploded Term Editing

To show how they are used, we walk through the entry of the term foo{bar:s}(A;x.B). Position

a term 
ursor at an empty term slot and enter:

exterm

spa
e

.

The highlighted term should look like:

EXPLODED<<[opid℄{}()>>

Enter the opid:

h
-

return

ifoo
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to get:

EXPLODED<<foo{}()>>

Cli
k

mouse-left

on the }, and you should get a null width term 
ursor sitting on an empty term

sequen
e for parameters.

EXPLODED<<foo{}()>>

Enter h
-Oi to add a new slot to the parameter sequen
e:

EXPLODED<<foo{ [parm℄ }()>>

Insert the string parameter with text bar:

sparm
return

bar

to get:

EXPLODED<<foo{bar:s}()>>

Cli
k

mouse-left

on the ) to get a null width term 
ursor sitting on an empty term sequen
e for

bound terms:

EXPLODED<<foo{bar:s}()>>

Enter h
-Oih
-Oi to make a two element sequen
e for bound terms, leaving the 
ursor on the

left-most element.

EXPLODED<<foo{bar:s}( .[term℄ ;.[term℄)>>

Cli
k

mouse-left

on the se
ond p.q to get a null width term 
ursor sitting on an empty term

sequen
e for binding variables:

EXPLODED<<foo{bar:s}( .[term℄;.[term℄)>>

Enter h
-Oi

return

to open up a slot in the sequen
e, and enter a binding variable term:

EXPLODED<<foo{bar:s}( [term℄;[bvar℄.[term℄)>>

Finally, 
li
k

mouse-left

on any part of EXPLODED and then enter

h
-Xiim

to implode the exploded terms. You should now have the term:

foo{bar:s}([term℄;[var℄.[term℄)

You 
ould now go ahead and �ll in the binding variable, and subterm slots. In general, when

imploding and exploding terms the parameter values, binding variable names, and subterms stay
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the same, so entering and/or editing them when a term is exploded has the same e�e
t as when

the term is imploded.
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Chapter 5

Abstra
tions

Abstra
tions are terms whi
h are de�nitionally equal to other terms. They are introdu
ed by

abstra
tion obje
ts in Nuprl theories. An abstra
tion 
an be de�ned in terms of other abstra
tions,

but the dependen
y graph for abstra
tions should be a
y
li
. In parti
ular, an abstra
tion may not

depend on itself. Re
ursive de�nitions 
an be introdu
ed as des
ribed in Se
tion 10.2.4.

Abstra
tion de�nitions have form:

lhs == rhs

The terms lhs and rhs are pattern terms, and there is impli
it universal quanti�
ation over the the

free variables in lhs and rhs. When Nuprl unfolds some instan
e lhs-inst of lhs, it �rst mat
hes

lhs-inst against lhs, generating bindings for the free variables of lhs su
h that if the bindings were

applied as a substitution to lhs, one would get ba
k lhs-inst. It then applies the substitution to rhs

to 
al
ulate the term rhs-inst whi
h lhs-inst unfolds to.

For an example of a abstra
tion, see Figure 5.1. Here we de�ne a type of segments of integers.

EDIT ABS int seg

{i..j

�

}== {k:Z|i � k < j}

Figure 5.1: De�nition of the int seg abstra
tion

The stru
ture of the left-hand side is more redily apparent if we write it in uniform syntax: {i..j

�

}

is int seg(i;j), a term with opid int seg, no parameters, and 2 subterms. An instan
e of the

left-hand side is {0..10

�

} and this would unfold to {k:Z|0 � k < 10}.

Abstra
tions 
an have binding stru
ture; for example, 
onsider the exists unique abstra
tion in

Figure 5.2.

To handle abstra
tions with binding variables in a systemati
 way, we de�ne the pro
edure for

unfolding an abstra
tion using se
ond-order mat
hing and substitution fun
tions.

If you are familiar with se
ond-order mat
hing and substitution, you 
an skip this paragraph.

First-order mat
hing and substitution fun
tions are inadequate for handling terms with binding

stru
ture.
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EDIT ABS exists uni

9!u:T. P[u℄==9u:T. P[u℄ ^ 8 v:T. P[v℄ ) v = u 2 T

Figure 5.2: De�nition of the exists uni abstra
tions

For example, there is no way of applying a �rst order substitution to the pattern term \�x: y"

to get the instan
e \�x: x + 1"; if we attempt to apply the substitution [y 7! x + 1℄ to \�x: y",

we for
e renaming of the bound variable x to x

0

, and we get \�x

0

: x + 1". One 
ould somehow

suppress renaming but then substitution be
omes ill-behaved; on substitution, free variables 
an

be
ome bound - a pro
ess known as 
apture. For more on this, 
onsult some introdu
tory book on

predi
ate logi
.

A se
ond-order binding is a binding of a se
ond-order variable to a se
ond-order term. A se
ond-

order variable is essentially an identi�er as with normal variables, but it also has an asso
iated arity;

some n � 0. Se
ond-order terms are a generalization of terms, and 
an be represented by bound-

terms su
h as x

1

; : : : ; x

a

n

:t. They 
an be thought of as `terms with holes', terms with zero or

more subtrees missing. The binding variables are pla
e-holders for the missing subtrees. In any

se
ond-order binding v 7! x

1

; : : : ; x

a

n

:t, the arity of v must be equal to n.

An instan
e of a se
ond-order variable v with arity n, is a term we write as v[a

1

; : : : ; a

n

℄, where

a

1

; : : : ; a

n

are terms. We 
all a

1

; : : : ; a

n

the arguments of v.

A se
ond-order substitution is a list of se
ond-order bindings. The result of applying the binding

[v 7! w

1

; : : : ; w

n

:t

w

1

;:::;w

n

℄ to the variable instan
e v[a

1

; : : : ; a

n

℄, is the term t

a

1

;:::;a

n

{ the se
ond-

order variable's arguments �lling the holes of the se
ond-order term.

Going ba
k to the example, the variable P is a se
ond order variable with arity 1, and the terms

P[u℄ and P[v℄ are se
ond-order-variable instan
es. Consider unfolding an instan
e of the left-hand

side, say the term

9!i:Z. i = 0 2Z

. Here, \ =  2  " is a 3 pla
e typed equality relation. a = b 2T means that a and b are equal,

and are both members of type T . The substitution generated by mat
hing this against

9!u:T. P[u℄

would be

[P 7! i.i = 0 2Z ; T 7! Z℄;

and the result of applying this to

9u:T. P[u℄ ^8v:T. P[v℄ )v = u 2T

would be

9!u:Z. u = 0 ^8v:Z. v = 0 2Z)v = u 2Z.
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The mat
hing and substitution fun
tions used by Nuprl are a little smarter than shown above;

they try to maintain names of binding variables. So the result one would get using Nuprl would

be:

9!i:Z. i = 0 ^8v:Z. v = 0 2Z)v = i 2Z.

Just as abstra
tions 
an be unfolded by applying their de�nition left-to-right, so instan
es of

their right-hand sides 
an be folded up to be instan
es of their left-hand sides. Folding doesn't

always work. For example, information 
an be lost in the unfolding pro
ess; De�nitions 
an have

variables, parameters and terms that o

ur on the left-hand side but that don't o

ur on the

right-hand side

1

.

Note that only variables and se
ond-order variables with all �rst-order variable arguments are

allowed as subterms of the left-hand side of abstra
tion de�nitions.

Abstra
tions 
an also 
ontain meta-parameters, whi
h the mat
hing and substitution fun
tions

treat as variables. We usually indi
ate that a parameter is meta, be pre�xing it with a $ sign. For

example, we might de�ne an abstra
tion label{x:t,i:n}, as shown in Figure 5.3.

EDIT ABS label

labelf$tok:t,$nat:ng==pair(tokenf$tok:tg;naturalf$nat:ng)

Figure 5.3: An abstra
tion with meta-parameters

However, note that all level-expression variables o

urring in level-expression parameters in

abstra
tion de�nitions are always treated as meta-parameters, so there is no need to make them

expli
itly meta.

In general, the term on the left-hand side of an abstra
tion 
an have a mixture of normal and

meta parameters. You 
an de�ne a family of abstra
tions whi
h di�er only in the 
onstant value

of some parameter. However it is an error to make two abstra
tion de�nitions with left-hand sides

whi
h have some 
ommon instan
e.

A re
ently added feature of abstra
tion de�nitions is an optional list of 
onditions. A 
ondition

is simply an alpha-numeri
 label asso
iated with the abstra
tion. We intend abstra
tion 
onditions

to be used to hold information about abstra
tions whi
h would be useful to ta
ti
s and other parts

of the Nuprl system. For example, abstra
tion 
onditions 
ould be used to group absta
tions into


ategories, and when doing a proof, one 
ould ask for all abstra
tions in a given 
ategory to be

treated in a parti
ular way.

The general form of an abstra
tion with 
onditions 


1

; : : : ; 


n

is:

(


1

,: : :,


n

)::lhs == rhs

In this se
tion, we des
ribe the editor support for entering abstra
tion de�nitions. Abstra
tion

obje
ts are 
reated and viewed as des
ribed in Chapter??. You 
an also view the abstra
tion for

some term by using the view-abstra
tion 
ommand. See Se
tion 4.4.8.

1

For example, it 
an be useful to de�ne an abstra
tion that has some typing information asso
iated with it, but

that unfolds to a term without that information
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h
m-Ii initialize initialize obje
t / 
ondition

h
m-Si sele
t-term-option open 
ondition seq

h
-Oi open-seq-to-left open slot in 
ond seq to left

hm-Oi open-seq-to-right open slot in 
ond seq to right

h
-Mi 
y
le-meta-status make parameter meta / normal

so varn insert-termso varn insert se
ond order var with n args

Table 5.1: Editor 
ommands for Abstra
tion Obje
ts

The editor support 
ommands are summarized in Table 5.1.

When an abstra
tion obje
t is �rst visited, it is initialized with an uninstantiated abstra
tion

de�nition term. This looks like:

[lhs℄ == [rhs℄

If you delete the whole term in an abstra
tion obje
t and then give the initialize 
ommand the

obje
t is re-initialized to this state.

The default abstra
tion de�nition term has an empty 
ondition sequen
e as a subterm. You


annot position a 
ursor at this sequen
e be
ause a display form hides it. Use the sele
t-term-

option 
ommand with a term 
ursor over the whole abstra
tion de�nition to get an abstra
tion

de�nition term with an empty term slot for a 
ondition term.

Use the initialize 
ommand with a term 
ursor at an empty 
ondition sequen
e slot to initialize

the slot with a 
ondition term. The 
ondition term is mu
h like the term for variables; it has a

single text slot, and otherwise no other display 
hara
ters. Use open-seq-to-left or open-seq-

to-right to add additional slots for 
onditions terms.

To make a parameter into a meta-parameter, position a text 
ursor in the parameter's text slot

and use the 
y
le-meta-status. If the parameter is already meta, using this twi
e will 
y
le

its status ba
k to being a normal parameter. Note that this is not ne
essary with level-expression

parameters. All level-expression variables are treated as meta.

Se
ond order variable instan
es are entered on the left and right hand sides of the de�nition

using the variable{x:v}(a

1

;: : :;a

n

) term where x is the variable's name, and n > 0. The library

display form obje
t de�ning the display form for variable{x:v}(a

1

;: : :;a

n

) is named so varn so

this family of names 
an be used to referen
e them. Note that abstra
tion obje
ts are the only

pla
es where these se
ond-order variable instan
es are used. When writing propositions, se
ond-

order variable instan
es are simulated using the so apply(n) abstra
tion.
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Chapter 6

Display

6.1 Display Form De�nitions

6.1.1 Top Level Stru
ture

def-seq ::= de�nition ;;

j de�nition ;; def-seq

de�nition ::= format-seq == term

j attr-seq :: format-seq== term

format-seq ::= format

j format format-seq

attr-seq ::= attribute

j attribute :: attr-seq

Figure 6.1: Display Obje
t Stru
ture

The top level stru
ture of a display form obje
t is summarized by the grammar shown in Figure 6.1.

An obje
t 
ontains one or more display form de�nitions. Ea
h de�nition has a term whi
h the

display form applies to, and a sequen
e of formats that spe
ify how to display the term. A de�nition

also has an optional sequen
e of attributes that spe
ify extra information about the de�nition.

Usually, all the de�nitions in one obje
t refer to a 
losely related set of terms. When 
hoosing

a display form to use for a term, the layout algorithm tries de�nitions in a ba
kward order, so

de�nitions are usually ordered more general to more spe
i�
.

6.1.2 Formats

The various kinds of formats are summarized in Table 6.1. The `Name' 
olumn gives the names

by whi
h you 
an refer to the formats when entering them. The format sequen
e is always a text

sequen
e so every alternate format is a text string. Sin
e the text strings are always present, there

is no need to have to enter them expli
itly and 
onsequently we don't give them a name. The

slot formats are for 
hildren of the display form. The L,E and * options on the term slot formats


ontrol parenthesization of the slot, and are dis
ussed in Se
tion 6.3. All the formats en
losed

in {}'s 
ontrol insertion of optional spa
es, linebreaking, and indentation. They are dis
ussed in

Se
tion 6.2.
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Display Name Des
ription

string text string

<id:ph> slot text slot

<id:ph:L> lslot term slot

<id:ph:E> eslot term slot

<id:ph:*> sslot term slot

{spa
e} spa
e optional spa
e

{!i} pushm push margin

{ } popm pop margin

{\\a} break break

{\\?a} sbreak soft break

{[HARD} hzone start hard break zone

{[SOFT} szone start soft break zone

{[LIN} lzone start linear break zone

{℄} ezone end break zone

Table 6.1: Formats

6.1.2.1 Slots

The id in a slot format is the name of the slot. The slot 
orresponds to the parameter, variable

or subterm of the term on the right-hand side of a de�nition that has the same name. ph is pla
e-

holder text. This text en
losed within [℄'s appears in the slot whenever the slot is uninstantiated

in some instan
e of the de�nition.

6.1.3 Attributes

De�nition attributes are summarized in Table 6.2.

Display Name Des
ription

(


1

,: : :,


n

) 
onds 
onditions

EdAlias(a) alias alias for de�nition input

#Hd(a) ithd head of iteration family

#Tl(a) ittl tail of iteration family

Parens parens parenthesis 
ontrol

Pre
(a) pre
 pre
eden
e

Table 6.2: Attributes

As with the format table, the `Name' 
olumn gives the names by whi
h you 
an refer to the

attributes when entering them.

Conditions provide extra information about a de�nition to the editor. The argument of the


onds term is a sequen
e of 
onditions. Ea
h 
ondition is a term with a single text slot holding the

name of the 
ondition. Use the initialize 
ommand (h
m-Ii) with a term 
ursor over a 
ondition

sequen
e slot to insert a 
ondition term.

The alias attribute provides an alternate name whi
h the input editor re
ognises as refering to

the de�nition. Alternate names are often 
onvenient abbreviations for the full names of de�nitions.
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The iteration attributes 
ontrol sele
tion of a de�nition by the display layout algorithm. They

are used to 
ome up with 
onvenient notations for iterated stru
tures. They are dis
ussed in

Se
tion 6.4.

The parens and pre
 attributes both a�e
t parenthesization. See Se
tion 6.3.

The display form that you get for a display form de�nition when you �rst open up a display

obje
t assumes there are no attributes, and hides the attribute slot. To open up the attribute slot

of a display form de�nition that hides the slot, position a term 
ursor over the whole de�nition and

use the sele
t-dform-option (h
m-Si) 
ommand.

6.1.4 Right-hand-side terms

The right-hand-side term is a pattern. A de�nition applies to some term t if t is an instan
e of

the rhs term. The display de�nition mat
her has a notion of meta-variable di�erent from that of

Nuprl's usual mat
hing routines; it has 3 kinds of meta-variable: meta-parameters meta-bound-

variables and meta-terms

1

. Meta-parameters and meta-bound-variables 
orrespond to text slots on

the left-hand side of a de�nition, and meta-terms 
orrespond to term slots.

The rhs term is restri
ted to being a term whose subterms are either 
onstant terms (terms

with no meta-variables) or meta-terms. To enter a meta-term use the name mterm. To make

meta-parameters or meta-bound-variables, position a text 
ursor in the appropriate parameter or

bound variable slot and give the 
y
le-meta-status (h
-Mi) 
ommand. Display-meta-variables

are redily re
ognized be
ause they have <> as delimiters.

The rhs term 
an 
ontain normal parameters, bound variables and variable terms. These must

mat
h exa
tly for a de�nition to be appli
able.

6.2 Whitespa
e

6.2.1 Margin Control

The margin 
ontrol format {!i}(pushm) where i � 0 pushes a new left margin i 
hara
ters to the

right of the format position onto the margin sta
k. The layout algorithm uses the top of the margin

sta
k to de
ide the 
olumn to start laying out at after a line break.

The margin 
ontrol format { } (popm) pops the 
urrent margin o� the top of the margin sta
k

and restores the left margin to a previous margin.

Usually display forms should have mat
hing pushm's and popm`s.

6.2.2 Line Breaking

Line-breaking formats divide the display into nested break zones. There are 3 kinds of break zone:

hard, linear, and soft. The e�e
t of {\\a} (break) formats depends on the break zone kind:

� In a hard zone, {\\a} always 
auses a line break.

� In a soft zone, either none or all of the {\\a} are taken.

1

The meta-parameters are di�erent from those used in abstra
tion de�nitions. To be 
lear, we sometimes 
all

those ones abstra
tion-meta-variables and the ones in display de�nitions, display-meta-variables.
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� In a linear zone, {\\a} never 
auses a line break. Instead, its position is �lled by the text

string a.

The zones are started and ended by zone delimiters. There is one end delimiter {℄} (ezone) for all

kinds of zones. Ea
h kind of zone has its own start delimiter:

� {[HARD} (hzone) starts a hard zone.

� {[SOFT} (szone) starts a soft zone.

� {[LIN} (lzone) starts a linear zone.

A linear zone is spe
ial in that all zones nested inside are also for
ed to be linear. Therefore a

linear zone 
ontains no line-breaks and always is laid out on one line. If a linear zone doesn't �t

on a single line, the layout algorithm 
hooses subterms to elide to try and make it �t.

When laying out a soft zone, the layout algorithm �rst tries treating it as a linear zone. If that

results in any elision, then it treats the zone as a hard zone.

The soft break format {\\?a} sbreak is similar to the break format but is not as sensitive to

the zone kind. Soft breaks in linear zones are never taken, but otherwise, the layout algorithm

uses a separate pro
edure to 
hoose whi
h soft breaks to take and whi
h not. This pro
edure uses

various heuristi
s to try and layout a term sensibly in a given size window with at little elision of

subterms as possible.

Display form format sequen
es should usually in
lude mat
hing start and end zone formats.

6.2.3 Optional Spa
es

The {spa
e} (spa
e) format inserts a single blank 
hara
ter if the 
hara
ter before it isn't already

a spa
e. Otherwise it has no e�e
t.

6.3 Parenthesization

Automati
 parenthesization is 
ontrolled by 
ertain display de�nition attributes, term slot options,

and by de�nition pre
eden
es. A pre
eden
e is an element in the pre
eden
e order. The order is

determined by the pre
eden
e obje
ts in the Nuprl library. A de�nition is assigned a pre
eden
e

by giving it a pre
 attribute whi
h names some pre
eden
e element.

6.3.1 Pre
eden
e Obje
ts

Pre
eden
e obje
ts 
olle
tively introdu
e a set of pre
eden
e elements, and de�ne a partial order

on them.

Table 6.3 shows the 
omponents of a pre
eden
e obje
t, and the names used to enter them by.

The par, ser, and eq terms are sequen
e 
onstru
tors so the standard sequen
e 
ommands work

on the sequen
es built with these terms.

Ea
h display form not expli
itly asso
iated with any pre
eden
e element is impli
itly asso
iated

with a unique pre
eden
e element unrelated to all other pre
eden
e elements. The uniqueness

implies that two su
h display forms have unrelated pre
eden
e.

The 
ore 1 theory should be 
onsulted to see how a base set of pre
eden
es has been set up for

the 
urrent Nuprl theories.
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Display Name Des
ription

[p

1

|: : :|p

n

℄ prpar parallel pre
 term

(p

1

>: : :>p

n

) prser serial pre
 term

{p

1

=: : :=p

n

} preq equal pre
 term

obname prel element of pre
eden
e order

*obname* prptr pre
eden
e obje
t pointer

Table 6.3: Pre
eden
e Obje
t Elements

6.3.2 Parenthesis Sele
tion

The parenthesization of a term slot of a display form is 
ontrolled by the parenthesis slot-option of

the term slot in the display form de�nition (the L, E, or * in the 3rd �eld), by the parens attribute

of the display form �lling the term slot, and the relative pre
eden
es of the term slot itself and

the �lling term. The pre
eden
e of a term slot is usually that of the display form 
ontaining it,

although it is possible to assign pre
eden
es to individual slots. The parenthesis 
ontrol works as

follows:

� It is only possible to parenthesize the term slot if the �lling display form has a parens

attribute. If this attribute is absent, the slot is never parenthesized. Therefore the parens

attribute must be expli
itly added to a display form de�nition for that de�nition to ever be

parenthesized.

� The parenthesis slot-option 
ontrols how pre
eden
e a�e
ts parenthesization. The parenthesis

slot-options have the following meanings:

L Suppress parentheses if display-form pre
eden
e is less than 
hild display-form pre
eden
e.

E Suppress parentheses if display-form pre
eden
e is less than or equal to 
hild display-form

pre
eden
e.

* Always suppress parentheses.

Note that the L and E options give the behavior you might expe
t; if they are used in the de�ni-

tions of in�x display forms for the arithmeti
 terms plus(a;b), and times(a;b), then plus(a;times(b;
))

is displayed as a+ b � 
, but times(a;plus(b;
)) is displayed as a � (b+ 
). With the L and the E

options you 
an set up an in�x term as being either right or left asso
iative.

The L, E and * 
hara
ters in the display of term slot formats are display forms for parenthe-

sization 
ontrol terms. These terms 
an be entered using the names shown in Table 6.4. The

Display Name Des
ription

L lparens L option

E eparens E option

* sparens * option

Table 6.4: Slot Options for Parenthesization Control

parenthesization 
ontrol terms also allow the spe
i�
ation of the delimiter 
hara
ters used for

parenthesization, and a pre
eden
e for the individual slot. No spe
i�
 editor support has yet been

provided for these features.
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6.4 Iteration

The iteration attributes 
ontrol 
hoi
e of display form de�nition based on immediately-nested

o

urren
es of the same term. The idea is to group o

urren
es into iteration families. An iteration

family has a head display form de�nition and one or more tail de�nitions. A tail de�nition 
an only

be used as an immediate subterm of a head in the same family or another tail in the same family.

Choi
e of display form is also a�e
ted by the use of the iterate variable # as the id of a term slot

format. If # is used in some term slot of a de�nition, then the de�nition is only usable if the same

term o

urs in the subterm slot that uses the #.

An example should make this 
learer. Say we want a set of display forms for � abstra
tion

terms su
h that the � 
hara
ter is suppressed on nested o

urren
es. The following de�nitions

would work:

�<x:var>.<t:term:E>== lambda(<x>.<t>)

;; #Hd A ::�<x:var>,<#:term:E>== lambda(<x>.<#>) ;;

#Tl A ::<x:var>.<t:term:E>== lambda(<x>.<t>) ;;

#Tl A ::<x:var>,<#:term:E>== lambda(<x>.<#>) ;;

Using these the term lambda(x.lambda(y.lambda(z.x))) would be displayed as:

�x,y,z.x

6.5 Examples

We walk through entry of a display form for the term 9!x:T:P

x

.

Start by 
reating a new display form obje
t and viewing it. Enter in the ML top loop:


reate disp "test df" "+s
rat
h"hs-

return

i

view "test df"hs-

return

i

where +s
rat
h is some suitable position in your library. The window initially looks like:

EDIT DISP test df

== [rhs℄

Cli
k
mouse-left

on the �rst =, to get a text 
ursor in the empty format sequen
e on the

left-hand side of the de�nition. Enter the initial text and a slot for the variable:

h
-#i163!h
-Oislot

return

x

return

varh
-Fi

The de�nition should now look like:

9!<x:var>== [rhs℄

Enter the type slot and the se
ond term slot:

:h
-Oisslot

return

T

return

typeh
-Fih
-Fih
-Fi

. h
-Oieslot
return

P
return

prop
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The de�nition should now look like:

9!<x:var>:<T:type:*>. <P:prop:E>== [rhs℄

Now enter the right-hand side of the display form. Cli
k

mouse-left

on the [rhs℄ pla
eholder,

and enter exists unique(T.x.P) as an exploded term. See Se
tion 4.5.2 for details on how to do

this. Do not �ll in the variable slot or either of the subterm slots. The de�nition should now look

like:

9!<x:var>:<T:type:*>. <P:prop:E>== exists unique{}([term℄;[binding℄.[term℄)

Cli
k

mouse-left

on the left-most term slot and to enter the meta terms and meta variable, key:

mterm

return

T

return

xh
-Mi

return

mterm

return

P

The de�nition is now 
omplete. It should look like:

9!<x:var>:<T:type:*>. <P:prop:E>== exists unique{}(<T>;<x>.<P>)

This de�nition in
ludes no linebreaking or parenthesization information. The display form has

an open right-hand side, in that there is nothing delimiting the end of the prop slot. We therefore

want the layout algorithm to automati
ally parenthesize the display form. To add parenthesizing

attributes, 
li
k

mouse-left

on the se
ond = 
hara
ter, to get a term 
ursor over the whole

de�nition, and then enter:

h
m-Si

return

h
-Oi

to get two empty attribute slots, with a term 
ursor over the �rst:

[attr℄ ::[attr℄::9!<x:var>:<T:type:*>. <P:prop:E>== exists unique{}(<T>;<x>.<P>)

To instantiate the attribute slots enter:

parens

return

pre


return

exists

To get:

Parens::Pre
(exists)::9!<x:var>:<T:type:*>. <P:prop:E>== exists unique{}(<T>;<x>.<P>)

Here, we assign the term the same pre
eden
e to 9!x:T:P

x

as is assigned in the standard libraries

to the 9x:T:P

x

term.

We illustrate adding extra formats, by adding a soft-break format su
h that the p.q separating

the type slot from the prop slot is only in
luded if the break is not taken. Cli
k

mouse-left

on

the p.q 
hara
ter and delete it using h
-Di. Enter:

h
-Oisbreak

spa
e


li
k

mouse-left

on the }after the ? 
hara
ter in the soft break display form, and enter p.q.
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6.6 The Layout Algorithm

Des
ribe layout algorithm. and sele
tion of dfs.

� How term mat
hing options a�e
t sele
tion.

� How whitespa
e 
onsiderations a�e
t sele
tion (if at all...).

� Display form iteration
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Chapter 7

Sequents and Proofs

7.1 Introdu
tion

Nuprl's type theory is formulated in a sequent 
al
ulus. The stru
ture of sequents is des
ribed in

Se
tion 7.2 and of proofs in Se
tion 7.3.

Both stru
tures are de�ned in Lisp and are a

essible from ML. For 
onvenient
e, we use term-

like notation to des
ribe them, although they are not implemented or edited as terms. Perhaps

they will be at some stage in the future.

7.2 Sequent Stru
ture

We write a sequent as

H

1

; : : : ;H

n

` C

where C is the 
on
lusion of the sequent, and , the ith hypothesis H

i

is either an assumption A

i

or a

type de
laration x

i

:T

i

, and n � 0. A type de
laration x

i

:T

i

is 
onsidered to bind free o

urren
es

of x in terms to the right; that is in H

i+1

; : : : ;H

n

and C. Sometimes we refer 
olle
tively to the

hypotheses and the 
on
lusion of the sequent as sequent 
lauses or just 
lauses. In the older Nuprl

literature, >> instead of the turnstile symbol ` is used to seperate the hypothesis list from the


on
lusion. The word goal is sometimes used either to refer to a whole sequent or to just the


on
lusion. Whi
h should be 
lear from 
ontext.

Usually Nuprl displays sequents verti
ally and expli
itly numbers the hypotheses, so the sequent

H

1

; : : : ;H

n

` C is displayed as:

1: H

1

.

.

.

n: H

n

` C

A sequent 
an be 
onsidered as either a 
onje
ture or a proved truth. As a 
onje
ture one

understands the sequent as expressing the as yet unproved 
onje
ture that the 
on
lusion of the

sequent is dedu
ible from the assumptions and de
larations of the sequent. As a proved truth, one
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understands the sequent as expressing that that 
on
lusion of the sequent has been proved true,

given the assumptions and de
larations of the sequent.

There are a few details left out of the above a

ount that we now des
ribe.

1. Logi
 is en
oded into Nuprl's type theory using the propositions-as-types analogy, so all


lauses of sequents are really types. Clauses are made to appear like propositions by using

abstra
tions. All hypotheses de
lare variables, but the system 
urrently hides the display of

any variable whose name starts with a % 
hara
ter. We sometimes refer to su
h variables

invisible variables. When sket
hing sequents in this do
ument, we suppress variables that

would normally be invisible.

2. Hypotheses 
an be hidden. Hidden hypotheses are displayed with [℄'s around the hypothesis's

type or assumption term. For a dis
ussion of hypothesis hiding, see Se
tion 9.12.

3. Hypothesis variable names have to be distin
t.

7.3 Proof Stru
ture

Proofs are tree stru
tures. Using term notation, the 
lass of proofs is the least set of terms su
h

that

� unrefined(g) is a proof.

� if p

1

; : : : ; p

n

are proofs, n � 0, then refined(g; r; p

1

; : : : ; p

n

) is a proof,

where:

� g is a sequent.

� r is a re�nement rule. See Se
tion 7.4

The sequent g in the proof refined(g; r; p

1

; : : : ; p

n

) or unrefined(g) is referred to as the root

goal, or simply the goal of the proof. Similarly, the goals of the proofs p

1

; : : : ; p

n

are referred to as

the subgoals of the proof refined(g; r; p

1

; : : : ; p

n

).

A proof is good when is satis�es various 
onditions, in
luding

1. every sequent in the proof is 
losed; every free variable of a sequent 
lause is bound by some

de
laration of the sequent,

2. at every re�ned node of the proof tree, the rule proves the goal sequent, assuming the prov-

ability of the subgoal sequents.

A proof is 
omplete exa
tly when it is good and 
ontains no unre�ned nodes. A proof is in
omplete

if it is good but does 
ontain unre�ned nodes.

Ea
h theorem obje
t in Nuprl's library 
ontains one proof. The root goal of this proof is

sometimes referred to as the main goal of the theorem. It always has no hypotheses.
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7.4 Re�nement Rules

7.4.1 Primitive Re�nement Rules

The primitive re�nement rules are all introdu
ed by rule obje
ts. The 
urrent system has primitive

rules for a 
onstru
tive type-theory, 
losely related to Martin-L�of type-theory. All proofs in the

Nuprl system are eventually justi�ed by these primitive rules. More pre
isely, the 
orre
tness of

every Nuprl proof depends only on the 
orre
tness of these rules, and of Nuprl's re�ner. The re�ner

is a �xed pie
e of Lisp 
ode whi
h applies primitive rules to unre�ned leaves of proofs. Users rarely

invoke primitive rules dire
tly; they are at too low a level, and one has to understand how logi
 is


oded within type-theory. Almost always, ta
ti
s are used instead.

7.4.2 Ta
ti
 Rules

As explained in detail in Chapter 9, ta
ti
s are ML fun
tions whi
h enable one to automate ap-

pli
ation of primitive rules. A simpli�ed but 
on
eptually useful idea of a ta
ti
, is as a fun
tion

mapping proofs to proofs. If one applies a ta
ti
 in ML to an unre�ned proof and the ta
ti
 doesn't

fail, then the ta
ti
 returns a proof built (usually) from primitive rules with 0 or more unre�ned

leaves.

We give a des
ription of what a ta
ti
 rule is, and what happens when a ta
ti
 is exe
uted as

a re�nement rule. Assume that a proof editor window is viewing some proof node unrefined(g)

and that one enters Ta
ti
Text, the text of some suitable ta
ti
 as the re�nement rule.

1. Ta
ti
Text is parsed by the ML parser into a ta
ti
, and is applied to the proof node

unrefined(g). Let the resulting proof term be p. Note that the root goal of p is always

the same as g.

2. p is not simply inserted ba
k into the proof tree, repla
ing unrefined(g). Rather it is stored

in a ta
ti
 rule along with the ML text of the ta
ti
. Let us represent the ta
ti
 rule by the

term ta
ti
 rule(Ta
ti
Text ; p).

3. What is inserted ba
k into the proof tree to repla
e unrefined(g) is

refined(g ; ta
ti
 rule(Ta
ti
Text ; p) ; p

1

; : : : ; p

n

):

Here, n � 0, and p

1

; : : : ; p

n

are all the unre�ned leaf nodes of the proof p in the same

left-right order as they o

ur in p.

The ta
ti
 rule hides the proof tree p. When one views a proof term, or a ta
ti
 rule re�nement,

one only ever sees the text of the ta
ti
. From a logi
al point of view, it is not stri
tly ne
essary to

keep p around at all, after the ta
ti
 has exe
uted. However, it is ne
essary for extra
tion purposes.

In the event that a ta
ti
 is applied as a re�nement rule to an already re�ned proof term, the

proof term is �rst 
hanged to an unre�ned proof, dis
arding the existing re�nement rule and all

the sub-proofs, before it is passed to the ta
ti
.

Running a ta
ti
 as a re�nement rule makes it appear in a proof as a high level rule of inferen
e,

and 
onsequently greatly in
reases the readability of proofs.

The Ta
ti
Text is represented as an !ml text alternating sequen
e and has stru
ture identi
al

to that of ML library obje
ts.
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7.4.3 Re
e
tion Rules

7.5 Transformation Ta
ti
s

Transformation ta
ti
s have the same type as normal ta
ti
s. However, they 
an be run on any node

of a proof, not just leaf nodes. Examples of transformation ta
ti
s 
an be found in Se
tion 9.11.

When a transformation ta
ti
 is run on a proof p, the proof editor repla
es p with the proof

resulting from the ta
ti
; it doesn't 
reate a spe
ial proof node that just has the unproven subgoals

of the resulting proof as its immediate subgoals. Nor is the text of the transformation ta
ti
 saved

anywhere.

7.6 Proof Editor

The proof editor is designed prin
ipally to support the `top-down' re�nement style generation of

proofs. The re�nement style entails repeatedly 
hoosing an unre�ned leaf node of a proof and a

rule (usually a ta
ti
) to try on that node. If the rule applies, the Nuprl system 
hanges the node

to a re�ned node, and automati
ally generates appropriate 
hildren nodes.

The editor also supports the appli
ation of transformation ta
ti
s to proofs. These are usually

applied to already re�ned nodes of a proof tree and either 
hange the stru
ture of the proof they

are applied to or have some side e�e
t. Transformation ta
ti
s are des
ribed in Se
tion 7.5.

The proof editor generates windows onto se
tions of proofs. One 
an have windows open on

di�erent proofs at the same time, and even multiple windows onto the same proof. In the latter

event, the windows be
ome `read-only'.

Proofs asso
iated with theorem obje
ts are not �rst 
opied when they are viewed with the proof

editor, so all 
hanges made to proofs take e�e
t immediately. This is in 
ontrast to the situation

with the term editor where 
hanges are only 
ommitted when you exit an obje
t or ask for 
hanges

to be expli
itly saved. If you want to make tentative 
hanges to a se
tion of a proof, you 
an use

the Mark transformation ta
ti
 to �rst make a good 
opy of that se
tion, or you 
an make a 
opy

of the whole theorem obje
t.

7.6.1 Proof Window Format

Ea
h proof window is asso
iated with a node of a proof. It shows the goal sequent at that node,

the re�nement rule if any at that node and any immediate subgoals.

Figure 7.1 shows an example of a window onto a re�ned node of a proof, and Figure 7.2 shows an

example of a window onto an unre�ned node of a proof.

The numbered parts of these windows are as follows:


1 The EDIT indi
ates that the proof is being viewed in edit mode. In this mode the proof 
an

be 
hanged. This is repla
ed by SHOW if the proof is viewed in the read-only mode. The THM

indi
ates that a theorem obje
t is being viewed, and 
antor is the name of the theorem.


2 The # indi
ates that this proof node is 
onsidered in
omplete. Other symbols used here, are *

for 
omplete, and - for bad. the top 1 1 and the top 1 1 2 are tree addresses of the nodes

being viewed. Figure 7.2 shows the 1st 
hild of the 1st 
hild of the root of the proof, and

Figure 7.1 shows the 2nd 
hild of the proof node in Figure 7.2.
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1 EDIT THM 
antor


2 # top 1 1


3 1. f: N ! N ! N

2. 8g:N ! N. 9i:N. f i = g 2 N ! N

` False


4 BY With '�n.f n n + 1' (D 2) THENW Auto


6 1* 2. n: N

` 0 � f n n + 1


6 2# 2. 9i:N. f i = �n.f n n + 1 2 N ! N

` False

Figure 7.1: Proof Window on Re�ned Proof Node


1 EDIT THM 
antor


2 # top 1 1 2


3 1. f: N ! N ! N

2. 9i:N. f i = �n.f n n + 1 2 N ! N

` False


5 BY <refinement rule>

Figure 7.2: Proof Window on Unre�ned Proof Node
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3 This is the goal sequent of the proof node.


4 This is a ta
ti
 whi
h was exe
uted on the goal 
3 above in order to generate the subgoals


6 below. The BY is part of the proof node display, and is not part of the ta
ti
.


5 This is the re�nement rule pla
eholder.


6 These are the subgoals of the proof node. Ea
h one is numbered. The * or # by the subgoal

number shows the status of the subproof. The symbols are the same as those for the goal.

Note that for brevity, only hypotheses whi
h have 
hanged or been added are displayed in

the subgoal sequents.

Sometimes the proof window is too short to display all the goal, rule, and subgoals. In this 
ase

the 
ursor motion 
ommands des
ribed in se
tion ??? will automati
ally s
roll the window. One


an of 
ourse also resize the window.

7.6.2 Proof Motion Commands

hm-Bi ba
k-part move ba
k part.sibling to immediate left

hm-Fi forward-part move to sibling to immediate right

hm-Ai first-part move to left-most sibling

hm-Ei last-part move to right-most sibling

hm-Pi up-to-parent move up to previous level of proof

hm-<i up-to-top move up to top of proof

hm-Ni down-to-
hild move down to next level of proof

return

next-unrefined-leaf jump to next unre�ned node

Table 7.1: Proof Motion Commands

The keyboard 
ommands for moving about proofs are summarized in Table 7.1. The 
ommands


losely mat
h a subset of the term editor motion 
ommands (des
ribed in Se
tion 4.4.2). A part of

the window is a either a goal sequent, a re�nement rule, a rule pla
eholder or a subgoal.

The forward-part and ba
k-part 
ommands move the 
ursor within a proof window from

part to part, if ne
essary s
rolling the window. first-part moves the 
ursor to the goal and last-

part moves the 
ursor to the last subgoal if there are any subgoals; otherwise it moves the 
ursor

to the re�nement rule part.

The up-to-parent 
ommand, exe
uted with a 
ursor in any part of the window, shifts the

window one level up the proof tree. down-to-
hild, exe
uted with the 
ursor over a subgoal part,

shifts the window down the proof tree to that subgoal. The next-unrefined-leaf 
ommand shifts

the window to the next unre�ned proof node in a preorder traversal of the proof tree. If there are

none, next-unrefined-leaf shifts the window to the root of the proof.

The mouse 
an also be used to move about a proof. See Se
tion 7.6.4 for details. Most users

�nd these easier to use than the key bindings.

7.6.3 Opening, Closing, and Changing Windows
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h
-Zi exit-proof 
lose proof window

h
-Ji jump-next-window jump to next window

tab
jump-ml jump to ML top-loop

h
-Si sele
t open term window onto rule or sequent

h
-Ti transform open term window for transformation ta
ti


Table 7.2: Commands For Opening and Closing and Changing Windows

The relevant proof editor 
ommands are shown in Table 7.2, and des
ribed below. the sele
t and

transform 
ommands open up term editor windows. You 
an edit ML in these windows in the

same way you would edit ML in an ML obje
t or in the ML Top Loop.

7.6.3.1 Opening a Proof Window

A proof editor window is opened onto a proof in a theorem obje
t whenever the ML view fun
tion

is applied to the obje
t's name in the ML top-loop. If view is used on an theorem obje
t with

an 
ompressed proof, expansion of the proof is for
ed. This may take some time, espe
ially if the

proof is large. Se
tion 7.7 des
ribes proof 
ompression and expansion.

7.6.3.2 Closing a Proof Window

To 
lose a proof window, use exit proof.

7.6.3.3 Changing Windows

jump-next-window 
y
les the 
ursor through all the open proof and term windows, ex
ept the

ML-top-loop window. jump-ml moves the Nuprl 
ursor to the ML top-loop.

7.6.3.4 Editing The Main Goal

EDIT THM 
antor

? top <main proof goal>

Figure 7.3: A Proof Window on a New Proof

When a new proof window is opened, the window appears as in Figure 7.3. By using sele
t with

the 
ursor over <main proof goal> a term window is opened up to allow one to enter the main

goal of the proof.

One 
an also use sele
t on the main goals of in
omplete or 
omplete proofs. For example,

one might want to 
opy the main goal of one theorem and use it as the basis for the main goal of

another, or one might want to 
orre
t a mis-stated main goal. Note however that if a main goal is

destru
tively modi�ed and 
he
ked, then any existing proof is lost. As explained in Se
tion 4.4.7,

the window is 
he
ked whenever the exit term window 
ommand is used. If the window is not

66



modi�ed but 
he
ked, or modi�ed and then quitted, then any existing proof will not be 
hanged.

Warning: a window 
ounts as being modi�ed even if 
hanges have been made and then undone, so

it looks the same as it originally was.

7.6.3.5 Editing a Re�nement Rule

A re�nement rule window is opened whenever the sele
t 
ommand is used with the proof 
ursor

over the rule pla
e-holder. (For example see Figure 7.2) The window always has the title EDIT rule

of theorem where theorem is the name of the library obje
t holding the proof. A new re�nement

rule window is always initialized to allow one to type in an ML ta
ti
. The stru
ture and spe
ial

editing 
ommands for this term window are the same as for ML obje
ts. Soon, it will be possible

to initialize the re�nement rule window to hold other kinds of rules (For example a primitive rule).

We will des
ribe spe
ial term editor support for these options here. Most users will only use ta
ti
s

in re�nement rule windows. After a rule has been keyed in, and the term window exit 
ommand

has been given, Nuprl parses the rule and tries to apply it to the goal of the 
urrent proof. If the

rule su

eeds the proof window is redrawn with new statuses and subgoals as ne
essary. If it fails

then one of two things may happen. If the error is severe, the status of the node (and the proof)

will be set to bad, an error message will appear in the 
ommand/status window, and the rule will

be set to ??bad refinement rule??. If the error is mild and due to a missing input, Nuprl will

display some diagnosti
 message and leave the rule window on the s
reen so that it 
an be �xed.

One 
an also use sele
t on existing re�nement rules. For example, one might want to 
opy one

rule in order to use it as the basis of another or one might want to 
hange the rule. If a re�nement

rule is destru
tively modi�ed and 
he
ked, then any existing subproofs below the rule are lost. As

explained in Se
tion 4.4.7, the window is 
he
ked whenever the exit term window 
ommand is

used. If the window is not modi�ed but 
he
ked, or modi�ed and then quitted, then any existing

proof will not be 
hanged.

7.6.3.6 Viewing Subgoal Sequents

If sele
t is invoked on any sequent of a proof but the main goal, a read-only term window onto

that subgoal is generated. This is useful, for example, if one wants to use a term from a sequent as

an argument to a ta
ti
, and one doesn't want to have to retype in the term.

Should des
ribe here spe
ial editor support for subgoal sequents. e.g. what are represented as

alternating lists???

7.6.3.7 Editing a Transformation Ta
ti


To invoke a transformation ta
ti
 at some node of a proof, position a proof editor window at

that node and use the transform 
ommand. This opens up a transformation-ta
ti
 window and

initializes it to take ta
ti
 text. Type the name of the ta
ti
 and any arguments into the window

and then use the exit term editor 
ommand. Nuprl will apply the ta
ti
 and redisplay the proof

window to show any e�e
ts. If the expression entered doesn't parse or type
he
k, a diagnosti


message is printed and the window is left as is. If the tranformation ta
ti
 fails, the proof is left

un
hanged.
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mouse-right

mouse-sele
t sele
t main goal, rule or sequent

mouse-left
mouse-jump jump to window / parent / 
hild

Table 7.3: Mouse Commands for Proof Windows

7.6.4 Mouse Commands

The mouse 
ommands are shown in Table 7.3 The mouse 
an be used for shifting a proof window

about a proof, jumping between di�erent windows, and sele
ting the main goal, rules, and sequents

displayed in a proof window.

7.7 Proof Compression and Expansion

7.7.1 Introdu
tion

When a theory is dumped to a �le, proofs are stored in a 
ompressed format. This format retains

only the main goal, the text of ta
ti
s in ta
ti
 rules, and the text of primitive rules not buried inside

ta
ti
 rules. All other sequents, and all subproofs asso
iated with ta
ti
 rules, are dis
arded. Thus

the dumped representation 
ontains essentially just the text that a user would type to re
onstru
t

the proof.

This format 
ontains just enough information to regenerate the full proof data-stru
ture. When

a theory is loaded, the loaded proofs are retained in their 
ompressed format. When a proof is

needed, as when it is to be viewed, 
he
ked, or extra
ted from, then the system will re
onstru
t

the usual proof tree.

The re
onstru
tion 
an be time 
onsuming sin
e all the ta
ti
s used to 
onstru
t the proof must

be re-exe
uted. Also, if the ta
ti
s that were used to 
onstru
t the proofs have sin
e been modi�ed,

the re
onstru
tion may fail.

When a theorem obje
t is extra
ted from, the extra
tion is stored with the theorem in the

library. When a theorem obje
t is dumped to a �le, if it has an extra
tion, then the extra
tion is

also dumped. This feature 
an sometimes redu
e the need for proof expansion.

The proof-s
ript of a theorem is updated whenever a 
omplete proof of the theorem is built.

Note however that it is not updated if expansion of a previously 
omplete theorem results in an

in
omplete theorem. This is to give the user a 
han
e to �x the proof s
ript. The proof-s
ript of a

theorem is also updated when a theorem is dumped to a �le, and when the proof is 
ompressed.

7.7.2 Editing Proof S
ripts

Editing fa
ilities are provided for proof-s
ripts, as are ta
ti
s for expli
itly exe
uting a proof-s
ript

on a node of a proof. These are parti
ularly of use when �xing proof-s
ripts that have broken due

to 
hanges in ta
ti
s or the library 
ontext.

Proof s
ripts are Lisp data stru
tures. They are made editable by translating to and from

`proof-s
ript terms' or `ps-terms' for short. An example display of a ps-term is:
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TACTIC top :

(Unfold `not` 0

THENM D 0

THENM InstCon
l [

d

�n.f n n + 1

e

℄ ...')

SUBTREES

TACTIC top 1 :

(With

d

i

e

(EqHD 3) THENM Redu
e 3 ...a)

SUBTREES

TACTIC top 1 1 :

Auto

SUBTREES

<no subtrees>

END

END

END

Figure 7.4 summarizes the stru
ture of ps-terms.

node name alternatives / stru
ture alias

ps
ript-node ::= TACTIC \\ ta
ti
 \\ SUBTREES subtree* END psnode

| TACTIC addr : \\ ta
ti
 \\ SUBTREES subtree* END

subtree* ::= subtree \\ : : : \\ subtree | <no subtrees>

subtree ::= ps
ript-node

Figure 7.4: Proof-S
ript Terms

The `alias' 
olumn gives the name by whi
h proof-s
ript nodes 
an be entered. Proof-s
ript

subtrees are 
onsidered to be a term sequen
e, and the usual term sequen
e editing 
ommands

work with them. The addr �elds in ps-terms are for tree addresses in the same format as used in

proofs. They serve solely as a guide the user; they have no logi
al signi�
an
e. Users should never

need to expli
itly �ll these addresses in. Instead, the addresses are generated by ML fun
tions that

build proof s
ript terms.

Useful ML fun
tions in
lude:

psterm of thm obje
t nam:tok = psterm:term

Takes the name nam of a theorem in the library and returns its proof-s
ript term psterm.

In doing so, it appropriately �lls in the address �elds of the proof-s
ript term.

psterm anno psterm:term = psterm':term

Adds address annotations to a proof-s
ript term, ignoring any previous annotations.

RunPSTerm psterm:term = T:ta
ti


A transformation ta
ti
 for exe
uting proof-s
ript terms.
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Chapter 8

Rule Interpreter

8.1 Term Stru
ture of Rules

Rule de�nitions are expressed as `terms' in the sense des
ribed in Chapter 4. They are normally

stored in library obje
ts of kind rule.

Figure 8.1 shows the basi
 tree stru
ture of rule terms. I have in
luded kinds of `virtual tree

nodes' in this des
ription. These virtual nodes do not 
orrespond to term 
onstru
tors used in

building up rules, but they do help in explaining the stru
ture of rule terms.

Itali
 type is used in Figure 8.1 for kinds of tree nodes that 
orrespond to terms and term slots.

Roman type is used for tree nodes that 
orrespond to text strings and text slots. \\ indi
ates a

linebreak in a display form, \null indi
ates a display form with `zero width', and  is the usual

invisible spa
e. The suÆx * 
hara
ter on a node-kind names indi
ate a sequen
e of nodes. The

prl-term node kind is for terms in Nuprl's obje
t language.

Names for the term 
onstru
tors that are suitable for entering the 
onstru
tors are shown in

the `alias' 
olumn. The term 
onstru
tors for sequen
es do not need to be entered expli
itly by

name. The editor re
ognizes the 
ontext of ea
h sequen
e, and sequen
e items 
an be added and

deleted using the h
-Oi and h
-Ci sequen
e 
ommands.

For rule terms to be well-formed, there are several extra 
onstraints on their stru
ture. These

in
lude:

� substitution terms 
an only o

ur in

{ the 
on
l or hyp-item term of a subgoal,

{ the right-hand subterm of a mat
hing-
onstraint,

{ extra
t term of a goal.

� there should be a hyp-index term as a rule arg for ea
h hyp-list hyp-item that is followed by

a hyp hyp-item in the goal of the rule de�nition.

� Adja
ent hyp-items should not be both variables.

� The extra
t of a subgoal (if it exists) should always be a variable.

8.2 Semanti
s of Rule Interpreter
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node name alternatives / stru
ture physi
al node name alias

rule-def ::= goal \\BY rule \\ subgoal* simple-rule rldef

| goal \\ BY rule \\ 
onstraint \\ subgoal* 
onstrained-rule 
rldef

goal ::= sequent

subgoal* ::= subgoal \\ : : : \\ subgoal | No Subgoals

subgoal ::= sequent

sequent ::= hyp-item* ` 
on
l no-ext-sequent seq

| hyp-item* ` 
on
l ext extra
t ext-sequent eseq

hyp-item* ::= hyp-item , : : : , hyp-item | \null

hyp-item ::= hyp | hyp-list

hyp ::= variable : subst-term normal-de
laration de
l

| [variable : subst-term℄ hidden-de
laration hde
l

hyp-list ::= variable | substitution


on
l ::= subst-term

extra
t ::= subst-term


onstraint ::= Let term = subst-term mat
hing-let mlet

| Let arg* = Call{lisp-fun-name} lisp-let llet

rule ::= rule-name arg* rule

arg* ::= arg  : : :  arg | ()

arg ::= variable

| nat-number

| # hyp-index hypi

| #hyp-num hyp-index-n hypind

| level{level} level-exp level

| parm-sub{parm-sub} parm-substitution parmsub

subst-term ::= prl-term | substitution

substitution ::= variable[prl-term/variable℄ subst-1 subst

| variable[prltm,prltm/var,var℄ subst-2 subst2

| variable[prltm,prltm,prltm/var,var,var℄ subst-3 subst3

| variable[parm-sub℄ subst-parms substp

variable ::= variable var-name

nat-number ::= natural nat-digits

Figure 8.1: Stru
ture of Rules
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Chapter 9

Ta
ti
s

9.1 Introdu
tion

9.1.1 Conventions

For brevity, we assume unless otherwise stated that arguments to ta
ti
s have the following types

and uses:

T* : ta
ti



* : int 
lause index.

i* : int hypothesis index.

t* : term term of Nuprl's type theory

n* : tok name of lemma obje
t in library

a* : tok name of abstra
tion obje
t in library

v* : var variables in terms of Nuprl's obje
t language

l* : tok subgoal label

p* : proof 
urrent goal

An s suÆx on the name of an argument indi
ates that it is a list. For example vs is 
onsidered

to have type var list.

9.1.2 Universes and Level Expressions

In Nuprl's type theory, types are grouped together into universes. Types built from the base types

su
h as Z or Atom using the various type 
onstru
tors are in universe U

1

. The subs
ript 1 is the

level of the universe. Types built from universe terms with level at most i, are in universe U

i+1

.

Universe membership is 
umulative; ea
h universe also in
ludes all the types in lower universes.

Sin
e propositions are en
oded as types, propositions reside in universes too. In keeping

with the propositions-as-types en
oding, we de�ne a family of propositional universe abstra
tions

P

1

: : :P

i

: : : , whi
h unfold to the 
orresponding primitive type universe terms U

1

: : :U

i

: : : .

If one is only allowed to use 
onstant levels for universes, one often has to 
hoose arbitrarily

levels for theorems. One would then �nd that one needed theorems whi
h were stated at a higher

level, and would have to reprove those theorems. This was the 
ase in Nuprl V3.

Nuprl V4 allows one to prove theorems whi
h are impli
itly quanti�ed over universe levels.

Quanti�
ation is a
hieved by parameterizing universe terms by level expressions rather than natural
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number 
onstants. The syntax of level expressions is given by the grammar:

L :: = v

j k

j L i

j L

0

j [Lj � � � jL℄

The v are level-expression variables. v 
an be any alphanumeri
 string. These variables are

impli
itly quanti�ed over all positive integer levels. the k are level expression 
onstants. k 
an

be any positive integer. The i are level expression in
rements. i 
an be any non-negative integer.

The expression L i is interpreted as standing for levels L + i. L

0

is an abbreviation for L 1. The

expression [L

1

j � � � jL

n

℄ is interpreted as being the maximum of expressions L

1

� � �L

n

.

Usually when stating theorems, only level expressions of the form v and v

0

need be used. Other

expressions get automati
ally 
reated by ta
ti
s. Further, it is normally suÆ
ient to use a single

level-expression variable throughout a theorem statement. For example, we normally prove the

theorem:

8A:P

i

:8B:P

i

:A) (B ) A)

rather than

8A:P

i

:8B:P

j

:A) (B ) A)

9.1.3 Formula Stru
ture

Many of Nuprl's ta
ti
s work on formulae generated by the grammar

P :: = 8x:A: P j Q) P j P ( Q

j P ^ P j P () P

j R

where A is a type, and R is a propositional term not of the above form. We 
all these general uni-

versal formulae or just universal formulae. They are sometimes 
alled positive de�nite formulae or

horn 
lauses. We 
all the formulae generated by this grammar without the ^ and() 
onne
tives,

simple universal formulae. We 
all the proposition R, a 
onsequent and ea
h Q, an ante
edent.

O

asionally we refer to the types A as type ante
edents.

We view a general universal formula as being 
omposed of several simple formulae, one for

ea
h 
onsequent. The simple 
omponents are numbered from 1 up, starting with the leftmost


onsequent.

Su
h formulae are the standard way of summarizing derived rules of inferen
e, and are used as

su
h by the forward and ba
kward 
haining ta
ti
s. Often, a 
onsequent R of a formula will be an

equivalen
e relation, in whi
h 
ase the formula 
an be used as a rewrite rule by the rewrite pa
kage.

O

asionally, one has a universal formulae, where the outermost 
onstru
tor of R is also one

of the 
onstru
tors whi
h makes up the universal formulae. In this 
ase, one 
an surround R by

a guard abstra
tion. A guard abstra
tion takes a single subterm as argument and unfolds to this

subterm. The ta
ti
s whi
h take apart universal formulae re
ognise and automati
ally remove

guard abstra
tions, so the user rarely has to expli
itly unfold them.
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9.1.4 Soft Abstra
tions

Certain abstra
tions 
an be designated as soft. Some ta
ti
s treat soft abstra
tions as being trans-

parent | those ta
ti
s behave as if all soft abstra
tions had �rst been unfolded. In pra
ti
e, those

ta
ti
s only unfold soft abstra
tions when they need to and for the most part are 
areful not to

leave unfolded soft abstra
tions in the subgoals that they generate.

Spe
i�
 ta
ti
s and fun
tions whi
h unfold soft abstra
tions are:

� The MemCD and EqCD ta
ti
s. For example, if MemCD is run on a sequent with 
on
lusion

` t 2 T where t is soft and no well formedness lemmas exist for t, then it unfolds t.

� The NthHyp, NthDe
l, Eq and In
lusion ta
ti
s unfold soft abstra
tions in the relevant


lauses.

� Most ta
ti
s using mat
hing routines treat soft abstra
tions as transparent. For example the

forward and ba
kward 
haining ta
ti
s, and the atomi
 rewrite 
onversions based on lemmas

and hyps.

In the basi
 libraries, the soft abstra
tions are

member t 2 T =

def

t = t 2 T

nequal x 6= y 2 T =

def

:(x = y 2 T )

prop P

i

=

def

U

i

and A ^B =

def

A�B

or A _B =

def

A+B

implies A) B =

def

A! B

rev implies A( B =

def

B ) A

iff A, B =

def

(A) B) ^ (A( B)

exists 9x:A: B

x

=

def

x:A�B

x

all 8x:A: B

x

=

def

x:A! B

x

ge i � j =

def

j � i

gt i > j =

def

j < i

lelt i � j < k =

def

(i � j) ^ (j < k)

lele i � j � k =

def

(i � j) ^ (j � k)

The logi
 abstra
tions (and, or, implies, exists, all) are made soft be
ause the well formed-

ness rule for the underlying primitive term is simpler and more eÆ
ient than the well formedness

lemma would be. The softness is also useful when one wishes to blurr the distin
tion between

propositions and types, for example when reasoning expli
itly about the inhabitants of propositions.

member, nequal, rev implies, ge and gt are soft prin
ipally be
ause it 
an simplify mat
hing.

Abstra
tions are not soft by default. They are de
lared soft by supplying their opids to the

fun
tion add soft abs : tok list -> unit. Instan
es of this fun
tion are usually kept in ML

obje
ts in 
lose proximity to the abstra
tion de�nitions that they are de
laring soft. For an example

use of add soft abs, see the obje
t soft ab de
ls in the 
ore 2 theory.

9.1.5 The Sequent

Sequents are introdu
ed in Se
tion 7.2. We des
ribe here some spe
i�
 ta
ti
-related details.
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Hypotheses are 
onventionally numbered from left to right, starting from 1. These hypothesis

numbers are displayed by the proof editor, and ta
ti
s usually refer to hyps by these numbers.

Sometimes, it is 
onvenient to 
onsider the hyps numbered from right to left, and for this reason

ta
ti
s 
onsider a hyp list H

1

; : : : ;H

n

to also be numbered H

�n

; : : : ;H

�1

. O

asionally, the index

n+ 1 or 0 is used to refer to the hyp position to the right of the last hyp.

There are ta
ti
s whi
h work in similar ways on both hyps and the 
on
l. In this 
ase, we 
all

the hyps and 
on
l 
olle
tively 
lauses, refer to the 
on
l as 
lause 0, and hyp i, i 6= 0 as 
lause i.

So far, we have not en
ountered ta
ti
s where we would want to both refer to the position after the

last hyp as 
lause 0 and refer to the 
on
lusion, so this numbering s
heme has not 
aused problems.

When we want to indi
ate expli
itly the number of a hyp in a s
hemati
 sequent, we pre�x the

hyp with the number followed by a period. So for example, if hyp i is proposition P , we write the

hyp as i: P .

Ta
ti
s 
urrently use the visibility of the variable as an indi
ation of whether it is ever used

in subsequent hyps or the 
on
l. Some ta
ti
s working on hyps are more eÆ
ient when they

work on hyps whose variables are unused. The variables de
lared in a hypothesis list must all be

distin
t. Ta
ti
s are 
areful to use invisible variables for new hypotheses that are to be 
onsidered

assumptions rather than de
larations.

9.1.6 Proof Annotations

Nuprl proof terms (ML terms of type proof) 
an be annotated with extra information whi
h isn't

relevant to the logi
al 
orre
tness of a proof. Nuprl 
urrently supports two kinds of annotations;

goal labels and ta
ti
 arguments.

9.1.6.1 Goal Labels

A Nuprl ta
ti
 generates various kinds of subgoals, and often subsequent ta
ti
s want to dis
riminate

on subgoal kind. Sometimes a subgoal's kind 
an be dedu
ed dire
tly from its stru
ture, but this


an be a error-prone pro
ess and so ta
ti
s atta
h expli
it labels to subgoals indi
ating their kind.

Labels take the form of an ML token, and an optional number. Examples of labels are main, up
ase

and wf. Most des
riptions of ta
ti
s in
lude information on subgoal labelling. It is also a simple

matter to �nd out what labels are generated by experimentation.

The ta
ti
als whi
h dis
riminate on labels are des
ribed in the ta
ti
als se
tion below. For


onvenien
e, labels are divided into the the 
lasses main and aux. The dis
riminating ta
ti
als

allow one to sele
t either subgoals with a parti
ular label, or subgoals of one of the two 
lasses.

One sele
ts a 
lass by using one of the 
lass names main or aux.

1

Sometimes ta
ti
s generate a set of subgoals whi
h are all the same kind, but where the order

of the subgoals is important. The number labels are used to dis
riminate between these subgoals.

Labels used not to be visible when editing proofs with the proof editor and are therefore some-

times known as hidden labels.

Label related ta
ti
s are:

AddHiddenLabel lab

Add hidden label lab to the 
urrent goal.

1

main is 
urrently used as both a 
lass name, and a parti
ular label name, so there is 
urrently no way to sele
t

only subgoals in 
lass main with label main.
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AddHiddenLabelAndNumber lab i

Add hidden label lab to the 
urrent goal along with the integer label i.

UnhideLabel

Make the hidden label on a goal visible. This wraps a spe
ial abstra
tion around the 
on
lusion

term of the goal whi
h makes the label visible. Sin
e the `hidden' labels are usually visible, this

ta
ti
 is no longer that ne
essary.

RemoveLabel

Remove a visible label.

See Se
tion 9.3.2 for how to dis
riminate on labels.

9.1.6.2 Ta
ti
 Arguments

Unlike Lisp fun
tions, ML fun
tions 
annot take optional arguments, although it is natural to want

to write ta
ti
s whi
h do take optional arguments. One approa
h is to provide a set of variants of

ea
h ta
ti
 for the most 
ommon 
ombinations of arguments. This 
an be 
onfusing, and pla
es

an extra burden on the user who has to keep tra
k of these variants. Nuprl V4 allows optional

arguments to be passed to ta
ti
s by atta
hing these arguments to the proof argument whi
h all

ta
ti
s operate on. Currently argument types of int, ta
ti
, term, tok, var and (var # term)

list are supported. Ea
h argument is given a token label, and arguments are looked up by these

labels. Sets of arguments are maintained on a sta
k, so nesting of ta
ti
s whi
h use optional

arguments is possible.

Note that some ta
ti
s do useful prepro
essing on some of their arguments, and in these 
ases

there would be a performan
e penalty if su
h arguments were supplied, annotated to the proof.

Ta
ti
 arguments are also used for the analogy ta
ti
s. See the relevant se
tion below.

Ta
ti
als for manipulating these arguments are:

With (t:term) T

Runs T with t as a `t1` argument.

New ([v1;...;vn℄ : var list) T

Runs T with v1 to vn as arguments `v1` to `vn`.

At (U:term) T

Runs T with U as a `universe` argument. Term U should either be either a type universe or a

propositional universe term.

Using (sub:(var # term) list) T

Runs T with the substitution sub as a sub argument.

Sel (n:int) T

Runs T with the integer n as an n argument. Used for sele
ting a simple 
omponent of a universal

formula or a subterm of a term.

These ta
ti
s are all spe
ial 
ases of:

WithArgs (args: (tok # arg) list) T

Run T with the arguments in args on the top of the sta
k. arg is an ML abstra
t data type,

de�ned as the disjoint union of the types listed above. There exist inje
tion and proje
tion

fun
tions for ea
h of the types listed above.

Ea
h ta
ti
 des
ription in
ludes information on the optional arguments (if any) that it takes.
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9.1.7 Mat
hing and Substitution

Nuprl has 
omplex mat
hing routines, whi
h allow for automati
 instantiation of universal formulae

in a variety of 
ases. Given a pattern term P and instan
e term I, we say that I mat
hes P , if

there exists a substitution � su
h that I R �P . For many purposes, R is � � � equality, but on

some o

asions it is useful to use a slightly weaker R. The weaker R allows level expressions in I

and �P to be related by an order relation rather than an equivalen
e relation. The weaker R also


an allow I and �P to di�er by the folding or unfolding of soft abstra
tions.

Sin
e mat
hing is all about guessing substitutions, we des
ribe �rst the possible kinds of sub-

stitution.

1. First Order Term

We repla
e a variable term free in P by some other term. For example, if P = x + y and

� = [x 7! 3℄, then I = 3 + y. We 
all su
h substitution �rst order be
ause in �, ea
h variable

is bound to a �rst-order term rather than a higher-order term. (See next item).

2. Se
ond Order Term

Se
ond-order terms are a generalization of terms. They 
an be thought of as `terms with

holes', terms with zero or more subtrees missing. A se
ond-order term 
an be represented

as a pair of a variable list and a �rst-order term, the �rst-order term being generated from

the se
ond-order term by �lling the holes with variables from the variable list. Naturally

the hole-�lling variables need to be distin
t from any other variables in the term to avoid


onfusion. We will write a se
ond-order term as w

1

; : : : ; w

n

:t

w

1

;:::;w

n

.

A se
ond-order variable instan
e has form v[a

1

; : : : ; a

n

℄, where v is the variable itself, and

a

1

; : : : ; a

n

are its arguments. A se
ond-order substitution is a list of se
ond-order bindings,

pairs of se
ond-order variables and the se
ond-order terms they are bound to. The result

of applying the binding [v 7! w

1

; : : : ; w

n

:t

w

1

;:::;w

n

℄ to the variable instan
e v[a

1

; : : : ; a

n

℄, is

the term t

a

1

;:::;a

n

{ the se
ond-order variable's arguments �lling the holes of the se
ond-order

term.

Se
ond order substitution is useful for instantiating pattern terms involving binding stru
ture.

For example the se
ond-order substitution [P 7! i:i � 0℄ applied to the pattern 8x:N:P [x℄

yields the instan
e 8x:N:x � 0.

3. Parameter

Nuprl terms 
an be parameterized by families of obje
ts su
h as natural numbers and tokens.

When de�ning abstra
tions using su
h parameters, one repla
es an instan
e of a parameter

by a parameter variable. Su
h parameter variables are repla
ed by parameter 
onstants using

parameter substitution.

4. Level Expression

Level expression substitution involves repla
ing level expression variables within level expres-

sion parameters by other level expressions.

5. Bound Variable

Su
h substitutions are useful for alpha-
onversion of terms.
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Mat
hing involves re
ursively 
omparing the stru
ture of an instan
e term against that of a

pattern term. For a mat
h to possibly su

eed, the stru
tures must only disagree at positions

where there is some kind of variable in the pattern. Ea
h disagreement must generate or 
on�rm

a binding for that variable.

The kinds of mat
hes of instan
e parts to some sort of variable are:

1. Term to First-Order Variable Term

For example, the instan
e 2+2 mat
hes the pattern x+x giving the �rst-order term binding

[x 7! 2℄. In general, sin
e instan
e terms also 
ontain variable terms, the mat
h routine dis-

tinguishes between variable terms in the pattern whi
h 
an and 
annot take part in mat
hing.

The variable terms whi
h do take part are 
alled meta-variables. In the example above, the

variable x is 
onsidered a meta-variable. If a meta-variable o

urs more than on
e, then all

mat
hes for it must be alpha-equal.

2. Term to Se
ond-Order Variable Term

In addition to making distin
tion between meta and non-meta variable terms, The mat
h rou-

tines distinguishes between a
tive se
ond-order variables and passive se
ond-order variables.

A
tive se
ond-order variables generate bindings. Passive se
ond-order variables are used to


on�rm mat
hes generated by other a
tive se
ond-order variables.

For example, with P a se
ond-order meta-variable, the instan
e 8i:N: i � 0 mat
hes the

pattern 8x:N: P [x℄, giving the se
ond-order term binding [P 7! i:i � 0℄.

3. Parameter Constant to Parameter Variable

For example, the instan
e term applef
ox:tokg mat
hes the pattern term applef$x:tokg

giving the parameter binding $x 7! 
ox.

4. Bound Variable to Bound Variable

For example, the instan
e term �x: x mat
hes the pattern term �y: y, giving the bound

variable binding y 7! x.

5. Level Expression to Level Expression

This kind of mat
hing is rather 
omplex, sin
e we sometimes desire that the pattern, when

instantiated with the result of the mat
h, be related to the instan
e by an order relation

rather than an equality. For example, the instan
e U

i

�U

j

might mat
h the the pattern

U

k

�U

[k n℄

giving a level expression substitution of [k 7! [i j℄; n 7! j℄. The dire
tions of the

inequalities between level expressions in the instan
e and instantiated pattern are dependent

on the position of the level expressions in the terms. They are usually 
hosen su
h that there

is a 
ertain in
lusion relation between the instan
e and the instantiated pattern when ea
h is


onsidered as a type.

Term to �rst-order variable, term to se
ond-order variable, and bound variable mat
hing is always

used in ta
ti
s whi
h do mat
hing. Parameter mat
hing is only used when folding or unfolding

abstra
tions. Level expression mat
hing is only used by mat
hing ta
ti
s whi
h refer to lemmas.

Unless otherwise stated, all ta
ti
s do soft mat
hing - if ne
essary they will try to unfold soft

abstra
tions to make a mat
h go through.

Se
ond-order variable instan
es 
annot appear in Nuprl sequents, nor 
an se
ond-order terms.

Instead, we simulate them using respe
tively appli
ation, and lambda abstra
tion. Spe
i�
ally, we
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de�ne families of abstra
t terms with so apply and so lambda. (We need families to 
ope with

the di�erent possible arities.)

Often, when we mat
h against the 
onsequent of a lemma, we 
annot obtain all the bindings

to instantiate the lemma dire
tly from the mat
h. In these 
ases, we try to extend the mat
h by

inferring types of right-hand sides of existing bindings, and mat
hing those inferred types against

the type de
larations in the lemma of the left-hand-sides of the bindings. For example, the typing

lemma for the length fun
tion is:

8A:U

i

:8l:A List: length(l) 2 N

Consider the goal ` length(3::2::1::[℄) 2 N. A mat
h of the 
on
l of this goal against the


onsequent of the pattern gives the binding l 7! 3::2::1::[℄, but doesn't give a binding for A. However,

we 
an get the binding A 7! Z by mat
hing the inferred type of 3::2::1::[℄ whi
h is ZList, against

the de
laration type of l, whi
h is AList. Similarly, by inferring the universe whi
h Z inhabits, we


an get a binding for the universe level i.

For 
onvenien
e, we inje
t the di�erent kinds of bindings into the single type var # term. A

pair of this type is interpreted a

ording to the �rst entry in the following table whi
h it mat
hes.

(Equating ML obje
ts of type var and the obje
ts of type tok they are isomorphi
 to.)

pattern interpretation

< v; so lambda(xs:t

0

) > The higher-order binding v 7! xs:t

0

< v; parameterfle:lg > The level exp binding v 7! le

< v; parameterfw:vg > The bound variable binding v 7! w

< v; parameterfp:�g > The parameter variable binding v 7! p

< v; t > The �rst-order binding v 7! t

Most ta
ti
s whi
h do mat
hing, take an optional sub argument whi
h 
an be used to provide

bindings whi
h the mat
h fails to �nd, or to override mat
hes whi
h are found.

9.2 Basi


9.2.1 Stru
tural

Id

The identity ta
ti
.

Fail

A ta
ti
 whi
h always fails. Usually used inside other ta
ti
s.

NthHyp i

Proves goals of form : : : A : : : ` A where A is the ith hypothesis.

NthDe
l i

Proves goals of form : : : x:T : : : ` x 2 T or : : : x:T ldots ` x = x 2 T or where x:T is the ith

de
laration.

AssertAt j t

Assert term t before hypothesis j. Generates main subgoal with t asserted, and assertion

subgoal to prove t.

Assert t

=

def

AssertAt 0 t. Assert t as last hypothesis.
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MoveToHyp j i

Move hyp j to before hyp i.

MoveToCon
l j

If hyp j is a proposition,

: : : j:A : : : ` C

BY MoveToCon
lj

main : : : : : : ` A) C

If hyp j is a de
laration,

: : : j:x:T : : : ` C

BY MoveToCon
lj

main : : : : : : ` 8x:T: C

MoveToCon
l �rst invokes itself re
ursively on any hyp whi
h might depend on hyp j.

MoveDepHypsToCon
l j

Use MoveToCon
l to move hyps whi
h use variable de
lared by hyp j.

Thin i

Delete hypothesis i.

RenameVar v i

Rename the variable de
lared in hypothesis i to v.

RenameBVars (vsub : (var # var) list) 


Rename o

urren
es of bound variables in 
lause 
.

9.2.2 Single-Step De
omposition

The de
omposition ta
ti
s invoke the primitive so-
alled introdu
tion and elimination rules of

Nuprl's logi
. We prefer the use of the word de
omposition be
ause it suggests in most 
ases

the e�e
t of the rules when they are applied.

D 


De
ompose the outermost 
onne
tive of 
lause 
. Usually D unfolds all top level abstra
tions and

applies the appropriate primitive de
omposition rule. D 
an take several optional arguments:

� A `universe` argument, usually applied using the At ta
ti
al.

� A `t1` argument for a term. This argument is for instan
e ne
essary when de
omposing a

hypothesis with a universal quanti�er outermost, or de
omposing the 
on
lusion with an

existential quanti�er outermost. For example: With `a' (D 0).

� `v1` and `v2` arguments for new variable names. These are useful for some hypothesis

de
ompositions if one is not satis�ed with the system supplied variable names. For example,

New [`x';`y'℄ (D 3).

� An `n` argument to sele
t a subterm. This is ne
essary when applying D to a disjun
t in

the 
on
lusion. For example, Sel 1 (D 0).
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D is somewhat intelligent with instan
es of set and squash terms.

ID 


Intuitionisti
ally de
ompose 
lause 
. This behaves as D does, ex
ept that when de
omposing

a fun
tion, a universal quanti�er, or an impli
ation, in a hypothesis, the original hypothesis is

left inta
t rather than thinned.

MemCD

De
omposes terms whi
h are the immediate subterms of an membership term in the 
on
lusion.

Labels subgoal 
orresponding to subterm n with label subterm and number n. Other subgoals

are labelled wf. For primitive terms MemCD uses the appropriate primitive rule. For abstra
tions,

MemCD tries to use an appropriate well-formedness lemma. The lemma for term a t with opid

opid should have name opid wf and should be a simple universal formula with 
onsequent t 2 T .

The subterms of t usually should be all variables. Constants are a

eptable as subterms too. If

more than one lemma is needed, the lemmas should be distinguished by suÆ
es to the opid wf

root. MemCD attempts to use lemmas in the reverse of the order in whi
h they o

ur in the

library. If the 
on
l is a 2 A where a is an instan
e of t and A doesn't mat
h any of the T of the

lemmas, then MemCD tries mat
hing a against t of the last lemma. If this su

eeds and generates

some substitution �, MemCD produ
es a subgoal �T � A and tries to use the In
lusion ta
ti


to prove it.

An example appli
ation of the MemCD ta
ti
 is

: : : ` < a; b >2 x:A�B

x

BY MemCD

subterm1: : : : ` a 2 A

subterm2: : : : ` b 2 B

a

wf: : : : x:A ` B

x

2 U

�

EqCD

EqCD is like MemCD ex
ept that it works on the immediate subterms of equality terms rather

than membership terms and the subgoals generated are equality terms rather than membership

terms. Equalities don't have to be re
exive. EqCD is good for 
ongruen
e reasoning and is used

extensively by the rewrite pa
kage.

EqHD i

De
ompose terms whi
h are immediate subterms of equality hypotheses. Works when the type

is a produ
t or fun
tion type.

MemHD i

Like EqHD but works on the immediate subterms of membership terms.

EqTypeCD

De
ompose just the type subterm of a 
on
lusion equality term. Only works when the type is

a set type or is an abstra
tion that eventually unfolds to a set type.

MemTypeCD

As EqTypeCD but works on membership terms.

EqTypeHD i

De
ompose just the type subterm of a hypothesis equality term. Only works when the type is

a set type or is an abstra
tion that eventually unfolds to a set type.

MemTypeHD i
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As EqTypeHD but works on membership terms.

9.2.3 Iterated De
omposition

Several ta
ti
s do iterated de
omposition of 
lauses. Here are a few that are 
ommonly used, along

with the 
onne
tives that they work on.

Ta
ti
 In Hyps In Con
l

UnivCD 8 =)

GenUnivCD 8 =) ^()

RepD ^ 8 =)

GenRepD ^ 8 =) ^()

ExRepD 9^ 8 =)

GenExRepD 9 ^ _ 8 =) ^()

If a guard term is en
ountered in the pro
ess of de
omposing the 
on
lusion, the guard term is

removed and de
omposition of the 
on
lusion stops.

9.3 Ta
ti
als

Ta
ti
als are fun
tions for 
omposing ta
ti
s. In�x ta
ti
als are distinguished by having the �rst

part of their name in all 
apitals. In�x ta
ti
als always asso
iate to the left.

9.3.1 Basi
 Ta
ti
als

T1 ORELSE T2

Try running T1. If it fails, run T2 instead.

T1 THEN T2

Run T1, and then on all subgoals generated by T1, run T2.

T THENL [T1;...;Tn℄

Run T1, generating exa
tly n subgoals. Then run Ti on the ith subgoal (numbering subgoals

from left to right.)

Try T

=

def

T ORELSE Id

Complete T

Run T. Fail if T generates one or more subgoals.

Progress T

Run T. Fail if T makes no progress. (For example, if T is Id.)

Repeat T

Repeat appli
ation of T on subgoals generated by previous tries, until no further progress made

RepeatFor i T

Repeat appli
ation of T exa
tly n times.

If (e:proof -> bool) T1 T2

If e p evaluates to TRUE then run T1. Otherwise, run T2.
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9.3.2 Label Sensitive Ta
ti
als

IfLab lab T1 T2

If lab mat
hes label of p, run T1. Otherwise, run T2.

T1 THENM T2 =

def

T1 THEN IfLab `main` T2 Id

T1 THENA T2 =

def

T1 THEN IfLab `aux` T2 Id

T1 THENW T2 =

def

T1 THEN IfLab `wf` T2 Id

IfLabL [l1,T1; l2,T2; ... ;ln,Tn℄

Run the �rst Ti for whi
h li mat
hes label of p

T THENLL [l1,Ts1; l2,Ts2; ... ;ln,Tsn℄

Run ta
ti
 T then do the following on ea
h subgoal, s
anning the subgoals from left to right.

Mat
h the subgoal's label against ea
h li until a mat
h su

eeds. Then if the subgoal also

has number label j, retrieve the jth ta
ti
 from Tsi and run that ta
ti
 on the subgoal. If the

subgoal has no number label, then pop the �rst ta
ti
 o� the Tsi list and run that ta
ti
. If

there are not suÆ
ient ta
ti
s in the appropriate lists, THENLL fails. If there are too many, then

the ex
ess are ignored. If a subgoals label doesn't mat
h any of the li then run the Id ta
ti
.

SeqOnM [T1;...;Tn℄

Run the ta
ti
s T1 to Tn on su

essive main subgoals.

RepeatM T

Repeat the ta
ti
 T on main subgoals.

RepeatMFor i T

Repeat the ta
ti
 T on main subgoals exa
tly i times.

9.3.3 Multiple Clause Ta
ti
als

AllHyps (T : int -> ta
ti
)

Try running T on ea
h hypothesis starting with the end of the hypothesis list and working

ba
kwards. If T su

eeds on some hypothesis, then AllHyps only 
ontinues on subgoals 
reated

by T that are labelled main.

All (T : int -> ta
ti
)

Similar to AllHyps, ex
ept that also tries applying T to 
on
lusion after trying to apply it to

hypotheses.

On [
1;...;
n℄ (T : int -> ta
ti
) =

def

T 
1 THENM ... THENM T 
n

9.4 Case Splits and Indu
tion

There are two ways of doing 
ase splits and indu
tion. The more general way is to ba
k
hain

through an appropriate lemma. For example, look at the lemmas int upper ind and int seg ind

at the end of the int 2 theory. To use these lemmas, you must ensure that the type the indu
tion

is being done over is in an outermost universal quanti�er in the 
on
lusion. For example, to use

int seg ind, the 
on
lusion must be of form 8i:fj : : : k

�

g:P

i

. The following 
ase-split and indu
tion

ta
ti
s are good for a few 
ommon 
ases. With them, the variable the indu
tion / 
ase-split is being

done over should be de
lared in some hypothesis.

BoolCases i
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Do 
ase split on whether variable de
lared to be of type B (the booleans) in hyp i is tt or ff.

Generates true
ase and false
ase subgoals.

ListInd i

Do list indu
tion on hypothesis i. Generates up
ase and base
ase subgoals. First moves any

depending hyps to 
on
l.

IntInd i

Do integer indu
tion on hypothesis i. Generates up
ase, base
ase and down
ase subgoals.

First moves any depending hyps to 
on
l. This is a little smarter than the primitive rule, in

that it maintains the name of the indu
tion variable.

NatInd i

Do natural-number indu
tion on hypothesis i. Hypothesis must be a nat abstra
tion. Generates

up
ase and base
ase subgoals. First moves any depending hyps to 
on
l. This is a little smarter

than the primitive rule, in that it maintains the name of the indu
tion variable.

NSubsetInd i

Do indu
tion on subrange of the natural numbers. Hyp i should be a nat, nat plus, int upper

or int seg abstra
tion. Generates two main subgoals - base
ase and up
ase- and approxi-

mately 15 aux subgoals whi
h should always be easily solvable by Auto.

CompNatInd i

Do 
omplete natural number indu
tion on hyp i. Hyp i must be a nat abstra
tion.

Sometimes using a lemma results in unprovable well-formedness goals. This o

urs in parti
ular

when proving well-formedness lemmas. In these 
ases, you should try to use one of the ta
ti
s above.

The theory well fnd has some de�nitions for well-founded indu
tion. In parti
ular it de�nes

the ta
ti
 Ranknd. This is useful when you know how to do indu
tion over some type A and you

want to do indu
tion over a type B using some rank fun
tion whi
h maps elements of B to elements

of A. The ta
ti
 is des
ribed in the obje
ts inv image ind ta
 and rank ind.

The theory bool 1 de�nes various ta
ti
s for 
ase splitting on the value of boolean expressions

in the 
on
lusion. Ta
ti
s in
lude BoolCasesOnCExp and SplitOnCon
lITE. View the theory for

details.

9.5 Forward and Ba
kward Chaining

Forward and ba
kward 
haining involves treating a 
omponent of a universal formula (see Se
-

tion 9.1.3) as a derived rule of inferen
e. Ba
kward 
haining involves mat
hing the 
on
lusion of a

sequent against the 
onsequent of a universal formula. The ante
edents of the universal formula,

instantiated using the substitution resulting from the mat
h, then be
ome new subgoals. Forward


haining involves mat
hing hypotheses of a sequent against ante
edents of a universal formula. The


onsequent of the universal formula, instantiated using the substitution resulting from the mat
h,

then be
omes a new hypothesis.

Ba
kThruLemma name

Ba
kThruHyp i

The name (i) argument sele
ts the lemma (hypothesis) to ba
k-
hain through. Subgoals 
orre-

sponding to ante
ents of the lemma (hyp) are labelled with ante
edent. The rest are labelled

wf. Aliases are BLemma and BHyp.
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FwdThruLemma name is

FwdThruHyp i is

The name (i) argument sele
ts the lemma (hypothesis) to forward 
hain through. is sele
ts the

hypotheses whi
h are to be mat
hed against ante
edents of the 
haining formula. The order

of the is is immaterial; the ta
ti
s try all possible pairings of hypotheses with ante
edents. If

there are more ante
edents that hyps listed in the is, the ante
edents not mat
hed will manifest

themselves as new subgoals to be proved. The main subgoal with the 
onsequent of the lemma

(hyp) asserted is labelled main. Unmat
hed ante
edents are labelled ante
edent and the rest

are labelled wf. Aliases are FLemma and FHyp.

Chaining ta
ti
s take a number of optional arguments.

� An expli
it list of variable bindings as a sub argument. This argument is ne
essary when all

variable bindings 
annot be inferred from mat
hing. The sub argument is supplied using the

Using ta
ti
al. For example:

Using [`n`.'3'℄ (Ba
kThruLemma `int upper indu
tion`)

would bind the variable n in the lemma int upper indu
tion to the value 3.

� A spe
i�
 simple 
omponent of a general formula 
an be sele
ted using an `n` argument,

supplied by using the Sel ta
ti
al. For example

Sel 2 (FwdThruLemma `add mono wrt eq`)

An `n` argument of -1 for
es the ta
ti
 to treat the formula as a simple formula.

Ba
k
hain b
 names

CompleteBa
k
hain b
 names

Repeatedly try Ba
kThruLemma using lemmas named in b
 names in order given. Ba
k
hain

leaves alone any subgoals whi
h don't mat
h the 
onsequent of any of the lemmas. CompleteBa
k
hain

ba
ktra
ks in the event of any su
h subgoal 
oming up.

In addition to lemma names, a few spe
ial names are re
ognized:

� An integer i. Use hypothesis i. (i must be a positive integer. Negative integers 
an't be

used to refer to hypotheses here.)

� hyps: hyps 1 � � � n where n is the number of hyps. Skips hyps whi
h de
lare variables.

� rev hyps: As hyps but in order n � � � 1.

� new hyps: new hyps introdu
ed by ba
k
haining, least re
ent �rst.

� rev new hyps: As new hyps but in opposite order.

HypBa
k
hain =

def

Ba
k
hain ``rev new hyps rev hyps``

CompleteHypBa
k
hain =

def

CompleteBa
k
hain ``rev new hyps rev hyps``

InstLemma name [t1;...;tn℄

Instantiate lemma name with terms t1 through tn. If the lemma hasm distin
t level expressions,

the �rst m terms should be level expressions to substitute for the lemma's level expressions.

(Inje
t level expression le into the term type using the spe
ial term parameter{le:l}. In the

term editor you sele
t this term by the name parameter.)
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InstHyp [t1;...;tn℄ i

Instantiate universal formula in hyp i with terms t1 through tn.

InstCon
l [t1;...;tn℄ i

Instantiate existential quanti�ers in 
on
lusion with terms t1 through tn.

9.6 De
ision Pro
edures

9.6.1 ProveProp

The ProveProp family of ta
ti
s are useful for partially or 
ompletely proving goals that involve

simple propositional reasoning. The strategy is basi
ally to that for 
lassi
al tableau: Propositions

in hypotheses and the 
on
lusion are exhaustively de
omposed and appli
ations of the Hypothesis

ta
ti
 are sought. A slight tweak is the ta
ti
 has to do `or' bran
hing and ba
ktra
king when

it ta
kles an _ 
on
lusion or an =) or : hypothesis, be
ause the Nuprl sequents only allow one


on
lusion rather than many as is 
ommonly the 
ase in 
lassi
al sequent 
al
uli.

ProveProp

The basi
 ta
ti
. Fails if doesn't su

eed in solving all main goals.

ProveProp1

Like ProveProp, but leaves main subgoals at `or' bran
hing points of the sear
h for a solution

when the sear
h down every bran
h fails.

ProvePropWith (T : ta
ti
)

Like ProveProp1, but tries running ta
ti
 T before 
ompletely abandoning a sear
h path. If T


reates any main subgoals, sear
h 
ontinues on these subgoals.

ProveProp is not 
omplete for intuitionisti
 propositional logi
, be
ause it always thins =) and

: hypotheses that are de
omposed.

9.6.2 Eq

Eq does trivial equality reasoning. It proves goals of form H ` t = t

0

2 T using hypotheses

that are equalities over T and the laws of re
exivity, 
ommutativity and transitivity. It also uses

hypotheses that are equalities over T

0

when T = T

0

is dedu
ible from other hypotheses using

re
exivity, 
ommutativity and transitivity. The Eq rule is implemented as a pro
edure 
oded in

Lisp.

9.6.3 RelRST

RelRST is a ta
ti
 that tries to solve goals by exploiting 
ommon properties of binary relations,

in
luding re
exivity, symmetry, transitivity, irre
exivity, antisymmetry, and linearity.

The heart of this ta
ti
 is a routine that builds a dire
ted graph based on the binary relations

in a sequent and �nds shortest paths in the graph. Extensions to this routine to allow it to handle

stri
t order relations and relations with di�ering strengths.

RelRST uses the the same database on relations and some of the same lemmas as the rewrite

pa
kage. In addition, it relies on lemmas in the library of the following forms.

� Irre
exivity lemmas. These should have form

8x

1

:T

1

: : : x

m

:T

m

: 8y:S: A

1

) : : :) A

n

) y R y ) FalseAllxs:As;Ally:TBs => y < y => False
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and be named opid-of-< irreflexivity.

� Antisymmetry lemmas. These should have form

8x

1

:T

1

: : : x

m

:T

m

: 8y; y

0

:S: A

1

) : : :) A

n

) y � y

0

) y

0

� y ) y = y

0

and be named opid-of-� antisymmetry.

� Complementing lemmas. These should have form

8x

1

:T

1

: : : x

m

:T

m

: 8y; y

0

:S: A

1

) : : :) A

n

) :(y � y

0

)) y

0

< y

and be named opid-of-� 
omplement, or

8x

1

:T

1

: : : x

m

:T

m

: 8y; y

0

:S: A

1

) : : :) A

n

) :(y < y

0

)) y

0

� y

and be named opid-of-< 
omplement.

Allxs:As;Ally; y

0

:TBs => not(yLTRy

0

) => y

0

LERy

RelRST generalizes the Eq ta
ti
 in previous versions of Nuprl that only handled su
h reasoning

with the equality relation of Nuprl's type theory.

Here are a 
ouple of examples of RelRST's use from a theory of divisibility over the integers:

1. a: Z

2. a': Z

3. b: Z

4. b': Z

5. ...

6. a' | a

7. b | b'

8. ...

9. a | b

` a' | b'

|

BY (RelRST ...)

and

1. a: Z

2. b: Z

3. y1: Z

4. ...

5. g
d(a;b) = y1

6. y2: Z

7. ...

8. g
d(b;a) = y2

9. ...

10. y1 � y2

` g
d(a;b) � g
d(b;a)

|

BY (RelRST ...)
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Here, I have elided hypotheses that were not required by RelRST to solve the goals. The � relation

is the asso
iated relation and g
d(a;b) is a fun
tion that 
omputes the greatest 
ommon divisor

of a and b. The se
ond example illustrates how RelRST is able to 
ope with relations of di�ering

strengths.

Unlike Eq, RelRST doesn't involve any extensions being made to the primitive rule re�ner.

9.6.4 Arith

The Arith ta
ti
 is used to justify 
on
lusions whi
h follow from hypotheses by a restri
ted form

of arithmeti
 reasoning. Roughly speaking, Arith knows about the ring axioms for integer multi-

pli
ation and addition, the total order axioms of <, the re
exivity, symmetry and transitivity of

equality, and a limited form of substitutivity of equality. We will des
ribe the 
lass of problems

de
idable by Arith by giving an informal a

ount of the pro
edure whi
h Arith uses to de
ide

whether or not C follows from H.

Arith understands standard arithmeti
 relations over the integers; namely terms of the form

s < t, s � t, s > t, s � t, s = t 2 Z and s 6= t 2 Z. It also re
ognizes negations of these terms. As

the only equalities Arith 
on
erns itself with are those of the form s = t 2 Z, we will drop the 2 Z

and write only s = t in the rest of this des
ription. The arith rule may be used to justify goals of

the form

H ` C

1

_ : : : _C

m

where ea
h C

i

is a term denoting an arithmeti
 relation. If Arith 
an justify the goal it will

produ
e subgoals requiring the user to show that the left- and right-hand sides of ea
h C

i

denote

integer terms. As a 
onvenien
e Arith will attempt to prove goals in whi
h not all of the C

i

are

arithmeti
 relations; it simply ignores su
h disjun
ts. If it is su

essful on su
h a goal, it will

produ
e subgoals requiring the user to prove that ea
h su
h disjun
t is a well-formed proposition.

Arith analyzes the hypotheses of the goal to �nd relevant assumptions. In parti
ular, it will

maximally de
ompose ea
h hypothesis into a term of the form A

1

^ : : : ^A

n

(n � 1), and will use

as an assumption any of the A

i

whi
h are arithmeti
 relations of the form des
ribe above. It also

extra
ts assumptions from de
larations of variables in types that are subsets of Z. For example

from the de
laration i:N it extra
ts the assumption that i � 0.

Arith begins by normalizing the relevant formulas of the goal a

ording to the following 
on-

ventions:

1. Rewrite ea
h relation of the form s 6= t as the equivalent s < t _ t < s. A 
on
lusion C

follows from su
h an assumption if it follows from either s < t or t < s; hen
e arith tries

both 
ases. Hen
eforth, we assume that all negations of equalities have been eliminated from


onsideration.

2. Repla
e all o

urren
es of terms whi
h are not addition, subtra
tion or multipli
ation by a

new variable. Multiple o

urren
es of the same term are repla
ed by the same variable. Arith

uses only fa
ts about addition, subtra
tion and multipli
ation, so it treats all other terms as

atomi
. At this point all terms are built from integer 
onstants and integer variables using

+, � and �.
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3. Rewrite all terms as polynomials in 
anoni
al form. The exa
t nature of the 
anoni
al form

is irrelevant (the reader may think of it as the form used in high s
hool algebra texts) but

has the important property that any two equal terms are identi
al. Ea
h term now has the

form p+ 
�p

0

+ 


0

, where p and p

0

are non
onstant polynomials in 
anoni
al form, 
 and 


0

are


onstants, and � is one of <, = or � (s � t is equivalent to :t < s).

4. Repla
e ea
h non
onstant polynomial p by a new variable, with ea
h o

urren
e of p being

repla
ed by the same variable. This amounts to treating ea
h non
onstant polynomial as

an atom. Now ea
h formula is of the form z + 
�z

0

+ 


0

. Arith now de
ides whether or

not the 
on
lusion follows from the hypotheses by using the total order axioms of <, the

re
exivity, symmetry, transitivity and substitutivity of =, and the following so-
alled trivial

monotoni
ity axioms (
 and d are 
onstants).

� x � y; 
 � d) x+ 
 � y + d

� x � y; 
 � d) x� 
 � y � d

These rules 
apture all of the a

eptable forms of reasoning whi
h may be applied to formulas

in 
anoni
al form.

9.6.5 SupInf

9.6.5.1 Des
ription

The algorithm used in the Arith ta
ti
 
annot solve general sets of linear inequalities over the

integers, though su
h problems are abundant (for example when doing array bounds 
he
king).

Solving linear inequalities over the integers is a stri
tly harder problem than over the rationals:

polynomial time algorithms are known for the solving linear inequalities over the rationals, but

integer linear programming is NP 
omplete.

The SupInf ta
ti
 is uses the Sup-Inf method of Bledsoe [?℄ for solving integer inequalities.

While method is only 
omplete for the rationals, not the integers, it does work well in pra
ti
e for

the integers.

The basi
 algorithm 
onsiders a 
onjun
tion of inequalities 0 � e

1

^ : : : ^ 0 � e

p

where the e

i

are linear expressions over the rationals in variables x

1

: : : x

n

and determines whether or not there

exists an assignment of values to the x

j

that satis�es the 
onjun
tion. The algorithm works by

determining upper and lower bounds for ea
h of the variables in turn | hen
e the name `sup-inf'.

The bound 
al
ulations are always 
onservative, so that if some upper bound is stri
tly below some

lower bound, then the 
onjun
tion is unsatis�able.

Shostak [?℄ showed that the 
al
ulated bounds are the best possible, and hen
e that the

algorithm is 
omplete for the rationals. He proposed a simple modi�
ation that made the algorithm

return an expli
it satisfying assignment when the 
onjun
tion is satis�able.

When used over the integers, the Sup-Inf algorithm is sound, but not 
omplete; if there is no

satisfying assignment over the rationals, then there is also none over the integers. However, there

are 
ases when the algorithm �nds a rational-valued satisfying assignment even though none exists

that is integer valued. There are standard te
hniques for restoring 
ompleteness, but it has been

both Shostak's and our experien
es to date that examples for whi
h the algorithm is in
omplete

are rare in pra
ti
e.

The pro
edure implemented 
urrently does the following:
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1. Takes a goal g and extra
ts a logi
al expression P built from the logi
al 
onne
tives ^;_;:,

the order relations on the integers � and <, and the equality relation = on the integers, su
h

that if :P is not satis�able, then the goal g is true. If the goal has the form

x

1

; : : : x

n

:Z; r

1

; : : : r

k

` r

0

where the r

i

are all instan
es of the �; <;= relations over the integers involving expressions

over the integer variables x

1

; : : : ; x

n

, then :P has form

r

1

^ : : : ^ r

k

^ :r

0

:

2. The expression :P is put into disjun
tive normal form. O

urren
es of = and < relations

are eliminated in favour of �. Where possible, ='s are eliminated by substitution rather than

splitting into inequalities.

3. The left-hand argument of ea
h � is moved to right-hand side and the integer expressions are

put into a sum of produ
ts normal form. Ea
h produ
t has any 
onstant 
oeÆ
ient brought

out to the left of the produ
t.

4. Ea
h distin
t non-linear expression is generalized to a new rational variable. These non-linear

expressions might involve � and �, as well as integer-valued fun
tions (for example, the list

length fun
tion). The arithmeti
 expressions are now all linear.

5. Ea
h disjun
t is augmented with extra arithmeti
 information suitably normalized that 
omes

from various sour
es in
luding:

(a) typing of variables and generalized non-linear expressions. If variable i has type fj : : :g,

then j � i 
an be added.

(b) arithmeti
 property lemmas. An example is a lemma stating that the length of two lists

appended is the sum of the lengths of ea
h list.

This augmentation is in general a re
ursive pro
edure; the inferred arithmeti
 propositions


an themselves 
ontain variables and non-linear expressions about whi
h further information


an be inferred.

6. The Sup-Inf algorithm is run on ea
h disjun
t. If none is satis�able, then the original goal is

true. If a satisfying assignment is found, then it is returned to the user as a 
ounter-example.

7. When no disjun
t is satis�able, the pro
edure 
reates several well-formedness subgoals. Some

of these 
he
k the well-formedness of the arithmeti
 expressions in the 
on
lusion of the

original goal g. Others 
he
k that the arithmeti
 property lemmas 
an be instantiated as the

pro
edure assumed they 
ould be.

The inferen
e of arithmeti
 properties from typing and from property lemmas greatly in
reases

the pro
edure's usefulness.

Unlike most other ta
ti
s, but like the arith rule whi
h SupInf largely super
edes, SupInf's

inferen
es are not re�ned down to primitive rule level, so Nuprl's soundness now depends on the

soundness of a 
ore part of SupInf's implementation.
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9.6.5.2 Details

First a few de�nitions.

� An arithmeti
 type is either the type Z (int) or one of the standard subtypes of Z de�ned in

the int_1 theory. Spe
i�
ally: N (nat), N

+

(nat_plus), Z

�0

(int_nzero), {i...} (int_upper),

{i...j

�

} (int_seg), or {i...j} (int_iseg).

� An arithmeti
 literal is one of

{ the relations a = b 2T and a 6=b 2T where T is an arithmeti
 type,

{ the relation a = b 2T where T is an arithmeti
 type,

{ Any of the inequalities <, >, �, or �,

{ Either of the above inside one or more negations (:).

SupInf re
ognizes the arithmeti
 literals that o

ur in a sequent either at the top level of a


lause or buried under mwedge and mvee 
onne
tives.

There are two variants on the SupInf ta
ti
: SupInf and SupInf'. Only SupInf' tries inferring

additional arithmeti
 information about the non-linear terms in arithmeti
 expressions.

The information on a non-linear term is gathered in two ways:

1. The standard type-inferen
e fun
tion get_type is run on the term, and if it returns one of the

standard arithmeti
 subtypes of Z, then the predi
ate information from the subtype is used.

2. Arithmeti
 property lemmas are examined.

An arithmeti
 property lemma should have form

8x

1

:T

1

: : : x

m

:T

m

: A

1

) : : :) A

n

) C

where C is 
onstru
ted from ^'s, _'s and arithmeti
 literals. mat
h handles are sele
ted from C.

A mat
h handle is a non-linear arithmeti
 term that o

urs as an argument to an arithmeti
 literal

in C su
h that all the free variables 
ontained in C and the A

i

are also 
ontained in the non-linear

term. An arithmeti
 lemma is 
onsidered as providing information about ea
h of its mat
h handles.

Currently, an arithmeti
 property lemma is only used if after mat
hing the mat
h handle in

C with the non-linear term that information is desired on, all the instantiated A

i

are equal to

hypotheses of the sequent. This is perhaps an overly stri
t 
ondition.

Arithmeti
 property lemmas are identi�ed by invoking the ML fun
tion

add_arith_lemma

lemma-name : tok

=

():unit

SupInf' is 
urrently under development and should be used with 
aution. Hopefully all 
hanges

to it will only be enhan
ements, so if it is su

essful now, it will be su

essful in the future. One

problem with it is that the pro
ess of type-
he
king subgoals 
reated by instantiating arithmeti


property lemmas 
an 
ause the 
reation of subgoals that require arithmeti
 reasoning to solve.

When SupInf' is used as part of a type-
he
king ta
ti
 (as it is in Auto'), there are sometimes
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ases when SupInf' unendingly gets invoked on subgoals derived from ones that it itself 
reated.

Further work is needed on SupInf' to avoid this happening.

SupInf identi�es 
ounter-examples if it fails. These 
an be viewed by looking at value of the

ML variable supinf info. The value gives a list of bindings of variables in the goal for the 
ounter-

example. There are two kinds of 
ounter-examples; integer and rational. If SupInf �nds an integer


ounterexample, then you know that the goal is de�nitely unprovable. If a rational 
ounter-example,

then SupInf is unsure whether the goal is true or not. These latter 
ases should be rare in pra
ti
e.

A 
ouple of examples of uses of the SupInf ta
ti
 are as follows. It is able to prove the goal

1. x: Z

2. y: Z

3. z: Z

4. 2 * y + 3 � 5 * z

5. z � x - y

6. 3 * x � 5

` 2 * y � 3

but on

1. x: Z

2. y: Z

3. 3 * x � y

4. y � 2

` x + y > 3

�nds the 
ounterexample x= 1 and y= 2. Examples of arithmeti
 property lemmas are:

` 8 i:Z. 8 j:Z. i � 0 ) j > 0 ) 0 � i rem j < j

where rem is the remainder fun
tion and:

` 8A:U. 8as:A list. 8n:N|as|. (|nth_tl(n;as)| = |as| - n)

where nth tl(n;as) takes the nth tail of list as, |�| is the list length fun
tion and N|as|. is an

abbreviation for the integer segment f0...|as|-1g. The latter lemma is invoked when SupInf

proves the goal:

1. T: U

2. as: T List

3. m: N

4. n: N

5. |as| � m + n

` |nth_tl(n;as)| � m

9.7 Rewriting

9.7.1 Introdu
tion

Rewriting is basi
ally the pro
ess of using equations as transformational rules.

In Nuprl, rewrite rules are derived from

� abstra
tions,
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� primitive redu
tion rules, and

� formulas of form

8x

1

:T

1

: : : x

i

:T

i

: a = b

that o

ur as lemmas or hypotheses.

Nuprl's rewrite pa
kage is a 
olle
tion of ML fun
tions for 
reating rewrite rules and applying

them in various fashions to 
lauses of a sequent.

The pa
kage supports rewrite rules involving various equivalen
e relations. Examples in
lude the

3-pla
e equality-in-a-type relation, the i� relation, and the permutation relation on lists. Nuprl's

logi
 doesn't guarantee that all equivalen
e relations are respe
ted. In 
ases when there is no

guarantee, the pa
kage takes 
are of automating proofs that the relations are respe
ted.

The notion of rewriting is extended to in
luding rules involving any transitive relation. Here,

the pa
kage takes 
are of 
he
king that relevant terms are appropriately monotoni
.

The pa
kage is based around ML obje
ts of type 
onvn 
alled 
onversions, similar to those

found in other ta
ti
 based theorem provers su
h as LCF, HOL and Isabelle. Conversions provide

a language for systemati
ally building up rewrite rules in a fashion similar to the way ta
ti
s are

assembled using ta
ti
als.

For 
onvenien
e, a few 
on
ise rewriting ta
ti
s are provided that 
ompletely hide the 
onversion

language (see Se
tion 9.7.2). These are suÆ
ient in many situations, though most Nuprl users will

need eventually to familiarize themselves with many of the details of the pa
kage.

Note that Se
tion 9.7.11 des
ribes some older substitution ta
ti
s that 
an be used for 
ertain

very simple kinds of rewriting.

9.7.2 Con
ise Rewriting Ta
ti
s

Unfolds as 


Unfold all visible o

urren
es of abstra
tions listed in the token list as in 
lause 


Unfold a 
 =

def

Unfolds [a℄ 


RepUnfolds as 


Repeatedly try unfolding any o

urren
es of abstra
tions listed in the token list as in 
lause 


Folds as 


Fold all visible o

urren
es of abstra
tions listed in the token list as in 
lause 


Fold a 
=

def

Folds [a℄ 


Redu
e 


Repeatedly 
ontra
t all both primitive and abstra
t redi
es in 
lause 
.

The Redu
e ta
ti
 
an take an optional for
e argument. The ta
ti


With for
e (Redu
e 
)

only redu
es those redi
es with strength less than or equal to for
e. For more on de�ning abstra
t

redi
es and setting the strength of redi
es, see Se
tion ?? and Se
tion 9.7.5.6.

A 
ouple of rewrite ta
ti
s provide a

ess to all kinds of rewrite rules. These ta
ti
s take a


ontrol string to spe
ify the rewrite rules to use. Control string should be a whitespa
e-seperated

list of tokens as spe
i�ed in Table 9.1. The ta
ti
s are:

RWW (
tl-str : string) i
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Token Rule

i Use hyp i as an l-to-r rule

i< Use hyp i as an r-to-l rule

name Use lemma name as an l-to-r rule

name< Use lemma name as an r-to-l rule

r:id Redu
e redex with opid id

r* Redu
e any redex

r*for
e Redu
e any redex with for
e for
e

u:id Unfold abstra
tion with opid id

f:id Fold abstra
tion with opid id

Table 9.1: Format of Tokens in Rewrite Control Strings

Repeatedly apply rewrite rules spe
i�ed by 
tl-str to all nodes of 
lause i until no further progress

is made.

RWO (
tl-str : string) i

Apply rewrite rules spe
i�ed by 
tl-str in one top-down pass over 
lause i. If one of the rewrite

rules su

eeds on some subterm, then don't try rewriting the subterms of the rewritten subterm.

9.7.3 Introdu
tion to Conversions

This se
tion presents a simpli�ed implementation of 
onversions and 
onversionals to 
onvey the

general ideas. Later se
tions des
ribe the a
tual 
onversions that are implemented. Note however

that the 
onversionals introdu
ed here have the same names and same behaviours as those in the

a
tual system.

Let 
onvn be an ML 
on
rete type alias for the type of 
onversions. In this se
tion, assume that


onvn is an alias for the type term -> term, where term is a type of terms that we want to rewrite.

Later on, I des
ribe the type that 
onvn is a
tually an alias for. If 
 is of type 
onvn, then we 
an

use 
 to rewrite t of type term by simply running the ML evaluator on the appli
ation 
 t.

For the purposes of the se
tion only, let me introdu
e a basi
 
onversion 
alled RuleC : term ->


onvn. The 
onversion RuleC expe
ts its term argument to be of form a = b where the free variables

of b are a subset of those in a. If the 
onversion RuleC 'a = b' is applied to a term t, RuleC tries to

�nd a substitution � su
h that �a = t. If it su

eeds, it returns the term �b. If a substitution 
annot

be found, RuleC raises an ex
eption. The 
onversion RuleC 'a = b' therefore rewrites instan
es of

a to 
orresponding instan
es of b. For example:

RuleC 'x+ 0 = x'

when applied to the term (2� 3) + 0 yields the term 2� 3.

RuleC 
annot by itself rewrite subterms of a term; if

RuleC 'x+ 0 = x'

is applied to the term (1+0)� 3, it fails. There are a variety of higher-order 
onversions that map

a 
onversion su
h as RuleC over all subterms of a term. An example of a 
onversional is SweepUpC :


onvn -> 
onvn. If 
 is a 
onversion, then SweepUpC 
 is also a 
onversion. if SweepUpC 
 is applied

to some term t, an attempt is made to apply 
 on
e to ea
h subterm of t working from the leaves

of term t up to its root. SweepUpC 
 only fails every every appli
ation of 
 fails. So if

94



SweepUpC (RuleC 'x+ 0 = x')

is applied to term (1 + 0)� 3, it su

eeds and returns the term 1� 3.

The basi
 
onversion for sequen
ing 
onversions is ANDTHENC : 
onvn -> 
onvn -> 
onvn. In

Nuprl, we reserve all-
apital names for in�x fun
tions so a normal appli
ation of ANDTHENC to


onversions 


1

and 


2

has form 


1

ANDTHENC 


2

. When applied to a term t, 


1

ANDTHENC 


2

�rst

applies 


1

to t. If 


1

su

eeds, returning a term t

0

, then 


2

is applied to t

0

and the result is returned.

If either 


1

or 


2

fails, then 


1

ANDTHENC 


2

also fails. By analogy with ta
ti
als being higher-order

ta
ti
s, ANDTHENC is 
alled a 
onversional.

The ORELSEC : 
onvn -> 
onvn -> 
onvn 
onversional is for 
ombining alternative 
onversions.

When 


1

ORELSEC 


2

is applied to a term t, it �rst tries applying 


1

to t, and if this su

eeds returns

the result. If the appli
ation of 


1

fails, then it tries applying 


2

to t, failing if 


2

fails.

The de�nition for SweepUpC is:

letre
 SweepUpC 
 t = (SubC (SweepUpC 
) ORTHENC 
) t

SubC : 
onvn -> 
onvn when applied to a 
onversion 
 and a term t, applies 
 to ea
h of the

immediate subterms of t. It fails only when 
 fails on every immediate subterm. Hen
e, it always

fails when t is a leaf node and has no immediate subterms. 


1

ORTHENC 


2

is similar to 


1

ANDTHENC




2

in that it �rst tries 


1

and then 


2

. However ORTHENC only fails if both 


1

and 


2

fail. So, a 
all of

SweepUpC 
 on argument t �rst tries to apply SweepUpC 
 to the immediate subterms of t and then

then tries to apply 
 to t itself. Note that without the t argument on the left and right sides of the

de�nition, SweepUpC in ML's 
all-by-value evaluation s
heme would re
urse inde�nitely.

The de�nition for ORTHENC is:

let 
1 ORTHENC 
2 = (
1 ANDTHENC TryC 
2) ORELSEC 
2

where TryC 
 is de�ned as 
 ORELSE IdC and IdC: 
onvn, when applied to any t, always returns t.

Other 
onversionals that are 
ommonly used in the work des
ribed in this thesis are:

� FirstC : 
onvn list -> 
onvn whi
h is an n-ary version of ORELSEC,

� RepeatC : 
onvn -> 
onvnwhi
h repeatedly tries applying a 
onversion till no further progress

is made,

� HigherC : 
onvn -> 
onvn whi
h applies a 
onversion to only nodes higher in a term tree.

What I mean by `higher' is probably best understood by studying the de�nition of HigherC:

letre
 HigherC 
 t = (
 ORELSEC SubC (HigherC 
)) t

� SweepDnC : 
onvn -> 
onvn whi
h sweeps a 
onversion down over a term tree from the root

towards the leaves. Its de�nition is:

letre
 SweepDnC 
 t = (
 ORTHENC SubC (SweepDnC 
)) t

� NthC int -> 
onvn -> 
onvn. NthC i 
 t tries 
 on ea
h node in t in pre-order order, but only

on the ith su

ess of 
 does it go through with the rewrite that 
 suggests. This is very useful

during intera
tive proof when for example you want to unfold one instan
e of a de�nition but

not any others.
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9.7.4 Nuprl Conversions

In Nuprl, 
onvn is an ML 
on
rete type abbreviation for the type

env -> term -> (term # reln # just).

env, reln and just are abstra
t types for environments, relations and justi�
ations. A 
onversion

is a fun
tion that takes as arguments an environment e and a term to be rewritten t, and returns

a triple ht

0

; r; ji. The environment e spe
i�es amongst other things the types of all the variables

whi
h might be free in the term t. The term t

0

is the rewritten version of the term t. The relation

r spe
i�es the relationship between t and t

0

. Writing r using in�x notation, we 
an say that t r t

0

is

true. The relation r is usually some equivalen
e relation but it also 
an be an order relation. The

justi�
ation j is an obje
t that tell Nuprl how to prove that t r t

0

. Conversions fail if they are not

appropriate for the term they are applied to. More information on environments, rewrite relations,

and justi�
ations 
an be found in Se
tion 9.7.8,Se
tion 9.7.9 and Se
tion 9.7.10 respe
tively.

A ta
ti
 Rewrite : 
onvn -> int -> ta
ti
 is used for applying a 
onversion to some 
lause

of a sequent. It takes 
are of exe
uting the justi�
ations generated by 
onversions. Se
tion 9.7.6

lists 
ommon variations on this ta
ti
.

Atomi
 
onversions are either based on dire
t 
omputation rules or 
an be 
reated from lemmas

and hypotheses. Conversions are 
omposed using higher order fun
tions 
alled 
onversionals in a

way similar to the way in whi
h ta
ti
s are 
omposed using ta
ti
als. One set of 
onversionals are

for 
ontrolling the sequen
e in whi
h atomi
 
onversions are applied to the subterms of a term.

Conversionals rely for their 
orre
t fun
tioning on a variety of di�erent kinds of lemmas being

proven about the relations r and the terms making up any 
lause being rewritten; lemmas are re-

quired that state re
exivity, transitivity and symmetry properties of the relations r and 
ongruen
e

properties of the terms making up the 
lauses. These lemmas are des
ribed in Se
tion 9.7.7.

9.7.5 Conversion Des
riptions

The des
riptions assume the 
onversion has been applied to an environment e:env and a term

t:term. Types of arguments to 
onversions are:


* : 
onvn type of 
onversions


s* : 
onvn list

e* : env environment

i j : int hypothesis or 
lause indi
es

addr : int list subterm address

a : tok name of abstra
tion

name : tok name of lemma or 
a
hed 
onversion

names : tok list list of names

t t1 t2 : term

9.7.5.1 Trivial Conversions

FailC always fail

IdC identity 
onversion
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9.7.5.2 Lemma and Hypothesis Conversions

The 
onversions here derive rewrite rules from lemmas and hypotheses. Formulae that are lemma

goals or hypotheses are treated as having the stru
ture of either simple or general universal formulae

(see Se
tion 9.1.3 for de�nitions of these) . The 
onsequents of these formulae must ea
h be of form

a r b where r usually (but not always) an equivalen
e relation. Any relation r that is going to be

re
ognized by the rewrite pa
kage must be initially de
lared to it. See Se
tion 9.7.9 for details.

The 
onversions des
ribed here all rewrite in a left-to-right dire
tion: they repla
e instan
es of

a's by instan
es of b's. Ea
h has a twin 
onversion that works right-to-left. These twins have the

pre�x Rev to their names. For example, RevLemmaC is the twin to LemmaC.

LemmaC name

Considering name as a simple universal formula with 
onsequent a r b, LemmaC 
reates a 
on-

version to rewrite instan
es of a to instan
es of b.

HypC i

Considering hyp i as a simple universal formula with 
onsequent a r b, HypC 
reates a 
onversion

to rewrite instan
es of a to instan
es of b.

LemmaC is an instan
e of

GenLemmaWithThenLC

(n:int)

(hints: (var # term) list)

(Ta
s:ta
ti
 list)

(name: tok)

and HypC is an instan
e of

GenHypWithThenLC

(n:int)

(hints: (var # term) list)

(Ta
s:ta
ti
 list)

(i: int)

The arguments to these 
onversions are as follows:

n indi
ates that the nth 
onsequent of a general universal formula. If -1 is used for n then the

formula is always treated as simple. In parti
ular, a , relation is treated as the relation in

the 
onsequent rather than part of the stru
ture of a general universal formula.

hints is for supplying bindings for variables in the lemma that Nuprl's mat
hing routines 
an't

guess on their own.

Ta
s is used for 
onditional rewriting. Conditional rewriting is when the ante
edents of a formula

are 
he
ked for validity before the rewrite rule is used.

Ta
ti
s in Ta
s are paired up with subgoals formed from instantiated ante
edents and ea
h

ta
ti
 is run on its 
orresponding subgoal. The rewrite goes through only if every ta
ti



ompletely proves its subgoal.

If there are fewer Ts than ante
edents, Ts is padded on the left up to the length of the

ante
edents with 
opies of the head of Ts. If Ts is empty, then the rewrite goes through

un
onditionally.
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name is the name of the lemma.

i is the number of a hypothesis. As with ta
ti
s, hypotheses are 
onsidered to be numbered

positively from the beginning of the list onwards, and numbered negatively from the end

ba
kwards. O

asionally, negative numbers 
an have unexpe
ted results. See below for an

explanation.

Other useful spe
ializations of GenLemmaWithThenLC and GenHypWithThenLC are:

GenLemmaC n name = GenLemmaWithThenLC n [℄ [℄ name

LemmaWithC hints name = GenLemmaWithThenLC (-1) hints [℄ name

LemmaThenLC Ta
s name = GenLemmaWithThenLC (-1) [℄ Ta
s name

GenHypC n i = GenHypWithThenLC n [℄ [℄ i

HypWithC hints name = GenHypWithThenLC (-1) hints [℄ i

HypThenLC Ta
s name = GenHypWithThenLC (-1) [℄ Ta
s i

The hypothesis 
onversions des
ribed here derive their rewrite rules from lo
al hypotheses in

the environments that they are presented with on their �rst appli
ations (see Se
tion 9.7.8) for a

des
ription of what lo
al hypotheses are). If the 
onversions are applied with 
onversionals su
h as

HigherC or NthC that start applying their argument 
onversion at the top of a term, then the lo
al

hypothesis list is always the same as the hypothesis list of the sequent 
ontaining the 
lause being

rewritten.

Older versions of the hypothesis 
onversions required that the environment from whi
h the

rewrite rule was to be 
aptured be provided as a seperate argument to the 
onversion. This turned

out in most instan
es to be rather 
lumsy.

9.7.5.3 Atomi
 Dire
t-Computation Conversions

These low level 
onversions are not usually invoked dire
tly by the user. However, there are 
ases

when they turn out to be useful.

TagC tagger Do forward 
omputations indi
ated by tags in (tagger t).

Fail if tagger fails. tagger should be simple. e.g. tag redex

RedexC If t is a primitive redex, 
ontra
t it.

Extra
tC names If t is the extra
t term of a theorem listed in names

then expand it.

AnyExtra
tC If t is any extra
t term, then expand it.

UnfoldTopAbC If t is an abstra
tion, unfold it.

UnfoldsTopC as If t is an abstra
tion with opid listed in as, unfold it.

UnfoldTopC a = UnfoldsTopC [a℄

FoldsTopC as Try to fold an instan
e of an abstra
tion whose de�nition

is given in a library obje
t named in as.

FoldTopC a = UnfoldsC [a℄

Re
UnfoldTopC a If a is a re
ursively de�ned term, then

unfold the re
ursive de�nition.

Re
FoldTopC a Try to fold an instan
e of the re
ursively de�ned term a.

Re
UnfoldTopC and Re
FoldTopC work only with re
ursive de�nitions that have been intro-

du
ed with the re
def fun
tion. See Se
tion 10.2.4 for more details.
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9.7.5.4 Attributed Abstra
tions

Abstra
tions 
an be grouped by adding attributes (sometimes 
alled 
onditions) to abstra
tion

obje
ts. An atomi
 
onversion for unfolding abstra
tions that is sensitive to attributes is:

AUnfoldsTopC (attrs : tok list)

If applied to a term t that has any of the attributes attrs, then unfold it.

9.7.5.5 Abstra
t Redi
es

It is frequently useful to augment the primitive redi
es that the system re
ognizes with abstra
t

redi
es, primitive redi
es that are buried under abstra
tions. For example, the �rst and se
ond

proje
tion fun
tions for pairs are abstra
tions:

*A pi1 t.1 == let <x,y> = t in x

*A pi2 t.2 == let <x,y> = t in y

The term <"a","b">.1 is an abstra
t redex. It 
ontra
ts to the term "a".

The basi
 
onversion for 
ontra
ting both primitive and abstra
t redi
es is AbRedexC. Abstra
t

redi
es are added to a table that AbRedexC a

esses using the fun
tion

add_AbRedu
e_
onv

( id:tok)

( 
:
onv) ,

where id is the opid of the outermost term of the redex, and 
 is a dire
t-
omputation 
onversion

for 
ontra
ting instan
es of the redex. Note that if the outermost term is an apply term, then the

id is taken from the term at the head of the possibly-iterated appli
ation.

Instan
es of add AbRedu
e 
onv are usually in
luded in ML obje
ts positioned immediately

after the de�nitions of non-
anoni
al abstra
tions. For example, the de
laration of the redex for

the pi1 term 
ould be

*M pi1_eval

let pi1_evalC =

SimpleMa
roC `pi1_evalC`

d

<a, b>.1

e d

a

e

``pi1``

;;

add_AbRedu
e_
onv `pi1` pi1_evalC ;;

An alternative method for indi
ating an abstra
t redex is to asso
iate a `redu
ible' attribute with

an abstra
t non-
anoni
al term. The AbRedexC 
onversion on being applied to a term �rst unfolds

all redu
ible abstra
tions at the top level of the term tree before further analyzing the term to see

if it is a redex. When this method is appli
able, it is more 
on
ise than using add Redu
e 
onv. A

redu
ible attribute is asso
iated with a term using the fun
tion

add_redu
ible_ab : tok -> unit

It takes as its token argument the opid of the term.
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9.7.5.6 Redu
tion Strengths and For
es

Cases 
ome up when it is desirable to have some redi
es 
ontra
ted but not others. To this end, an

option is provided for spe
ifying the strength of a redex, and a variant of the Redu
e ta
ti
 allows

for a for
e to be spe
i�ed for redu
ing with. Strengths are for
es are drawn from a partial order. A

redex is only 
ontra
ted when the redu
tion for
e applied to it is equal or greater than its strength.

A strength is asso
iated with a redex in two ways:

� The strength is dire
tly asso
iated with the redu
tion rule for the redex.

� The strength is asso
iated with the 
anoni
al term that is the prin
ipal argument of the

non-
anoni
al term of the redex.

Strengths and for
es are ML tokens. The 
urrent supported strengths, in in
reasing order of

strength, are

`1` beta redi
es

`2` other primitive redi
es

`3` abstra
t redi
es re
ursive

`4` abstra
t redi
es non-re
ursive

`6` module proje
tion funs with 
oer
ion arguments. For example, the redex grp_op(add_grp_of_rng(r))

whi
h 
ontra
ts to rng_plus(r) has this strength.

`7` fun
tions 
reating module elements from 
on
rete parts.

`1` quasi-
anoni
al redi
es. An example is the set_
ar term from the sets_1 theory when it has

list and produ
t dis
rete-set 
onstru
tors as its prin
ipal argument. These 
onstru
tors 
an

also be found in the sets_1 theory.

`9` irredu
ible terms.

Contra
tion 
onversions that should be sensitive to the for
e of redu
tion 
an be added to the

abstra
t redex table using the fun
tion

add_For
eRedu
e_
onv

( id:tok)

( 
:tok -> 
onv) .

The token argument that the 
onversion 
 takes is for the for
e with whi
h redu
tion is being

attempted.

Strengths 
an be asso
iated with 
anoni
al terms using the fun
tion

note_redu
tion_strength

opid : tok

strength : tok .

The basi
 
onversion for redu
ing with for
e F is For
eRedexC (F:tok). The 
onversion

AbRedexC always redu
es with maximum for
e.
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9.7.5.7 Composite Dire
t Computation Conversions

PrimRedu
eC = RepeatC (SweepUpC RedexC)

UnfoldsC as = SweepUpC (UnfoldTopsC as)

UnfoldC a = UnfoldsC [a℄

FoldsC as = SweepUpC (FoldTopsC as)

FoldC a = FoldsC [a℄

SemiNormC as = SweepDnC (RepeatC (UnfoldsC as)) ANDTHENC PrimRedu
eC

Re
UnfoldC a = SweepUpC (Re
UnfoldTopC a)

Re
FoldC a = SweepUpC (Re
FoldTopC a)

Redu
eC = Repeat (SweepDnC AbRedexC)

9.7.5.8 Ma
ro Conversions

Ma
roC name 
1 t1 
2 t2

Ma
roC will rewrite an instan
e of t1 to the 
orresponding instan
e of t2 using forward and reverse


omputation steps. For example, a ma
ro 
onversion might unfolds an abstra
tion, unroll a re
ur-

sive or indu
tive primitive term, and then fold up an abstra
tion. Spe
i�
 examples 
an be found

in the standard libraries - Look at the de�nitions of non-
anoni
al abstra
tions. Spe
i�
ally, look

at y
omb unroll or pi1 eval.


1 and 
2 must be dire
t 
omputation 
onversions whi
h rewrite the pattern terms t1 and t2

respe
tively to the same term. Ma
roC uses se
ond-order mat
hing when mat
hing instan
e terms

against t1. Also, any parameter variables in t1 will also be used in the mat
h. name is used in the


onversion's failure token.

For examples of the use of Ma
roC look at the length unroll obje
t in the list 1 theory.

SimpleMa
roC name t1 t2 as = Ma
roC name (SemiNorm as) t1 (SemiNorm as) t2

FwdMa
roC name 
 t = Ma
roC 
 t IdC (apply 
onv 
 t)

apply 
onv returns the term resulting from applying


 to t
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9.7.5.9 Conversionals


1 ORELSEC 
2 apply 
1. If 
1 fails, apply 
2

TryC 
 = 
 ORELSEC IdC


1 ANDTHENC 
2 apply 
1. If 
1 su

eeds then apply 
2. Otherwise fail


1 ORTHENC 
2 = (
1 ANDTHENC TryC 
2) ORELSEC 
2

ProgressC 
 apply 
, but fail if result same as IdC 


RepeatC 
 = TryC (ProgressC 
 ANDTHENC RepeatC 
)

Repeat1C 
 = 
 ANDTHENC RepeatC 


RepeatForC n 
 apply 
 n times.

FirstC 
s = 
1 ORELSEC ... ORELSEC 
n (Fail if 
s = [℄, 
1 if 
s = [
1℄)

SomeC 
s = 
1 ORTHENC ... ORTHENC 
n (Fail if 
s = [℄, 
1 if 
s = [
1℄)

AllC 
s = 
1 ANDTHENC ... ANDTHENC 
n (IdC if 
s = [℄, 
1 if 
s = [
1℄)

IfC p 
 = if p t then 
 else FailC

SubIfC q 
 apply 
 to sele
ted subterms in left to right order.

apply to ith subterm if (q t i) is true.

SubC 
 = SubIfC (\t i.true) 


NthSubC n 
 = SubIfC (\t i. i = n) 


AddrC addr 
 apply 
 to addressed subterm

NthsC ns 
 Walk t in preorder order, tentatively applying 
, but only

doing 
onversions on the su

esses of 
 numbered in ns.

Avoid walking into subterms of any 
onverted subterm.

NthC n 
 = NthsC [n℄ 


HigherC 
 = 
 ORELSEC SubC (HigherC 
)

LowerC 
 = SubC (LowerC 
) ORELSEC 


SweepDnC 
 = 
 ORTHENC SubC (SweepDnC 
)

SweepUpC 
 = SubC (SweepUpC 
) ORTHENC 


TopC 
 = HigherC (Repeat1C 
)

DepthC 
 = SweepUpC (Repeat1C 
)

9.7.6 Applying Conversions

Rewrite (
:
onvn) (i:int) : ta
ti


Apply 
onversion 
 to 
lause i. The subgoal with the result of the 
onversion is always labelled

main. The rest have various labels that all fall into the aux subgoal label 
lass.

RW =

def

Rewrite

RWH 
 =

def

RW (HigherC 
)

RWU 
 =

def

RW (SweepUpC 
)

RWD 
 =

def

RW (SweepDnC 
)

RWN n 
 =

def

RW (NthC n 
)

RWAddr addr 
 =

def

RW (AddrC addr 
)

RewriteType (
:
onvn) (i:int) : ta
ti
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Apply 
onversion 
 to type of member or equality term in 
lause i. The subgoal with the

result of the 
onversion is always labelled main. The rest have various labels that all fall into

the aux subgoal label 
lass. The advantage of this ta
ti
 over the usual Rewrite is that this

generates simpler well-formedness goals. In parti
ular, this ta
ti
 generates no well-formedness

goals involving the equands of the equality or the element of the member term.

RWT =

def

RewriteType

apply 
onv (
:
onvn) (t:term) : term

apply 
onv evaluates a 
onversion with an empty environment. It is very useful for testing


onversions.

9.7.7 Lemma Support

The rewrite pa
kage must have a

ess to several kinds of lemmas in order to 
onstru
t justi�
ations

for rewrites. This se
tion des
ribes those lemmas.

Note that for order relations, one only needs lemmas for one dire
tion. For example, one doesn't

require both the lemma

` 8a; b; 
: a � b) b � 
) a � 


and

` 8a; b; 
: a � b) b � 
) a � 


If Nuprl �nds a lemma missing in the 
ourse of 
onstru
ting a rewrite justi�
ation it prints out

an error message suggesting the kind and stru
ture of the missing lemma. After entering it, you

need to evaluate the fun
tion

initialize rw lemma 
a
hes : unit -> unit

on argument () in the ML Top Loop; for eÆ
ien
y reasons, the rewrite 
ode 
a
hes information

about these lemmas and hasn't been set up yet to automati
ally update 
a
hes after 
hanges to

the available lemmas in the library.

9.7.7.1 Fun
tionality Lemmas

Fun
tionality lemmas give 
ongruen
e and monotoni
ity properties of terms. They are required by

the SubC 
onversional to 
onstru
t ta
ti
 justi�
ations for the rewrite of terms based on the ta
ti


justi�
ations for rewrites of the immediate subterms of those terms.

A fun
tionality lemma for a term with operator op should have the form

8z

1

:S

1

: : : z

k

:S

k

: 8x

1

; y

1

:T

1

; : : : ; x

n

; y

n

:T

n

: A

1

) : : :) A

m

) x

1

r

1

y

1

) : : :) x

n

r

n

y

n

) op(x

1

; : : : ;x

n

) R op(y

1

; :::; y

n

)

where k � 0 and m � 0. The 8's and A's 
an be intermixed, but the ante
edents 
ontaining the r

i

must 
ome afterward and be in the same order as the subterms of op.

The SubC 
onversional �nds fun
tionality lemmas in the library by assuming that a naming


onvention has been followed. Spe
i�
ally, the fun
tionality lemmas in the library for operator op
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should be named opid fun
tionality[ index℄ where opid is the opid of op and index is an optional

suÆx, used to distinguish lemmas when there is more than one for a given op.

Fun
tionality lemmas are not expli
itly needed when the r

i

and r are all Nuprl's equality. In

this 
ase the fun
tionality information 
an be derived from the well-formedness lemma for op.

If op binds variables in its subterms, then those same variables should be bound by universal

quanti�ers wrapped around the appropriate r

i

ante
edents. For example, the lemma for fun
tion-

ality of 9 with respe
t to the , relation is:

` 8A

1

; A

2

:U

i

8P

1

:A

1

! P

i

8P

2

:A

2

! P

i

A

1

= A

2

2 U

i

) (8x:A

1

P

1

[x℄ , P

2

[x℄)

) 9x:A

1

: P

1

[x℄ , 9x:A

2

: P

2

[x℄

When more than one fun
tionality lemma is 
reated for a given operator, they must be ordered

with the spe
i�
 r

1

: : : r

n

�rst. SubC sear
hes for fun
tionality lemmas in the order in whi
h they

appear in the library and if this re
ommended order is not followed then it might pi
k up the wrong

lemma.

9.7.7.2 Transitivity Lemmas

Transitivity lemmas give transitivity information for rewrite relations. They are used to 
onstru
t

the ta
ti
 justi�
ation in the ANDTHENC 
onversional.

Transitivity lemmas should be of form:

8z

1

:S

1

: : : z

k

:S

k

: 8x

1

; x

2

; x

3

:T: A

1

) : : :) A

m

) x

1

r

a

x

2

) x

2

r

b

x

3

) x

1

r




x

3

where k � 0 and m � 0. For now there is a restri
tion that r




should be the weaker of r

a

and r

b

.

ANDTHENC �nds transitivity lemmas in the library by assuming that a naming 
onvention has

been followed. The lemmas must be named opid-of-r




transitivity index, where the index is

optional, and is only needed to distinguish lemmas if there is more than one for a given r




. A

transitivity lemma is not needed for equality.

9.7.7.3 Weakening Lemmas

Weakening lemmas should have form

8z

1

:S

1

: : : z

k

:S

k

: 8x

1

; x

2

:T: A

1

) : : :) A

m

) x

1

r

a

x

2

) x

1

r

b

x

2

where k � 0, m � 0 and r

b

is some weaker relation than r

a

.

Lemmas in the library must be named opid-of-r

b

weakening index, where the index is optional,

and is only needed to distinguish lemmas if there is more than one for a given r

b

.

Currently weakening lemmas are required for all re
exive relations r

b

with r

a

being equality.

They extend the usefulness of the transitivity and fun
tionality lemmas.
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9.7.7.4 Inversion Lemmas

Inversion lemmas should have form

8z

1

:S

1

: : : z

k

:S

k

: 8x

1

; x

2

:T: A

1

) : : :) A

m

) x

1

r x

2

) x

2

r x

1

where k � 0 and m � 0. Inversion lemmas in the library must be named opid-of-r inversion.

Inversion lemmas are required for equivalen
e relations, but not equality or order relations.

They are used by the Rev* atomi
 
onversions, and in 
onjun
tion with the weakening, transitivity,

and fun
tionality lemmas when these lemmas mix order and equivalen
e relations.

9.7.8 Environments

An environment is a list of propositions and de
larations of variable types and that are being

assumed. The environment of the 
on
lusion of a sequent is the list of hypotheses of the sequent.

The environment of a hypothesis is all the hypotheses to the left of it. We 
an also talk about lo
al

environments of subterms of sequent 
lauses. For example, in the sequent

x

1

:H

1

; : : : ; x

n

:H

n

` 8y:T: B ! C

the lo
al environment for subterm C of the 
on
lusion is

x

1

:H

1

; : : : ; x

n

:H

n

; y:T; B

The rewrite 
onversionals keep tra
k of the lo
al environment ea
h 
onversion is being applied

in, and every 
onversion takes as its �rst argument an e of type env whi
h supplies this lo
al

information.

The environment information is used by 
onversions in three ways by the atomi
 lemma and

hypothesis 
onversions.

� De
larations in the environment are used to infer types whi
h help to 
omplete mat
hes. (See

Se
tion 9.1.7).

� Environments are used to form the subgoals that have to be dis
harged for 
onditional lemma

rewrites to go through. For example, if C in

x

1

:H

1

; : : : ; x

n

:H

n

` 8y:T: B ! C

is rewritten by a rewrite rule based on the lemma

` 8z:T: A

z

) t

z

= t

0

z

and the variable z in the lemma is bound to a term s by the mat
h of C against t, then the

subgoal whi
h has to be proven for the rewrite rule to be valid is

x

1

:H

1

; : : : ; x

n

:H

n

; y:T;B; ` A

s

� The hypothesis 
onversions a

ess the hyp list via environment terms.

Currently the system must be told expli
itly how the environment is extended when it des
ends

to the subterms of a term. Built in is knowledge of the 8, 9 and ) terms. The system assumes

other terms do not modify the environment, unless otherwise told by the user. see the env.ml �le

for further details.
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9.7.9 Relations

9.7.9.1 Introdu
tion

The rewrite pa
kage supports rewriting with respe
t to both primitive and user-de�ned equivalen
e

relations. Some examples are:

� �, the 
omputational equality relation,

� � = � 2 �, the primitive equality relation of the type theory,

� (), if and only if,

� � = �mod�, equality on the integers, modulo a positive natural,

� =

q

, equality of rationals represented as pairs of integers,

� �, the permutation relation on lists.

The pa
kage also supports `rewriting' with respe
t to any relation that is transitive but not

ne
essarily symmetri
 or re
exive. This needs a bit of explaining. Proofs involving transitive

relations and monotoni
ity properties of terms 
an be made very similar in stru
ture to those

involving equivalen
e relations and 
ongruen
e properties.

For example, 
onsider the following proof step that 
ame up Forester's development of real

analysis in Nuprl [?℄.

i:N

+

j:N

+

f :N

+

! N

+

mono(f)

`

1=fi+

q

1=fj �

q

1=i +

q

1=j

BY RWH (RevLemmaC `monotone le`) 0

`

1=i+

q

1=j �

q

1=i+

q

1=j

Here, the de�nition mono(f) is:

mono(f) =

def

8a; b:N

+

: a < b) f a < f b

and the theorem monotone_le is:

` 8f :N

+

! N

+

: mono(f)) 8n:N

+

: n � f n

The ta
ti
 RWH 
 i tries to apply the 
onversion 
 on
e to ea
h subterm of 
lause i of the sequent

and the 
onversion RevLemmaC name 
onverts lemma name into a right-to-left rewrite rule. Other

examples of monotone rewriting 
an be found in Se
tion ??.
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It is interesting to note that logi
al impli
ation ) 
an be treated a rewrite relation, sin
e it is

transitive. When it is, we have a generalization of forward and ba
kward 
haining.

For ea
h user-de�ned relation, the user provides the rewrite pa
kage with lemmas about tran-

sitivity, symmetry, re
exivity and strength (a binary relation R over a type T is stronger than a

relation R

0

over T if for all a and b in T , the relation a R b implies that a R

0

b). These lemmas are

used by the pa
kage for the justi�
ation of rewrites (see Se
tion 9.7.7).

The user also provides a de
laration in an ML obje
t that identi�es relation families and extra

properties of relations. These de
larations are des
ribed in the next se
tion.

9.7.9.2 De
laring Relations

The rewrite pa
kage treats rewrite relations as �rst-order terms: the two prin
ipal arguments of

relations are expe
ted to be supplied as subterms rather than by appli
ation. If a relation term also

takes additional parameters as subterms, these should always be positioned before the prin
ipal

argument subterms. For example, the t = t

0

2 T equality relation has T as a parameter and has

logi
al stru
ture equal(T;t;t

0

).

Relations are most 
ommonly typed-valued, but boolean-valued relations are also a

epted by

the rewrite pa
kage. When a boolean-valued relation is to be used in a 
ontext where a type-valued

relation is expe
ted, the relation should be wrapped in the assert abstra
tion whi
h 
onverts

boolean-valued expressions to type-valued ones.

Equivalen
e relations should be de
lared by an invo
ation of

de
lare_equiv_rel

rnam : tok

stronger-rnam : tok

=

() : unit

This de
lares the term with opid rnam to be an equivalen
e relation, and the term with opid

stronger-rnam to be an immediately stronger equivalen
e relation. Commonly, stronger-rnam will

be `equal`. Most often, there will be only one su
h de
laration for ea
h rnam. However, multiple

de
larations for a single rnam are sometimes needed and are quite a

eptable.

Order relations are grouped into relation families. A family is a latti
e of order and equivalen
e

relations of form:

� �

= n = n

< = >

where weaker relations are higher in the latti
e, and relations within a family satisfy

a < b () b > a

a � b () b � a

a = b () a � b ^ b � a

a < b () a � b ^ :(b � a)

The 
onverse of both stri
t and non-stri
t order relations R should always be de�ned dire
tly

in terms of R. For example, the de�nition of the abstra
tion rev implies is

P ( Q =

def

Q) P
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The pa
kage assumes that order relations 
an be inverted by folding and unfolding su
h de�nitions.

Family should be de
lared using an invo
ation of

de
lare_rel_family

lt : term

le : term

eq : term

ge : term

gt : term

=

() : unit

Dummy terms (with stru
ture dummy(), displaying as ?, and entered using dummy) should be used

as pla
eholders when a member of a family is missing. A notational abbreviation has been de�ned

for su
h invo
ations whi
h 
an be entered by the name relfam. It displays as

Relation Family

<: [lt℄

�: [le℄

�: [eq℄

�: [ge℄

>: [gt℄

Examples in
lude for the standard order relations on the integers

Relation Family

<: i < j

�: i � j

�: i = j

�: i � j

>: i > j

and for the `divides' and `asso
iate' relation in a theory of 
an
ellation monoids [?, ?℄

Relation Family

<: a p| b in g

�: a | b in g

�: a �{g} b

�: a |by b in g

>: ?

If there are no de�ned order relations asso
iated with an equivalen
e relation, then there is no need

to in
lude the equivalen
e relation in an order relation family. It is quite permissable (and not

infrequent) that several order relation families share the same equivalen
e relation.

The partial order of strengths of relations is taken to be the re
exive transitive 
losure of the

relation de�ned by the M-shaped graphs for ea
h family and the equivalen
e relation de
larations.

Additional relations between order relations 
an be noted by using

de
lare_order_rel_pair

stronger-rtm : term

weaker-rtm : term
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So far these methods of des
ribing the partial order have been adequate, though the methods might

well need reorganisation in the future.

These relation de
larations should be inserted in ML obje
ts that are positioned after the

referred-to relations have been de�ned, but before they are used in any lemmas that might be

a

essed by the rewrite pa
kage.

In Nuprl4.1, the relation de
larations

add_equiv_rel_info ( name:tok) ( rels:tok list) ;;

add_order_rel_info ( name:tok) ( inverse-name:tok) ( is-re
:bool) ( rels:tok list) ;;

were used. These are now obselete and should be repla
ed by the ones des
ribed above.

9.7.10 Justi�
ations

There are two types of justi�
ations.

Computational Justi�
ations These indi
ate pre
ise appli
ations of the forward and reverse

dire
t 
omputation rules. They are 
omparatively very fast and generate no well formedness

subgoals. The rewrite pa
kage uses these whenever possible.

Ta
ti
 Justi�
ations These are more generally appli
able. Extensive use is made of lemmas, and

many well formedness subgoals are generated.

Conversions generating both types of justi�
ation 
an be freely intermixed; the system takes 
are

of 
onverting 
omputational justi�
ations to ta
ti
 justi�
ations when ne
essary.

9.7.11 Substitution

Nuprl's logi
 has a 
ouple of rules for 
arrying out simple kinds of substitutions. These rules are

a

essible through the ta
ti
s des
ribed here. O

asionally these rules are useful; they 
an generate

fewer and easier-to-solve well-formedness goals than the rewrite pa
kage.

Subst (eq:term) 


eq should be a proposition of form t1 = t2 2 T . The e�e
t of Subst is to repla
e all o

urren
es

of t1 in 
lause 
 by t2. Three subgoals are generated; a main subgoal with the substitution


arried out, a wf subgoal to prove fun
tionality of the 
lause, and an equality subgoal to prove

that t1 = t2 2 T .For example:

H

1

: : : H

n

` C

a

BY Subst

0

a = b 2 T

0

0

main H

1

: : : H

n

` C

b

wf H

1

: : : H

n

; z:T ` C

z

= C

z

2 U

�

equality H

1

: : : H

n

` a = b 2 T

where U

�

is the inferred universe for 
lause 
. Universe inferen
e 
an be overridden by supplying

an optional universe argument with the Using ta
ti
al.

HypSubst i 


Runs the Subst ta
ti
 using the equality proposition in hypothesis i. Generates a wf subgoal

and a main subgoal.
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RevHypSubst i 


As HypSubst, ex
ept that equality hypothesis is used right-to-left rather than left-to-right.

SubstClause t 


Repla
e 
lause 
 with term t. Generates a main subgoal and an equality subgoal.

9.8 Type In
lusion

In
lusion i

The In
lusion ta
ti
 solves goals of form

: : : ; i:x:T; : : : ` x 2 T

0

or

: : : ; i:t 2 T; : : : ` t 2 T

0

where either types T and T

0

are equivalent or T is a proper subtype of T

0

. The spe
i�
 kinds

of relations between T and T

0

that the In
lusion 
urrently handles are roughly:

� T and T

0

are the same on
e all soft abstra
tions are unfolded

� T and T

0

are both universe or prop terms and the level of T is always no greater than the

level of T

0

for any instantiation of level variables.

� T and T

0

are ea
h formed by using one or more subset types, and both have some 
ommon

superset type. In this 
ase In
lusion tries to show that the subset predi
ates (if any) of

T

0

are implied by the subset predi
ates (if any) of T together with other hypotheses.

� T and T

0

have the same outermost type 
onstru
tor. In this 
ase, the in
lusion goal is

redu
ed to one or more in
lusion goals involving the immediate subterms of T and T

0

.

Currently works for fun
tion, produ
t, union and list types.

� There is a lemma in the library stating that T is a subtype of T

0

.

In
lusion also solves similar goals where one or both of the membership terms are repla
ed

by equality terms.

For the in
lusion reasoning involving subset types to work, you need to supply information

about abstra
tions involving subset types using the fun
tion add set in
lusion info. See the

theory int 1 for several examples of the use of this fun
tion.

9.9 Mis
ellaneous

Cases [t1;...;tn℄
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Does n-way 
ase split. For example:

: : : ` C

BY Cases [t

1

; : : : ;t

n

℄

assertion: : : : ` t

1

_ : : : _ t

n

: : : t

1

` C

.

.

.

: : : t

n

` C

GenCon
l 't = v 2 T'

v should be a variable. Generalizes o

urren
es of t as subterms of the 
on
l to variable v. Adds

new hypotheses de
laring v to be of type T and stating that t = v 2 T .

ApFunToHypEquands (x:var) (v

x

:term) (V

x

:term) (i:int)

If hypothesis i is of form a = b 2 T , then this ta
ti
 applies the fun
tion �x:v

x

to the terms a

and b to give a new hypothesis in the subgoal labelled main of form v

a

= v

b

2 V

a

. Also 
reates

a 
ouple of aux subgoals. See �le in
lusion-ta
ti
s.ml for details.

Fiat

If you about to give up hope on a theorem, don't despair. This ta
ti
 is guaranteed to provide

satisfa
tion.

2

9.10 Autota
ti
s

The autota
ti
s are used primarily for type
he
king. Trivial

Does various steps of trivial reasoning, in
luding.

� NthHyp

� NthDe
l

� Eq

� Contradi
tion - Both P and :P o

ur in hypothesis list.

� Con
l is the term True or one of the hypotheses is either the term False or the term Void.

Auto

Repeatedly tries the following until no further progress is made.

� Trivial

� GenExRepD

� MemCD for member and EqCD on re
exive equality 
on
lusions. Only works on non-re
ursive

primitive terms.

� Arith

2

This ta
ti
 uses Nuprl's be
ause rule. The use of this rule should be regarded as experimental. Despite mu
h

hard work, neither Stu nor Doug have yet su

eeded in proving it valid a

ording to any of their semanti
s.
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� Arithmeti
 equality reasoning, in 
ase 
on
l is a = b 2 T where a and b arithmeti
ally

simplify to same. (By arithmeti
ally simplify, we mean simplify subterms whi
h involve

the basi
 arithmeti
 operators +;�; �; = and rem

3

.)

� If 
on
l is a 2 T or a = b 2 T where T is subset of the integers, then open up T .

SIAuto

Like Auto but also tries using the SupInf ta
ti
.

Auto'

Like Auto but uses the SupInf' ta
ti
 instead of the Arith ta
ti
.

Auto and its variants frequently en
ounter the same goals over and over again, so

9.11 Transformation Ta
ti
s

PrintTexFile (name:string)

name should be a �lename without extension. Two �les are 
reated. name.prl is a �le whi
h 
an

be viewed by an appropriate version of ema
s running with one of Nuprl's 8-bit fonts. name.tex

is a self-
ontained �le suitable for input to L

a

T

E

X.

Mark (a:tok)

Mark stores the proof tree at and below the point in the proof where it is invoked in the proof

register named a.

Restore (a:tok)

Restore the proof stored in proof register a by a previous Mark.

Copy (a:tok)

Run all the ta
ti
s asso
iated with the proof stored in proof register a. Copy is useful if you

want to 
opy a pattern of reasoning used in one part of a proof to another part. Copy 
an also

be used to 
opy from one proof to another.

Z

Stores the 
urrent proof in the ML variable pf. This is very useful when debugging ta
ti
s.

9.12 Constru
tive and Classi
al Reasoning

9.12.1 Constru
tive Reasoning

The 
onstru
tivity of Nuprl's logi
 manifests itself in two main ways with the ta
ti
s:

1. For any proposition P , the goal P _ :P is not in general provable.

2. When applying the D ta
ti
 to a hypothesis that has a set term outermost, the predi
ate part

of the set term be
omes a hidden hypothesis. For example:

: : : i:x:fy:T jP

y

g; : : : ` : : :

BY Di

: : : i:x:T; [i+ 1℄:P

x

; : : : ` : : :

3

Currently simpli�
ation involving = and rem isn't working
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Here, the [℄ surrounding the hypothesis number i+1 indi
ate that this hypothesis is hidden. A

hidden hypothesis is not immediately usable though there are ways in whi
h it might be
ome

usable later in a proof.

Ta
ti
s to simplify dealing with these issues are des
ribed in the next two se
tions.

9.12.2 De
idability

Many useful instan
es of P _:P are provable 
onstru
tively and the ProveDe
idable ta
ti
 is set

up to 
onstru
t these proofs in a systemati
 way. To dis
uss it, we �rst introdu
e the abstra
tion:

de
idable: De
(P ) =

def

P _ :P

whi
h 
an be found in the 
ore 2 theory. It turns out that the property De
(P ) 
an be inferred

for many P from knowing that De
(Q) for the immediate subterms Q of P . ProveDe
idable takes

advantage of this fa
t and attempts to prove goals of the form

: : : ` De
(P )

by ba
k
haining with any lemmas in the Nuprl library that have names with pre�x de
idable .

(Note the two unders
ores.) There are many examples of su
h lemmas in the 
ore 2 theory.

ProveDe
idable is usually invoked via the De
ide ta
ti
:

De
ide (Q:term)

Used to 
ase-split on whether proposition Q is true or false. Generates two main subgoals; one

with the new assumption Q and the other with the new assumption :Q. De
ide also 
reates

a subgoal : : : ` De
(Q) and immediately runs the ProveDe
idable ta
ti
 on this subgoal.

ProveDe
idable generates only subgoals with labels in the aux 
lass. If ProveDe
idable fails

then De
ide fails too. To understand why, use the ta
ti
 Assert to assert De
(Q) and run

the ProveDe
idable1 ta
ti
 to try and prove this assertion. ProveDe
idable1 will generate

subgoals with label de
idable? to indi
ate those 
omponents of Q that it 
ouldn't prove were

de
idable. Use ProveDe
idable1 rather than ProveDe
idable; ProveDe
idable fails when it

sees su
h subgoals.

9.12.3 Squash Stability and Hidden Hypotheses

A hidden hypothesis P in a sequent � 
an be unhidden if one of two 
onditions are met:

1. The proposition P is squash stable.

2. The 
on
lusion of � is squash stable.

A proposition is squash stable if it is possible to �gure out what its 
omputational 
ontent is, given

that you know that some 
omputational 
ontent exists (in the 
lassi
al sense). The 
omputational


ontent of a proposition is some term that inhabits the proposition when it is 
onsidered as a type.

The squash stable predi
ate is de�ned in the 
ore 2 theory as follows:

sq stable: SqStable(P ) =

def

#P ) P
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The proposition # P (read `squash P') is 
onsidered true exa
tly when P is true. However, P 's


omputational 
ontent when true 
an be arbitrary whereas # P 's 
omputational 
ontent when true


an only be the trivial 
onstant term that inhabits the unit type. (# P is de�ned as fx:UnitjPg

where x does not o

ur free in P ).

As with de
idability, it turns out that the property SqStable(P ) 
an be inferred for many P

from knowing that SqStable(Q) for the immediate subterms Q of P . It is also true that De
(P ))

SqStable(P ) for any P . The ta
ti
 ProveSqStable takes advantage of these fa
ts and attempts to

prove goals of the form

: : : ` SqStable(P )

by ba
k
haining with any lemmas in the Nuprl library that have names with the pre�xes sq stable

or de
idable (note the two unders
ores in ea
h 
ase). There are many examples of su
h lemmas

in the 
ore 2 theory.

Sin
e ProveSqStable 
an be rather slow, it isn't 
alled by the D ta
ti
 when D is applied to

a set type hypothesis fx:T jP

x

g. However, D does 
he
k the sequent 
on
lusion for trivial ways in

whi
h it might be squash stable.

The D ta
ti
 does re
ognise property lemmas for abstra
tions that are wrapped around set types.

Property lemmas state that parti
ular set type predi
ates are squash stable. If D is applied to an

abstra
tion wrapped around a set type and there is a property lemma for the abstra
tion, then the

predi
ate of the set type is always added unhidden to the hypothesis list.

Consider some abstra
tion A

x

where the x are variables that have been slotted in for the

immediate subterms of A. Say that A

x

unfolds to fy:T

x

jP

x;y

g. Then the property lemma for A

should have form

` 8x:T : 8z:A

x

: P

x;z

and should be named opid properties where opid is the opid of A. Examples of properties lemmas


an be found in the theory int 1. Property lemmas 
an often be 
ompletely proven using the ta
ti


ProvePropertiesLemma.

Ta
ti
s related to unhiding are as follows:

UnhideSqStableHyp i

Hypothesis i should be a hidden hypothesis. This ta
ti
 tries to prove the hidden hypothesis

squash stable using ProveSqStable.

UnhideAllHypsSin
eSqStableCon
l

This ta
ti
 tries to prove the 
on
lusion squash stable using ProveSqStable. If it su

eeds in

this, all hidden hypotheses are unhidden.

Unhide

Tries to unhide hidden hypotheses, �rst by 
he
king whether the 
on
lusion is squash stable

and then, if this fails, by 
he
king whether ea
h hidden hypothesis is squash stable.

AddProperties i

Hypothesis i should be de
laration of form A or a proposition of form t 2 A or t = t

0

2 A where

in either 
ase A is an abstra
tion with a properties lemma. AddProperties adds the predi
ate

part of the set type underlying A as a new hypothesis immediately after i. It does not 
hange

hypothesis i.

114



9.12.4 Classi
al Reasoning

To reason 
lassi
ally, you need to have as an expli
it hypothesis

8P :P

i

:P _ :P

It is best to have this hypothesis in the form of the xmiddle abstra
tion:

xmiddle: XM

i

=

def

8P :P

i

:De
(P )

The De
ide ta
ti
 re
ognizes whenever the xmiddle abstra
tion o

urs as some hypothesis, and

in this 
ase is trivially able to justify de
idability. Also, the D ta
ti
 on set types, maybe with

abstra
tions wrapped around them, always yields an unhidden set predi
ate, whether or not there

is an abstra
tion with a properties lemma.

If you want to prove a non-
onstru
tive theorem, it is simplest to add the xmiddle proposition

as a pre
ondition of the theorem, so that the theorem is of form ` XM

i

) P .

There are two 
ommon 
ases when in proving a part of a 
onstru
tive theorem, 
lassi
al rea-

soning be
omes admissable. These 
ases, and a re
ommended method in ea
h 
ase for adding an

xmiddle hypothesis are as follows:

1. If the 
on
lusion is the squashed exists term # 9x:T: P

x

and you are about to apply the ta
ti


With t (D 0). Squashed exists is de�ned in 
ore 1 as:

sq exists: # 9x:T: P [x℄ =

def

fx:T jP [x℄g

First use the ta
ti
 AddXM:

: : : ` # 9x:T: P

x

BY AddXM 1 THEN With t (D 0)

wf XMi : : : ` t 2 T

main XMi : : : ` P

t

wf XMi : : : x:T ` P

x

2 P

i

AddXM 1 alone adds the hypothesis XMi as a hidden hypothesis, so there are no soundness

problems here. XMi be
omes unhidden in the �rst and third subgoals sin
e here the 
on-


lusion is re
ognized as being trivially squash stable. XMi be
omes unhidden in the se
ond

subgoal sin
e from here on, any 
omputational 
ontent in the proof 
annot 
ontribute to the


omputational 
ontent of the original goal of the theorem.

2. If the 
on
lusion is squash stable. Again �rst run the ta
ti
 AddXM 1. If the 
on
lusion is

obviously squash stable, then XMi is added unhidden. If the 
on
lusion is not obviously

squash stable and XMi gets added hidden, you should then run the Unhide ta
ti
.

The AddXM ta
ti
 assumes that the proposition # (8P :P

i

:P _:P ) is true; that is, the 
orrespond-

ing type is inhabited. This is a very reasonable assumption to make, but it is not true a

ording

to the semanti
s given for Nuprl's type theory in S. Allen's thesis.
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9.13 Further Information

Consult the ML �les. Start with load-ml.ml whi
h loads all the other ML �les.
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Chapter 10

Theories

10.1 Theory Stru
ture

The main dire
tories 
ontaining theories are listed in Se
tion 1.5. Ea
h theory dire
tory 
ontains

an ML �le theory-init.ml. This �le 
ontains 
ommands that tell Nuprl about the theories in the

theory dire
tory, in
luding information about the dependen
ies of theories on one another. It also

should 
ontain 
omments that summarize the 
ontents of ea
h theory in the dire
tory.

Theory dire
tories should also 
ontain up-to-date listings of ea
h theory. Short listings are

named theory-name.prl and long listings 
ontaining printouts of proofs are named theory-name long.prl.

These listings use 
hara
ters from Nuprl's 8-bit 
hara
ter set and so are best viewed using an editor

running with one of Nuprl's fonts. There are also self-
ontained L

a

T

E

X versions of the listings in

�les with .tex rather than .prl �le-name extensions.

ML 
ommands for 
reating, loading, editing, dumping and printing theories are des
ribed in

Se
tion 3.4.3.

10.2 De�nitions

10.2.1 Stru
ture

A de�nition in a Nuprl theory for a term with opid opid usually in
ludes the following obje
ts in

the order in whi
h they are listed here:

� A display form obje
t, usually named opid df, spe
ifying how instan
es of the de�nition

should be displayed. The right-hand-side of ea
h 
lause in the display form de�nition shows

the abstra
tion without any display forms. Its useful to look at this if you are 
onfused as to

the stru
ture of a abstra
tion.

� An abstra
tion obje
t, usually named opid, that spe
i�es how the de�nition unfolds. You

indi
ate to the Unfold ta
ti
 abstra
tions to unfold by giving the opids of the abstra
tions.

However, the Fold ta
ti
 takes the names of the obje
ts in whi
h the abstra
tions are de�ned.

When opid is used as the name of the abstra
tion obje
t, the same name 
an be used for

referring to an abstra
tion when folding and unfolding.
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� A well-formedness lemma, usually named opid wf, that helps Nuprl type-
he
k the de�nition.

O

asionally there is more than one well-formedness lemma, in whi
h 
ase the obje
ts are

distinguished by adding suÆ
es to opid wf.

Sometimes there are extra ML obje
ts and lemmas asso
iated with a de�nition. De�nitions

are not only used for the Nuprl obje
t language; they are also in nearly all the stru
tures that are

edited using the Nuprl editor. No well-formedness lemma is appli
able in these 
ases.

De�nitions 
an be set up, by 
reating ea
h obje
t in turn and editing its 
ontents from s
rat
h.

This is a rather laborious pro
ess. The following se
tions des
ribe various ML fun
tions that 
an

be evaluated in Nuprl's ML Top Loop to more rapidly set up new de�nitions.

Nuprl abstra
tions 
annot be re
ursive. However, re
ursive de�nitions 
an be introdu
ed by

using the Y 
ombinator. See Se
tion 10.2.4 for details.

10.2.2 Adding Untyped De�nitions

The fun
tion

utdef

lhs : term

rhs : term

pla
e : string

=

() : unit


reates de�nitions without typing lemmas. lhs is the new term 
onstru
tor and rhs is the what it

is de�ned as. lhs and rhs are used for the left-hand and right-hand sides of the abstra
tion for the

new de�nition. pla
e is a library position as des
ribed in Chapter 7. lhs is invariably a new term,

so you usually will want to use the new term 
reation feature of the term editor to enter it (see

Se
tion 4.5.1). If the opid of the new de�nition is id, then utdef adds 2 new obje
ts to the library

starting at position pla
e:

� a display obje
t named id df whi
h de�nes a default display form for the lhs term,

� an abstra
tion obje
t named id. lhs and rhs are used for the left-hand and right-hand sides

of the abstra
tion.

utdef has no e�e
t if an obje
t with name id already exists. Often after running utdef you will

want to 
ustomize the display form. For example you might add whitespa
e related formats to the

display form left-hand side.

10.2.3 Adding Typed Non-Re
ursive De�nitions

The fun
tion

def

tdef : term

pla
e : string

=

() : unit

118




reates de�nitions with typing lemmas. The term tdef should have stru
ture

8x

1

:T

1

: : : x

k

:T

k

: A

1

) : : :) A

m

) lhs = rhs 2 V

where k � 0 and m � 0. The term lhs is the new term being de�ned and the term rhs is what

it is being de�ned as. All the free variables in lhs should be appropriately typed in the 
ontext

x

1

:T

1

: : : x

k

:T

k

. pla
e is a library position.

On evaluation of def, a display form obje
t opid df, an abstra
tion opid, and a typing lemma

opid wf are 
reated. The typing lemma is 
onstru
ted from the tdef term. It has form:

8x

1

:T

1

: : : x

k

:T

k

: A

1

) : : :) A

m

) lhs 2 V

An attempt is made to prove it by unfolding the abstra
tion and running the Auto ta
ti
. In most


ases, this attempt su

eeds in 
ompletely proving the lemma.

Note that the so apply abstra
tion should be used for the se
ond-order variables in the lhs and

rhs terms. def takes 
are of 
onverting these to se
ond-order variables for the abstra
tion obje
t.

When doing proofs, the basi
 ta
ti
s for folding and unfolding de�nitions are the Fold and

Unfold ta
ti
s. See Chapter 9 for details.

Currently, the only kinds of parameter variables that 
an be used in typed de�nitions are level

expression variables. This is be
ause Nuprl doesn't 
urrently allow any other kinds of parameter

variables in lemma goals and in proofs. Hopefully this should be �xed soon.

An example invo
ation of def is:

M> def

>

d

8A,B:U. 8p:A � B. pr_swp{}(p) = <p.2, p.1> 2 B � A

e

> "-test_1_end" ;;

This 
reates the library obje
ts

*D pr_swp_df

pr_swp(<p:p:*>)== pr_swp{}(<p>)

*A pr_swp pr_swp(p) == <p.2, p.1>

*T pr_swp_wf

8A,B:U. 8p:A � B. pr_swp(p) 2 B � A

10.2.4 Adding Re
ursive De�nitions

Nuprl's obje
t language 
ontains terms for doing re
ursion over types su
h as lists and integers.

These terms 
an be awkward to use, and we re
ommend instead that all re
ursive de�nitions are

built using the Y-
ombinator. The ML fun
tion re
def greatly simpli�es 
onstru
ting general re-


ursive de�nitions using the Y-
ombinator. re
def also takes 
are of introdu
ing a well-formedness

lemma for the de�nition. Its usage is:

re
def

tdef : term

pla
e : string

=

() : unit
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The term tdef should have stru
ture

8x

1

:T

1

: : : x

j

:T

j

: 8y

1

:S

1

: : : y

k

:S

k

: A

1

) : : :) A

l

) lhs = rhs 2 V

where the term lhs has form

idfp

1

; : : : ; p

i

g(x

0

1

; : : : ;x

0

j

0

) y

1

y

2

: : : y

k

;

i; j; j

0

; k; l � 0, the variables x

0

n

are a subset of the variables variables x

n

, and none of the variables

y

n

are free in any of the ante
edent propositions A

n

.

re
def allows you to 
reate re
ursive de�nitions with both 
urried arguments y

1

: : : y

k

supplied

by appli
ation, and subterm arguments x

0

1

: : : x

0

j

0

. The parameters p

1

: : : p

i

are spe
i�ed as in

abstra
tion de�nitions.

The rhs term should in
lude at least one instan
e of the head of the appli
ation in lhs. That is,

a term of form

idfp

1

; : : : ; p

i

g(t

1

; : : : ; t

j

0

)

where the p

n

's are the same as in lhs. All the free variables in lhs should be appropriately typed

in the 
ontext x

1

:T

1

: : : x

j

:T

j

. pla
e is a library position.

On evaluation of re
def, four obje
ts are added to the library.

� A display obje
t named id df whi
h de�nes a default display form for the id term.

� an abstra
tion obje
t named id whi
h de�nes the abstra
tion

idfp

1

; : : : ; p

i

g(x

0

1

; : : : ;x

0

j

0

)

=

def

Y (�f x

0

1

: : : x

0

j

0

y

1

: : : y

k

: rhs [idfp

1

; : : : ; p

i

g(t

1

; : : : ; t

j

0

) 7! f t

1

: : : t

j

0

℄) x

0

1

: : : x

0

j

0

� An ML obje
t named id ml. This 
ontains an invo
ation of a ML fun
tion that updates 
a
hes

that hold information 
onversions related to the de�nition. These 
onversions are des
ribed

below. This fun
tion invo
ation is given the display form:

lhs ==r rhs

and it serves to do
ument the re
ursive de�nition. For this reason, the abstra
tion obje
ts in

re
ursive de�nitions are usually made invisible in theory listings.

� A theorem obje
t named id wf for a well-formedness theorem. The goal of the theorem is


onstru
ted from the tdef term. It has form

8x

1

:T

1

: : : x

j

:T

j

: A

1

) : : :) A

m

) idfp

1

; : : : ; p

v

g(x

1

; : : : ;x

j

) 2 y

1

:S

1

! : : : y

k

:S

k

! V :

An initial ta
ti
 is exe
uted on the goal of this theorem to set up a subgoal that is usually

suitable for indu
tion. You then need to go in and 
omplete the proof of this theorem yourself.
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As with def, so apply abstra
tion should be used for the se
ond-order variables in lhs and rhs.

re
def takes 
are of 
onverting these to se
ond-order variables for the abstra
tion obje
t.

The basi
 
onversions asso
iated with a re
ursive de�nition are Re
UnfoldTopC and Re
FoldTopC.

If the de�nition has arguments provided by appli
ation, then additional 
onversions Re
EtaExpC

and Re
EtaConC are de�ned to �=-expand and �-
ontra
t the de�nition. More information on

these and related 
onversions 
an be found in Se
tion 9.7.5.

An example invo
ation of re
def from the ML Top Loop is:

M> re
def

>

d

8S,T:U. 8f:S ! T. 8as:S List.


map{}(f) as

= 
ase as of

[℄ => [℄

a::as' => (f a)::(
map{}(f) as')

esa


2 T List

e

> "-test_1_end" ;;

This 
reates the following library obje
ts:

*D 
map_df 
map(<f:f:*>)== 
map{}(<f>)

*A 
map


map(f) ==

Y

(�
map,as.


ase as of

[℄ => [℄

a::as' => (f a)::(
map as')

esa
)

*M 
map_ml


map(f) as

==r 
ase as of

[℄ => [℄

a::as' => (f a)::(
map(f) as')

esa


#T 
map_wf

8S,T:U. 8f:S ! T.


map(f) 2 S List ! T List

10.2.5 Adding Set De�nitions

Often new types are de�ned as subsets of old types using Nuprl's set type. Usually, there are

standard extra obje
ts asso
iated with set de�nitions. The fun
tion setdef is a variant on def

that automati
ally 
reates default versions of these extra obje
ts that are good enough for most

purposes. It's usage is identi
al to that of def.

The extra obje
ts 
reated are:

� an ML obje
t id_ml_in
. This tells Nuprl how to prove type-in
lusion relationships between

the old and new types.
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� a properties lemma id_properties. This helps in a

essing the set predi
ate information. The

stru
ture and use of properties lemmas is des
ribed in Se
tion 9.12.3.

The properties lemma is automati
ally proven providing the set predi
ate is squash stable. In

the event that you want to introdu
e a set de�nition with a predi
ate that isn't squash stable,

it is useful to use instead a squashed version of the predi
ate; squashed predi
ates are always

squash-stable.

In order to add these extra obje
ts for existing de�nitions the fun
tion

add_in
_objs : tok -> unit


an be used. Its argument should be the opid of the de�nition.

An example invo
ation of setdef is

M> setdef

>

d

8T:U. 8n:N.

ve
{}(T; n) = {as:T List| ||as|| = n} 2 U

e

> "-test_1_end" ;;

and the obje
ts 
reated by this invo
ation are:

*D ve
_df

ve
(<T:T:*>;<n:n:*>)== ve
{}(<T>; <n>)

*A ve


ve
(T;n) == {as:T List| ||as|| = n}

*T ve
_wf 8T:U. 8n:N. ve
(T;n) 2 U

*M ve
_ml_in


add_set_in
lusion_info

`ve
` `list`

AbSetDForIn
 Auto ;;

*T ve
_properties

8T:U. 8n:N. 8as:ve
(T;n). ||as|| = n

Sometimes, the predi
ate in a set de�nition 
an have a number of parts and it is desirable to

have a property lemma for ea
h part. The fun
tion

add_seperate_property_lemmas : tok -> unit


an be used to add su
h property lemmas. It assumes that 
ompound and basi
 attributes have

appropriately been added to the de�nitions of the abstra
tions used in the predi
ate.

10.3 Notational Abbreviations for ML

Nuprl abstra
tions 
an be used to provide notational abbreviations for ML. A 
ouple of 
urrent

abstra
tions for ML add 
ommon suÆ
es to ta
ti
s.

� (T ...) is an abbreviation for T THEN Auto. An editor 
ommand h
-.it, given when at a

text 
ursor when editing ML, inserts this abbreviation and leaves a text 
ursor at the internal

slot for the argument T .

� Similarly, (T ...a) is an abbreviation for T THENA Auto, and the appropriate editor 
om-

mand is h
-.ia.
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10.4 Module Types

Support is provided for de�ning module types. These are essentially re
ord types, where the type

of ea
h �eld of an instan
e 
an depend on previous �elds of the instan
e. They are very useful

for de�ning ADT's (abstra
t data types) and algebrai
 
lasses. Module types are allowed to have

parameters. For example, an ADT for queues 
ould be 
reated that takes the type of queue elements

as a parameter. Module types are 
urrently implemented using Nuprl's � type.

An ML fun
tion 
reate_module helps with setting up new module type de�nitions, adding

proje
tion fun
tions, and updating the AbRedu
e ta
ti
 to re
ognize appli
ations of the proje
tion

fun
tions.

The 
reate_module fun
tion should be used as follows:

1. Pi
k a name for your module; say modname.

2. Create an ML obje
t 
reate_modname to hold the 
reate_module invo
ation. The invo
ation

needs to be part of the library to ensure that the relevant 
omputation rules are added

ea
h time the theory 
ontaining the module de�nition is loaded. The fun
tion only 
reates

the de�nition obje
ts themselves if they are initially absent. The invo
ation also serves to

do
ument the module. With the abstra
tions explained below, it presents a 
learer and more

su

in
t a

ount of the module stru
ture than do the de�nitions themselves that make up the

module.

3. It is most elegant to use a few abstra
tions to pretty up the invo
ation. Remember, when you

have a text 
ursor in a text sequen
e, a term slot 
an be opened up using h
-ui, and when

you have a term 
ursor at an empty term slot, a text sequen
e 
an be inserted using h
-;i.

The abstra
tions for modules 
urrently reside in the ml_1 theory.

The abstra
tion holding the 
reate_module invo
ation has the editor alias 
lassde
l. Enter

it in the ML obje
t by opening up a term slot in the obje
t's top level text sequen
e, and

typing the name 
lassde
l. By keeping the top level of the ML obje
t a text sequen
e, you

are free for example to add ML 
omments pre
eding the 
reate_module invo
ation. Without

�elds �lled in, the 
lass de
laration template should look like:

Class De
laration for: [example℄

Long Name: [string℄

Short Name: [string℄

Parameters:

[parms℄

Fields:

[fields℄

Universe: [uni℄

4. Enter modname for the Long Name and some abbreviation of this for the Short Name. The

short name is used as a pre�x for the names of the proje
tion fun
tions.
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5. Initialize the [parms℄ and [fields℄ slots with empty text sequen
es.

6. Open up a term slot in the Parameters list for ea
h parameter. Parameters are pairs of

variable names and types. They should be entered using another abstra
tion with alias name

mlbd. This initially looks like

[var℄ : [type℄

where [var℄ is a text slot for the variable name, and [type℄ is a term slot for the 
orresponding

type of the variable. If there are no parameters, just leave the empty text sequen
e in this

slot.

7. Open up a term slot in the Fields list for ea
h �eld. As with parameters, you 
an use the mlbd

abstra
tion for the �eldname and �eld type. Alternatively, you 
an use the mlbde abstra
tion:

([example℄) [var℄ : [type℄

This has an extra term slot for an example of the proje
tion fun
tion for that �eld. Initially,

leave the term slot empty. Enter in the [var℄ slot the name of the �eld. The name of the

proje
tion fun
tion will be the name entered here with a suÆx of the short module name.

The type of a �eld 
an refer to 
onstant types, the inhabitants of earlier �elds or parameters.

Sin
e the mlbd or mlbde terms are embedded in a text sequen
e, you 
an insert linebreaks in

the sequen
e, by simply getting a text 
ursor in the sequen
e and typing
return

.

8. Fill in the [uni℄ slot with an appropriate universe term. This should be the lowest universe

that the module type inhabits. For example, if the module type itself involves no universes,

then this probably will be U

1

; if the module type involves universe terms U

i

, then this will

be U

i+1

, (
ommonly abbreviated to U

0

).

Here is an example of a 
lass de�nition that has been instantiated a

ording to the pro
edure

given so far:

Class De
laration for: [example℄

Long Name: a
tion_set

Short Name: aset

Parameters:

T : U

Fields:

([example℄) 
ar : U

([example℄) a
t : T ! 
ar ! 
ar

Universe: U'

9. If you now 
he
k this obje
t (use h
-xi
h), the de�nitions for the module are 
reated in the

library. For the above example, the following de�nitions are 
reated:
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*D a
tion_set_df

a
tion_set{<i:level>}(<T:T:*>)== a
tion_set{<i>:l}(<T>)

*A a
tion_set

a
tion_set{i}(T) == 
ar:U � (T ! 
ar ! 
ar)

*T a
tion_set_wf 8T:U. a
tion_set{i}(T) 2 U'

*D aset_
ar_df <a:aset:E>.
ar== aset_
ar{}(<a>)

*A aset_
ar a.
ar == a.1

*T aset_
ar_wf 8T:U. 8a:a
tion_set{i}(T). a.
ar 2 U

*D aset_a
t_df <a:aset:E>.a
t== aset_a
t{}(<a>)

*A aset_a
t a.a
t == a.2

*T aset_a
t_wf

8T:U. 8a:a
tion_set{i}(T). a.a
t 2 T ! a.
ar ! a.
ar

10. If desired, edit the display forms for the module type and for the proje
tions. For example,

the display forms 
ould be 
hanged to:

*D a
tion_set_df

ASet{<i:level>}(<T:T:*>)== a
tion_set{<i>:l}(<T>)

ASet(<T:T:*>)== a
tion_set{i:l}(<T>)

*D aset_
ar_df |<a:aset:*>|== aset_
ar{}(<a>)

*D aset_a
t_df

Parens ::Pre
(preop):: �<a:aset:E>== aset_a
t{}(<a>)

�== aset_a
t{}(<a>)

Here a 
ouple of abbreviated display forms are de�ned for the the module type, one of whi
h

hides the level expression in the 
ase that it is simply the level variable i. Standard notation

is 
hosen for the 
arrier, and the a
tion is denoted by a `�' 
hara
ter. To avoid 
lutter, a

display form for the a
tion is de�ned that hides the instan
e of the a
tion_set module. This


an nearly always be determined from 
ontext.

11. Fill in the [example℄ slots in the module de
laration. These serve purely to do
ument the

module, and are dis
arded when the system unfolds the 
lass de
laration abstra
tion into raw

ML 
ode. In the [example℄ slot on the �rst line, you should put an instan
e of the module

type, with the same parameter names as de
lared in the Parameters se
tion. You might also

insert a membership term or an mlbd term to indi
ate a prototypi
al element. For the above

example, you 
ould insert the term s 2 ASet(T) indi
ating that s is a prototypi
al element.

Fill in the example slots of the mlbd terms with examples of the relevant proje
tion fun
tions,

operating on the prototypi
al element de
lared in the uppermost example slot. In the example,

the terms |s| and �s 
ould be used.

With the given display form 
hanges, and example terms, the �nal version of the example


lass de�nition looks like:
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Class De
laration for: s 2 ASet(T)

Long Name: a
tion_set

Short Name: aset

Parameters:

T : U

Fields:

(|s|) 
ar : U

(�s) a
t : T ! 
ar ! 
ar

Universe: U'

12. Exit the 
reate_modname obje
t.

Examples of 
lass de�nitions 
an be found in many of the algebra theories.
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Appendix A

The Lisp Debugger

You 
an get thrown into the Lisp debugger in several ways; for example if Lisp is interrupted, if

a breakpoint was mistakenly left in the Nuprl 
ode or if you hit a bug. The parti
ular debugger

appearan
e and 
ommands given below are for Lu
id Common Lisp. Other Lisps should be similar.

The initial message put out by the debugger should tell you what 
aused it to be invoked. To

resume after an interrupt or breakpoint, enter:

:


return

To abort the 
urrent 
omputation and restart, enter:

:a

return

(nuprl)

return

If you get a 
rash, you 
an get more information on it as follows. The initial 
rash message

might look something like:

>>Error: The value of S, (TTREE 108 97 100 116 59 59), should be a STRUCTURE

SYSTEM:STRUCTURE-REF:

Required arg 0 (S): (TTREE 108 111 97 100 116 59 59)

Required arg 1 (I): 1

Required arg 2 (TYPE): TERM

:C 0: Use a new value

:A 1: Abort to Lisp Top Level

->

Here, the p-> q is the debugger prompt. Enter:

:b
return

Lisp prints a ba
ktra
e. For example:
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-> :b

SYSTEM:STRUCTURE-REF <- OPERATOR-OF-TERM <- IDFORM-TERM-P <- (:INTERNAL

SOURCE-REDUCE VISIT) <- SOURCE-REDUCE <- TERM-TO-ML-ISTRING <-

PRL-SCANNER-INITIALIZE <- PRL-MLLOOP <- ML <- ML-MODE$ <- PROCESS-CMD

<- CMD-WAIT <- PRL-LOOP <- PRL <- EVAL <- SYSTEM:ENTER-TOP-LEVEL

->

Enter:

:n

return

2 or 3 times. For example:

tt -> :n

OPERATOR-OF-TERM:

Required arg 0 (TERM): (TTREE 108 111 97 100 116 59 59)

-> :n

IDFORM-TERM-P:

Required arg 0 (TERM): (TTREE 108 111 97 100 116 59 59)

->

This provides a bit more information on the last fun
tion 
alls. When you send in a bug report,

in
lude the error message, ba
ktra
e and fun
tion 
alls you have obtained as above. Also, mention

brie
y what you were doing at the time of the 
rash.

To re
over from a 
rash, enter

:a

return

at the debugger prompt. Lisp then prints a top level prompt. For example:

-> :a

>

Try restarting by entering

(nuprl)

return

If another 
rash follows immediately, the problem might be linked with the window system interfa
e.

Enter p:a

return

q to get ba
k to the top level, and then enter

(reset)

return

(nuprl)

return

On exe
uting the (reset) fun
tion, all the Nuprl windows will 
lose and (nuprl) will open up an

initial ML-Top-Loop and library window. Any proofs you were just working on will not have been

lost. Use the view fun
tion to open them up again. However, you might have lost the 
ontents of
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the last term-editor window you were working in.

If still the system 
rashes but you 
an exe
ute fun
tions in the ML Top Loop, try dumping

any theories you haven't previously saved, quit the Nuprl session, and start a new one (The quit

fun
tion is (quit). If you 
an't even get the ML Top Loop running, the bug is very serious. Your

only 
hoi
e is to quit the session, losing any work you've done and haven't saved, and start a new

session.
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