
The Nuprl Proof Development System, Version 4.2

Referene Manual and User's Guide

Paul Jakson

July 29, 1995

Contents

1 Introdution 6

1.1 Purpose : 6

1.2 Conventions : 6

1.3 Pratial Details : 7

1.3.1 Getting Set Up : 7

1.3.2 Starting Up : 8

1.3.3 Hints on Using the System : 9

1.3.4 Exiting : 10

1.3.5 Alternative Setups : 10

1.4 Customization : 10

1.4.1 Window System Options : 10

1.4.2 Editor Options : 11

1.5 Diretory Struture : 11

1.6 Learning to use the System : 12

1.6.1 Tips : 12

1.6.2 The Nuprl Book : 13

2 ML Top Loop 14

2.1 Introdution : 14

2.2 Basi Top-Loop Operation : 14

2.3 More Advaned Top-Loop Operation : 16

2.4 Alternative Top Loops : 17

3 The Library 19

3.1 Introdution : 19

3.2 Objets : 19

3.3 Library Window : 20

3.4 Library ML Funtions : 20

3.4.1 Library Window Motion : 21

3.4.2 Library Editing : 22

3.4.3 Theory Commands : 23

3.5 Objet Dependenies and Ordering : 25

3.6 Future Developments : 26

1

4 Terms 27

4.1 Introdution : 27

4.2 Term Struture : 27

4.2.1 Overview : 27

4.2.2 Details : 28

4.3 Term Display : 29

4.3.1 Notation and Logial Struture : 29

4.3.2 Display Forms : 31

4.3.3 Editor Cursors : 33

4.3.4 Sequenes : 35

4.3.4.1 Term Sequenes : 35

4.3.4.2 Text Sequenes : 35

4.4 Term Editor : 36

4.4.1 Introdution : 36

4.4.2 Cursor/Window Motion : 36

4.4.2.1 Sreen Oriented : 36

4.4.2.2 Tree Oriented : 36

4.4.3 Adding New Text : 37

4.4.4 Adding New Terms : 38

4.4.5 Cutting and Pasting : 39

4.4.5.1 Basi : 40

4.4.5.2 Region : 41

4.4.6 Adding and Removing Slots in Sequenes : 41

4.4.7 Opening, Closing, and Changing Windows : 42

4.4.8 Utilities : 43

4.4.9 Mouse Commands : 44

4.5 Editing Term Struture : 44

4.5.1 New Term Entry : 44

4.5.2 Exploded Terms : 45

5 Abstrations 48

6 Display 52

6.1 Display Form De�nitions : 52

6.1.1 Top Level Struture : 52

6.1.2 Formats : 52

6.1.2.1 Slots : 53

6.1.3 Attributes : 53

6.1.4 Right-hand-side terms : 54

6.2 Whitespae : 54

6.2.1 Margin Control : 54

6.2.2 Line Breaking : 54

6.2.3 Optional Spaes : 55

6.3 Parenthesization : 55

6.3.1 Preedene Objets : 55

2

6.3.2 Parenthesis Seletion : 56

6.4 Iteration : 57

6.5 Examples : 57

6.6 The Layout Algorithm : 59

7 Sequents and Proofs 60

7.1 Introdution : 60

7.2 Sequent Struture : 60

7.3 Proof Struture : 61

7.4 Re�nement Rules : 62

7.4.1 Primitive Re�nement Rules : 62

7.4.2 Tati Rules : 62

7.4.3 Reetion Rules : 63

7.5 Transformation Tatis : 63

7.6 Proof Editor : 63

7.6.1 Proof Window Format : 63

7.6.2 Proof Motion Commands : 65

7.6.3 Opening, Closing, and Changing Windows : 65

7.6.3.1 Opening a Proof Window : 66

7.6.3.2 Closing a Proof Window : 66

7.6.3.3 Changing Windows : 66

7.6.3.4 Editing The Main Goal : 66

7.6.3.5 Editing a Re�nement Rule : 67

7.6.3.6 Viewing Subgoal Sequents : 67

7.6.3.7 Editing a Transformation Tati : 67

7.6.4 Mouse Commands : 68

7.7 Proof Compression and Expansion : 68

7.7.1 Introdution : 68

7.7.2 Editing Proof Sripts : 68

8 Rule Interpreter 70

8.1 Term Struture of Rules : 70

8.2 Semantis of Rule Interpreter : 70

9 Tatis 72

9.1 Introdution : 72

9.1.1 Conventions : 72

9.1.2 Universes and Level Expressions : 72

9.1.3 Formula Struture : 73

9.1.4 Soft Abstrations : 74

9.1.5 The Sequent : 74

9.1.6 Proof Annotations : 75

9.1.6.1 Goal Labels : 75

9.1.6.2 Tati Arguments : 76

9.1.7 Mathing and Substitution : 77

9.2 Basi : 79

3

9.2.1 Strutural : 79

9.2.2 Single-Step Deomposition : 80

9.2.3 Iterated Deomposition : 82

9.3 Tatials : 82

9.3.1 Basi Tatials : 82

9.3.2 Label Sensitive Tatials : 83

9.3.3 Multiple Clause Tatials : 83

9.4 Case Splits and Indution : 83

9.5 Forward and Bakward Chaining : 84

9.6 Deision Proedures : 86

9.6.1 ProveProp : 86

9.6.2 Eq : 86

9.6.3 RelRST : 86

9.6.4 Arith : 88

9.6.5 SupInf : 89

9.6.5.1 Desription : 89

9.6.5.2 Details : 91

9.7 Rewriting : 92

9.7.1 Introdution : 92

9.7.2 Conise Rewriting Tatis : 93

9.7.3 Introdution to Conversions : 94

9.7.4 Nuprl Conversions : 96

9.7.5 Conversion Desriptions : 96

9.7.5.1 Trivial Conversions : 96

9.7.5.2 Lemma and Hypothesis Conversions : : : : : : : : : : : : : : : : : : 97

9.7.5.3 Atomi Diret-Computation Conversions : : : : : : : : : : : : : : : 98

9.7.5.4 Attributed Abstrations : 99

9.7.5.5 Abstrat Redies : 99

9.7.5.6 Redution Strengths and Fores : 100

9.7.5.7 Composite Diret Computation Conversions : : : : : : : : : : : : : 101

9.7.5.8 Maro Conversions : 101

9.7.5.9 Conversionals : 102

9.7.6 Applying Conversions : 102

9.7.7 Lemma Support : 103

9.7.7.1 Funtionality Lemmas : 103

9.7.7.2 Transitivity Lemmas : 104

9.7.7.3 Weakening Lemmas : 104

9.7.7.4 Inversion Lemmas : 105

9.7.8 Environments : 105

9.7.9 Relations : 106

9.7.9.1 Introdution : 106

9.7.9.2 Delaring Relations : 107

9.7.10 Justi�ations : 109

9.7.11 Substitution : 109

9.8 Type Inlusion : 110

4

9.9 Misellaneous : 110

9.10 Autotatis : 111

9.11 Transformation Tatis : 112

9.12 Construtive and Classial Reasoning : 112

9.12.1 Construtive Reasoning : 112

9.12.2 Deidability : 113

9.12.3 Squash Stability and Hidden Hypotheses : 113

9.12.4 Classial Reasoning : 115

9.13 Further Information : 116

10 Theories 117

10.1 Theory Struture : 117

10.2 De�nitions : 117

10.2.1 Struture : 117

10.2.2 Adding Untyped De�nitions : 118

10.2.3 Adding Typed Non-Reursive De�nitions : 118

10.2.4 Adding Reursive De�nitions : 119

10.2.5 Adding Set De�nitions : 121

10.3 Notational Abbreviations for ML : 122

10.4 Module Types : 123

A The Lisp Debugger 127

5

Chapter 1

Introdution

1.1 Purpose

This manual is a referene manual for version 4.1 of the Nuprl system. It is aimed at beginning

and intermediate users of the system. Version 4.1 runs on Unix-based workstations that use the X

window system.

Note that this manual is still under development and is inomplete. Most importantly, it is

missing information on Nuprl's type theory, and the struture of the primitive rules as pereived

by users when exeuting low-level tatis.

Information on the ML language an be found in a separate Nuprl ML manual. Tutorials on

the use of Nuprl's term and proof editor are also available.

1.2 Conventions

We give the onventions we use in this manual for presenting user input and Nuprl output.

Input whih you should type is presented typewriter font. For example this is in typewriter

font. The following symbols are also used:

�
spae

for the spae-bar.

�

return

for the return key (sometimes marked as \enter").

�

linefeed

for the linefeed key.

�
tab

for the tab key.

�

delete

for the delete key (sometimes marked as rubout). On some keyboards the

bakspae

has the same e�et.

�

mouse-left

for the left mouse button.

�
mouse-middle

for the middle mouse button.

�

mouse-right

for the right mouse button.

Modi�ed keys are presented as follows:

6

� h-xi read as \ontrol x". Hold down a ontrol key and simultaneously press key x.

� hm-xi read as \meta x". Hold down a meta key and simultaneously press key x.

� hm-xi read as \ontrol meta x". Hold down both a ontrol key and a meta key, and simul-

taneously press key x.

� hs-xi read as \shift x". Hold down a shift key and simultaneously press key x.

Note that x is either a keyboard key or a mouse button; for example both h-ai and hm-

mouse-right

i are valid modi�ed keys.. On some keyboard's (for example, those of Spar-stations) the usual

meta keys are the keys marked 3 either side of the spae-bar. The hs-xi modi�er is only used with

non-printing haraters (for example,
return

).

When we say \lik
mouse-left

" on some part of a window, we mean that the mouse ursor

should be pointed at that part, and then the
mouse-left

button should be pressed.

Be aware that Nuprl an be quite slow to respond to keystrokes, sometimes taking several

seonds. Don't hold keys down till you get a response. You might easily make the keys autorepeat,

whih ould be rather annoying.

For larity when presenting input whih a user might type, or output whih Nuprl generates, we

sometimes enlose the input or output text in speial pq quotes. For example pthis is example

outputq.

Some ursors in Nuprl highlight a part of window. The highlighting is indiated on the sreen

by swapping the foreground and bakground olors of the display. For example, if normally the

display has blak haraters on a white bakground , then a highlighted part has white haraters

on a blak bakground. In this doument we indiate a highlighted region of the sreen by drawing

an outline around it. For example, in the window

ML top loop

M> ' [int℄ * [int℄ ' ;;

the [int℄ * [int℄ is onsidered to be highlighted.

1.3 Pratial Details

1.3.1 Getting Set Up

The Nuprl system is written in a ombination of Common Lisp and and older dialet of ML. We

assume here that your Nuprl administrator has already done the following:

1. Installed the Nuprl diretories and ompiled the various Nuprl �les.

2. Compiled the Nuprl Lisp and ML �les and reated a Lisp image (disksave) that has these

�les loaded as well as some initial Nuprl theories.

3. Set up a shell sript that both starts up this Lisp image and starts up Nuprl's window system.

Below, we assume that the alias nuprl has been set up for this sript.

7

4. Installed the Nuprl font �les for X in some diretory font-dir where your workstation an

aess them.

To set-up, do the following:

1. Add the following lines to the start of your .xinitr after any initial omments (in partiular

after the �rst line if it starts #! /bin/sh).

xset fp+ font-dir

xset fp rehash

These ommands tell X the font path to the nuprl fonts. The �rst time you run Nuprl you

should also run these ommands interatively in some shell to add the font path to your

urrent X environment. The urrent Nuprl fonts in order of size from smallest to largest are

named nuprl-8x13, nuprl-13 and nuprl-20. If you want to look at one of the fonts, use the

xfd ommand. For example, run in a shell:

xfd -font nuprl-13 &

2. Familiarize yourself with some editor that supports 8-bit fonts and has a apability for starting

sub-shells. For example, luid-emas, epoh and emas version 19. Vanilla 18.xx versions

of emas do not support 8-bit fonts, although there are several 8-bit pathes available. You

should run this editor with one of the nuprl fonts.

Suh an editor is not stritly neessary, but is a good idea for several reasons:

� Nuprl frequently writes output to Lisp's `standard output' whih is almost invariably

the same window as that whih Nuprl is started up from. If Nuprl is started up from an

editor sub-shell, it beomes easy to review this output and save portions of it to �les.

� This output is in Nuprl's 8-bit font.

� Listings of theory �les use Nuprl's 8-bit font. These �les ontain de�nitions, theorems

and proofs, and it is often useful to be able to browse them.

1.3.2 Starting Up

We assume you have set things up as desribed in the previous setion.

� Start up the 8-bit emas you have hosen to use.

� Start a sub-shell. For emas-related editors type

hm-xishell

return

� In the sub-shell, start up nuprl. Type:

nuprl
return

8

It will take a few seonds for Nuprl to start up. When it does, Nuprl's two main windows, the

ML-Top-Loop window and the Library window should open up on your display. The ML-Top-Loop

window should look like

ML Top Loop

M> ;;

The Lisp underlying Nuprl is running in the window in whih you typed nuprl. Sine output from

the ML Top Loop and error messages are written to this window, it is a good idea to keep it visible.

Nuprl is now ready for use.

1.3.3 Hints on Using the System

Nuprl's windows are at the \top-level" in the X environment. The windows an be managed

(positioned, sized, et.) in the same way as other top-level appliations suh as X-terminals.

Creation and destrution of Nuprl windows, and manipulation of window ontents, is done solely

via ommands interpreted by Nuprl. Nuprl will reeive mouse liks and keyboard strokes whenever

the the input fous is on any of its windows. Exatly one window is \ative" at any given time;

this window is identi�ed by the presene of Nuprl's ursor. This appears either as a vertial bar or

as a highlighted region. The spei� loation of the ursor determines the semantis of keyboard

strokes and mouse liks, and is independent of the loation of the mouse ursor.

The two main windows| the ML-Top-Loop window and the library window| remain through-

out the session and you annot reate new versions of them. Chapter 2 desribes use of the ML-Top-

Loop window and Chapter 3 desribes the format of the library window. Chapter 3 also desribes

the kinds of objets that an be found in the library.

There are two other kinds of windows; term editor windows and proof editor windows. Both are

used for editing objets in the library. Terms and the term editor is desribed in Chapter 4 and

the proof editor is desribed in Chapter 7.

Most Lisps allow omputations to be interrupted. This is usually done by sending h-Ci to the

Lisp proess. (If Lisp is started up from an emas sub-shell, you usually an do this by typing

h-Cih-Ci to the sub-shell window). This will ause Lisp to enter its debugger, from whih the

omputation an be resumed or aborted. Aborting Nuprl is almost always safe. When Nuprl is

restarted, the state should be exatly as it was when Nuprl was killed, exept that any omputations

within Nuprl will have been aborted.

See Chapter A for how to use the Lisp debugger, and in partiular, for what to if Nuprl rashes.

Nuprl is a ontinually-evolving experimental researh system, and it is inevitable that it will ontain

bugs. Please report any behavior you think is due to a bug, or inonsistenies between the operation

of the system and the doumentation. Also report any break-points that you hit; they have either

been left in the ode aidentally, or they are there to help trak down the soure of bugs. We

welome suggestions for improvement. Send e-mail to nuprlbugs�s.ornell.edu.

If the system appears to be inexpliably stuk, hek the window running Lisp; it is very possible

that Lisp is garbage-olleting. This sometimes takes a few minutes.

9

1.3.4 Exiting

When you are ready to stop, lik

mouse-left

in the ML-Top-Loop window, and enter h-zi.

This should give you a Lisp prompt (>) in the shell from whih you started up Nuprl. To exit Lisp,

enter

(quit)

return

in this window. It is important that you expliitly type quit, rather than just for example quit out

of the editor Nuprlis running under. In the latter ase, the Lisp proess an be left oating around

in a hung state, hogging memory resoures. (This ould also happen if your editor rashes). You

an use the Unix ommand ps to hek for a hung Lisp and the ommand kill to kill it.

1.3.5 Alternative Setups

Intermediate and experiened users will probably want to reate their own initialization proedures

for Nuprl. These ould allow ustomizations suh as:

� Changing the initialization of Nuprl's X windows.

� Changing key-bindings for the term and proof editors.

� Loading more / di�erent theories.

� Loading more / di�erent tatis.

Depending on how signi�ant the hanges are, these initialization proedures ould be run after

starting up some pre-prepared disksave, or after starting up an plain Lisp proess. Users an of

ourse too make their own disksaves for future use.

To get an idea of how you might set up an initialization proedure, look at the �les in the

sys/utils/ diretory. You probably will want to put all your initialization ommands into a Lisp

�le that is automatially loaded whenever a plain Lisp image or disksave is started up.

Note that Nuprl runs in the nuprl pakage. All symbols entered in Lisp will be interpreted

relative to this pakage. The pakage inherits all the symbols of Common Lisp, but does not

ontain the various implementation-spei� utilities found in the pakage user (or ommon-lisp-

user). To refer to these other symbols, either hange pakages using (in-pakage "USER"), or

expliitly qualify the symbols with a pakage pre�x. If you hange pakages, you an hange bak

to the Nuprl pakage using (in-pakage "NUPRL").

If you plan to do signi�ant amounts of programming in Lisp, you might want to look into using

Lisp sub-shell pakages suh as ILISP rather than vanilla sub-shells.

1.4 Customization

1.4.1 Window System Options

The Lisp funtion hange-options an be used to set various parameters a�eting Nuprl's window

system. The hange-options funtion takes an argument list onsisting of keywords and assoiated

values. For example, to set the options :host and :font-name to moose and nuprl-20 respetively,

put the form

10

(hange-options :host "moose" :font-name "nuprl-20")

in your init �le. The options, together with their default values (in parentheses) are given below.

:host (NIL). The host where Nuprl windows should appear.

:title-bars? (NIL). If T then Nuprl will draw its own title bars.

:host-name-in-title-bars? (T). If T, then the title of eah window will inlude a

substring indiating what host the Lisp proess is running on.

:no-warp? (T). If T then Nuprl will never warp the mouse. (Mouse warps apparently

annoy some users.) In environments where the position of the mouse determines input

fous, setting this option to NIL will guarantee that Nuprl retains input fous when

windows are losed.

:frame-left (30), :frame-right (98), :frame-top (30), :frame-bottom (98). Eah

of these should be a number between 0 and 100. They give the boundaries, in terms

of perentage of sreen width or height, of an imaginary frame within whih Nuprl will

attempt to plae most new windows.

:font-name ("nuprl-13"). The name (a string) of a font to use for the haraters in

Nuprl windows. Nuprl uses a speial 8-bit font. Currently two are available: nuprl-13

and nuprl-20.

:ursor-font-name ("ursor"), :ursor-font-index (22). The name of the font to

use for the mouse ursor when it is over a Nuprl window, and an index into that font.

The default font should always be available.

:bakground-olor ("white"). The olor for the bakground in Nuprl windows. The

value must be a string argument naming a olor. Any olor in the X-server's default

olormap may be used. Nuprl will get a Lisp error (entering the Lisp debugger) if the

olor does not exist.

:foreground-olor ("blak"). The olor for haraters et. in Nuprl windows.

1.4.2 Editor Options

The key bindings for the term and proof editors an be altered by reating your own key maro

�les and loading them instead of the standard ones in a Lisp initialization �le.

1.5 Diretory Struture

Nuprl is urrently maintained with the help of the CVS version ontrol system. All the Nuprl ode

resides in a single CVS module alled nuprl4. The main parts of the diretory struture as of

January 29th 1994 are as follows:

11

Diretory Contents

lib/

lib/ml/ All ML ode

lib/ml/standard/ Standard ML soure funtions and tatis

lib/theories/ All Nuprl Theories

lib/theories/standard/ Basi Theories

lib/theories/algebra/ Abstrat Algebra Theories

lib/theories/reals/ Real Analysis Theories

sys/ All Lisp ode

sys/ml/ Lisp for ML ompiler and interpreter

sys/prl/ Lisp for Editors and Re�ner

sys/utils/ Utilities for loading system

maro/standard/ Editor ustomization

do/ Doumentation

do/man/ This Referene Manual

do/ml/ Nuprl ML Manual

do/tutorials/ Introdutory Tutorials

do/sys/ System doumentation

All diretories should eventually ontain a =README �le that desribe their ontents.

1.6 Learning to use the System

1.6.1 Tips

A few tips are as follows:

� We reommend that you run through the Nuprl term and proof editing tutorials before trying

to do anything else with the system.

� The Nuprl ML manual ontains a tutorial in the use of ML. Use this as an introdution to

ML.

� In learning the proof and term editors, hek out all the mouse ommands. Many editing

operations an be done most easily with the mouse.

� Familiarize yourself with where Nuprl theories are kept and how they are organized. (See

Setion 1.5 and Setion 10.1.) Existing theories are an exellent resoure for learning about

how to do proofs. In partiular, you an use the Unix grep ommand to searh theory listings

to �nd examples of uses of tatis you are urious about.

We reommend that fairly early on, you at least browse through this manual, familiarizing

yourself with the general ontents of eah hapter. This will help you know where to look if you

have questions.

12

1.6.2 The Nuprl Book

The Nuprl book Implementing Mathematis with the Nuprl Proof Development System, Constable

et al, published in 1986, is still a good bakground referene. However, the system has hanged

suÆiently that none of the tutorials given in the book will work in the urrent system. The

\referene" portion, exluding the parts of Chapter 8 on the type system and its semantis, is

superseded by this referene manual. Chapter 9 in the referene portion also ontains some useful

examples and disussions of tati writing that are not reprodued here. The \advaned" portion

of the book deals with appliation methodology, gives some extended examples of mathematis

formalized in Nuprl, and also desribes some extensions to the type theory whih have not been

implemented.

Substantial hanges have been made to Nuprl sine the book was written. The most major ones

are:

� An X-windows interfae has been added.

� All Nuprl terms now have a uniform term struture.

� Rules are now alterable library objets, rather than being hard-wired.

� New display form and abstration failities replae the old de�nition faility.

� A substantial tati olletion has been added.

� ML utilities have been added to format library and proof listings for Latex.

13

Chapter 2

ML Top Loop

2.1 Introdution

The ML Top Loop provides an interative interfae to ML. You an use it to evaluate ML expressions

and delarations. Spei� Nuprl-related uses for the ML Top Loop inlude:

1. ontrolling the library window,

2. loading and dumping theories,

3. editing library objets,

4. exploring the Nuprl state,

5. experimenting with Nuprl funtions.

6. loading ML �les,

The ML-Top-Loop runs in its own Nuprl window whih is reated when Nuprl is started up.

This window is a term editor window, so most of the ommands desribed in Chapter 4 work in it.

The rest of this setion is divided in two. The �rst part introdues you to the ML Top Loop,

and tells you enough about it to get started with the Nuprl system. This part does not assume

familiarity with Chapter 4. It should be suÆient for you to work through the ML examples in the

tutorial setion of the Nuprl ML Manual. The seond part desribes in more detail the funtionality

of the top loop, and does assume you have some familiarity with the ontents of Chapter 4.

2.2 Basi Top-Loop Operation

Initially the top loop window looks like:

ML Top Loop

M> ;;

14

The M> is the ML prompt. The ;;'s are the usual termination haraters for ML expressions and

delarations. The top loop always supplies these; you never have to type them yourself. The is

the ursor. To di�erentiate it from other kinds of ursors we all it a text ursor. You an type

text whenever you have a text ursor. Other kinds of ursors are sreen ursors and term ursors.

These have redily distinguishable appearanes; a sreen ursor outlines a single harater, and a

term ursor highlights a region of the sreen.

The basi top loop ommands are summarized in Table 2.1.

x insert-har-x insert harater x

return

ml-evaluate all ML evaluator

hs-

return

i insert-newline add line-break

mouse-left

set-point-to-mouse move ursor to mouse position

h-Fi sreen-right move ursor right 1 harater

h-Bi sreen-left move ursor left 1 harater

h-Pi sreen-up move ursor up 1 harater

h-Ni sreen-down move ursor down 1 harater

h-Di delete-har-right delete har to right of ursor

delete

delete-har-left delete har to left of ursor

h-Ri ml-history-prev sroll bak through history

hm-Ri ml-history-next sroll forward through history

h-Zi exit-top-loop return to Lisp Listener

Table 2.1: Basi Top Loop Commands

For onveniene, many of the key bindings for the basi ommands have been made similar to

those used in emas. Some of these bindings are ontext senstive; spei�ally the insert-har-x,

ml-evaluate, insert-newline,delete-har-right and delete-har-left all rely on there

being a text ursor.

Output from evaluation is usually printed out to the shell from whih Nuprl has been invoked.

For this reason you will want to keep the shell window visible and perhaps immediately above the

ML-Top-Loop window.

To evaluate an ML expression, type in the expression at a text ursor, just after the M> prompt,

and then use ML-evaluate. For example, if you type:

2+2
return

Nuprl responds by evaluating the expression, and printing to the prl-shell the value of the expression

(4) and its type (int):

M> 2+2 ;;

4 : int

To orret input you type, use the delete-har-before and delete-har-after ommands.

To move the ursor around, you an use sreen-up,sreen-down,sreen-left and sreen-

right. Alternatively you an use the mouse: To get a text ursor between two given harater

15

positions, lik
mouse-left

with the mouse pointing at the harater position to the right. Using

the ursor motion ommands you will doubtless enounter the other kinds of ursors. Nuprl uses

these other ursors when a text ursor is inappropriate. These ursors don't destrutively modify

the display. If you get one, ontinue to use the sreen-* ommands or

mouse-left

to get bak

to a text ursor.

To get a ontinuation line for a ommand, key hs-

return

i. The ontinuation prompt is >.

For example, if you entered:

1+2+hs-

return

i3+4

you would get:

ML Top Loop

M> 1+2+

> 3+4 ;;

The ontinuation prompt behaves muh like a harater, in that you an use the delete-har-*

ommands to delete it.

The ML Top Loop maintains a ommand history going bak to the start of a session. Use the

ml-history-* ommands to sroll bak and forth through the history.

To exit the ML Top Loop and return to Lisp, use the exit-top-loop ommand.

Oasionally you an get the ML Top Loop into an unexpeted state. In this ase, you an

re-initialize the ML-Top-Loop window by deleting the existing term in the window, and then using

the initialize ommand. The keystroke sequene for doing this from any position in the window

is hm-<ihm-Kihm-Ii. This will not disrupt your ommand history.

Nuprl error messages are both output to the shell and for onveniene displayed in highlighted

text in the ML-Top-Loop window. These messages don't hange the ontents of the window in

any way, and any keystroke or mouse-lik direted at the ML-Top-Loop window auses the error

display to go away.

Errors an ome from various soures. For example, a message is generated if you type an

expression for evaluation into ML Top Loopand the expression doesn't parse or type-hek prop-

erly. In this event, the most appropriate keystroke is ml-history-prev to reall the inorretly

entered expression. Error messages are also reated when, during the ourse of evaluation of an

ML expression, an exeption is generated and unaught.

Similar error messages appear in rulebox windows when something goes wrong with the entry or

evaluation of a tati. In this ase, harmless keystrokes to use to make the message vanish inlude

the sreen motion ommands and
mouse-left

.

2.3 More Advaned Top-Loop Operation

The ML-Top-Loop is on�gured to support in general a sequene of ML prompts. Prompts an be

inserted and deleted using the usual sequene ommands desribed in Setion 4.4.6.

With more than one prompt, there are several alternatives for evaluating an ML expression.

The relevant ommands are summarized in Table 2.2.

16

return

ml-eval-sroll-update

h-
return

i ml-eval-sroll

hm-
return

i ml-eval-update

hm-
return

i ml-eval

Table 2.2: Additional Top Loop Commands

the e�et of

return

(now ml-eval-sroll-update) is to evaluate the ML text in the prompt

ontaining the ursor, eho the result of the valuation in a �eld just beyond the prompt, and then

sroll the sequene up one prompt so that the topmost prompt is deleted and a fresh prompt is

added at the bottom.

ml-eval-sroll is like ml-eval-sroll-update exept that the result of evaluation is not

reported. This is useful when for instane you don't are about the value of the evaluation, or

the display of the result would be rather large and would undesirably alter the formatting of the

ML-Top-Loop window.

ml-eval-update is likeml-eval-sroll-update exept that the prompt sequene isn't srolled.

With ml-eval the ML expression at the prompt is evaluated and left in plae. The output

isn't inserted after the prompt and the prompt sequene is not srolled.

The above ommands an be used to evaluate the ML expression at any ML prompt in a prompt

sequene, not just the last one. New output text generated by evaluating a ommand overwrites

old output text.

The result of every ML expression evaluation is always also ehoed to the shell window from

whih Nuprl is started up. Also, every evaluated expression is still always inserted onto the history

list and still always an be retrieved using the history srolling ommands.

2.4 Alternative Top Loops

If the lisp �le ml-md is loaded at a lisp prompt in the shell window before starting up Nuprl's

window system (or after resetting it by evaluating the Lisp expression (reset)), then starting up

Nuprl does not ause the reation of an ML-top-loop window, and instead, an ML top loop to be

established in the shell window.

The ML prompt in the shell is ML> . ML expressions typed at this prompt should be terminated

with ;;

return

to have them evaluated.

Input fous must be manually transferred between the shell window and Nuprl's own windows:

to transfer from the shell to Nuprl, use x

return

. To transfer bak, use

tab

. To move from

Lisp to the ML prompt, evaluate (nuprl) at the Lisp prompt as before, and to move bak to Lisp,

evaluate exit()

return

at the ML prompt.

Of ourse, none of the term-editing failities are available at this ML prompt.

Though rather rudimentary, this top loop is sometimes useful. For example, when developing

ML ode, ML expressions and delarations for evaluation an be ut and pasted into this top loop.

To work with both kinds of top loop, view the omment objet md. This ontains an ML

prompt term, and funtions virtually exatly as the term-editor top loop desribed above.

In general, ML prompt terms an be opied into other term editor objets, and they still

funtion as top loops. It is straightforward to set up objets that ontain sequenes of prompts

already initialized with frequently evaluated ML expressions.

17

If you want to swith bak to having a dediated top loop window and no top loop in the shell

window, then reset Nuprl, load the �le ml-edit-md and restart Nuprl.

18

Chapter 3

The Library

3.1 Introdution

Nuprl's library is a mathematial and logial database. The library is omposed of objets. There

are objets for theorems and de�nitions, and also for example objets whih ontrol the visual

appearane of the mathematial notation. See Setion 3.2 for a list of objet types.

Library objets are grouped into theories. Every objet belongs to exatly one theory. As

yet, there is no nesting of theories. The dependenies of theories on one-another forms a partial

order. Within eah theory, objets are ordered linearly. The dependenies of library objets on one

another is disussed more in Setion 3.5. Theories are kept in �les. In a Nuprl session, one usually

loads into the library only those theories that one needs to referene. These theories would inlude

the theories of immediate interest together with the all the anestors of those theories.

The library window shows information on a segment of the library. The format of the window

is disussed in Setion 3.3. Commands for ontrolling the library window, editing the library and

loading and dumping theories are disussed in Setion 3.4.

Note that proofs are stored in a ompressed format in �les, and expansion of proofs loaded from

�les is only on demand. Expansion an often be quite slow. See Setion7.7 for details.

3.2 Objets

There are seven kinds of objets:

rule

A rule objet de�nes a primitive rule of the objet logi.

theorem

A theorem objet ontains a proposition and a proof. If the proof is omplete, the proposition

is a theorem. If inomplete, a onjeture. A proof maybe ompressed or expanded. Theorems

are sometimes referred to as lemmas. A theorem objet for a omplete theorem also ontains

the extrat term of the theorem.

abstration

An abstration objet introdues the de�nition of a new term.

19

ml

An ml objet ontains ML ode.

display

A display objet de�nes display forms for primitive terms and abstrations.

preedene

A preedene objet assigns preedenes for terms. Preedenes ontrol the automati paren-

thesization of terms.

omment

A omment objet ontains a omment. Comments have no logial signi�ane.

Theorem objets are disussed more in Chapter ?? and the rest of the kinds of objet are

disussed more in Chapter 4.

Every objet has assoiated with it a status, either raw, bad, inomplete or omplete, indiating

the urrent state of the objet. A raw status means an objet has been hanged but not yet heked.

A bad status means an objet has been heked and found to ontain errors. An inomplete status

is meaningful only for theorem objets and signi�es that its proof ontains no errors but has not

been �nished. A omplete status indiates that the objet is orret and omplete.

3.3 Library Window

The library window displays a linear segment of the library, one objet per line. When theories are

loaded into the library, they are always plaed in a linear order.

An example library display is shown in Figure 3.1. From left to right eah line ontains:

status

One harater: ? for raw, - for bad, # for inomplete and * for omplete.

kind

One harater: R for rule, t and T for theorem, A for abstration, M for ML, D for display, L

for lattie (the old name we used for the preedene objet) and C for omment. The lower

ase \t" is used for ompressed theorems and the upper ase \T"for expanded theorems.

name

The name of the objet.

summary

The �rst few haraters of the objet's ontents.

3.4 Library ML Funtions

These funtions are all most ommonly typed in at the ML Top-Loop. One is free to de�ne

abbreviations or alternative ML funtions in terms of these primitives

1

The funtions take the

following kinds of arguments:

1

The user should onsult the ML �le ommands.ml for details on writing his or her own library funtions.

20

Library � leo

*C num thy 1 begin ************ NUM THY 1 ************�

D divides df <b:int:> | <a:int:*>== dividesfg(;

*A divides b | a == 9:Z. a = b *

*t divides wf 8a:Z. 8b:Z. (a | b 2 Pf1g)

*t omb for divides wf (�a,b,z.a | b) 2 (a:Z ! b:Z ! #fTrueg ! Pf1g)

*t zero divs only zero 8a:Z. 0 | a) a = 0

*t one divs any 8a:Z. 1 | a

*t any divs zero 8b:Z. b | 0

*t divides invar 1 8a:Z. 8b:Z. a | b() -a | b

*t divides invar 2 8a:Z. 8b:Z. a | b() a | -b

*t divisors bound 8a:N. 8b:N

+

. a | b) a � b

*t divides of absvals 8a:Z. 8b:Z. |a| | |b|() a | b

*t divides reflexivity 8a:Z. a | a

*t divides transitivity 8a:Z. 8b:Z. 8:Z. a | b) b |) a |

*t divides anti sym n 8a:N. 8b:N. a | b) b | a) a = b

*t divides anti sym 8a:Z. 8b:Z. a | b) b | a) a = � b

*t divisor of sum 8a:Z. 8b1:Z. 8b2:Z. a | b1) a | b2) a | b1 + b2

*t divisor of mul 8a:Z. 8b:Z. 8:Z. a | b) a | b *

*t divides mul 8a:Z. 8b:Z. a | b) (8n:Z

�0

. n * a | n * b)

*t divisor bound 8a:N. 8b:N

+

. a | b) a � b

*t divides iff rem zero 8a:Z. 8b:Z

�0

. b | a() a rem b = 0

Figure 3.1: The Library Display Window

obname

An ML string. The name of an objet. Aeptable names are omposed from the alphabet

pa�zA�Z0�9 q. The �rst harater should be a letter.

plae

An ML string. The name of an objet. The library position understood is immediately before

the objet named. "last" may be used to refer to a �titious objet after the last objet in

library.

n

A non-negative number.

()

This is the unique inhabitant of the ML type unit.

Remember that ML strings are always enlosed in p"q haraters, and that ML funtions are

always terminated by p;;q. Some ommands take lists as arguments; ML Lists are delimited by

p[℄'sq and use p;q to separate items. Further utility funtions related to the library are desribed

in Appendix ???.

3.4.1 Library Window Motion

jump obname

Position objet obname at the top of window.

up n

21

Sroll window up n lines.

down n

Sroll window down n lines.

top ()

Position window at top of library

bottom ()

Position window at bottom of library

3.4.2 Library Editing

view obname

The objet obname is displayed in a new window. If the objet is not already being viewed

the new view will be fully editable; otherwise, it and all other views of the objet will be made

read-only. The header line of the view will say SHOW for a read-only view and EDIT for an

editable view.

The editor used depends on the kind of objet. The proof editor is used on theorem objets,

while the term editor is used for all other objets. For more information on the proof editor see

Setion 7.6 and on the term editor, see Setion 4.4

If view is used on a theorem objet with an ompressed proof, expansion of the proof is fored.

This may take some time, espeially if the proof is large.

reate rule obname plae

reate thm obname plae

reate abs obname plae

reate ml obname plae

reate disp obname plae

reate om obname plae

reate lat obname plae

Create new objets of the appropriate kind with name obname, and position it before objet

plae.

rename old-obname new-obname

Rename objet old-obname to new-obname.

delete obname

Delete objet obname from the library.

delete objets from-obname to-obname

Delete the range of objets from from-obname to objet to-obname inlusive.

hek obname

Chek objet obname. If neessary, the library window is redisplayed to show the objet's new

status.

Cheking a rule, abstration, preedene or display form objet auses the objet's ontents

to be veri�ed. See Setion ??? for a desription of what veri�ation involves. If the objet is

well-formed, it is inorporated into the Nuprl environment.

When is heking neessary??? After all one always heks on loading and exiting an objet...

Cheking an ML objet invokes the ML reader on the objet's ontents.

22

Cheking a theorem objet, fores expansion of its proof, if the proof was initially ompressed.

Note that this might take a while. See Setion7.7 for details.

What is e�et on extration???

Cheking a omment objet has no e�et, other than to hange the status of a raw omment

objet to omplete.

hek objets from-obname to-obname

Chek from objet from-obname to objet to-obname inlusive. Stop if the status of any objet

hanges on heking. This prevents a asade of further status hanges whih might be aused

by this status hange.

move obname plae

Move objet obname before objet plae.

move objets from-obname to-obname plae

Move the range of objets from from-obname to objet to-obname inlusive to immediately

before objet plae.

3.4.3 Theory Commands

Eah theory has an identi�er and is assoiated with a �le. Eah theory also has a set of immediate

anestors whih it is dependent on. Commands are provided to set up new theories, load theories,

dump theories, and print theories.

Theories are named by ML strings. The onventions for naming theories are the same as for nam-

ing library objets explained at the beginning of this setion. Eah theory is assoiated with a �le.

The value of the ML referene variable theory filenames : (string # string) list is a list of

pairs of theory names and names of assoiated �les. The �lenames inlude a full pathname, but do

not have any extension. For example, a valid �lename string is p nuprl/lib/standard/ore 1q.

The atual �le assoiated with a theory is this name with a p.thyq extension. Examine the

theory filenames variable to �nd out the theories that Nuprl knows about at a given time.

set theory filename theory-name �le-name

Add entry in theory filenames list for theory-name. If an entry already exists for theory-name,

update that entry.

show theory filename theory-name

Show entry in theory filenames list for theory-name.

Theory dependenies are reorded by the value of the theory anestors : (string # string

list) list referene variable. Eah entry in this list is a pair of a theory's name and a list of

names of other theories that the theory is immediately dependent on. There are ML funtions to

ompute the losure of this graph as and when neessary.

set theory anestors theory-name theory-anestor-list

Add entry in theory anestors list for theory-name. If an entry already exists for theory-name,

update that entry.

show theory anestors theory-name

Show entry in theory anestors list for theory-name.

23

Typially one adds a few dummy theories to theory anestors to simplify the desription of the

ordering of theories.

The theories loaded in a Nuprl session are generally a subset of the theories that Nuprl knows

about. Between sessions, modi�ed theories should always be expliitly saved. The funtions for

loading and dumping theories are:

load theory theory-name

Load theory-name at the end of the library from the assoiated �le. If theory-name has already

been loaded, this funtion has no e�et. Every non-theorem objet is heked as it is loaded.

load theories with anestors theory-name-list

Load the theories named in theory-name-list at the end of the library, together with any anestor

theories that haven't yet been loaded. Theories are loaded in an order onsistent with their

dependenies. Every non-theorem objet is heked as it is loaded.

dump theory theory-name

dump theory-name to the assoiated �le. This leaves the theory theory-name in plae in the

library.

Other utility funtions are:

list theories ()

List all the urrently loaded theories. This is very useful if you are not sure whih theories are

loaded and whih not.

delete theory theory-name

Delete theory-name from the urrent library. Does not a�et the �le assoiated with the theory.

short print theory theory-name

Create print-�les for theory-name. theory-name must be loaded for this to work. If the asso-

iated �le-name is �le-name, then two �les are reated; �le-name.prl and �le-name.tex. �le-

name.prl is a �le viewable by an editor running with Nuprl's speial 8-bit font. �le-name.tex

is a self-ontained L

a

T

E

Xversion of the theory listing.

long print theory theory-name

This is similar to short print theory exept that proofs and extrats of all theorems are also

inluded. The �les reated have names �le-name long.prl and �le-name long.tex.

The theory theory-namealways begins with omment objet theory-name begin and ends with

omment objet theory-name end. The names of these objets are important. Most of the theory

funtions rely on these delimiter objets being named the way they are. However, the user is free

to alter the ontents of these objets to his or her liking. A useful funtion is:

add theory delimiters theory-name

Add delimiter objets for the new theory theory-name to the end of the library.

There are variants on the load funtions whih hek (and therefore expand) theorem objets at

load time. They are:

load fully theory theory-name

Load theory-name at the end of the library from the assoiated �le. If theory-name has already

been loaded, this funtion has no e�et. Every objet is heked as it is loaded.

24

load fully theories with anestors theory-name-list

Load the theories named in theory-name-list at the end of the library, together with any anestor

theories that haven't yet been loaded. Theories are loaded in an order onsistent with their

dependenies. Every objet is heked as it is loaded.

3.5 Objet Dependenies and Ordering

A orret library in Nuprl is one where every de�nition and theorem refers only to objets ourring

previously in the library. Unfortunately, Nuprl does not guarantee that this property is maintained

when funtions are used that modify the library. For example, it is possible to reate a irular

hain of lemma referenes.

There is only one way to guarantee that a theory (or olletion of theories) is orret. This is

to load it (them, sequentially) using one of the load-fully funtions desribed at the end of the last

setion. This will fore a theorem's proof to be expanded before the theorem is loaded into the

library, and so guarantee that proofs only referene theorems that our previously in the library.

Loading without using these load-fully funtions and then using hek objets or hek theory

will not guarantee that the library is orret, sine during the heking of a theorem, all later the-

orems will be present in the library and will retain the statuses they had when they were dumped.

However it is reommended that one always preeed a load-fully hek, by loading the relevant

theories without expanding theorems, and then using hek objets or hek theory. There are

two reasons for this. Firstly, just to hek that all proofs do indeed expand properly. Seondly,

the urrent load-fully funtions will blithely ontinue loading a library after an error has ourred,

often reating a asade of further errors. This bad behaviour will be orreted in the near future.

Nuprl does do some dependeny heking with de�nitions. For example, if a de�nition is deleted

then the status of any entry depending on these objets is set to bad.

Beause of the general lak of dependeny heking, a user must be areful to keep library

objets orretly ordered or reloading may fail. The move funtion an be used to repair inorret

orderings and ensure that objets our before their uses.

Here is a list of some of the main objet dependenies one should be aware of:

� Theorems on other theorems. Eah theorem should only depend on theorems ourring earlier

in the library. Note that several kinds of theorems are referened automatially by Nuprl

tatis. For example, well-formedness theorems (theorems whose names end in p wfq) and

various support lemmas used by the rewrite pakage.

� Theorems on abstrations. A theorem shouldn't refer to an abstration before it is de�ned.

� Abstrations on abstrations. The right-hand-side of an abstration should only refer to

abstations de�ned earlier in the library. Note that abstrations should not be reursive.

� ML objets on theorems, abstrations and other ML objets ML objets frequently assume

the existene of ertain theorems and abstrations. For example, one might inlude in an

ML objet a rewrite tati whih referenes a set of lemmas. One should always onsider the

introdution of suh dependenies arefully. Continuing the example, if one were to hange

one of the lemmas would one want the rewrite tati to automatially use this hange? Many

funtions whih aess objets in the library an be written in a lazy fashion, suh that they

25

look up the objet, only when they are alled. Suh funtions however might be onsiderably

less eÆient than ones whih do need to do a fair amount of preproessing. Ideally, one wants

to just do this preproessing one. Below we disuss the use of ahes to resolve this partial

evaluation problem.

� Theorems on ML objets Theorems an be proved using tatis and other ML funtions de�ned

in ML objets, so needless to say, those theorems should our later in the library than the

ML objets they are dependent on.

In addition, there are other dependenies one should be aware of:

� ML �les on theories. It is desirable to be able to ompile all ML �les without having to

have all theories a-priori loaded, so in general any dependenies should be of the lazy variety

as explained earlier. It is a very bad idea to have ompiled ML �les dependent on funtions

de�ned in ML objets; whenever an ML funtion is ompiled, it is timestamped, and referenes

between ML funtions keep trak of these timestamps. All funtions in ML objets are

ompiled afresh every time the objets are loaded, so if one were to load ML �les ompiled in

an earlier session, one ould have stale funtion referenes whih would result in ML rashing.

� Theories on ML �les This is �ne. We will soon be extending the theory mehanism so that

one an speify optional ML �les to only be loaded when ertain theories are loaded.

� Cahe Dependenies. The ML tati system maintains a fair amount of state, muh in the

form of preproessed lemmas. We have an inremental update strategy for many of these

ahes to ensure that they trak hanges in the library state, so for most purposes these

ahes are invisible to the user. However, to date, not all the ode for ahes has been

updated to use this inremental strategy, so for example, one might run into situations where

the system refuses to aknowledge that one has added a missing lemma. In these situations,

exeuting the funtion reset ahes : unit -> unit might help. Cahes are disussed in

Chapter 9.

3.6 Future Developments

The theory mehanism was only added to Nuprl fairly reently and there are some obvious en-

hanements whih need to be made. For example,

� namespae management

� automati dependeny heking

� support for maintaining sets of onjetured theorems, so one an develop theories in other

orders than foundations �rst in a sytemati way.

26

Chapter 4

Terms

4.1 Introdution

In Nuprl, a term is a tree data-struture. The struture of terms is explained in detail in Setion 4.2.

Terms have a variety of uses.

� All propositions in Nuprl's logi are represented as terms, as are all expressions and types in

its type theory. We refer to them sometimes as objet-language terms.

� Nearly all library objets are represented as terms. We refer to these terms as system-language

terms.

Terms are Nuprl's equivalent of Lisp's S-expressions; they are used as a general-purpose uniform

data-struture.

Terms are either primitive or abstrat. Primitive terms have �xed pre-de�ned meanings. Ab-

strat terms or abstrations are de�ned in abstration library objets as being equal to other terms.

An abstration is unfolded when it is replaed by the right-hand side of its de�nition. Abstrations

are disussed in Chapter 5.

The visual appearane of a term is governed by its display forms. These are de�ned in display-

form library objets. Display forms are desribed in detail in Chapter 6.

Terms are interatively edited and viewed using a strutured editor. This editor is desribed in

Setion 4.4.

4.2 Term Struture

4.2.1 Overview

Here we give an abstrat view of the term data-struture. Details follow in Setion 4.2.2.

Let variables be some in�nite lass of atomi individuals. The lass of terms as the least set of

expressions suh that:

� if v is a variable, then v is a term,

27

� if for 1 � i � n we have that x

i

1

; : : : ; x

i

a

i

are variables, t

i

is a term, and we de�ne

s

i

= x

i

1

; : : : ; x

i

a

i

:t

i

then

opidfp

1

:k

1

; : : : ; p

m

:k

m

g(s

1

; : : : ; s

n

)

is a term.

We name the parts of a term as follows:

� opidfp

1

:k

1

; : : : ; p

m

:k

m

g is the operator.

The parts of the operator are:

{ opid is the operator identi�er.

{ p

j

:k

j

is the jth parameter. p

j

is its value, and k

j

is its type.

� The tuple ha

1

; : : : ; a

n

i where a

j

� 0 is the arity of the term.

� s

i

= x

i

1

; : : : ; x

i

a

i

:t

i

is the ith bound-term of the term. This bound-term binds free ourrenes

of the variables x

i

1

; : : : ; x

i

a

i

in t

i

.

When writing terms, we sometimes omit the brakets around the parameter list if it is empty.

4.2.2 Details

Terms are implemented in the urrent Nuprl system in Lisp. You should rarely have to work with

terms at the Lisp level. Rather you either use the term editor to view and edit terms, or a set of

term-related funtions in ML.

We desribe here the the urrent parameter types, the aeptable strings for opids, parameters,

and variables, and the implementation of these strings from the ML point of view.

The urrent parameter types and assoiated values are:

natural

natural numbers (inluding 0). Implemented using ML type int. Aeptable strings are

generated by the regular expression [0� 9℄

+

.

token

harater strings. Implemented using ML type tok. Aeptable strings an draw from any

non-ontrol haraters in Nuprl's font.

string

harater strings. Implemented using ML type string. Aeptable strings an draw from

any non-ontrol haraters in Nuprl's font.

28

variable

Names of variables. Implemented using ML type var. Aeptable strings draw on the alpha-

bet pa�zA�Z0�9 -%q. The % harater

has a speial use. See Setion 7.2. The empty string is not an aeptable name for a variable

parameter.

level-expression

Universe level expressions. These are used to index universe levels in Nuprl's type theory.

Implemented using ML type level exp. The syntax of level expressions is desribed in

Setion 9.1.2.

The names of parameter types are usually abbreviated to their �rst letters.

Opids are harater strings drawn from the alphabet pa�zA�Z0�9 -!q. (Here p-q is the ASCII

harater, px�yq indiates the haraters from x to y inlusive.) An p!q at the start of a harater

string indiates that the term does not belong to Nuprl's objet language. Opids are implemented

using ML type tok.

Binding variables are harater strings drawn from the same alphabet as variable parameters.

In addition, the empty string an be used. We all the binding variable with the empty string as

its name, the null variable. Null variables an never bind. Binding variables are implemented using

ML type var.

Earlier, when we desribed the term type, we said that variables were onsidered to be terms.

This was a slight simpli�ation of the atual state of a�airs; In Nuprl, we onsider variables and

terms to be distint. We have a speial term kind, variablefvg for injeting variables into the

term type. So when we talk of the variable foo as a term, we are really thinking of the term

variableffoo:vg. When we write terms, this injetion if often impliit. So for example, we write

bar(x;y) instead of bar(variablefx:vg; variablefy:vg).

We often assume a similar impliit injetion for natural numbers. So for example, the term

bar(10;11)when written out in full is the term bar(natural numberf10:ng; natural numberf11:ng).

Some examples of terms in both pretty and plain notation are shown in Table 4.1.

Pretty Notation Plain Notation

Z int()

x + y add(x;y)

"ab" token{ab:t}()

�x.x lambda(x.x)

8x,y:T. A all(T; x,y.A)

Table 4.1: Examples of term notation

4.3 Term Display

4.3.1 Notation and Logial Struture

This setion introdues the approah we use for entering and displaying terms.

29

We distinguish between logial struture of terms, and the notation in whih terms are pre-

sented. When we talk of the logial struture of a term, we are thinking of some abstrat objet

of mathematis. We are not just thinking of the term in uniform syntax, though the regularity of

the uniform syntax for a term does reet the regularity of the underlying abstrat objet. When

we talk of notation, we are thinking of the visual presentation of abstrat objets on the printed

page, or on the omputer sreen. When you read mathematial or logial expressions in familiar

notation, you often mentally onstrut the abstrat objet in your mind so readily that you forget

the distintion between abstrat struture and notation.

Notation understandable by mahines beame a fous of study when people started to design

programming languages. The languages had to not only be easily understandable by humans, but

also easily parseable by mahine. The study of notation beame the study of regular expressions

and grammars. People devised sophistiated tehniques for designing parsers.

In the programming language world, soure texts in ASCII �les orrespond to our idea of

notation, and abstrat-syntax-trees get lose to our notion of logial struture.

In mathematis notation is ruial issue. Many mathematial developments have heavily de-

pended on the adoption of some lear notation, and mathematis is made muh easier to read

by judiious hoie of notation. However mathematial notation an be rather omplex, and as

one might want an interative theorem prover to support more and more notation, so one might

attempt to onstrut leverer and leverer parsers. This approah is inherently problemati. One

quikly runs into issues of ambiguity. Often to read mathematial notation one has to be aware

of the immediate ontext it is presented in. A simple example is that juxtaposition of symbols

an mean funtion appliation in one plae and multipliation in another. A notion introdued in

programming languages to address ambiguity has been that of overloading operators; one assumes

that the type-heker an sort out what is meant, even if the parser annot. Closely related to

this notion, is the notion of impliit oerions. There is also the question of what notation is sup-

ported by editors; mathematis presented in ASCII haraters is not anywhere as easy to read as

mathematis in books and papers.

A half-way solution that is sometimes taken (for example with Mathematia), is to do what one

an with a parseable syntax in ASCII haraters for input, and then use pretty-printing routines

for formatted output (say in Display PostSript).

The approah whih we have taken

1

is to design an editor that presents terms in pretty notation,

and groups the notation in hunks that orrespond to parts of the underlying tree strutures. One

edits the tree struture diretly, so there is no need for a parser. Suh editors are often alled

strutured editors.

The advantages of a strutured editor are:

� We don't have to worry about making the notation be umambiguous to a mahine. It just

has to unambiguous to a human, who is aware of the full ontext the notation is used in.

� We have the opportunity to break away from the presentation of mathematis in ASCII

haraters. Nuprl urrently uses a single 8-bit font of up to 256 haraters, but the possibilities

exist for using L

a

T

E

X and Display PostSript -like tehnology to generate almost text-book

quality displays.

� Notation an be freely hanged without altering the underlying logial struture of terms.

1

and whih others have taken too, for example in the Cornell Synthesizer-Generator projet

30

� The possibility is opened up for ontext dependent notation. We ould have presentations of

theorems, de�nitions and proofs deorated with information on loal abbreviations.

� If you �nd notation onfusing, you need only point and lik the mouse on the notation in

question for an explanation.

Strutured editors do have their disadvantages. The most major one is that they are quite

di�erent from onventional text editors suh as vi or emas, and so it an take a while to learn how

to use them. We have tried to design the Nuprl editor to redue this startup time. We welome

suggestions from users for further improvements. Another disadvantage is that you have less ontrol

over formatting, sine all display formatting is done automatially. Again we have been working to

enhane the pretty-printing algorithm that Nuprl uses so that the formatting is aeptable.

4.3.2 Display Forms

We desribe here our notion of a display form.

A display form de�nition assoiates a hunk of notation with a term. For example onsider the

term add(x;y) for binary addition. The usual notation for this is to use an in�x p+q. We ould

write the notation hunk as:

2 + 2

where the 2's are holes for the two subterms, and the outer box shows the extent of the hunk.

We all these holes term slots beause in they an be �lled by terms. Later on we shall enounter

text slots whih an only be �lled with text strings. Usually we need to indiate how term slots

orrespond to the logial subterms of a term so we label term slots. For example, the de�nition of

the notation hunk for add(x;y) an be written:

x + y =

dform

add(x; y)

Here, we read a =

dform

b as saying that a is de�ned as the atomi notation hunk or display form

for b. Throughout this setion, we use retangular boxes to delimit terms and term slots.

Term slots streth to aomodate the terms inserted in them. For example say we have the

term mul(1;2) whih is displayed as p1 * 2q. Then the term add(mul(1;2);3) will be displayed

as:

1 * 2 + 3

Nuprl automatially adds parentheses aording to display form preedenes. When a display

form of lower preedene is inserted into the slot of display form with higher preedene, parentheses

are automatially inserted to delimit the slot. For example, we assign the display form for mul(x;y

a higher preedene than the display form for add(x;y). The term add(mul(1;2);3) is displayed

as

1 * 2 + 3

but the term mul(1;add(2;3)) is displayed as

31

1 * (2 + 3)

Let us move on to a more ompliated display form; that for universal quanti�ation. The

term all(T;x.P) means that \for all x of type T , the proposition P is true". Note that the term

all(T;x.P) binds free ourrenes of x in P . We would normally write all(T;x.P) as

8x:T. P

The display form de�nition for the all(T;x.P) ould be written as:

8 x

n

: T . P =

dform

all(T; x.P)

Here, p

n

q is used to indiate a text slot. A text slot is �lled with a text string rather than a

term. Text slots are used for term parameter values, and binding variables.

A few more display form de�nitions are:

1. 9 x

n

: T . P =

dform

exists(T; x.P)

2. x = y =

dform

equal int(x; y)

3. x

n

=

dform

variablefx:vg

4. i

n

=

dform

natural numberfi:ng

The last two display form de�nitions are rather speial; 3 is the display form de�nition for variable

terms, and 4 is the display form de�nition for natural numbers. Both the display forms de�ned for

these terms have only a single text slot, and no other printing or whitespae haraters.

Using these display forms the term

all(int(); i.exists(int(); j.equal(int(); j; add(i;1))))

has the notation:

8 i

n

: Z . 9 j

n

: Z . j

n

= i

n

+ 1

n

or leaving out the bounding boxes and irles for the slots and the term as a whole:

8i:Z. 9j:Z. j = i + 1

32

In general, a display form for a term is made up of 0 or more text and term slots, interspersed

with printing and spae haraters. We an annotate display forms with whitespae formatting

ommands whih speify where linebreaks an be inserted, and how to ontrol indentation. Chap-

ter 6 desribes in detail the struture and appearane of the display form de�nitions whih are

ontained in display objets in Nuprl theories. Chapter 6 also ontains information on how to set

preedenes, and how to ontrol how preedene a�ets parenthesization.

The notation for some term tree is built up from the display forms assoiated with eah node

of the tree | so the struture of the notation mirrors the struture of the term, and it makes sense

to talk about the display form tree of a term.

The display form tree is the tree struture that you edit with Nuprl's term editor. Nuprl takes

are of translating bak-and-forth between the two kinds of trees. In a display form tree, eah

display form and eah slot is onsidered a node of the tree If a text (term) slot is not empty, it is

identi�ed with text string (display form) �lling it. All the slots of a display form are onsidered

to be the immediate hildren of the display form. The editor onsiders slots ordered in the order

they appear, left to right, in display form de�nitions, not in the order in whih they our in the

uniform syntax.

In most of this manual, we refer to terms by their display notation rather than their uniform

syntax, unless we want to emphasize their logial struture. Also, in talking the term editor, we talk

informally about nodes of terms, when we are referring to nodes of the orresponding display-form

trees.

When one enters a new terms using Nuprl's strutured editor, one most often enters the term

in a top-down fashion, starting with the root of the term tree and working on down to the leaves.

This means that one has to work with inomplete terms. For example, at an intermediate stage of

entering the term

8i:Z. 9j:Z. j = i + 1

you might be presented with term:

8i:Z. 9[var℄:[type℄. [prop℄.

Here [var℄, [type℄ and [prop℄ are plae-holders for slots. [var℄ is a plae-holder for a text slot,

and [type℄ and prop are plae-holders for term slots. If a slot has a plae-holder, we say that the

slot is empty, or uninstantiated. The labels whih appear in the plae-holders for a display form

(the var, type or prop in the example above) are ontrolled by the display form's de�nition. If a

text (term) slot ontains a a text string (term) we say that slot is �lled or instantiated. If a display

form has no uninstantiated slots, then it is onsidered omplete. Plaeholders re-appear when the

ontents of slots are removed.

4.3.3 Editor Cursors

One navigates around a term by moving a ursor, sometimes alled the point by analogy with

emas. The ursor an be in one of three modes:

term mode

A term mode ursor is always positioned at some term node of the term tree. The term node

33

it indiated, by highlighting its notation and the notation for all its subtrees. The highlighting

is usually ahieved by using reverse video; swapping foreground and bakground olors. In

this doument we indiate a highlighted region of a term by drawing an outline around it.

For example,

8i:Z. 9j:Z. j = i + 1

indiates that a term ursor is at the subterm j = i + 1. Oasionally a term has no width,

and a term ursor on suh a term is displayed as a thin vertial line. In this doument, we

indiate suh a ursor by .

text mode

The text ursor is used for editing text in text slots. The ursor is represented as pq. It is

positioned either between two adjaent haraters of a text slot, or before the �rst harater,

or after the last. For example, onsider a text slot ontaining the text string pabdefq. Valid

text ursors for this string inlude

abdef abdef abdef

The text ursor is the insertion point for new haraters.

There is a potential ambiguity as to whih text slot a text ursor is at: onsider two adjaent

text slots ontaining the strings paaaq and pzzzq and the following text ursor:

aaazzz.

Display forms are designed so this kind of situation should never our.

The text ursor is signi�antly thinner than the term ursor on a no-width term, so it should

be easy to distinguish the two.

sreen mode

Certain ursor motion ommands are designed for moving around a term's display harater-

by-harater in muh the same way as with a onventional text editor. When moving with

these ommands the ursor always oupies a single harater position on the sreen. If

possible, the editor uses a text ursor. Otherwise it uses a sreen ursor. A sreen ursor on

a harater is displayed by outlining the harater.

For example, if we had the following text ursor in a term:

8i:Z. 9j:Z. j = i + 1

then a `move-left-one-harater' ommand would leave a sreen ursor (indiated by a box)

over the p8q.

8 i:Z. 9j:Z. j = i + 1

In the rest of this doument we'll never have to expliitly represent a sreen ursor, so all

outlined terms should be interpreted as term ursors.

34

4.3.4 Sequenes

The term editor has speial features for handling ertain kinds of sequenes of terms. It makes

sequenes appear muh like terms with variable numbers of subterms. The kinds of sequenes

supported are desribed below.

Sequenes are onstruted by the right-assoiated use of pairing terms. Eah kind of sequene

has its own pairing term, and also a speial term to represent the empty sequene. Eventually,

we'll relax the right-assoiation restrition. Often there is no need to distinguish between a term

and a one element sequene ontaining that term. So, in spei� ontexts, the editor treats a term

as a one element sequene. These ontexts are pointed out at relevant points in this doument.

The term tree ursor motion ommands skip over this internal struture, and for nearly all

purposes the internal struture of sequenes an safely be ignored.

4.3.4.1 Term Sequenes

A term sequene has a linear sequene of term slots. For example, one kind of sequene whih

happens to have 4 empty slots might be displayed as:

([elmnt℄,[elmnt℄,[elmnt℄,[elmnt℄)

. All the term slots of the sequene are onsidered siblings in the display form tree, and the whole

sequene is their immediate parent.

The editor has speial ommands for inserting and deleting both elements and segments of term

lists.

Di�erent kinds of term sequenes have di�erent left and right delimiters, (the p(q and p)q

respetively in the example) and di�erent element separators (the p,q in the example). Delimiters

and separators in term sequenes always onsist of at least one harater.

4.3.4.2 Text Sequenes

A text sequene is a text string in whih zero or more haraters are replaed with terms. Text

sequenes are primarily used for ML ode, for omments, and for the left-hand sides of display

forms.

The editor presents a text sequene as a display form with alternating text and term slots. A

text sequene normally has no left or right delimiters or element separators, in ontrast to term

sequenes. Text sequenes are however easily identi�ed beause they usually our in well-de�ned

ontexts.

An example of a text sequene is the ML expression:

With 'n + 1' (D 0)~

THENW TypeChek~

This text sequene onsists of 3 term slots �lled with the terms p'n + 1'q, p~q, and p~q, and 4

text slots �lled with the text strings pWith q, p (D 0)q, pTHENW TypeChekq, and pq (the null or

empty text string). The p~q's are new-line terms. Keeping new-line haraters out of text strings

simpli�es the display formatting algorithm. Usually we make new-line terms invisible, but here we

show them with a printing harater for larity.

35

The editor supports speial operations on text sequenes. For example, you an ut out sub-

sequenes delimited by any text ursor positions, and paste in at any text ursor position.

4.4 Term Editor

4.4.1 Introdution

Term editor windows are used for viewing and editing terms. The ML Top Loop window is a term

editor window, as are the windows opened when you view most kinds of Nuprl library objets.

Eah window displays a single display form tree representing a single term. The editor aepts

input from both the keyboard, keypad and the mouse. All editing operations an be arried out

from the keyboard alone, though frequently the mouse and keypad ommands are far simpler and

easier to remember. Mouse ommands are desribed in Setion 4.4.9.

With a text ursor, keystrokes orresponding to printing haraters ause those haraters to be

inserted. With a term or sreen ursor, printing haraters an form part or all of editor ommands.

Input haraters typed at the keyboard in multi-harater ommands are ehoed as highlighted

text near the position of the ursor, and an be orreted by using

delete

.

The default key bindings are intended to be reminisent of emas's key bindings. You may wish

to use alternative key bindings. See the editor ustomization setion for details (not yet written).

The editor adjusts the display of an objet in a window to the size of the window. If the window

is too small, not all the objet an be displayed at one. In this event, one an resize the window, or

sroll the window up and down. Sometimes, if the window is to narrow, some subterms are elided.

The display form tree for an elided subterm is replaed by p...q. Eventually, you will be able to

examine elided subterms by moving the root display form of an editor window to some term tree

position other than the term root. Currently, the only way to enourage the system to un-elide a

subterm is to widen the window as muh as possible.

4.4.2 Cursor/Window Motion

Also see Setion 4.4.9 for how to use the mouse to move around.

4.4.2.1 Sreen Oriented

The sreen motion ommands are desribed in Table 4.2.

These ursor motion ommands ignore the struture of the term in the window. They allow

one to quikly navigate to parts of the sreen. After a sreen ursor ommand the ursor is always

either in text mode or sreen mode. A useful ommand to use when ending up with the ursor over

the printing harater of a display form is the swith-to-term ommand. If one tries to moves

the ursor over the top or bottom of the display, the window srolls appropriately. There are also

expliit window srolling ommands.

4.4.2.2 Tree Oriented

The tree walking ommands are summarized in Table 4.3.

36

h-Pi sreen-up move ursor up 1 harater

h-Ni sreen-down move ursor down 1 harater

h-Bi sreen-left move ursor left 1 harater

h-Fi sreen-right move ursor right 1 harater

h-Ai sreen-start move to left side of sreen

h-Ei sreen-end move to right side of sreen

h-Li sroll-up sroll window up 1 line

hm-Li sroll-down sroll window down 1 line

h-Vi page-down move window down 1 page

hm-Vi page-up move window up 1 page

h-Ti swith-to-term swith to term mode

Table 4.2: Sreen Motion Commands

hm-Pi up move up to parent

hm-Bi left strutured move left

hm-Fi right strutured move right

hm-Ni down-left move to leftmost hild

hm-Mi down-right move to rightmost hild

hm-Ai leftmost-sibling move to left-most sibling

hm-Ei rightmost-sibling move to right-most sibling

hm-<i up-to-top move up top of term

h-

linefeed

i right-leaf next leaf to right

hm-
linefeed

i left-leaf next leaf to left

return
right-empty-slot next empty slot to right

h-
return

i right-empty-slot next empty slot to right

hm-
return

i left-empty-slot next empty slot to left

Table 4.3: Tree Motion Commands

up, left, right, down-left, down-right are the basi walking ommands. Within text slots,

left and right stop at eah word. (Use sreen motion ommands to move by harater.) These

ommands reognize text and term sequenes, and skip over their internal struture.

right-leaf, left-leaf, right-empty-slot, left-empty-slot are partiularly good for

rapidly moving around terms, sine you an often get where you want to go by just repeatedly

using one of them. Note that the binding of
return

to right-empty-slot doesn't work in text

sequenes. In that ase, you need to use h-
return

i.

4.4.3 Adding New Text

These ommands are for inserting text whenever you have a text ursor. The ommands are

summarized in Table 4.4.

Standard ASCII printing haraters (inluding spae) self insert whenever one has a text ursor.

Non-standard haraters an be inserted using insert-spe-har-num. num is the deimal ode

for the harater. (See Appendix ?? for a table of speial harater odes, or exeute in a unix

shell window

37

x insert-har-x insert har x

h-#inum insert-spe-har-num insert speial har x

return
insert-newline insert newline

Table 4.4: Text Insertion

xfd -font nuprl-13 &

to bring up a display of the font. Cliking
mouse-left

on a harater results in its deimal ode

being displayed.) Alternatively, speial haraters an be opied from the objet FontTest in the

ore-1 theory.

The insert-newline is only appropriate in text sequenes, sine the newline `harater' is

atually a term. This restrition simpli�es the display layout algorithm and should not prove to be

an inonveniene.

4.4.4 Adding New Terms

The insertion ommands for terms are shown in Table 4.5. These ommands are only appropriate

with a term ursor.

name insert-term-name insert name

h-Iiname insert-term-left-name insert name

hm-Iiname insert-term-right-name insert name

h-Siname substitute-term-name replae with name

hm-Ii initialize-term initialize term slot

hm-Si selet-dform-option selets dform variations

Table 4.5: Term Insertion

name in these ommands is a string of haraters, naming a new term to be inserted. The

interpreter for name strings heks eah of the following onditions until it �nds one whih applies.

1. name is an editor ommand enabled in a partiular ontext. See setions for examples.

2. name is an alias for some display form, de�ned in in the library objet for that display form.

3. name is the name of a display form objet. It refers to the �rst display form de�ned in that

objet.

4. name is of the form ni where n is the name of a display form objet and i is a natural number.

ni refers to the ith display form de�nition in the objet named n. De�nitions in objets are

numbered starting from 1.

5. name is the name of an abstration objet, then name refers to the earliest display form in

the library for that abstration.

6. name is all numerals, then the term referred to is the natural-number{name:n}() term of

Nuprl's objet language.

38

7. name refers to the variable term variable{name:v}().

Names always have aeptable extensions as variable names, so the editor doesn't interpret

name until some expliit terminator is typed. For example, this an either be no-op (

spae

) or

a ursor motion ommand. next-empty-slot (h-
return

i) is a partiularly useful terminator.

insert-term-name is only appliable at empty term slots. It results in the display form referred

to by name being inserted into the slot. If name is terminated by a no-op, then a term ursor is

left at the new term. If name is teminated by some ursor motion ommand, then that ommand

is obeyed.

insert-term-leftname is intended for use at a �lled term slot. Its behavior is to:

1. save the existing term in the slot, leaving the slot empty,

2. insert the new display form referred to by name into the slot,

3. paste the saved term into the left-most term slot of the new display form. If the new display

form has no term slots, then the saved term is lost.

insert-term-rightname behaves in a similar way to insert-term-left exept that in step

3, the saved term is pasted into the right-most term slot of the new display form.

substitute-term-name allows you to replae one display form with another whih has the

same sequene of hild text and term slots. The hildren of the old display form beome the hildren

of the new display form. In the event that the new display form has a di�erent sequene of hildren

substitute-term-name tries something vaguely sensible. In general, in these ases, it is safer to

expliitly ut and paste the hildren.

initialize-term initializes a term slot to some default term if one is appropriate. The term

slot must initially be empty. initialize-term is automatially invoked by Nuprlto initialize new

windows. If you want to re-initialize a window, plae a term ursor at the root of the term in

the window, delete the term, and then give the initialize-term ommand. The default terms

for partiular ontexts are desribed in various setions of this doument. If no default has been

designated, initialize-term does nothing.

selet-dform-option when the term ursor is at ertain terms, selets an alternative display

form for that term. For example, if term ursor is positioned at an independent funtion type, it

selets the more general dependent-funtion display form.

4.4.5 Cutting and Pasting

The ut-and-paste ommands work on terms, segments of text slots, and segments of text and term

sequenes. In this setion we refer to these olletively as items. Cut items an be saved on a save

stak. All items on the save stak are represented as terms, and it is often possible to ut one kind

of item and then paste into another kind of ontext. For example, one an ut a term, and paste

into text sequene, or ut a segment of text from a text slot, and paste into a term sequene.

We de�ne the following kinds of ommands:

� save: does not remove an item, but does push a opy onto the save stak. Same idea as

opy-as-kill in emas.

� delete: remove an item from a bu�er, not saving it anywhere.

39

� ut: (= save + delete) removes an item from a bu�er and pushes it onto the top of the

save stak. Same idea as kill in emas, although Nuprl does not append together items ut

immediately one after the other.

� paste: inserts the item on top of the stak bak into a bu�er, removing it from the stak.

� paste-opy: inserts the item on top of the stak bak into a bu�er, not removing it from

the stak. Same idea as yank in emas.

� paste-next: Only used immediately after a paste. Removes the item just pasted from the

bu�er, and then does a paste. Same idea as yank-next in emas.

4.4.5.1 Basi

The basi ut and paste ommands are shown in Table 4.6.

delete

delete-har-to-left delete har to left of text ursor

h-Di delete-har-to-right delete har to right of text ursor

hm-Di ut-word-to-right ut word to right of text ursor

h-Ki ut ut term

hm-Ki save save term

hm-Ki delete delete term

h-Yi paste paste item

hm-Yi paste-next delete item then paste next item

hm-Yi paste-opy paste opy of item

Table 4.6: Basi Cutting and Pasting

delete-har-to-left and delete-har-to-right are onventional harater deletion om-

mands. They an be used in any text slot of a term or in a text sequene. They will also work on

newline terms in text sequenes. They do not save the harater on the save stak.

ut-word-to-right uts the word to the right of a text ursor. For onveniene if a term is

to the immediate right of a text ursor in a text sequene, then that term is ut.

ut, save, and delete all work on a term underneath a term ursor. save pushes a opy of

the term onto the save stak leaving the term itself in plae, delete deletes the term, leaving an

empty term slot, and ut is the same as a save followed by a delete. These ommands work �ne

on terms in text and term sequenes.

When a term ursor is at an empty term slot, the paste and paste-opy ommands paste the

term on top of the stak into the slot. paste always removes the term from the top of the save

stak, so suessive pastes retrieve suessively-earlier ut terms. paste-opy is like paste, exept

the item pasted is also left on top of the save stak. This is useful if you want to make several

opies of an item.

paste-next is only intended to be used immediately after a paste or a previous paste-next.

It deletes the last term pasted, and replaes it with the term before on the save stak. By repeating

paste-next, you an searh bak through the save stak for some desired term.

40

4.4.5.2 Region

A region is a segment of any text slot, or a segment of a text or term sequene. The region ut and

paste ommands are shown in Table 4.7.

h-
spae

i set-mark set mark at point

h-Xih-Xi swap-point-mark swap point and mark

h-Wi ut-region ut region

hm-Wi save-region save of region

hm-Wi delete-region delete region

h-(Yi paste paste region

hm-Yi paste-next replae last paste with new paste

hm-Yi paste-opy paste opy of region on save-stak top

Table 4.7: Region Cutting and Pasting

A region is delimited by the editor's term or text ursor and an auxiliary text or term ursor

position. Following emas's terminology, we all the ursor's position the point and the auxiliary

ursor position the mark.

The set-mark ommand sets the mark to the urrent ursor position. and the swap-point-

mark ommand an be used to hek the mark's position. It doesn't matter whether mark is to

the left or the right of point when seleting a region. In what follows, we all the left-most of point

and mark the left delimiter, and the right-most, the right delimiter. If a term is used a region

delimiter, the term is understood to be inluded in the region.

Various regions are aeptable: for seleting a text string in a text slot, both delimiters must

be text ursor positions. For seleting a segment of a term sequene, both delimiters must be term

ursor positions. For seleting a segment of a text sequene, you an use either a text ursor or a

term ursor position for eah delimiter.

save-region saves a region on the save stak. delete-region deletes the region. The kind

of ursor it leaves depends on the kind of region seleted. If the region is of a text slot, or a text

sequene, delete leaves a text ursor at the old position of the region. If the region is of a term

sequene, an empty term slot is left in plae of the region. ut-region has the same e�et as a

save-region followed by a delete-region.

The paste ommands for regions are the same as the basi paste ommands. You an paste

with a text ursor in a text slot or text sequene, and a term ursor at any empty term slot. If you

paste a sequene into another sequene of the same kind, paste merges the pasted sequene into the

sequene being pasted into. In this event, the point is set to be the left-delimiter for the just pasted

sequene, and the mark is set to be the right-delimiter. This ensures proper funtionality for the

paste-next operation. Otherwise, if you are pasting into a sequene, the pasted item always is

inorporated as a single sequene element, and both the mark and point are set to that element.

Note that it doesn't make sense to try to paste a term or a text sequene ontaining a term into a

text slot that is not in a text sequene.

4.4.6 Adding and Removing Slots in Sequenes

The ommands are summarized in Table 4.8.

41

h-Ui open-seq-to-left open slot to left of ursor

hm-Ui open-seq-to-right open slot to right of ursor

h-Oi open-seq-left-and-init open slot to left and init

hm-Oi open-seq-right-and-init open slot to right and init

h-Ci lose-seq-to-left lose slot and move left

hm-Ci lose-seq-to-right lose slot and move right

Table 4.8: Sequene Term Slot Editing

If a term ursor is at an element of either a term or a text sequene, then open-seq-to-left

and open-seq-to-right add a new empty slot to the left and right respetively of the ursor.

The ursor is left at the new empty slot. On an empty term sequene, the two ommands have the

same e�et; they simply delete the nil sequene term. If a text ursor is in a text sequene, both

ommands open up an empty term slot at the text ursor, and leave the ursor at the new slot.

With text or term sequenes represented by a single term, these ommands infer the kind of

sequene to reate from ontext. Oasionally with term sequenes, more than one kind of sequene

is permitted in a given ontext (for example, in preedene objets) and in suh ases you an use

expliit term insertion ommands to reate the sequene. Suh ambiguity shouldn't arise with text

sequenes.

open-seq-left-and-init and open-seq-right-and-init are similar, but if there is some ob-

vious term to insert in the opened up slot, then that term is automatially inserted and the ursor

is left at an appropriate position in the new term.

If a term ursor is at an empty term slot in a term sequene, the lose-seq-to-left and

lose-seq-to-right ommands delete the slot, and then (if possible) move the ursor to the

element to the left or right respetively of the slot just deleted. If the term slot is �lled with a

term, that term is �rst deleted. If the term slot is in a text sequene, these ommands leave a text

ursor at the position of the deleted slot.

4.4.7 Opening, Closing, and Changing Windows

The relevant editor ommands are shown in Table 4.9

h-Qi quit lose window without saving

h-Zi exit save, hek, and lose window

h-Ji jump-next-window jump to next window

tab

jump-ml jump to ML top loop

Table 4.9: Commands For Changing and Closing Windows

Term editor window are opened by using the ML view ommand on a library objet. They are

also opened by the proof editor, when then proof editor selet ommand is issued on sequents

and ruleboxes, and when the proof editor transform ommand is given.

exit �rst saves a opy of the objet. It then heks the objet before losing the window. This

heking has the same e�et on library objets as using the ML hek ommand. If the hek fails,

then the window is left open. If you still want to lose the window, use quit. Seperate save and

hek ommands are desribed in Setion 4.4.8.

42

quit is an abort ommand. It loses the window, abandoning any hanges made to the window

sine it was last heked by attempting exit.

jump-next-window allows one to yle around all the urrently open windows, inluding any

proof editor windows.

jump-ml moves the ursor over to the ML top-loop window.

4.4.8 Utilities

h-Xiid identify-term gives info on term at ursor

h-Xisu suppress-dform suppress display form at ursor

h-Xiun unsuppress-dform unsuppress display form at ursor

h-Xiex explode-term explode term at ursor

h-Xiim implode-term implode term at ursor

h-Xih hek-objet hek objet

h-Xisa save-objet save objet

h-Xiab view-abstration view abstration def of term

h-Xidf view-dform view display form def for term

h-Xins insert-empty-string insert empty string in text slot

Table 4.10: Utility Commands

Various utility ommands are shown in Table 4.10 The identify-term, suppress-dform and

unsuppress-dform ommands assist one in interpreting unfamiliar or ambiguous display forms.

identify-term will print out in the ML Top-Loop window information on the term and display

form at the urrent ursor position. If one likes, one an then go and view the appropriate display

form and abstration objets.

suppress-dform suppresses use of the display form the ursor is sitting at for the whole objet

one is viewing. If multiple display forms are de�ned for a term, a single suppress-dform might

result in some other more general display form being seleted. In this ase one an repeat suppress-

dform. When all appropriate display forms for a term are suppressed, the term is displayed in

uniform syntax.

unsuppress-dform restores a suppressed display form, when the editor ursor is at a term to

whih that suppressed display form belongs. Display forms remain suppressed until one expliitly

unsuppresses, or until one loses the editor window.

explode-term replaes the term the ursor is at with a luster of terms whih display the term

in uniform syntax, and allow one to hange the operator struture. For example one an hange

the opid name,the number and types of the parameters, or the term's arity. See Setion 4.5.2 for

details on how to edit an exploded term's struture.

implode-term replaes an exploded term at the ursor by the term whih the exploded term

represents.

insert-empty-string is useful for inserting empty text strings into text slots. Normally, when

all the haraters in a text slot that is outside of a text sequene are deleted, a text slot plaeholder

is left rather than an empty string. This is beause usually suh slots are used for things like

variable names, and using the empty string for suh entities an be onfusing. Use this ommand

when an empty text string is what is really wanted.

43

4.4.9 Mouse Commands

The mouse ommands are shown in Table 4.11

mouse-left

mouse-set-point set mark then point

h-

mouse-left

i mouse-set-term-point set mark then point to term

mouse-middle
mouse-view-disp view display form of term

h-
mouse-middle

i mouse-paste as paste

hm-
mouse-middle

i mouse-paste-next as paste-next

hm-

mouse-middle

i mouse-paste-opy as paste-opy

mouse-right

mouse-view-ab view abstration de�nition of term

h-

mouse-right

i mouse-ut ut term or region

hm-

mouse-right

i mouse-save save term or region

hm-

mouse-right

i mouse-delete delete term or region

Table 4.11: Mouse Commands

The mouse ommands are designed to allow easy jumping around terms, ut-and-pasting, and

viewing of information on terms.

mouse-set-point �rst sets the mark at the urrent editor ursor position, (not the mouse

position) and then sets the point, the editor's ursor, to where the mouse is pointing. mouse-set-

point sets point to either a term ursor or text ursor. It hooses a text ursor if one is valid

between the harater pointed to by the ursor and the harater to the immediate left. If there is

a null width term to the immediate left of the mouse, the ursor is set to that term. Otherwise, the

ursor is set to the most immediate surrounding term whih ontains the harater being pointed to

by the mouse. This ommand is set up so that one an selet a region by using mouse-set-point at

one end of the region and then mouse-set-point at the other; after the seond mouse-set-point

the mark will be at one end of the region and point will be at the other.

mouse-set-term-point is like mouse-set-point exept that point is always set to the term

immediately surrounding the harater being pointed to.

mouse-ut is the same as ut-region in text sequenes. and text slots. Otherwise it behaves

the same as ut. Likewise with mouse-save. mouse-paste is the same as paste, and mouse-

paste-opy is the same as paste-opy.

4.5 Editing Term Struture

4.5.1 New Term Entry

The term editor reognizes ertain input sequenes as indiating that a new term should be reated.

A new term struture an be reated as follows:

� Position a term ursor and an empty slot.

� Enter the letters of the new term's opid

� Enter a (possibly empty) list of single letters, designating the new term's parameter types.

The list should be delimited by pfq and pgq haraters, and elements should be seperated by

p,q haraters. Empty lists of parameter types are optional.

44

� Enter a (possibly empty) list of numbers, designating the number of binding variables for

eah subterm. The list should be delimited by p(q and p)q haraters, and elements should

be seperated by p;q haraters. This list speifying the arity of the term must be entered,

even when it is empty.

For example, if you enter

myidfn,tg(0;1)

the term myidf[natural℄:n, [token℄:tg([term℄; [binding℄.[term℄) is reated.

4.5.2 Exploded Terms

A term onstrutor is exploded when it is replaed by a speial olletion of terms, so arranged so

that you an edit the struture of the term onstrutor; hange its opid, hange the number and

kind of its parameters, or hange its arity. Note that in pratie, the only time you usually edit

exploded terms is when you add or hange the de�nition of an abstration.

The ommands for editing exploded terms are summarized in Table 4.12.

h-Xiex explode-term explode term at ursor

h-Xiim implode-term implode term at ursor

exterm insert-term-exterm insert new exploded term

lparm insert-term-lparm insert level exp parm

vparm insert-term-vparm insert variable parm

tparm insert-term-tparm insert token parm

sparm insert-term-sparm insert string parm

nparm insert-term-nparm insert natural number parm

h-Oi open-seq-to-left open bterm / parm / bvar slot to left

hm-Oi open-seq-to-right open bterm / parm / bvar slot to right

Table 4.12: Exploded Term Editing

To show how they are used, we walk through the entry of the term foo{bar:s}(A;x.B). Position

a term ursor at an empty term slot and enter:

exterm

spae

.

The highlighted term should look like:

EXPLODED<<[opid℄{}()>>

Enter the opid:

h-

return

ifoo

45

to get:

EXPLODED<<foo{}()>>

Clik

mouse-left

on the }, and you should get a null width term ursor sitting on an empty term

sequene for parameters.

EXPLODED<<foo{}()>>

Enter h-Oi to add a new slot to the parameter sequene:

EXPLODED<<foo{ [parm℄ }()>>

Insert the string parameter with text bar:

sparm
return

bar

to get:

EXPLODED<<foo{bar:s}()>>

Clik

mouse-left

on the) to get a null width term ursor sitting on an empty term sequene for

bound terms:

EXPLODED<<foo{bar:s}()>>

Enter h-Oih-Oi to make a two element sequene for bound terms, leaving the ursor on the

left-most element.

EXPLODED<<foo{bar:s}(.[term℄ ;.[term℄)>>

Clik

mouse-left

on the seond p.q to get a null width term ursor sitting on an empty term

sequene for binding variables:

EXPLODED<<foo{bar:s}(.[term℄;.[term℄)>>

Enter h-Oi

return

to open up a slot in the sequene, and enter a binding variable term:

EXPLODED<<foo{bar:s}([term℄;[bvar℄.[term℄)>>

Finally, lik

mouse-left

on any part of EXPLODED and then enter

h-Xiim

to implode the exploded terms. You should now have the term:

foo{bar:s}([term℄;[var℄.[term℄)

You ould now go ahead and �ll in the binding variable, and subterm slots. In general, when

imploding and exploding terms the parameter values, binding variable names, and subterms stay

46

the same, so entering and/or editing them when a term is exploded has the same e�et as when

the term is imploded.

47

Chapter 5

Abstrations

Abstrations are terms whih are de�nitionally equal to other terms. They are introdued by

abstration objets in Nuprl theories. An abstration an be de�ned in terms of other abstrations,

but the dependeny graph for abstrations should be ayli. In partiular, an abstration may not

depend on itself. Reursive de�nitions an be introdued as desribed in Setion 10.2.4.

Abstration de�nitions have form:

lhs == rhs

The terms lhs and rhs are pattern terms, and there is impliit universal quanti�ation over the the

free variables in lhs and rhs. When Nuprl unfolds some instane lhs-inst of lhs, it �rst mathes

lhs-inst against lhs, generating bindings for the free variables of lhs suh that if the bindings were

applied as a substitution to lhs, one would get bak lhs-inst. It then applies the substitution to rhs

to alulate the term rhs-inst whih lhs-inst unfolds to.

For an example of a abstration, see Figure 5.1. Here we de�ne a type of segments of integers.

EDIT ABS int seg

{i..j

�

}== {k:Z|i � k < j}

Figure 5.1: De�nition of the int seg abstration

The struture of the left-hand side is more redily apparent if we write it in uniform syntax: {i..j

�

}

is int seg(i;j), a term with opid int seg, no parameters, and 2 subterms. An instane of the

left-hand side is {0..10

�

} and this would unfold to {k:Z|0 � k < 10}.

Abstrations an have binding struture; for example, onsider the exists unique abstration in

Figure 5.2.

To handle abstrations with binding variables in a systemati way, we de�ne the proedure for

unfolding an abstration using seond-order mathing and substitution funtions.

If you are familiar with seond-order mathing and substitution, you an skip this paragraph.

First-order mathing and substitution funtions are inadequate for handling terms with binding

struture.

48

EDIT ABS exists uni

9!u:T. P[u℄==9u:T. P[u℄ ^ 8 v:T. P[v℄) v = u 2 T

Figure 5.2: De�nition of the exists uni abstrations

For example, there is no way of applying a �rst order substitution to the pattern term \�x: y"

to get the instane \�x: x + 1"; if we attempt to apply the substitution [y 7! x + 1℄ to \�x: y",

we fore renaming of the bound variable x to x

0

, and we get \�x

0

: x + 1". One ould somehow

suppress renaming but then substitution beomes ill-behaved; on substitution, free variables an

beome bound - a proess known as apture. For more on this, onsult some introdutory book on

prediate logi.

A seond-order binding is a binding of a seond-order variable to a seond-order term. A seond-

order variable is essentially an identi�er as with normal variables, but it also has an assoiated arity;

some n � 0. Seond-order terms are a generalization of terms, and an be represented by bound-

terms suh as x

1

; : : : ; x

a

n

:t. They an be thought of as `terms with holes', terms with zero or

more subtrees missing. The binding variables are plae-holders for the missing subtrees. In any

seond-order binding v 7! x

1

; : : : ; x

a

n

:t, the arity of v must be equal to n.

An instane of a seond-order variable v with arity n, is a term we write as v[a

1

; : : : ; a

n

℄, where

a

1

; : : : ; a

n

are terms. We all a

1

; : : : ; a

n

the arguments of v.

A seond-order substitution is a list of seond-order bindings. The result of applying the binding

[v 7! w

1

; : : : ; w

n

:t

w

1

;:::;w

n

℄ to the variable instane v[a

1

; : : : ; a

n

℄, is the term t

a

1

;:::;a

n

{ the seond-

order variable's arguments �lling the holes of the seond-order term.

Going bak to the example, the variable P is a seond order variable with arity 1, and the terms

P[u℄ and P[v℄ are seond-order-variable instanes. Consider unfolding an instane of the left-hand

side, say the term

9!i:Z. i = 0 2Z

. Here, \ = 2 " is a 3 plae typed equality relation. a = b 2T means that a and b are equal,

and are both members of type T . The substitution generated by mathing this against

9!u:T. P[u℄

would be

[P 7! i.i = 0 2Z ; T 7! Z℄;

and the result of applying this to

9u:T. P[u℄ ^8v:T. P[v℄)v = u 2T

would be

9!u:Z. u = 0 ^8v:Z. v = 0 2Z)v = u 2Z.

49

The mathing and substitution funtions used by Nuprl are a little smarter than shown above;

they try to maintain names of binding variables. So the result one would get using Nuprl would

be:

9!i:Z. i = 0 ^8v:Z. v = 0 2Z)v = i 2Z.

Just as abstrations an be unfolded by applying their de�nition left-to-right, so instanes of

their right-hand sides an be folded up to be instanes of their left-hand sides. Folding doesn't

always work. For example, information an be lost in the unfolding proess; De�nitions an have

variables, parameters and terms that our on the left-hand side but that don't our on the

right-hand side

1

.

Note that only variables and seond-order variables with all �rst-order variable arguments are

allowed as subterms of the left-hand side of abstration de�nitions.

Abstrations an also ontain meta-parameters, whih the mathing and substitution funtions

treat as variables. We usually indiate that a parameter is meta, be pre�xing it with a $ sign. For

example, we might de�ne an abstration label{x:t,i:n}, as shown in Figure 5.3.

EDIT ABS label

labelf$tok:t,$nat:ng==pair(tokenf$tok:tg;naturalf$nat:ng)

Figure 5.3: An abstration with meta-parameters

However, note that all level-expression variables ourring in level-expression parameters in

abstration de�nitions are always treated as meta-parameters, so there is no need to make them

expliitly meta.

In general, the term on the left-hand side of an abstration an have a mixture of normal and

meta parameters. You an de�ne a family of abstrations whih di�er only in the onstant value

of some parameter. However it is an error to make two abstration de�nitions with left-hand sides

whih have some ommon instane.

A reently added feature of abstration de�nitions is an optional list of onditions. A ondition

is simply an alpha-numeri label assoiated with the abstration. We intend abstration onditions

to be used to hold information about abstrations whih would be useful to tatis and other parts

of the Nuprl system. For example, abstration onditions ould be used to group abstations into

ategories, and when doing a proof, one ould ask for all abstrations in a given ategory to be

treated in a partiular way.

The general form of an abstration with onditions

1

; : : : ;

n

is:

(

1

,: : :,

n

)::lhs == rhs

In this setion, we desribe the editor support for entering abstration de�nitions. Abstration

objets are reated and viewed as desribed in Chapter??. You an also view the abstration for

some term by using the view-abstration ommand. See Setion 4.4.8.

1

For example, it an be useful to de�ne an abstration that has some typing information assoiated with it, but

that unfolds to a term without that information

50

hm-Ii initialize initialize objet / ondition

hm-Si selet-term-option open ondition seq

h-Oi open-seq-to-left open slot in ond seq to left

hm-Oi open-seq-to-right open slot in ond seq to right

h-Mi yle-meta-status make parameter meta / normal

so varn insert-termso varn insert seond order var with n args

Table 5.1: Editor ommands for Abstration Objets

The editor support ommands are summarized in Table 5.1.

When an abstration objet is �rst visited, it is initialized with an uninstantiated abstration

de�nition term. This looks like:

[lhs℄ == [rhs℄

If you delete the whole term in an abstration objet and then give the initialize ommand the

objet is re-initialized to this state.

The default abstration de�nition term has an empty ondition sequene as a subterm. You

annot position a ursor at this sequene beause a display form hides it. Use the selet-term-

option ommand with a term ursor over the whole abstration de�nition to get an abstration

de�nition term with an empty term slot for a ondition term.

Use the initialize ommand with a term ursor at an empty ondition sequene slot to initialize

the slot with a ondition term. The ondition term is muh like the term for variables; it has a

single text slot, and otherwise no other display haraters. Use open-seq-to-left or open-seq-

to-right to add additional slots for onditions terms.

To make a parameter into a meta-parameter, position a text ursor in the parameter's text slot

and use the yle-meta-status. If the parameter is already meta, using this twie will yle

its status bak to being a normal parameter. Note that this is not neessary with level-expression

parameters. All level-expression variables are treated as meta.

Seond order variable instanes are entered on the left and right hand sides of the de�nition

using the variable{x:v}(a

1

;: : :;a

n

) term where x is the variable's name, and n > 0. The library

display form objet de�ning the display form for variable{x:v}(a

1

;: : :;a

n

) is named so varn so

this family of names an be used to referene them. Note that abstration objets are the only

plaes where these seond-order variable instanes are used. When writing propositions, seond-

order variable instanes are simulated using the so apply(n) abstration.

51

Chapter 6

Display

6.1 Display Form De�nitions

6.1.1 Top Level Struture

def-seq ::= de�nition ;;

j de�nition ;; def-seq

de�nition ::= format-seq == term

j attr-seq :: format-seq== term

format-seq ::= format

j format format-seq

attr-seq ::= attribute

j attribute :: attr-seq

Figure 6.1: Display Objet Struture

The top level struture of a display form objet is summarized by the grammar shown in Figure 6.1.

An objet ontains one or more display form de�nitions. Eah de�nition has a term whih the

display form applies to, and a sequene of formats that speify how to display the term. A de�nition

also has an optional sequene of attributes that speify extra information about the de�nition.

Usually, all the de�nitions in one objet refer to a losely related set of terms. When hoosing

a display form to use for a term, the layout algorithm tries de�nitions in a bakward order, so

de�nitions are usually ordered more general to more spei�.

6.1.2 Formats

The various kinds of formats are summarized in Table 6.1. The `Name' olumn gives the names

by whih you an refer to the formats when entering them. The format sequene is always a text

sequene so every alternate format is a text string. Sine the text strings are always present, there

is no need to have to enter them expliitly and onsequently we don't give them a name. The

slot formats are for hildren of the display form. The L,E and * options on the term slot formats

ontrol parenthesization of the slot, and are disussed in Setion 6.3. All the formats enlosed

in {}'s ontrol insertion of optional spaes, linebreaking, and indentation. They are disussed in

Setion 6.2.

52

Display Name Desription

string text string

<id:ph> slot text slot

<id:ph:L> lslot term slot

<id:ph:E> eslot term slot

<id:ph:*> sslot term slot

{spae} spae optional spae

{!i} pushm push margin

{ } popm pop margin

{\\a} break break

{\\?a} sbreak soft break

{[HARD} hzone start hard break zone

{[SOFT} szone start soft break zone

{[LIN} lzone start linear break zone

{℄} ezone end break zone

Table 6.1: Formats

6.1.2.1 Slots

The id in a slot format is the name of the slot. The slot orresponds to the parameter, variable

or subterm of the term on the right-hand side of a de�nition that has the same name. ph is plae-

holder text. This text enlosed within [℄'s appears in the slot whenever the slot is uninstantiated

in some instane of the de�nition.

6.1.3 Attributes

De�nition attributes are summarized in Table 6.2.

Display Name Desription

(

1

,: : :,

n

) onds onditions

EdAlias(a) alias alias for de�nition input

#Hd(a) ithd head of iteration family

#Tl(a) ittl tail of iteration family

Parens parens parenthesis ontrol

Pre(a) pre preedene

Table 6.2: Attributes

As with the format table, the `Name' olumn gives the names by whih you an refer to the

attributes when entering them.

Conditions provide extra information about a de�nition to the editor. The argument of the

onds term is a sequene of onditions. Eah ondition is a term with a single text slot holding the

name of the ondition. Use the initialize ommand (hm-Ii) with a term ursor over a ondition

sequene slot to insert a ondition term.

The alias attribute provides an alternate name whih the input editor reognises as refering to

the de�nition. Alternate names are often onvenient abbreviations for the full names of de�nitions.

53

The iteration attributes ontrol seletion of a de�nition by the display layout algorithm. They

are used to ome up with onvenient notations for iterated strutures. They are disussed in

Setion 6.4.

The parens and pre attributes both a�et parenthesization. See Setion 6.3.

The display form that you get for a display form de�nition when you �rst open up a display

objet assumes there are no attributes, and hides the attribute slot. To open up the attribute slot

of a display form de�nition that hides the slot, position a term ursor over the whole de�nition and

use the selet-dform-option (hm-Si) ommand.

6.1.4 Right-hand-side terms

The right-hand-side term is a pattern. A de�nition applies to some term t if t is an instane of

the rhs term. The display de�nition mather has a notion of meta-variable di�erent from that of

Nuprl's usual mathing routines; it has 3 kinds of meta-variable: meta-parameters meta-bound-

variables and meta-terms

1

. Meta-parameters and meta-bound-variables orrespond to text slots on

the left-hand side of a de�nition, and meta-terms orrespond to term slots.

The rhs term is restrited to being a term whose subterms are either onstant terms (terms

with no meta-variables) or meta-terms. To enter a meta-term use the name mterm. To make

meta-parameters or meta-bound-variables, position a text ursor in the appropriate parameter or

bound variable slot and give the yle-meta-status (h-Mi) ommand. Display-meta-variables

are redily reognized beause they have <> as delimiters.

The rhs term an ontain normal parameters, bound variables and variable terms. These must

math exatly for a de�nition to be appliable.

6.2 Whitespae

6.2.1 Margin Control

The margin ontrol format {!i}(pushm) where i � 0 pushes a new left margin i haraters to the

right of the format position onto the margin stak. The layout algorithm uses the top of the margin

stak to deide the olumn to start laying out at after a line break.

The margin ontrol format { } (popm) pops the urrent margin o� the top of the margin stak

and restores the left margin to a previous margin.

Usually display forms should have mathing pushm's and popm`s.

6.2.2 Line Breaking

Line-breaking formats divide the display into nested break zones. There are 3 kinds of break zone:

hard, linear, and soft. The e�et of {\\a} (break) formats depends on the break zone kind:

� In a hard zone, {\\a} always auses a line break.

� In a soft zone, either none or all of the {\\a} are taken.

1

The meta-parameters are di�erent from those used in abstration de�nitions. To be lear, we sometimes all

those ones abstration-meta-variables and the ones in display de�nitions, display-meta-variables.

54

� In a linear zone, {\\a} never auses a line break. Instead, its position is �lled by the text

string a.

The zones are started and ended by zone delimiters. There is one end delimiter {℄} (ezone) for all

kinds of zones. Eah kind of zone has its own start delimiter:

� {[HARD} (hzone) starts a hard zone.

� {[SOFT} (szone) starts a soft zone.

� {[LIN} (lzone) starts a linear zone.

A linear zone is speial in that all zones nested inside are also fored to be linear. Therefore a

linear zone ontains no line-breaks and always is laid out on one line. If a linear zone doesn't �t

on a single line, the layout algorithm hooses subterms to elide to try and make it �t.

When laying out a soft zone, the layout algorithm �rst tries treating it as a linear zone. If that

results in any elision, then it treats the zone as a hard zone.

The soft break format {\\?a} sbreak is similar to the break format but is not as sensitive to

the zone kind. Soft breaks in linear zones are never taken, but otherwise, the layout algorithm

uses a separate proedure to hoose whih soft breaks to take and whih not. This proedure uses

various heuristis to try and layout a term sensibly in a given size window with at little elision of

subterms as possible.

Display form format sequenes should usually inlude mathing start and end zone formats.

6.2.3 Optional Spaes

The {spae} (spae) format inserts a single blank harater if the harater before it isn't already

a spae. Otherwise it has no e�et.

6.3 Parenthesization

Automati parenthesization is ontrolled by ertain display de�nition attributes, term slot options,

and by de�nition preedenes. A preedene is an element in the preedene order. The order is

determined by the preedene objets in the Nuprl library. A de�nition is assigned a preedene

by giving it a pre attribute whih names some preedene element.

6.3.1 Preedene Objets

Preedene objets olletively introdue a set of preedene elements, and de�ne a partial order

on them.

Table 6.3 shows the omponents of a preedene objet, and the names used to enter them by.

The par, ser, and eq terms are sequene onstrutors so the standard sequene ommands work

on the sequenes built with these terms.

Eah display form not expliitly assoiated with any preedene element is impliitly assoiated

with a unique preedene element unrelated to all other preedene elements. The uniqueness

implies that two suh display forms have unrelated preedene.

The ore 1 theory should be onsulted to see how a base set of preedenes has been set up for

the urrent Nuprl theories.

55

Display Name Desription

[p

1

|: : :|p

n

℄ prpar parallel pre term

(p

1

>: : :>p

n

) prser serial pre term

{p

1

=: : :=p

n

} preq equal pre term

obname prel element of preedene order

obname prptr preedene objet pointer

Table 6.3: Preedene Objet Elements

6.3.2 Parenthesis Seletion

The parenthesization of a term slot of a display form is ontrolled by the parenthesis slot-option of

the term slot in the display form de�nition (the L, E, or * in the 3rd �eld), by the parens attribute

of the display form �lling the term slot, and the relative preedenes of the term slot itself and

the �lling term. The preedene of a term slot is usually that of the display form ontaining it,

although it is possible to assign preedenes to individual slots. The parenthesis ontrol works as

follows:

� It is only possible to parenthesize the term slot if the �lling display form has a parens

attribute. If this attribute is absent, the slot is never parenthesized. Therefore the parens

attribute must be expliitly added to a display form de�nition for that de�nition to ever be

parenthesized.

� The parenthesis slot-option ontrols how preedene a�ets parenthesization. The parenthesis

slot-options have the following meanings:

L Suppress parentheses if display-form preedene is less than hild display-form preedene.

E Suppress parentheses if display-form preedene is less than or equal to hild display-form

preedene.

* Always suppress parentheses.

Note that the L and E options give the behavior you might expet; if they are used in the de�ni-

tions of in�x display forms for the arithmeti terms plus(a;b), and times(a;b), then plus(a;times(b;))

is displayed as a+ b � , but times(a;plus(b;)) is displayed as a � (b+). With the L and the E

options you an set up an in�x term as being either right or left assoiative.

The L, E and * haraters in the display of term slot formats are display forms for parenthe-

sization ontrol terms. These terms an be entered using the names shown in Table 6.4. The

Display Name Desription

L lparens L option

E eparens E option

* sparens * option

Table 6.4: Slot Options for Parenthesization Control

parenthesization ontrol terms also allow the spei�ation of the delimiter haraters used for

parenthesization, and a preedene for the individual slot. No spei� editor support has yet been

provided for these features.

56

6.4 Iteration

The iteration attributes ontrol hoie of display form de�nition based on immediately-nested

ourrenes of the same term. The idea is to group ourrenes into iteration families. An iteration

family has a head display form de�nition and one or more tail de�nitions. A tail de�nition an only

be used as an immediate subterm of a head in the same family or another tail in the same family.

Choie of display form is also a�eted by the use of the iterate variable # as the id of a term slot

format. If # is used in some term slot of a de�nition, then the de�nition is only usable if the same

term ours in the subterm slot that uses the #.

An example should make this learer. Say we want a set of display forms for � abstration

terms suh that the � harater is suppressed on nested ourrenes. The following de�nitions

would work:

�<x:var>.<t:term:E>== lambda(<x>.<t>)

;; #Hd A ::�<x:var>,<#:term:E>== lambda(<x>.<#>) ;;

#Tl A ::<x:var>.<t:term:E>== lambda(<x>.<t>) ;;

#Tl A ::<x:var>,<#:term:E>== lambda(<x>.<#>) ;;

Using these the term lambda(x.lambda(y.lambda(z.x))) would be displayed as:

�x,y,z.x

6.5 Examples

We walk through entry of a display form for the term 9!x:T:P

x

.

Start by reating a new display form objet and viewing it. Enter in the ML top loop:

reate disp "test df" "+srath"hs-

return

i

view "test df"hs-

return

i

where +srath is some suitable position in your library. The window initially looks like:

EDIT DISP test df

== [rhs℄

Clik
mouse-left

on the �rst =, to get a text ursor in the empty format sequene on the

left-hand side of the de�nition. Enter the initial text and a slot for the variable:

h-#i163!h-Oislot

return

x

return

varh-Fi

The de�nition should now look like:

9!<x:var>== [rhs℄

Enter the type slot and the seond term slot:

:h-Oisslot

return

T

return

typeh-Fih-Fih-Fi

. h-Oieslot
return

P
return

prop

57

The de�nition should now look like:

9!<x:var>:<T:type:*>. <P:prop:E>== [rhs℄

Now enter the right-hand side of the display form. Clik

mouse-left

on the [rhs℄ plaeholder,

and enter exists unique(T.x.P) as an exploded term. See Setion 4.5.2 for details on how to do

this. Do not �ll in the variable slot or either of the subterm slots. The de�nition should now look

like:

9!<x:var>:<T:type:*>. <P:prop:E>== exists unique{}([term℄;[binding℄.[term℄)

Clik

mouse-left

on the left-most term slot and to enter the meta terms and meta variable, key:

mterm

return

T

return

xh-Mi

return

mterm

return

P

The de�nition is now omplete. It should look like:

9!<x:var>:<T:type:*>. <P:prop:E>== exists unique{}(<T>;<x>.<P>)

This de�nition inludes no linebreaking or parenthesization information. The display form has

an open right-hand side, in that there is nothing delimiting the end of the prop slot. We therefore

want the layout algorithm to automatially parenthesize the display form. To add parenthesizing

attributes, lik

mouse-left

on the seond = harater, to get a term ursor over the whole

de�nition, and then enter:

hm-Si

return

h-Oi

to get two empty attribute slots, with a term ursor over the �rst:

[attr℄ ::[attr℄::9!<x:var>:<T:type:*>. <P:prop:E>== exists unique{}(<T>;<x>.<P>)

To instantiate the attribute slots enter:

parens

return

pre

return

exists

To get:

Parens::Pre(exists)::9!<x:var>:<T:type:*>. <P:prop:E>== exists unique{}(<T>;<x>.<P>)

Here, we assign the term the same preedene to 9!x:T:P

x

as is assigned in the standard libraries

to the 9x:T:P

x

term.

We illustrate adding extra formats, by adding a soft-break format suh that the p.q separating

the type slot from the prop slot is only inluded if the break is not taken. Clik

mouse-left

on

the p.q harater and delete it using h-Di. Enter:

h-Oisbreak

spae

lik

mouse-left

on the }after the ? harater in the soft break display form, and enter p.q.

58

6.6 The Layout Algorithm

Desribe layout algorithm. and seletion of dfs.

� How term mathing options a�et seletion.

� How whitespae onsiderations a�et seletion (if at all...).

� Display form iteration

59

Chapter 7

Sequents and Proofs

7.1 Introdution

Nuprl's type theory is formulated in a sequent alulus. The struture of sequents is desribed in

Setion 7.2 and of proofs in Setion 7.3.

Both strutures are de�ned in Lisp and are aessible from ML. For onveniente, we use term-

like notation to desribe them, although they are not implemented or edited as terms. Perhaps

they will be at some stage in the future.

7.2 Sequent Struture

We write a sequent as

H

1

; : : : ;H

n

` C

where C is the onlusion of the sequent, and , the ith hypothesis H

i

is either an assumption A

i

or a

type delaration x

i

:T

i

, and n � 0. A type delaration x

i

:T

i

is onsidered to bind free ourrenes

of x in terms to the right; that is in H

i+1

; : : : ;H

n

and C. Sometimes we refer olletively to the

hypotheses and the onlusion of the sequent as sequent lauses or just lauses. In the older Nuprl

literature, >> instead of the turnstile symbol ` is used to seperate the hypothesis list from the

onlusion. The word goal is sometimes used either to refer to a whole sequent or to just the

onlusion. Whih should be lear from ontext.

Usually Nuprl displays sequents vertially and expliitly numbers the hypotheses, so the sequent

H

1

; : : : ;H

n

` C is displayed as:

1: H

1

.

.

.

n: H

n

` C

A sequent an be onsidered as either a onjeture or a proved truth. As a onjeture one

understands the sequent as expressing the as yet unproved onjeture that the onlusion of the

sequent is deduible from the assumptions and delarations of the sequent. As a proved truth, one

60

understands the sequent as expressing that that onlusion of the sequent has been proved true,

given the assumptions and delarations of the sequent.

There are a few details left out of the above aount that we now desribe.

1. Logi is enoded into Nuprl's type theory using the propositions-as-types analogy, so all

lauses of sequents are really types. Clauses are made to appear like propositions by using

abstrations. All hypotheses delare variables, but the system urrently hides the display of

any variable whose name starts with a % harater. We sometimes refer to suh variables

invisible variables. When skething sequents in this doument, we suppress variables that

would normally be invisible.

2. Hypotheses an be hidden. Hidden hypotheses are displayed with [℄'s around the hypothesis's

type or assumption term. For a disussion of hypothesis hiding, see Setion 9.12.

3. Hypothesis variable names have to be distint.

7.3 Proof Struture

Proofs are tree strutures. Using term notation, the lass of proofs is the least set of terms suh

that

� unrefined(g) is a proof.

� if p

1

; : : : ; p

n

are proofs, n � 0, then refined(g; r; p

1

; : : : ; p

n

) is a proof,

where:

� g is a sequent.

� r is a re�nement rule. See Setion 7.4

The sequent g in the proof refined(g; r; p

1

; : : : ; p

n

) or unrefined(g) is referred to as the root

goal, or simply the goal of the proof. Similarly, the goals of the proofs p

1

; : : : ; p

n

are referred to as

the subgoals of the proof refined(g; r; p

1

; : : : ; p

n

).

A proof is good when is satis�es various onditions, inluding

1. every sequent in the proof is losed; every free variable of a sequent lause is bound by some

delaration of the sequent,

2. at every re�ned node of the proof tree, the rule proves the goal sequent, assuming the prov-

ability of the subgoal sequents.

A proof is omplete exatly when it is good and ontains no unre�ned nodes. A proof is inomplete

if it is good but does ontain unre�ned nodes.

Eah theorem objet in Nuprl's library ontains one proof. The root goal of this proof is

sometimes referred to as the main goal of the theorem. It always has no hypotheses.

61

7.4 Re�nement Rules

7.4.1 Primitive Re�nement Rules

The primitive re�nement rules are all introdued by rule objets. The urrent system has primitive

rules for a onstrutive type-theory, losely related to Martin-L�of type-theory. All proofs in the

Nuprl system are eventually justi�ed by these primitive rules. More preisely, the orretness of

every Nuprl proof depends only on the orretness of these rules, and of Nuprl's re�ner. The re�ner

is a �xed piee of Lisp ode whih applies primitive rules to unre�ned leaves of proofs. Users rarely

invoke primitive rules diretly; they are at too low a level, and one has to understand how logi is

oded within type-theory. Almost always, tatis are used instead.

7.4.2 Tati Rules

As explained in detail in Chapter 9, tatis are ML funtions whih enable one to automate ap-

pliation of primitive rules. A simpli�ed but oneptually useful idea of a tati, is as a funtion

mapping proofs to proofs. If one applies a tati in ML to an unre�ned proof and the tati doesn't

fail, then the tati returns a proof built (usually) from primitive rules with 0 or more unre�ned

leaves.

We give a desription of what a tati rule is, and what happens when a tati is exeuted as

a re�nement rule. Assume that a proof editor window is viewing some proof node unrefined(g)

and that one enters TatiText, the text of some suitable tati as the re�nement rule.

1. TatiText is parsed by the ML parser into a tati, and is applied to the proof node

unrefined(g). Let the resulting proof term be p. Note that the root goal of p is always

the same as g.

2. p is not simply inserted bak into the proof tree, replaing unrefined(g). Rather it is stored

in a tati rule along with the ML text of the tati. Let us represent the tati rule by the

term tati rule(TatiText ; p).

3. What is inserted bak into the proof tree to replae unrefined(g) is

refined(g ; tati rule(TatiText ; p) ; p

1

; : : : ; p

n

):

Here, n � 0, and p

1

; : : : ; p

n

are all the unre�ned leaf nodes of the proof p in the same

left-right order as they our in p.

The tati rule hides the proof tree p. When one views a proof term, or a tati rule re�nement,

one only ever sees the text of the tati. From a logial point of view, it is not stritly neessary to

keep p around at all, after the tati has exeuted. However, it is neessary for extration purposes.

In the event that a tati is applied as a re�nement rule to an already re�ned proof term, the

proof term is �rst hanged to an unre�ned proof, disarding the existing re�nement rule and all

the sub-proofs, before it is passed to the tati.

Running a tati as a re�nement rule makes it appear in a proof as a high level rule of inferene,

and onsequently greatly inreases the readability of proofs.

The TatiText is represented as an !ml text alternating sequene and has struture idential

to that of ML library objets.

62

7.4.3 Reetion Rules

7.5 Transformation Tatis

Transformation tatis have the same type as normal tatis. However, they an be run on any node

of a proof, not just leaf nodes. Examples of transformation tatis an be found in Setion 9.11.

When a transformation tati is run on a proof p, the proof editor replaes p with the proof

resulting from the tati; it doesn't reate a speial proof node that just has the unproven subgoals

of the resulting proof as its immediate subgoals. Nor is the text of the transformation tati saved

anywhere.

7.6 Proof Editor

The proof editor is designed prinipally to support the `top-down' re�nement style generation of

proofs. The re�nement style entails repeatedly hoosing an unre�ned leaf node of a proof and a

rule (usually a tati) to try on that node. If the rule applies, the Nuprl system hanges the node

to a re�ned node, and automatially generates appropriate hildren nodes.

The editor also supports the appliation of transformation tatis to proofs. These are usually

applied to already re�ned nodes of a proof tree and either hange the struture of the proof they

are applied to or have some side e�et. Transformation tatis are desribed in Setion 7.5.

The proof editor generates windows onto setions of proofs. One an have windows open on

di�erent proofs at the same time, and even multiple windows onto the same proof. In the latter

event, the windows beome `read-only'.

Proofs assoiated with theorem objets are not �rst opied when they are viewed with the proof

editor, so all hanges made to proofs take e�et immediately. This is in ontrast to the situation

with the term editor where hanges are only ommitted when you exit an objet or ask for hanges

to be expliitly saved. If you want to make tentative hanges to a setion of a proof, you an use

the Mark transformation tati to �rst make a good opy of that setion, or you an make a opy

of the whole theorem objet.

7.6.1 Proof Window Format

Eah proof window is assoiated with a node of a proof. It shows the goal sequent at that node,

the re�nement rule if any at that node and any immediate subgoals.

Figure 7.1 shows an example of a window onto a re�ned node of a proof, and Figure 7.2 shows an

example of a window onto an unre�ned node of a proof.

The numbered parts of these windows are as follows:

1 The EDIT indiates that the proof is being viewed in edit mode. In this mode the proof an

be hanged. This is replaed by SHOW if the proof is viewed in the read-only mode. The THM

indiates that a theorem objet is being viewed, and antor is the name of the theorem.

2 The # indiates that this proof node is onsidered inomplete. Other symbols used here, are *

for omplete, and - for bad. the top 1 1 and the top 1 1 2 are tree addresses of the nodes

being viewed. Figure 7.2 shows the 1st hild of the 1st hild of the root of the proof, and

Figure 7.1 shows the 2nd hild of the proof node in Figure 7.2.

63

1 EDIT THM antor

2 # top 1 1

3 1. f: N ! N ! N

2. 8g:N ! N. 9i:N. f i = g 2 N ! N

` False

4 BY With '�n.f n n + 1' (D 2) THENW Auto

6 1* 2. n: N

` 0 � f n n + 1

6 2# 2. 9i:N. f i = �n.f n n + 1 2 N ! N

` False

Figure 7.1: Proof Window on Re�ned Proof Node

1 EDIT THM antor

2 # top 1 1 2

3 1. f: N ! N ! N

2. 9i:N. f i = �n.f n n + 1 2 N ! N

` False

5 BY <refinement rule>

Figure 7.2: Proof Window on Unre�ned Proof Node

64

3 This is the goal sequent of the proof node.

4 This is a tati whih was exeuted on the goal 3 above in order to generate the subgoals

6 below. The BY is part of the proof node display, and is not part of the tati.

5 This is the re�nement rule plaeholder.

6 These are the subgoals of the proof node. Eah one is numbered. The * or # by the subgoal

number shows the status of the subproof. The symbols are the same as those for the goal.

Note that for brevity, only hypotheses whih have hanged or been added are displayed in

the subgoal sequents.

Sometimes the proof window is too short to display all the goal, rule, and subgoals. In this ase

the ursor motion ommands desribed in setion ??? will automatially sroll the window. One

an of ourse also resize the window.

7.6.2 Proof Motion Commands

hm-Bi bak-part move bak part.sibling to immediate left

hm-Fi forward-part move to sibling to immediate right

hm-Ai first-part move to left-most sibling

hm-Ei last-part move to right-most sibling

hm-Pi up-to-parent move up to previous level of proof

hm-<i up-to-top move up to top of proof

hm-Ni down-to-hild move down to next level of proof

return

next-unrefined-leaf jump to next unre�ned node

Table 7.1: Proof Motion Commands

The keyboard ommands for moving about proofs are summarized in Table 7.1. The ommands

losely math a subset of the term editor motion ommands (desribed in Setion 4.4.2). A part of

the window is a either a goal sequent, a re�nement rule, a rule plaeholder or a subgoal.

The forward-part and bak-part ommands move the ursor within a proof window from

part to part, if neessary srolling the window. first-part moves the ursor to the goal and last-

part moves the ursor to the last subgoal if there are any subgoals; otherwise it moves the ursor

to the re�nement rule part.

The up-to-parent ommand, exeuted with a ursor in any part of the window, shifts the

window one level up the proof tree. down-to-hild, exeuted with the ursor over a subgoal part,

shifts the window down the proof tree to that subgoal. The next-unrefined-leaf ommand shifts

the window to the next unre�ned proof node in a preorder traversal of the proof tree. If there are

none, next-unrefined-leaf shifts the window to the root of the proof.

The mouse an also be used to move about a proof. See Setion 7.6.4 for details. Most users

�nd these easier to use than the key bindings.

7.6.3 Opening, Closing, and Changing Windows

65

h-Zi exit-proof lose proof window

h-Ji jump-next-window jump to next window

tab
jump-ml jump to ML top-loop

h-Si selet open term window onto rule or sequent

h-Ti transform open term window for transformation tati

Table 7.2: Commands For Opening and Closing and Changing Windows

The relevant proof editor ommands are shown in Table 7.2, and desribed below. the selet and

transform ommands open up term editor windows. You an edit ML in these windows in the

same way you would edit ML in an ML objet or in the ML Top Loop.

7.6.3.1 Opening a Proof Window

A proof editor window is opened onto a proof in a theorem objet whenever the ML view funtion

is applied to the objet's name in the ML top-loop. If view is used on an theorem objet with

an ompressed proof, expansion of the proof is fored. This may take some time, espeially if the

proof is large. Setion 7.7 desribes proof ompression and expansion.

7.6.3.2 Closing a Proof Window

To lose a proof window, use exit proof.

7.6.3.3 Changing Windows

jump-next-window yles the ursor through all the open proof and term windows, exept the

ML-top-loop window. jump-ml moves the Nuprl ursor to the ML top-loop.

7.6.3.4 Editing The Main Goal

EDIT THM antor

? top <main proof goal>

Figure 7.3: A Proof Window on a New Proof

When a new proof window is opened, the window appears as in Figure 7.3. By using selet with

the ursor over <main proof goal> a term window is opened up to allow one to enter the main

goal of the proof.

One an also use selet on the main goals of inomplete or omplete proofs. For example,

one might want to opy the main goal of one theorem and use it as the basis for the main goal of

another, or one might want to orret a mis-stated main goal. Note however that if a main goal is

destrutively modi�ed and heked, then any existing proof is lost. As explained in Setion 4.4.7,

the window is heked whenever the exit term window ommand is used. If the window is not

66

modi�ed but heked, or modi�ed and then quitted, then any existing proof will not be hanged.

Warning: a window ounts as being modi�ed even if hanges have been made and then undone, so

it looks the same as it originally was.

7.6.3.5 Editing a Re�nement Rule

A re�nement rule window is opened whenever the selet ommand is used with the proof ursor

over the rule plae-holder. (For example see Figure 7.2) The window always has the title EDIT rule

of theorem where theorem is the name of the library objet holding the proof. A new re�nement

rule window is always initialized to allow one to type in an ML tati. The struture and speial

editing ommands for this term window are the same as for ML objets. Soon, it will be possible

to initialize the re�nement rule window to hold other kinds of rules (For example a primitive rule).

We will desribe speial term editor support for these options here. Most users will only use tatis

in re�nement rule windows. After a rule has been keyed in, and the term window exit ommand

has been given, Nuprl parses the rule and tries to apply it to the goal of the urrent proof. If the

rule sueeds the proof window is redrawn with new statuses and subgoals as neessary. If it fails

then one of two things may happen. If the error is severe, the status of the node (and the proof)

will be set to bad, an error message will appear in the ommand/status window, and the rule will

be set to ??bad refinement rule??. If the error is mild and due to a missing input, Nuprl will

display some diagnosti message and leave the rule window on the sreen so that it an be �xed.

One an also use selet on existing re�nement rules. For example, one might want to opy one

rule in order to use it as the basis of another or one might want to hange the rule. If a re�nement

rule is destrutively modi�ed and heked, then any existing subproofs below the rule are lost. As

explained in Setion 4.4.7, the window is heked whenever the exit term window ommand is

used. If the window is not modi�ed but heked, or modi�ed and then quitted, then any existing

proof will not be hanged.

7.6.3.6 Viewing Subgoal Sequents

If selet is invoked on any sequent of a proof but the main goal, a read-only term window onto

that subgoal is generated. This is useful, for example, if one wants to use a term from a sequent as

an argument to a tati, and one doesn't want to have to retype in the term.

Should desribe here speial editor support for subgoal sequents. e.g. what are represented as

alternating lists???

7.6.3.7 Editing a Transformation Tati

To invoke a transformation tati at some node of a proof, position a proof editor window at

that node and use the transform ommand. This opens up a transformation-tati window and

initializes it to take tati text. Type the name of the tati and any arguments into the window

and then use the exit term editor ommand. Nuprl will apply the tati and redisplay the proof

window to show any e�ets. If the expression entered doesn't parse or typehek, a diagnosti

message is printed and the window is left as is. If the tranformation tati fails, the proof is left

unhanged.

67

mouse-right

mouse-selet selet main goal, rule or sequent

mouse-left
mouse-jump jump to window / parent / hild

Table 7.3: Mouse Commands for Proof Windows

7.6.4 Mouse Commands

The mouse ommands are shown in Table 7.3 The mouse an be used for shifting a proof window

about a proof, jumping between di�erent windows, and seleting the main goal, rules, and sequents

displayed in a proof window.

7.7 Proof Compression and Expansion

7.7.1 Introdution

When a theory is dumped to a �le, proofs are stored in a ompressed format. This format retains

only the main goal, the text of tatis in tati rules, and the text of primitive rules not buried inside

tati rules. All other sequents, and all subproofs assoiated with tati rules, are disarded. Thus

the dumped representation ontains essentially just the text that a user would type to reonstrut

the proof.

This format ontains just enough information to regenerate the full proof data-struture. When

a theory is loaded, the loaded proofs are retained in their ompressed format. When a proof is

needed, as when it is to be viewed, heked, or extrated from, then the system will reonstrut

the usual proof tree.

The reonstrution an be time onsuming sine all the tatis used to onstrut the proof must

be re-exeuted. Also, if the tatis that were used to onstrut the proofs have sine been modi�ed,

the reonstrution may fail.

When a theorem objet is extrated from, the extration is stored with the theorem in the

library. When a theorem objet is dumped to a �le, if it has an extration, then the extration is

also dumped. This feature an sometimes redue the need for proof expansion.

The proof-sript of a theorem is updated whenever a omplete proof of the theorem is built.

Note however that it is not updated if expansion of a previously omplete theorem results in an

inomplete theorem. This is to give the user a hane to �x the proof sript. The proof-sript of a

theorem is also updated when a theorem is dumped to a �le, and when the proof is ompressed.

7.7.2 Editing Proof Sripts

Editing failities are provided for proof-sripts, as are tatis for expliitly exeuting a proof-sript

on a node of a proof. These are partiularly of use when �xing proof-sripts that have broken due

to hanges in tatis or the library ontext.

Proof sripts are Lisp data strutures. They are made editable by translating to and from

`proof-sript terms' or `ps-terms' for short. An example display of a ps-term is:

68

TACTIC top :

(Unfold `not` 0

THENM D 0

THENM InstConl [

d

�n.f n n + 1

e

℄ ...')

SUBTREES

TACTIC top 1 :

(With

d

i

e

(EqHD 3) THENM Redue 3 ...a)

SUBTREES

TACTIC top 1 1 :

Auto

SUBTREES

<no subtrees>

END

END

END

Figure 7.4 summarizes the struture of ps-terms.

node name alternatives / struture alias

psript-node ::= TACTIC \\ tati \\ SUBTREES subtree* END psnode

| TACTIC addr : \\ tati \\ SUBTREES subtree* END

subtree* ::= subtree \\ : : : \\ subtree | <no subtrees>

subtree ::= psript-node

Figure 7.4: Proof-Sript Terms

The `alias' olumn gives the name by whih proof-sript nodes an be entered. Proof-sript

subtrees are onsidered to be a term sequene, and the usual term sequene editing ommands

work with them. The addr �elds in ps-terms are for tree addresses in the same format as used in

proofs. They serve solely as a guide the user; they have no logial signi�ane. Users should never

need to expliitly �ll these addresses in. Instead, the addresses are generated by ML funtions that

build proof sript terms.

Useful ML funtions inlude:

psterm of thm objet nam:tok = psterm:term

Takes the name nam of a theorem in the library and returns its proof-sript term psterm.

In doing so, it appropriately �lls in the address �elds of the proof-sript term.

psterm anno psterm:term = psterm':term

Adds address annotations to a proof-sript term, ignoring any previous annotations.

RunPSTerm psterm:term = T:tati

A transformation tati for exeuting proof-sript terms.

69

Chapter 8

Rule Interpreter

8.1 Term Struture of Rules

Rule de�nitions are expressed as `terms' in the sense desribed in Chapter 4. They are normally

stored in library objets of kind rule.

Figure 8.1 shows the basi tree struture of rule terms. I have inluded kinds of `virtual tree

nodes' in this desription. These virtual nodes do not orrespond to term onstrutors used in

building up rules, but they do help in explaining the struture of rule terms.

Itali type is used in Figure 8.1 for kinds of tree nodes that orrespond to terms and term slots.

Roman type is used for tree nodes that orrespond to text strings and text slots. \\ indiates a

linebreak in a display form, \null indiates a display form with `zero width', and is the usual

invisible spae. The suÆx * harater on a node-kind names indiate a sequene of nodes. The

prl-term node kind is for terms in Nuprl's objet language.

Names for the term onstrutors that are suitable for entering the onstrutors are shown in

the `alias' olumn. The term onstrutors for sequenes do not need to be entered expliitly by

name. The editor reognizes the ontext of eah sequene, and sequene items an be added and

deleted using the h-Oi and h-Ci sequene ommands.

For rule terms to be well-formed, there are several extra onstraints on their struture. These

inlude:

� substitution terms an only our in

{ the onl or hyp-item term of a subgoal,

{ the right-hand subterm of a mathing-onstraint,

{ extrat term of a goal.

� there should be a hyp-index term as a rule arg for eah hyp-list hyp-item that is followed by

a hyp hyp-item in the goal of the rule de�nition.

� Adjaent hyp-items should not be both variables.

� The extrat of a subgoal (if it exists) should always be a variable.

8.2 Semantis of Rule Interpreter

70

node name alternatives / struture physial node name alias

rule-def ::= goal \\BY rule \\ subgoal* simple-rule rldef

| goal \\ BY rule \\ onstraint \\ subgoal* onstrained-rule rldef

goal ::= sequent

subgoal* ::= subgoal \\ : : : \\ subgoal | No Subgoals

subgoal ::= sequent

sequent ::= hyp-item* ` onl no-ext-sequent seq

| hyp-item* ` onl ext extrat ext-sequent eseq

hyp-item* ::= hyp-item , : : : , hyp-item | \null

hyp-item ::= hyp | hyp-list

hyp ::= variable : subst-term normal-delaration del

| [variable : subst-term℄ hidden-delaration hdel

hyp-list ::= variable | substitution

onl ::= subst-term

extrat ::= subst-term

onstraint ::= Let term = subst-term mathing-let mlet

| Let arg* = Call{lisp-fun-name} lisp-let llet

rule ::= rule-name arg* rule

arg* ::= arg : : : arg | ()

arg ::= variable

| nat-number

| # hyp-index hypi

| #hyp-num hyp-index-n hypind

| level{level} level-exp level

| parm-sub{parm-sub} parm-substitution parmsub

subst-term ::= prl-term | substitution

substitution ::= variable[prl-term/variable℄ subst-1 subst

| variable[prltm,prltm/var,var℄ subst-2 subst2

| variable[prltm,prltm,prltm/var,var,var℄ subst-3 subst3

| variable[parm-sub℄ subst-parms substp

variable ::= variable var-name

nat-number ::= natural nat-digits

Figure 8.1: Struture of Rules

71

Chapter 9

Tatis

9.1 Introdution

9.1.1 Conventions

For brevity, we assume unless otherwise stated that arguments to tatis have the following types

and uses:

T* : tati

* : int lause index.

i* : int hypothesis index.

t* : term term of Nuprl's type theory

n* : tok name of lemma objet in library

a* : tok name of abstration objet in library

v* : var variables in terms of Nuprl's objet language

l* : tok subgoal label

p* : proof urrent goal

An s suÆx on the name of an argument indiates that it is a list. For example vs is onsidered

to have type var list.

9.1.2 Universes and Level Expressions

In Nuprl's type theory, types are grouped together into universes. Types built from the base types

suh as Z or Atom using the various type onstrutors are in universe U

1

. The subsript 1 is the

level of the universe. Types built from universe terms with level at most i, are in universe U

i+1

.

Universe membership is umulative; eah universe also inludes all the types in lower universes.

Sine propositions are enoded as types, propositions reside in universes too. In keeping

with the propositions-as-types enoding, we de�ne a family of propositional universe abstrations

P

1

: : :P

i

: : : , whih unfold to the orresponding primitive type universe terms U

1

: : :U

i

: : : .

If one is only allowed to use onstant levels for universes, one often has to hoose arbitrarily

levels for theorems. One would then �nd that one needed theorems whih were stated at a higher

level, and would have to reprove those theorems. This was the ase in Nuprl V3.

Nuprl V4 allows one to prove theorems whih are impliitly quanti�ed over universe levels.

Quanti�ation is ahieved by parameterizing universe terms by level expressions rather than natural

72

number onstants. The syntax of level expressions is given by the grammar:

L :: = v

j k

j L i

j L

0

j [Lj � � � jL℄

The v are level-expression variables. v an be any alphanumeri string. These variables are

impliitly quanti�ed over all positive integer levels. the k are level expression onstants. k an

be any positive integer. The i are level expression inrements. i an be any non-negative integer.

The expression L i is interpreted as standing for levels L + i. L

0

is an abbreviation for L 1. The

expression [L

1

j � � � jL

n

℄ is interpreted as being the maximum of expressions L

1

� � �L

n

.

Usually when stating theorems, only level expressions of the form v and v

0

need be used. Other

expressions get automatially reated by tatis. Further, it is normally suÆient to use a single

level-expression variable throughout a theorem statement. For example, we normally prove the

theorem:

8A:P

i

:8B:P

i

:A) (B) A)

rather than

8A:P

i

:8B:P

j

:A) (B) A)

9.1.3 Formula Struture

Many of Nuprl's tatis work on formulae generated by the grammar

P :: = 8x:A: P j Q) P j P (Q

j P ^ P j P () P

j R

where A is a type, and R is a propositional term not of the above form. We all these general uni-

versal formulae or just universal formulae. They are sometimes alled positive de�nite formulae or

horn lauses. We all the formulae generated by this grammar without the ^ and() onnetives,

simple universal formulae. We all the proposition R, a onsequent and eah Q, an anteedent.

Oasionally we refer to the types A as type anteedents.

We view a general universal formula as being omposed of several simple formulae, one for

eah onsequent. The simple omponents are numbered from 1 up, starting with the leftmost

onsequent.

Suh formulae are the standard way of summarizing derived rules of inferene, and are used as

suh by the forward and bakward haining tatis. Often, a onsequent R of a formula will be an

equivalene relation, in whih ase the formula an be used as a rewrite rule by the rewrite pakage.

Oasionally, one has a universal formulae, where the outermost onstrutor of R is also one

of the onstrutors whih makes up the universal formulae. In this ase, one an surround R by

a guard abstration. A guard abstration takes a single subterm as argument and unfolds to this

subterm. The tatis whih take apart universal formulae reognise and automatially remove

guard abstrations, so the user rarely has to expliitly unfold them.

73

9.1.4 Soft Abstrations

Certain abstrations an be designated as soft. Some tatis treat soft abstrations as being trans-

parent | those tatis behave as if all soft abstrations had �rst been unfolded. In pratie, those

tatis only unfold soft abstrations when they need to and for the most part are areful not to

leave unfolded soft abstrations in the subgoals that they generate.

Spei� tatis and funtions whih unfold soft abstrations are:

� The MemCD and EqCD tatis. For example, if MemCD is run on a sequent with onlusion

` t 2 T where t is soft and no well formedness lemmas exist for t, then it unfolds t.

� The NthHyp, NthDel, Eq and Inlusion tatis unfold soft abstrations in the relevant

lauses.

� Most tatis using mathing routines treat soft abstrations as transparent. For example the

forward and bakward haining tatis, and the atomi rewrite onversions based on lemmas

and hyps.

In the basi libraries, the soft abstrations are

member t 2 T =

def

t = t 2 T

nequal x 6= y 2 T =

def

:(x = y 2 T)

prop P

i

=

def

U

i

and A ^B =

def

A�B

or A _B =

def

A+B

implies A) B =

def

A! B

rev implies A(B =

def

B) A

iff A, B =

def

(A) B) ^ (A(B)

exists 9x:A: B

x

=

def

x:A�B

x

all 8x:A: B

x

=

def

x:A! B

x

ge i � j =

def

j � i

gt i > j =

def

j < i

lelt i � j < k =

def

(i � j) ^ (j < k)

lele i � j � k =

def

(i � j) ^ (j � k)

The logi abstrations (and, or, implies, exists, all) are made soft beause the well formed-

ness rule for the underlying primitive term is simpler and more eÆient than the well formedness

lemma would be. The softness is also useful when one wishes to blurr the distintion between

propositions and types, for example when reasoning expliitly about the inhabitants of propositions.

member, nequal, rev implies, ge and gt are soft prinipally beause it an simplify mathing.

Abstrations are not soft by default. They are delared soft by supplying their opids to the

funtion add soft abs : tok list -> unit. Instanes of this funtion are usually kept in ML

objets in lose proximity to the abstration de�nitions that they are delaring soft. For an example

use of add soft abs, see the objet soft ab dels in the ore 2 theory.

9.1.5 The Sequent

Sequents are introdued in Setion 7.2. We desribe here some spei� tati-related details.

74

Hypotheses are onventionally numbered from left to right, starting from 1. These hypothesis

numbers are displayed by the proof editor, and tatis usually refer to hyps by these numbers.

Sometimes, it is onvenient to onsider the hyps numbered from right to left, and for this reason

tatis onsider a hyp list H

1

; : : : ;H

n

to also be numbered H

�n

; : : : ;H

�1

. Oasionally, the index

n+ 1 or 0 is used to refer to the hyp position to the right of the last hyp.

There are tatis whih work in similar ways on both hyps and the onl. In this ase, we all

the hyps and onl olletively lauses, refer to the onl as lause 0, and hyp i, i 6= 0 as lause i.

So far, we have not enountered tatis where we would want to both refer to the position after the

last hyp as lause 0 and refer to the onlusion, so this numbering sheme has not aused problems.

When we want to indiate expliitly the number of a hyp in a shemati sequent, we pre�x the

hyp with the number followed by a period. So for example, if hyp i is proposition P , we write the

hyp as i: P .

Tatis urrently use the visibility of the variable as an indiation of whether it is ever used

in subsequent hyps or the onl. Some tatis working on hyps are more eÆient when they

work on hyps whose variables are unused. The variables delared in a hypothesis list must all be

distint. Tatis are areful to use invisible variables for new hypotheses that are to be onsidered

assumptions rather than delarations.

9.1.6 Proof Annotations

Nuprl proof terms (ML terms of type proof) an be annotated with extra information whih isn't

relevant to the logial orretness of a proof. Nuprl urrently supports two kinds of annotations;

goal labels and tati arguments.

9.1.6.1 Goal Labels

A Nuprl tati generates various kinds of subgoals, and often subsequent tatis want to disriminate

on subgoal kind. Sometimes a subgoal's kind an be dedued diretly from its struture, but this

an be a error-prone proess and so tatis attah expliit labels to subgoals indiating their kind.

Labels take the form of an ML token, and an optional number. Examples of labels are main, upase

and wf. Most desriptions of tatis inlude information on subgoal labelling. It is also a simple

matter to �nd out what labels are generated by experimentation.

The tatials whih disriminate on labels are desribed in the tatials setion below. For

onveniene, labels are divided into the the lasses main and aux. The disriminating tatials

allow one to selet either subgoals with a partiular label, or subgoals of one of the two lasses.

One selets a lass by using one of the lass names main or aux.

1

Sometimes tatis generate a set of subgoals whih are all the same kind, but where the order

of the subgoals is important. The number labels are used to disriminate between these subgoals.

Labels used not to be visible when editing proofs with the proof editor and are therefore some-

times known as hidden labels.

Label related tatis are:

AddHiddenLabel lab

Add hidden label lab to the urrent goal.

1

main is urrently used as both a lass name, and a partiular label name, so there is urrently no way to selet

only subgoals in lass main with label main.

75

AddHiddenLabelAndNumber lab i

Add hidden label lab to the urrent goal along with the integer label i.

UnhideLabel

Make the hidden label on a goal visible. This wraps a speial abstration around the onlusion

term of the goal whih makes the label visible. Sine the `hidden' labels are usually visible, this

tati is no longer that neessary.

RemoveLabel

Remove a visible label.

See Setion 9.3.2 for how to disriminate on labels.

9.1.6.2 Tati Arguments

Unlike Lisp funtions, ML funtions annot take optional arguments, although it is natural to want

to write tatis whih do take optional arguments. One approah is to provide a set of variants of

eah tati for the most ommon ombinations of arguments. This an be onfusing, and plaes

an extra burden on the user who has to keep trak of these variants. Nuprl V4 allows optional

arguments to be passed to tatis by attahing these arguments to the proof argument whih all

tatis operate on. Currently argument types of int, tati, term, tok, var and (var # term)

list are supported. Eah argument is given a token label, and arguments are looked up by these

labels. Sets of arguments are maintained on a stak, so nesting of tatis whih use optional

arguments is possible.

Note that some tatis do useful preproessing on some of their arguments, and in these ases

there would be a performane penalty if suh arguments were supplied, annotated to the proof.

Tati arguments are also used for the analogy tatis. See the relevant setion below.

Tatials for manipulating these arguments are:

With (t:term) T

Runs T with t as a `t1` argument.

New ([v1;...;vn℄ : var list) T

Runs T with v1 to vn as arguments `v1` to `vn`.

At (U:term) T

Runs T with U as a `universe` argument. Term U should either be either a type universe or a

propositional universe term.

Using (sub:(var # term) list) T

Runs T with the substitution sub as a sub argument.

Sel (n:int) T

Runs T with the integer n as an n argument. Used for seleting a simple omponent of a universal

formula or a subterm of a term.

These tatis are all speial ases of:

WithArgs (args: (tok # arg) list) T

Run T with the arguments in args on the top of the stak. arg is an ML abstrat data type,

de�ned as the disjoint union of the types listed above. There exist injetion and projetion

funtions for eah of the types listed above.

Eah tati desription inludes information on the optional arguments (if any) that it takes.

76

9.1.7 Mathing and Substitution

Nuprl has omplex mathing routines, whih allow for automati instantiation of universal formulae

in a variety of ases. Given a pattern term P and instane term I, we say that I mathes P , if

there exists a substitution � suh that I R �P . For many purposes, R is � � � equality, but on

some oasions it is useful to use a slightly weaker R. The weaker R allows level expressions in I

and �P to be related by an order relation rather than an equivalene relation. The weaker R also

an allow I and �P to di�er by the folding or unfolding of soft abstrations.

Sine mathing is all about guessing substitutions, we desribe �rst the possible kinds of sub-

stitution.

1. First Order Term

We replae a variable term free in P by some other term. For example, if P = x + y and

� = [x 7! 3℄, then I = 3 + y. We all suh substitution �rst order beause in �, eah variable

is bound to a �rst-order term rather than a higher-order term. (See next item).

2. Seond Order Term

Seond-order terms are a generalization of terms. They an be thought of as `terms with

holes', terms with zero or more subtrees missing. A seond-order term an be represented

as a pair of a variable list and a �rst-order term, the �rst-order term being generated from

the seond-order term by �lling the holes with variables from the variable list. Naturally

the hole-�lling variables need to be distint from any other variables in the term to avoid

onfusion. We will write a seond-order term as w

1

; : : : ; w

n

:t

w

1

;:::;w

n

.

A seond-order variable instane has form v[a

1

; : : : ; a

n

℄, where v is the variable itself, and

a

1

; : : : ; a

n

are its arguments. A seond-order substitution is a list of seond-order bindings,

pairs of seond-order variables and the seond-order terms they are bound to. The result

of applying the binding [v 7! w

1

; : : : ; w

n

:t

w

1

;:::;w

n

℄ to the variable instane v[a

1

; : : : ; a

n

℄, is

the term t

a

1

;:::;a

n

{ the seond-order variable's arguments �lling the holes of the seond-order

term.

Seond order substitution is useful for instantiating pattern terms involving binding struture.

For example the seond-order substitution [P 7! i:i � 0℄ applied to the pattern 8x:N:P [x℄

yields the instane 8x:N:x � 0.

3. Parameter

Nuprl terms an be parameterized by families of objets suh as natural numbers and tokens.

When de�ning abstrations using suh parameters, one replaes an instane of a parameter

by a parameter variable. Suh parameter variables are replaed by parameter onstants using

parameter substitution.

4. Level Expression

Level expression substitution involves replaing level expression variables within level expres-

sion parameters by other level expressions.

5. Bound Variable

Suh substitutions are useful for alpha-onversion of terms.

77

Mathing involves reursively omparing the struture of an instane term against that of a

pattern term. For a math to possibly sueed, the strutures must only disagree at positions

where there is some kind of variable in the pattern. Eah disagreement must generate or on�rm

a binding for that variable.

The kinds of mathes of instane parts to some sort of variable are:

1. Term to First-Order Variable Term

For example, the instane 2+2 mathes the pattern x+x giving the �rst-order term binding

[x 7! 2℄. In general, sine instane terms also ontain variable terms, the math routine dis-

tinguishes between variable terms in the pattern whih an and annot take part in mathing.

The variable terms whih do take part are alled meta-variables. In the example above, the

variable x is onsidered a meta-variable. If a meta-variable ours more than one, then all

mathes for it must be alpha-equal.

2. Term to Seond-Order Variable Term

In addition to making distintion between meta and non-meta variable terms, The math rou-

tines distinguishes between ative seond-order variables and passive seond-order variables.

Ative seond-order variables generate bindings. Passive seond-order variables are used to

on�rm mathes generated by other ative seond-order variables.

For example, with P a seond-order meta-variable, the instane 8i:N: i � 0 mathes the

pattern 8x:N: P [x℄, giving the seond-order term binding [P 7! i:i � 0℄.

3. Parameter Constant to Parameter Variable

For example, the instane term applefox:tokg mathes the pattern term applef$x:tokg

giving the parameter binding $x 7! ox.

4. Bound Variable to Bound Variable

For example, the instane term �x: x mathes the pattern term �y: y, giving the bound

variable binding y 7! x.

5. Level Expression to Level Expression

This kind of mathing is rather omplex, sine we sometimes desire that the pattern, when

instantiated with the result of the math, be related to the instane by an order relation

rather than an equality. For example, the instane U

i

�U

j

might math the the pattern

U

k

�U

[k n℄

giving a level expression substitution of [k 7! [i j℄; n 7! j℄. The diretions of the

inequalities between level expressions in the instane and instantiated pattern are dependent

on the position of the level expressions in the terms. They are usually hosen suh that there

is a ertain inlusion relation between the instane and the instantiated pattern when eah is

onsidered as a type.

Term to �rst-order variable, term to seond-order variable, and bound variable mathing is always

used in tatis whih do mathing. Parameter mathing is only used when folding or unfolding

abstrations. Level expression mathing is only used by mathing tatis whih refer to lemmas.

Unless otherwise stated, all tatis do soft mathing - if neessary they will try to unfold soft

abstrations to make a math go through.

Seond-order variable instanes annot appear in Nuprl sequents, nor an seond-order terms.

Instead, we simulate them using respetively appliation, and lambda abstration. Spei�ally, we

78

de�ne families of abstrat terms with so apply and so lambda. (We need families to ope with

the di�erent possible arities.)

Often, when we math against the onsequent of a lemma, we annot obtain all the bindings

to instantiate the lemma diretly from the math. In these ases, we try to extend the math by

inferring types of right-hand sides of existing bindings, and mathing those inferred types against

the type delarations in the lemma of the left-hand-sides of the bindings. For example, the typing

lemma for the length funtion is:

8A:U

i

:8l:A List: length(l) 2 N

Consider the goal ` length(3::2::1::[℄) 2 N. A math of the onl of this goal against the

onsequent of the pattern gives the binding l 7! 3::2::1::[℄, but doesn't give a binding for A. However,

we an get the binding A 7! Z by mathing the inferred type of 3::2::1::[℄ whih is ZList, against

the delaration type of l, whih is AList. Similarly, by inferring the universe whih Z inhabits, we

an get a binding for the universe level i.

For onveniene, we injet the di�erent kinds of bindings into the single type var # term. A

pair of this type is interpreted aording to the �rst entry in the following table whih it mathes.

(Equating ML objets of type var and the objets of type tok they are isomorphi to.)

pattern interpretation

< v; so lambda(xs:t

0

) > The higher-order binding v 7! xs:t

0

< v; parameterfle:lg > The level exp binding v 7! le

< v; parameterfw:vg > The bound variable binding v 7! w

< v; parameterfp:�g > The parameter variable binding v 7! p

< v; t > The �rst-order binding v 7! t

Most tatis whih do mathing, take an optional sub argument whih an be used to provide

bindings whih the math fails to �nd, or to override mathes whih are found.

9.2 Basi

9.2.1 Strutural

Id

The identity tati.

Fail

A tati whih always fails. Usually used inside other tatis.

NthHyp i

Proves goals of form : : : A : : : ` A where A is the ith hypothesis.

NthDel i

Proves goals of form : : : x:T : : : ` x 2 T or : : : x:T ldots ` x = x 2 T or where x:T is the ith

delaration.

AssertAt j t

Assert term t before hypothesis j. Generates main subgoal with t asserted, and assertion

subgoal to prove t.

Assert t

=

def

AssertAt 0 t. Assert t as last hypothesis.

79

MoveToHyp j i

Move hyp j to before hyp i.

MoveToConl j

If hyp j is a proposition,

: : : j:A : : : ` C

BY MoveToConlj

main : : : : : : ` A) C

If hyp j is a delaration,

: : : j:x:T : : : ` C

BY MoveToConlj

main : : : : : : ` 8x:T: C

MoveToConl �rst invokes itself reursively on any hyp whih might depend on hyp j.

MoveDepHypsToConl j

Use MoveToConl to move hyps whih use variable delared by hyp j.

Thin i

Delete hypothesis i.

RenameVar v i

Rename the variable delared in hypothesis i to v.

RenameBVars (vsub : (var # var) list)

Rename ourrenes of bound variables in lause .

9.2.2 Single-Step Deomposition

The deomposition tatis invoke the primitive so-alled introdution and elimination rules of

Nuprl's logi. We prefer the use of the word deomposition beause it suggests in most ases

the e�et of the rules when they are applied.

D

Deompose the outermost onnetive of lause . Usually D unfolds all top level abstrations and

applies the appropriate primitive deomposition rule. D an take several optional arguments:

� A `universe` argument, usually applied using the At tatial.

� A `t1` argument for a term. This argument is for instane neessary when deomposing a

hypothesis with a universal quanti�er outermost, or deomposing the onlusion with an

existential quanti�er outermost. For example: With `a' (D 0).

� `v1` and `v2` arguments for new variable names. These are useful for some hypothesis

deompositions if one is not satis�ed with the system supplied variable names. For example,

New [`x';`y'℄ (D 3).

� An `n` argument to selet a subterm. This is neessary when applying D to a disjunt in

the onlusion. For example, Sel 1 (D 0).

80

D is somewhat intelligent with instanes of set and squash terms.

ID

Intuitionistially deompose lause . This behaves as D does, exept that when deomposing

a funtion, a universal quanti�er, or an impliation, in a hypothesis, the original hypothesis is

left intat rather than thinned.

MemCD

Deomposes terms whih are the immediate subterms of an membership term in the onlusion.

Labels subgoal orresponding to subterm n with label subterm and number n. Other subgoals

are labelled wf. For primitive terms MemCD uses the appropriate primitive rule. For abstrations,

MemCD tries to use an appropriate well-formedness lemma. The lemma for term a t with opid

opid should have name opid wf and should be a simple universal formula with onsequent t 2 T .

The subterms of t usually should be all variables. Constants are aeptable as subterms too. If

more than one lemma is needed, the lemmas should be distinguished by suÆes to the opid wf

root. MemCD attempts to use lemmas in the reverse of the order in whih they our in the

library. If the onl is a 2 A where a is an instane of t and A doesn't math any of the T of the

lemmas, then MemCD tries mathing a against t of the last lemma. If this sueeds and generates

some substitution �, MemCD produes a subgoal �T � A and tries to use the Inlusion tati

to prove it.

An example appliation of the MemCD tati is

: : : ` < a; b >2 x:A�B

x

BY MemCD

subterm1: : : : ` a 2 A

subterm2: : : : ` b 2 B

a

wf: : : : x:A ` B

x

2 U

�

EqCD

EqCD is like MemCD exept that it works on the immediate subterms of equality terms rather

than membership terms and the subgoals generated are equality terms rather than membership

terms. Equalities don't have to be reexive. EqCD is good for ongruene reasoning and is used

extensively by the rewrite pakage.

EqHD i

Deompose terms whih are immediate subterms of equality hypotheses. Works when the type

is a produt or funtion type.

MemHD i

Like EqHD but works on the immediate subterms of membership terms.

EqTypeCD

Deompose just the type subterm of a onlusion equality term. Only works when the type is

a set type or is an abstration that eventually unfolds to a set type.

MemTypeCD

As EqTypeCD but works on membership terms.

EqTypeHD i

Deompose just the type subterm of a hypothesis equality term. Only works when the type is

a set type or is an abstration that eventually unfolds to a set type.

MemTypeHD i

81

As EqTypeHD but works on membership terms.

9.2.3 Iterated Deomposition

Several tatis do iterated deomposition of lauses. Here are a few that are ommonly used, along

with the onnetives that they work on.

Tati In Hyps In Conl

UnivCD 8 =)

GenUnivCD 8 =) ^()

RepD ^ 8 =)

GenRepD ^ 8 =) ^()

ExRepD 9^ 8 =)

GenExRepD 9 ^ _ 8 =) ^()

If a guard term is enountered in the proess of deomposing the onlusion, the guard term is

removed and deomposition of the onlusion stops.

9.3 Tatials

Tatials are funtions for omposing tatis. In�x tatials are distinguished by having the �rst

part of their name in all apitals. In�x tatials always assoiate to the left.

9.3.1 Basi Tatials

T1 ORELSE T2

Try running T1. If it fails, run T2 instead.

T1 THEN T2

Run T1, and then on all subgoals generated by T1, run T2.

T THENL [T1;...;Tn℄

Run T1, generating exatly n subgoals. Then run Ti on the ith subgoal (numbering subgoals

from left to right.)

Try T

=

def

T ORELSE Id

Complete T

Run T. Fail if T generates one or more subgoals.

Progress T

Run T. Fail if T makes no progress. (For example, if T is Id.)

Repeat T

Repeat appliation of T on subgoals generated by previous tries, until no further progress made

RepeatFor i T

Repeat appliation of T exatly n times.

If (e:proof -> bool) T1 T2

If e p evaluates to TRUE then run T1. Otherwise, run T2.

82

9.3.2 Label Sensitive Tatials

IfLab lab T1 T2

If lab mathes label of p, run T1. Otherwise, run T2.

T1 THENM T2 =

def

T1 THEN IfLab `main` T2 Id

T1 THENA T2 =

def

T1 THEN IfLab `aux` T2 Id

T1 THENW T2 =

def

T1 THEN IfLab `wf` T2 Id

IfLabL [l1,T1; l2,T2; ... ;ln,Tn℄

Run the �rst Ti for whih li mathes label of p

T THENLL [l1,Ts1; l2,Ts2; ... ;ln,Tsn℄

Run tati T then do the following on eah subgoal, sanning the subgoals from left to right.

Math the subgoal's label against eah li until a math sueeds. Then if the subgoal also

has number label j, retrieve the jth tati from Tsi and run that tati on the subgoal. If the

subgoal has no number label, then pop the �rst tati o� the Tsi list and run that tati. If

there are not suÆient tatis in the appropriate lists, THENLL fails. If there are too many, then

the exess are ignored. If a subgoals label doesn't math any of the li then run the Id tati.

SeqOnM [T1;...;Tn℄

Run the tatis T1 to Tn on suessive main subgoals.

RepeatM T

Repeat the tati T on main subgoals.

RepeatMFor i T

Repeat the tati T on main subgoals exatly i times.

9.3.3 Multiple Clause Tatials

AllHyps (T : int -> tati)

Try running T on eah hypothesis starting with the end of the hypothesis list and working

bakwards. If T sueeds on some hypothesis, then AllHyps only ontinues on subgoals reated

by T that are labelled main.

All (T : int -> tati)

Similar to AllHyps, exept that also tries applying T to onlusion after trying to apply it to

hypotheses.

On [1;...;n℄ (T : int -> tati) =

def

T 1 THENM ... THENM T n

9.4 Case Splits and Indution

There are two ways of doing ase splits and indution. The more general way is to bakhain

through an appropriate lemma. For example, look at the lemmas int upper ind and int seg ind

at the end of the int 2 theory. To use these lemmas, you must ensure that the type the indution

is being done over is in an outermost universal quanti�er in the onlusion. For example, to use

int seg ind, the onlusion must be of form 8i:fj : : : k

�

g:P

i

. The following ase-split and indution

tatis are good for a few ommon ases. With them, the variable the indution / ase-split is being

done over should be delared in some hypothesis.

BoolCases i

83

Do ase split on whether variable delared to be of type B (the booleans) in hyp i is tt or ff.

Generates truease and falsease subgoals.

ListInd i

Do list indution on hypothesis i. Generates upase and basease subgoals. First moves any

depending hyps to onl.

IntInd i

Do integer indution on hypothesis i. Generates upase, basease and downase subgoals.

First moves any depending hyps to onl. This is a little smarter than the primitive rule, in

that it maintains the name of the indution variable.

NatInd i

Do natural-number indution on hypothesis i. Hypothesis must be a nat abstration. Generates

upase and basease subgoals. First moves any depending hyps to onl. This is a little smarter

than the primitive rule, in that it maintains the name of the indution variable.

NSubsetInd i

Do indution on subrange of the natural numbers. Hyp i should be a nat, nat plus, int upper

or int seg abstration. Generates two main subgoals - basease and upase- and approxi-

mately 15 aux subgoals whih should always be easily solvable by Auto.

CompNatInd i

Do omplete natural number indution on hyp i. Hyp i must be a nat abstration.

Sometimes using a lemma results in unprovable well-formedness goals. This ours in partiular

when proving well-formedness lemmas. In these ases, you should try to use one of the tatis above.

The theory well fnd has some de�nitions for well-founded indution. In partiular it de�nes

the tati Ranknd. This is useful when you know how to do indution over some type A and you

want to do indution over a type B using some rank funtion whih maps elements of B to elements

of A. The tati is desribed in the objets inv image ind ta and rank ind.

The theory bool 1 de�nes various tatis for ase splitting on the value of boolean expressions

in the onlusion. Tatis inlude BoolCasesOnCExp and SplitOnConlITE. View the theory for

details.

9.5 Forward and Bakward Chaining

Forward and bakward haining involves treating a omponent of a universal formula (see Se-

tion 9.1.3) as a derived rule of inferene. Bakward haining involves mathing the onlusion of a

sequent against the onsequent of a universal formula. The anteedents of the universal formula,

instantiated using the substitution resulting from the math, then beome new subgoals. Forward

haining involves mathing hypotheses of a sequent against anteedents of a universal formula. The

onsequent of the universal formula, instantiated using the substitution resulting from the math,

then beomes a new hypothesis.

BakThruLemma name

BakThruHyp i

The name (i) argument selets the lemma (hypothesis) to bak-hain through. Subgoals orre-

sponding to anteents of the lemma (hyp) are labelled with anteedent. The rest are labelled

wf. Aliases are BLemma and BHyp.

84

FwdThruLemma name is

FwdThruHyp i is

The name (i) argument selets the lemma (hypothesis) to forward hain through. is selets the

hypotheses whih are to be mathed against anteedents of the haining formula. The order

of the is is immaterial; the tatis try all possible pairings of hypotheses with anteedents. If

there are more anteedents that hyps listed in the is, the anteedents not mathed will manifest

themselves as new subgoals to be proved. The main subgoal with the onsequent of the lemma

(hyp) asserted is labelled main. Unmathed anteedents are labelled anteedent and the rest

are labelled wf. Aliases are FLemma and FHyp.

Chaining tatis take a number of optional arguments.

� An expliit list of variable bindings as a sub argument. This argument is neessary when all

variable bindings annot be inferred from mathing. The sub argument is supplied using the

Using tatial. For example:

Using [`n`.'3'℄ (BakThruLemma `int upper indution`)

would bind the variable n in the lemma int upper indution to the value 3.

� A spei� simple omponent of a general formula an be seleted using an `n` argument,

supplied by using the Sel tatial. For example

Sel 2 (FwdThruLemma `add mono wrt eq`)

An `n` argument of -1 fores the tati to treat the formula as a simple formula.

Bakhain b names

CompleteBakhain b names

Repeatedly try BakThruLemma using lemmas named in b names in order given. Bakhain

leaves alone any subgoals whih don't math the onsequent of any of the lemmas. CompleteBakhain

baktraks in the event of any suh subgoal oming up.

In addition to lemma names, a few speial names are reognized:

� An integer i. Use hypothesis i. (i must be a positive integer. Negative integers an't be

used to refer to hypotheses here.)

� hyps: hyps 1 � � � n where n is the number of hyps. Skips hyps whih delare variables.

� rev hyps: As hyps but in order n � � � 1.

� new hyps: new hyps introdued by bakhaining, least reent �rst.

� rev new hyps: As new hyps but in opposite order.

HypBakhain =

def

Bakhain ``rev new hyps rev hyps``

CompleteHypBakhain =

def

CompleteBakhain ``rev new hyps rev hyps``

InstLemma name [t1;...;tn℄

Instantiate lemma name with terms t1 through tn. If the lemma hasm distint level expressions,

the �rst m terms should be level expressions to substitute for the lemma's level expressions.

(Injet level expression le into the term type using the speial term parameter{le:l}. In the

term editor you selet this term by the name parameter.)

85

InstHyp [t1;...;tn℄ i

Instantiate universal formula in hyp i with terms t1 through tn.

InstConl [t1;...;tn℄ i

Instantiate existential quanti�ers in onlusion with terms t1 through tn.

9.6 Deision Proedures

9.6.1 ProveProp

The ProveProp family of tatis are useful for partially or ompletely proving goals that involve

simple propositional reasoning. The strategy is basially to that for lassial tableau: Propositions

in hypotheses and the onlusion are exhaustively deomposed and appliations of the Hypothesis

tati are sought. A slight tweak is the tati has to do `or' branhing and baktraking when

it takles an _ onlusion or an =) or : hypothesis, beause the Nuprl sequents only allow one

onlusion rather than many as is ommonly the ase in lassial sequent aluli.

ProveProp

The basi tati. Fails if doesn't sueed in solving all main goals.

ProveProp1

Like ProveProp, but leaves main subgoals at `or' branhing points of the searh for a solution

when the searh down every branh fails.

ProvePropWith (T : tati)

Like ProveProp1, but tries running tati T before ompletely abandoning a searh path. If T

reates any main subgoals, searh ontinues on these subgoals.

ProveProp is not omplete for intuitionisti propositional logi, beause it always thins =) and

: hypotheses that are deomposed.

9.6.2 Eq

Eq does trivial equality reasoning. It proves goals of form H ` t = t

0

2 T using hypotheses

that are equalities over T and the laws of reexivity, ommutativity and transitivity. It also uses

hypotheses that are equalities over T

0

when T = T

0

is deduible from other hypotheses using

reexivity, ommutativity and transitivity. The Eq rule is implemented as a proedure oded in

Lisp.

9.6.3 RelRST

RelRST is a tati that tries to solve goals by exploiting ommon properties of binary relations,

inluding reexivity, symmetry, transitivity, irreexivity, antisymmetry, and linearity.

The heart of this tati is a routine that builds a direted graph based on the binary relations

in a sequent and �nds shortest paths in the graph. Extensions to this routine to allow it to handle

strit order relations and relations with di�ering strengths.

RelRST uses the the same database on relations and some of the same lemmas as the rewrite

pakage. In addition, it relies on lemmas in the library of the following forms.

� Irreexivity lemmas. These should have form

8x

1

:T

1

: : : x

m

:T

m

: 8y:S: A

1

) : : :) A

n

) y R y) FalseAllxs:As;Ally:TBs => y < y => False

86

and be named opid-of-< irreflexivity.

� Antisymmetry lemmas. These should have form

8x

1

:T

1

: : : x

m

:T

m

: 8y; y

0

:S: A

1

) : : :) A

n

) y � y

0

) y

0

� y) y = y

0

and be named opid-of-� antisymmetry.

� Complementing lemmas. These should have form

8x

1

:T

1

: : : x

m

:T

m

: 8y; y

0

:S: A

1

) : : :) A

n

) :(y � y

0

)) y

0

< y

and be named opid-of-� omplement, or

8x

1

:T

1

: : : x

m

:T

m

: 8y; y

0

:S: A

1

) : : :) A

n

) :(y < y

0

)) y

0

� y

and be named opid-of-< omplement.

Allxs:As;Ally; y

0

:TBs => not(yLTRy

0

) => y

0

LERy

RelRST generalizes the Eq tati in previous versions of Nuprl that only handled suh reasoning

with the equality relation of Nuprl's type theory.

Here are a ouple of examples of RelRST's use from a theory of divisibility over the integers:

1. a: Z

2. a': Z

3. b: Z

4. b': Z

5. ...

6. a' | a

7. b | b'

8. ...

9. a | b

` a' | b'

|

BY (RelRST ...)

and

1. a: Z

2. b: Z

3. y1: Z

4. ...

5. gd(a;b) = y1

6. y2: Z

7. ...

8. gd(b;a) = y2

9. ...

10. y1 � y2

` gd(a;b) � gd(b;a)

|

BY (RelRST ...)

87

Here, I have elided hypotheses that were not required by RelRST to solve the goals. The � relation

is the assoiated relation and gd(a;b) is a funtion that omputes the greatest ommon divisor

of a and b. The seond example illustrates how RelRST is able to ope with relations of di�ering

strengths.

Unlike Eq, RelRST doesn't involve any extensions being made to the primitive rule re�ner.

9.6.4 Arith

The Arith tati is used to justify onlusions whih follow from hypotheses by a restrited form

of arithmeti reasoning. Roughly speaking, Arith knows about the ring axioms for integer multi-

pliation and addition, the total order axioms of <, the reexivity, symmetry and transitivity of

equality, and a limited form of substitutivity of equality. We will desribe the lass of problems

deidable by Arith by giving an informal aount of the proedure whih Arith uses to deide

whether or not C follows from H.

Arith understands standard arithmeti relations over the integers; namely terms of the form

s < t, s � t, s > t, s � t, s = t 2 Z and s 6= t 2 Z. It also reognizes negations of these terms. As

the only equalities Arith onerns itself with are those of the form s = t 2 Z, we will drop the 2 Z

and write only s = t in the rest of this desription. The arith rule may be used to justify goals of

the form

H ` C

1

_ : : : _C

m

where eah C

i

is a term denoting an arithmeti relation. If Arith an justify the goal it will

produe subgoals requiring the user to show that the left- and right-hand sides of eah C

i

denote

integer terms. As a onveniene Arith will attempt to prove goals in whih not all of the C

i

are

arithmeti relations; it simply ignores suh disjunts. If it is suessful on suh a goal, it will

produe subgoals requiring the user to prove that eah suh disjunt is a well-formed proposition.

Arith analyzes the hypotheses of the goal to �nd relevant assumptions. In partiular, it will

maximally deompose eah hypothesis into a term of the form A

1

^ : : : ^A

n

(n � 1), and will use

as an assumption any of the A

i

whih are arithmeti relations of the form desribe above. It also

extrats assumptions from delarations of variables in types that are subsets of Z. For example

from the delaration i:N it extrats the assumption that i � 0.

Arith begins by normalizing the relevant formulas of the goal aording to the following on-

ventions:

1. Rewrite eah relation of the form s 6= t as the equivalent s < t _ t < s. A onlusion C

follows from suh an assumption if it follows from either s < t or t < s; hene arith tries

both ases. Heneforth, we assume that all negations of equalities have been eliminated from

onsideration.

2. Replae all ourrenes of terms whih are not addition, subtration or multipliation by a

new variable. Multiple ourrenes of the same term are replaed by the same variable. Arith

uses only fats about addition, subtration and multipliation, so it treats all other terms as

atomi. At this point all terms are built from integer onstants and integer variables using

+, � and �.

88

3. Rewrite all terms as polynomials in anonial form. The exat nature of the anonial form

is irrelevant (the reader may think of it as the form used in high shool algebra texts) but

has the important property that any two equal terms are idential. Eah term now has the

form p+ �p

0

+

0

, where p and p

0

are nononstant polynomials in anonial form, and

0

are

onstants, and � is one of <, = or � (s � t is equivalent to :t < s).

4. Replae eah nononstant polynomial p by a new variable, with eah ourrene of p being

replaed by the same variable. This amounts to treating eah nononstant polynomial as

an atom. Now eah formula is of the form z + �z

0

+

0

. Arith now deides whether or

not the onlusion follows from the hypotheses by using the total order axioms of <, the

reexivity, symmetry, transitivity and substitutivity of =, and the following so-alled trivial

monotoniity axioms (and d are onstants).

� x � y; � d) x+ � y + d

� x � y; � d) x� � y � d

These rules apture all of the aeptable forms of reasoning whih may be applied to formulas

in anonial form.

9.6.5 SupInf

9.6.5.1 Desription

The algorithm used in the Arith tati annot solve general sets of linear inequalities over the

integers, though suh problems are abundant (for example when doing array bounds heking).

Solving linear inequalities over the integers is a stritly harder problem than over the rationals:

polynomial time algorithms are known for the solving linear inequalities over the rationals, but

integer linear programming is NP omplete.

The SupInf tati is uses the Sup-Inf method of Bledsoe [?℄ for solving integer inequalities.

While method is only omplete for the rationals, not the integers, it does work well in pratie for

the integers.

The basi algorithm onsiders a onjuntion of inequalities 0 � e

1

^ : : : ^ 0 � e

p

where the e

i

are linear expressions over the rationals in variables x

1

: : : x

n

and determines whether or not there

exists an assignment of values to the x

j

that satis�es the onjuntion. The algorithm works by

determining upper and lower bounds for eah of the variables in turn | hene the name `sup-inf'.

The bound alulations are always onservative, so that if some upper bound is stritly below some

lower bound, then the onjuntion is unsatis�able.

Shostak [?℄ showed that the alulated bounds are the best possible, and hene that the

algorithm is omplete for the rationals. He proposed a simple modi�ation that made the algorithm

return an expliit satisfying assignment when the onjuntion is satis�able.

When used over the integers, the Sup-Inf algorithm is sound, but not omplete; if there is no

satisfying assignment over the rationals, then there is also none over the integers. However, there

are ases when the algorithm �nds a rational-valued satisfying assignment even though none exists

that is integer valued. There are standard tehniques for restoring ompleteness, but it has been

both Shostak's and our experienes to date that examples for whih the algorithm is inomplete

are rare in pratie.

The proedure implemented urrently does the following:

89

1. Takes a goal g and extrats a logial expression P built from the logial onnetives ^;_;:,

the order relations on the integers � and <, and the equality relation = on the integers, suh

that if :P is not satis�able, then the goal g is true. If the goal has the form

x

1

; : : : x

n

:Z; r

1

; : : : r

k

` r

0

where the r

i

are all instanes of the �; <;= relations over the integers involving expressions

over the integer variables x

1

; : : : ; x

n

, then :P has form

r

1

^ : : : ^ r

k

^ :r

0

:

2. The expression :P is put into disjuntive normal form. Ourrenes of = and < relations

are eliminated in favour of �. Where possible, ='s are eliminated by substitution rather than

splitting into inequalities.

3. The left-hand argument of eah � is moved to right-hand side and the integer expressions are

put into a sum of produts normal form. Eah produt has any onstant oeÆient brought

out to the left of the produt.

4. Eah distint non-linear expression is generalized to a new rational variable. These non-linear

expressions might involve � and �, as well as integer-valued funtions (for example, the list

length funtion). The arithmeti expressions are now all linear.

5. Eah disjunt is augmented with extra arithmeti information suitably normalized that omes

from various soures inluding:

(a) typing of variables and generalized non-linear expressions. If variable i has type fj : : :g,

then j � i an be added.

(b) arithmeti property lemmas. An example is a lemma stating that the length of two lists

appended is the sum of the lengths of eah list.

This augmentation is in general a reursive proedure; the inferred arithmeti propositions

an themselves ontain variables and non-linear expressions about whih further information

an be inferred.

6. The Sup-Inf algorithm is run on eah disjunt. If none is satis�able, then the original goal is

true. If a satisfying assignment is found, then it is returned to the user as a ounter-example.

7. When no disjunt is satis�able, the proedure reates several well-formedness subgoals. Some

of these hek the well-formedness of the arithmeti expressions in the onlusion of the

original goal g. Others hek that the arithmeti property lemmas an be instantiated as the

proedure assumed they ould be.

The inferene of arithmeti properties from typing and from property lemmas greatly inreases

the proedure's usefulness.

Unlike most other tatis, but like the arith rule whih SupInf largely superedes, SupInf's

inferenes are not re�ned down to primitive rule level, so Nuprl's soundness now depends on the

soundness of a ore part of SupInf's implementation.

90

9.6.5.2 Details

First a few de�nitions.

� An arithmeti type is either the type Z (int) or one of the standard subtypes of Z de�ned in

the int_1 theory. Spei�ally: N (nat), N

+

(nat_plus), Z

�0

(int_nzero), {i...} (int_upper),

{i...j

�

} (int_seg), or {i...j} (int_iseg).

� An arithmeti literal is one of

{ the relations a = b 2T and a 6=b 2T where T is an arithmeti type,

{ the relation a = b 2T where T is an arithmeti type,

{ Any of the inequalities <, >, �, or �,

{ Either of the above inside one or more negations (:).

SupInf reognizes the arithmeti literals that our in a sequent either at the top level of a

lause or buried under mwedge and mvee onnetives.

There are two variants on the SupInf tati: SupInf and SupInf'. Only SupInf' tries inferring

additional arithmeti information about the non-linear terms in arithmeti expressions.

The information on a non-linear term is gathered in two ways:

1. The standard type-inferene funtion get_type is run on the term, and if it returns one of the

standard arithmeti subtypes of Z, then the prediate information from the subtype is used.

2. Arithmeti property lemmas are examined.

An arithmeti property lemma should have form

8x

1

:T

1

: : : x

m

:T

m

: A

1

) : : :) A

n

) C

where C is onstruted from ^'s, _'s and arithmeti literals. math handles are seleted from C.

A math handle is a non-linear arithmeti term that ours as an argument to an arithmeti literal

in C suh that all the free variables ontained in C and the A

i

are also ontained in the non-linear

term. An arithmeti lemma is onsidered as providing information about eah of its math handles.

Currently, an arithmeti property lemma is only used if after mathing the math handle in

C with the non-linear term that information is desired on, all the instantiated A

i

are equal to

hypotheses of the sequent. This is perhaps an overly strit ondition.

Arithmeti property lemmas are identi�ed by invoking the ML funtion

add_arith_lemma

lemma-name : tok

=

():unit

SupInf' is urrently under development and should be used with aution. Hopefully all hanges

to it will only be enhanements, so if it is suessful now, it will be suessful in the future. One

problem with it is that the proess of type-heking subgoals reated by instantiating arithmeti

property lemmas an ause the reation of subgoals that require arithmeti reasoning to solve.

When SupInf' is used as part of a type-heking tati (as it is in Auto'), there are sometimes

91

ases when SupInf' unendingly gets invoked on subgoals derived from ones that it itself reated.

Further work is needed on SupInf' to avoid this happening.

SupInf identi�es ounter-examples if it fails. These an be viewed by looking at value of the

ML variable supinf info. The value gives a list of bindings of variables in the goal for the ounter-

example. There are two kinds of ounter-examples; integer and rational. If SupInf �nds an integer

ounterexample, then you know that the goal is de�nitely unprovable. If a rational ounter-example,

then SupInf is unsure whether the goal is true or not. These latter ases should be rare in pratie.

A ouple of examples of uses of the SupInf tati are as follows. It is able to prove the goal

1. x: Z

2. y: Z

3. z: Z

4. 2 * y + 3 � 5 * z

5. z � x - y

6. 3 * x � 5

` 2 * y � 3

but on

1. x: Z

2. y: Z

3. 3 * x � y

4. y � 2

` x + y > 3

�nds the ounterexample x= 1 and y= 2. Examples of arithmeti property lemmas are:

` 8 i:Z. 8 j:Z. i � 0) j > 0) 0 � i rem j < j

where rem is the remainder funtion and:

` 8A:U. 8as:A list. 8n:N|as|. (|nth_tl(n;as)| = |as| - n)

where nth tl(n;as) takes the nth tail of list as, |�| is the list length funtion and N|as|. is an

abbreviation for the integer segment f0...|as|-1g. The latter lemma is invoked when SupInf

proves the goal:

1. T: U

2. as: T List

3. m: N

4. n: N

5. |as| � m + n

` |nth_tl(n;as)| � m

9.7 Rewriting

9.7.1 Introdution

Rewriting is basially the proess of using equations as transformational rules.

In Nuprl, rewrite rules are derived from

� abstrations,

92

� primitive redution rules, and

� formulas of form

8x

1

:T

1

: : : x

i

:T

i

: a = b

that our as lemmas or hypotheses.

Nuprl's rewrite pakage is a olletion of ML funtions for reating rewrite rules and applying

them in various fashions to lauses of a sequent.

The pakage supports rewrite rules involving various equivalene relations. Examples inlude the

3-plae equality-in-a-type relation, the i� relation, and the permutation relation on lists. Nuprl's

logi doesn't guarantee that all equivalene relations are respeted. In ases when there is no

guarantee, the pakage takes are of automating proofs that the relations are respeted.

The notion of rewriting is extended to inluding rules involving any transitive relation. Here,

the pakage takes are of heking that relevant terms are appropriately monotoni.

The pakage is based around ML objets of type onvn alled onversions, similar to those

found in other tati based theorem provers suh as LCF, HOL and Isabelle. Conversions provide

a language for systematially building up rewrite rules in a fashion similar to the way tatis are

assembled using tatials.

For onveniene, a few onise rewriting tatis are provided that ompletely hide the onversion

language (see Setion 9.7.2). These are suÆient in many situations, though most Nuprl users will

need eventually to familiarize themselves with many of the details of the pakage.

Note that Setion 9.7.11 desribes some older substitution tatis that an be used for ertain

very simple kinds of rewriting.

9.7.2 Conise Rewriting Tatis

Unfolds as

Unfold all visible ourrenes of abstrations listed in the token list as in lause

Unfold a =

def

Unfolds [a℄

RepUnfolds as

Repeatedly try unfolding any ourrenes of abstrations listed in the token list as in lause

Folds as

Fold all visible ourrenes of abstrations listed in the token list as in lause

Fold a =

def

Folds [a℄

Redue

Repeatedly ontrat all both primitive and abstrat redies in lause .

The Redue tati an take an optional fore argument. The tati

With fore (Redue)

only redues those redies with strength less than or equal to fore. For more on de�ning abstrat

redies and setting the strength of redies, see Setion ?? and Setion 9.7.5.6.

A ouple of rewrite tatis provide aess to all kinds of rewrite rules. These tatis take a

ontrol string to speify the rewrite rules to use. Control string should be a whitespae-seperated

list of tokens as spei�ed in Table 9.1. The tatis are:

RWW (tl-str : string) i

93

Token Rule

i Use hyp i as an l-to-r rule

i< Use hyp i as an r-to-l rule

name Use lemma name as an l-to-r rule

name< Use lemma name as an r-to-l rule

r:id Redue redex with opid id

r* Redue any redex

r*fore Redue any redex with fore fore

u:id Unfold abstration with opid id

f:id Fold abstration with opid id

Table 9.1: Format of Tokens in Rewrite Control Strings

Repeatedly apply rewrite rules spei�ed by tl-str to all nodes of lause i until no further progress

is made.

RWO (tl-str : string) i

Apply rewrite rules spei�ed by tl-str in one top-down pass over lause i. If one of the rewrite

rules sueeds on some subterm, then don't try rewriting the subterms of the rewritten subterm.

9.7.3 Introdution to Conversions

This setion presents a simpli�ed implementation of onversions and onversionals to onvey the

general ideas. Later setions desribe the atual onversions that are implemented. Note however

that the onversionals introdued here have the same names and same behaviours as those in the

atual system.

Let onvn be an ML onrete type alias for the type of onversions. In this setion, assume that

onvn is an alias for the type term -> term, where term is a type of terms that we want to rewrite.

Later on, I desribe the type that onvn is atually an alias for. If is of type onvn, then we an

use to rewrite t of type term by simply running the ML evaluator on the appliation t.

For the purposes of the setion only, let me introdue a basi onversion alled RuleC : term ->

onvn. The onversion RuleC expets its term argument to be of form a = b where the free variables

of b are a subset of those in a. If the onversion RuleC 'a = b' is applied to a term t, RuleC tries to

�nd a substitution � suh that �a = t. If it sueeds, it returns the term �b. If a substitution annot

be found, RuleC raises an exeption. The onversion RuleC 'a = b' therefore rewrites instanes of

a to orresponding instanes of b. For example:

RuleC 'x+ 0 = x'

when applied to the term (2� 3) + 0 yields the term 2� 3.

RuleC annot by itself rewrite subterms of a term; if

RuleC 'x+ 0 = x'

is applied to the term (1+0)� 3, it fails. There are a variety of higher-order onversions that map

a onversion suh as RuleC over all subterms of a term. An example of a onversional is SweepUpC :

onvn -> onvn. If is a onversion, then SweepUpC is also a onversion. if SweepUpC is applied

to some term t, an attempt is made to apply one to eah subterm of t working from the leaves

of term t up to its root. SweepUpC only fails every every appliation of fails. So if

94

SweepUpC (RuleC 'x+ 0 = x')

is applied to term (1 + 0)� 3, it sueeds and returns the term 1� 3.

The basi onversion for sequening onversions is ANDTHENC : onvn -> onvn -> onvn. In

Nuprl, we reserve all-apital names for in�x funtions so a normal appliation of ANDTHENC to

onversions

1

and

2

has form

1

ANDTHENC

2

. When applied to a term t,

1

ANDTHENC

2

�rst

applies

1

to t. If

1

sueeds, returning a term t

0

, then

2

is applied to t

0

and the result is returned.

If either

1

or

2

fails, then

1

ANDTHENC

2

also fails. By analogy with tatials being higher-order

tatis, ANDTHENC is alled a onversional.

The ORELSEC : onvn -> onvn -> onvn onversional is for ombining alternative onversions.

When

1

ORELSEC

2

is applied to a term t, it �rst tries applying

1

to t, and if this sueeds returns

the result. If the appliation of

1

fails, then it tries applying

2

to t, failing if

2

fails.

The de�nition for SweepUpC is:

letre SweepUpC t = (SubC (SweepUpC) ORTHENC) t

SubC : onvn -> onvn when applied to a onversion and a term t, applies to eah of the

immediate subterms of t. It fails only when fails on every immediate subterm. Hene, it always

fails when t is a leaf node and has no immediate subterms.

1

ORTHENC

2

is similar to

1

ANDTHENC

2

in that it �rst tries

1

and then

2

. However ORTHENC only fails if both

1

and

2

fail. So, a all of

SweepUpC on argument t �rst tries to apply SweepUpC to the immediate subterms of t and then

then tries to apply to t itself. Note that without the t argument on the left and right sides of the

de�nition, SweepUpC in ML's all-by-value evaluation sheme would reurse inde�nitely.

The de�nition for ORTHENC is:

let 1 ORTHENC 2 = (1 ANDTHENC TryC 2) ORELSEC 2

where TryC is de�ned as ORELSE IdC and IdC: onvn, when applied to any t, always returns t.

Other onversionals that are ommonly used in the work desribed in this thesis are:

� FirstC : onvn list -> onvn whih is an n-ary version of ORELSEC,

� RepeatC : onvn -> onvnwhih repeatedly tries applying a onversion till no further progress

is made,

� HigherC : onvn -> onvn whih applies a onversion to only nodes higher in a term tree.

What I mean by `higher' is probably best understood by studying the de�nition of HigherC:

letre HigherC t = (ORELSEC SubC (HigherC)) t

� SweepDnC : onvn -> onvn whih sweeps a onversion down over a term tree from the root

towards the leaves. Its de�nition is:

letre SweepDnC t = (ORTHENC SubC (SweepDnC)) t

� NthC int -> onvn -> onvn. NthC i t tries on eah node in t in pre-order order, but only

on the ith suess of does it go through with the rewrite that suggests. This is very useful

during interative proof when for example you want to unfold one instane of a de�nition but

not any others.

95

9.7.4 Nuprl Conversions

In Nuprl, onvn is an ML onrete type abbreviation for the type

env -> term -> (term # reln # just).

env, reln and just are abstrat types for environments, relations and justi�ations. A onversion

is a funtion that takes as arguments an environment e and a term to be rewritten t, and returns

a triple ht

0

; r; ji. The environment e spei�es amongst other things the types of all the variables

whih might be free in the term t. The term t

0

is the rewritten version of the term t. The relation

r spei�es the relationship between t and t

0

. Writing r using in�x notation, we an say that t r t

0

is

true. The relation r is usually some equivalene relation but it also an be an order relation. The

justi�ation j is an objet that tell Nuprl how to prove that t r t

0

. Conversions fail if they are not

appropriate for the term they are applied to. More information on environments, rewrite relations,

and justi�ations an be found in Setion 9.7.8,Setion 9.7.9 and Setion 9.7.10 respetively.

A tati Rewrite : onvn -> int -> tati is used for applying a onversion to some lause

of a sequent. It takes are of exeuting the justi�ations generated by onversions. Setion 9.7.6

lists ommon variations on this tati.

Atomi onversions are either based on diret omputation rules or an be reated from lemmas

and hypotheses. Conversions are omposed using higher order funtions alled onversionals in a

way similar to the way in whih tatis are omposed using tatials. One set of onversionals are

for ontrolling the sequene in whih atomi onversions are applied to the subterms of a term.

Conversionals rely for their orret funtioning on a variety of di�erent kinds of lemmas being

proven about the relations r and the terms making up any lause being rewritten; lemmas are re-

quired that state reexivity, transitivity and symmetry properties of the relations r and ongruene

properties of the terms making up the lauses. These lemmas are desribed in Setion 9.7.7.

9.7.5 Conversion Desriptions

The desriptions assume the onversion has been applied to an environment e:env and a term

t:term. Types of arguments to onversions are:

* : onvn type of onversions

s* : onvn list

e* : env environment

i j : int hypothesis or lause indies

addr : int list subterm address

a : tok name of abstration

name : tok name of lemma or ahed onversion

names : tok list list of names

t t1 t2 : term

9.7.5.1 Trivial Conversions

FailC always fail

IdC identity onversion

96

9.7.5.2 Lemma and Hypothesis Conversions

The onversions here derive rewrite rules from lemmas and hypotheses. Formulae that are lemma

goals or hypotheses are treated as having the struture of either simple or general universal formulae

(see Setion 9.1.3 for de�nitions of these) . The onsequents of these formulae must eah be of form

a r b where r usually (but not always) an equivalene relation. Any relation r that is going to be

reognized by the rewrite pakage must be initially delared to it. See Setion 9.7.9 for details.

The onversions desribed here all rewrite in a left-to-right diretion: they replae instanes of

a's by instanes of b's. Eah has a twin onversion that works right-to-left. These twins have the

pre�x Rev to their names. For example, RevLemmaC is the twin to LemmaC.

LemmaC name

Considering name as a simple universal formula with onsequent a r b, LemmaC reates a on-

version to rewrite instanes of a to instanes of b.

HypC i

Considering hyp i as a simple universal formula with onsequent a r b, HypC reates a onversion

to rewrite instanes of a to instanes of b.

LemmaC is an instane of

GenLemmaWithThenLC

(n:int)

(hints: (var # term) list)

(Tas:tati list)

(name: tok)

and HypC is an instane of

GenHypWithThenLC

(n:int)

(hints: (var # term) list)

(Tas:tati list)

(i: int)

The arguments to these onversions are as follows:

n indiates that the nth onsequent of a general universal formula. If -1 is used for n then the

formula is always treated as simple. In partiular, a , relation is treated as the relation in

the onsequent rather than part of the struture of a general universal formula.

hints is for supplying bindings for variables in the lemma that Nuprl's mathing routines an't

guess on their own.

Tas is used for onditional rewriting. Conditional rewriting is when the anteedents of a formula

are heked for validity before the rewrite rule is used.

Tatis in Tas are paired up with subgoals formed from instantiated anteedents and eah

tati is run on its orresponding subgoal. The rewrite goes through only if every tati

ompletely proves its subgoal.

If there are fewer Ts than anteedents, Ts is padded on the left up to the length of the

anteedents with opies of the head of Ts. If Ts is empty, then the rewrite goes through

unonditionally.

97

name is the name of the lemma.

i is the number of a hypothesis. As with tatis, hypotheses are onsidered to be numbered

positively from the beginning of the list onwards, and numbered negatively from the end

bakwards. Oasionally, negative numbers an have unexpeted results. See below for an

explanation.

Other useful speializations of GenLemmaWithThenLC and GenHypWithThenLC are:

GenLemmaC n name = GenLemmaWithThenLC n [℄ [℄ name

LemmaWithC hints name = GenLemmaWithThenLC (-1) hints [℄ name

LemmaThenLC Tas name = GenLemmaWithThenLC (-1) [℄ Tas name

GenHypC n i = GenHypWithThenLC n [℄ [℄ i

HypWithC hints name = GenHypWithThenLC (-1) hints [℄ i

HypThenLC Tas name = GenHypWithThenLC (-1) [℄ Tas i

The hypothesis onversions desribed here derive their rewrite rules from loal hypotheses in

the environments that they are presented with on their �rst appliations (see Setion 9.7.8) for a

desription of what loal hypotheses are). If the onversions are applied with onversionals suh as

HigherC or NthC that start applying their argument onversion at the top of a term, then the loal

hypothesis list is always the same as the hypothesis list of the sequent ontaining the lause being

rewritten.

Older versions of the hypothesis onversions required that the environment from whih the

rewrite rule was to be aptured be provided as a seperate argument to the onversion. This turned

out in most instanes to be rather lumsy.

9.7.5.3 Atomi Diret-Computation Conversions

These low level onversions are not usually invoked diretly by the user. However, there are ases

when they turn out to be useful.

TagC tagger Do forward omputations indiated by tags in (tagger t).

Fail if tagger fails. tagger should be simple. e.g. tag redex

RedexC If t is a primitive redex, ontrat it.

ExtratC names If t is the extrat term of a theorem listed in names

then expand it.

AnyExtratC If t is any extrat term, then expand it.

UnfoldTopAbC If t is an abstration, unfold it.

UnfoldsTopC as If t is an abstration with opid listed in as, unfold it.

UnfoldTopC a = UnfoldsTopC [a℄

FoldsTopC as Try to fold an instane of an abstration whose de�nition

is given in a library objet named in as.

FoldTopC a = UnfoldsC [a℄

ReUnfoldTopC a If a is a reursively de�ned term, then

unfold the reursive de�nition.

ReFoldTopC a Try to fold an instane of the reursively de�ned term a.

ReUnfoldTopC and ReFoldTopC work only with reursive de�nitions that have been intro-

dued with the redef funtion. See Setion 10.2.4 for more details.

98

9.7.5.4 Attributed Abstrations

Abstrations an be grouped by adding attributes (sometimes alled onditions) to abstration

objets. An atomi onversion for unfolding abstrations that is sensitive to attributes is:

AUnfoldsTopC (attrs : tok list)

If applied to a term t that has any of the attributes attrs, then unfold it.

9.7.5.5 Abstrat Redies

It is frequently useful to augment the primitive redies that the system reognizes with abstrat

redies, primitive redies that are buried under abstrations. For example, the �rst and seond

projetion funtions for pairs are abstrations:

*A pi1 t.1 == let <x,y> = t in x

*A pi2 t.2 == let <x,y> = t in y

The term <"a","b">.1 is an abstrat redex. It ontrats to the term "a".

The basi onversion for ontrating both primitive and abstrat redies is AbRedexC. Abstrat

redies are added to a table that AbRedexC aesses using the funtion

add_AbRedue_onv

(id:tok)

(:onv) ,

where id is the opid of the outermost term of the redex, and is a diret-omputation onversion

for ontrating instanes of the redex. Note that if the outermost term is an apply term, then the

id is taken from the term at the head of the possibly-iterated appliation.

Instanes of add AbRedue onv are usually inluded in ML objets positioned immediately

after the de�nitions of non-anonial abstrations. For example, the delaration of the redex for

the pi1 term ould be

*M pi1_eval

let pi1_evalC =

SimpleMaroC `pi1_evalC`

d

<a, b>.1

e d

a

e

``pi1``

;;

add_AbRedue_onv `pi1` pi1_evalC ;;

An alternative method for indiating an abstrat redex is to assoiate a `reduible' attribute with

an abstrat non-anonial term. The AbRedexC onversion on being applied to a term �rst unfolds

all reduible abstrations at the top level of the term tree before further analyzing the term to see

if it is a redex. When this method is appliable, it is more onise than using add Redue onv. A

reduible attribute is assoiated with a term using the funtion

add_reduible_ab : tok -> unit

It takes as its token argument the opid of the term.

99

9.7.5.6 Redution Strengths and Fores

Cases ome up when it is desirable to have some redies ontrated but not others. To this end, an

option is provided for speifying the strength of a redex, and a variant of the Redue tati allows

for a fore to be spei�ed for reduing with. Strengths are fores are drawn from a partial order. A

redex is only ontrated when the redution fore applied to it is equal or greater than its strength.

A strength is assoiated with a redex in two ways:

� The strength is diretly assoiated with the redution rule for the redex.

� The strength is assoiated with the anonial term that is the prinipal argument of the

non-anonial term of the redex.

Strengths and fores are ML tokens. The urrent supported strengths, in inreasing order of

strength, are

`1` beta redies

`2` other primitive redies

`3` abstrat redies reursive

`4` abstrat redies non-reursive

`6` module projetion funs with oerion arguments. For example, the redex grp_op(add_grp_of_rng(r))

whih ontrats to rng_plus(r) has this strength.

`7` funtions reating module elements from onrete parts.

`1` quasi-anonial redies. An example is the set_ar term from the sets_1 theory when it has

list and produt disrete-set onstrutors as its prinipal argument. These onstrutors an

also be found in the sets_1 theory.

`9` irreduible terms.

Contration onversions that should be sensitive to the fore of redution an be added to the

abstrat redex table using the funtion

add_ForeRedue_onv

(id:tok)

(:tok -> onv) .

The token argument that the onversion takes is for the fore with whih redution is being

attempted.

Strengths an be assoiated with anonial terms using the funtion

note_redution_strength

opid : tok

strength : tok .

The basi onversion for reduing with fore F is ForeRedexC (F:tok). The onversion

AbRedexC always redues with maximum fore.

100

9.7.5.7 Composite Diret Computation Conversions

PrimRedueC = RepeatC (SweepUpC RedexC)

UnfoldsC as = SweepUpC (UnfoldTopsC as)

UnfoldC a = UnfoldsC [a℄

FoldsC as = SweepUpC (FoldTopsC as)

FoldC a = FoldsC [a℄

SemiNormC as = SweepDnC (RepeatC (UnfoldsC as)) ANDTHENC PrimRedueC

ReUnfoldC a = SweepUpC (ReUnfoldTopC a)

ReFoldC a = SweepUpC (ReFoldTopC a)

RedueC = Repeat (SweepDnC AbRedexC)

9.7.5.8 Maro Conversions

MaroC name 1 t1 2 t2

MaroC will rewrite an instane of t1 to the orresponding instane of t2 using forward and reverse

omputation steps. For example, a maro onversion might unfolds an abstration, unroll a reur-

sive or indutive primitive term, and then fold up an abstration. Spei� examples an be found

in the standard libraries - Look at the de�nitions of non-anonial abstrations. Spei�ally, look

at yomb unroll or pi1 eval.

1 and 2 must be diret omputation onversions whih rewrite the pattern terms t1 and t2

respetively to the same term. MaroC uses seond-order mathing when mathing instane terms

against t1. Also, any parameter variables in t1 will also be used in the math. name is used in the

onversion's failure token.

For examples of the use of MaroC look at the length unroll objet in the list 1 theory.

SimpleMaroC name t1 t2 as = MaroC name (SemiNorm as) t1 (SemiNorm as) t2

FwdMaroC name t = MaroC t IdC (apply onv t)

apply onv returns the term resulting from applying

 to t

101

9.7.5.9 Conversionals

1 ORELSEC 2 apply 1. If 1 fails, apply 2

TryC = ORELSEC IdC

1 ANDTHENC 2 apply 1. If 1 sueeds then apply 2. Otherwise fail

1 ORTHENC 2 = (1 ANDTHENC TryC 2) ORELSEC 2

ProgressC apply , but fail if result same as IdC

RepeatC = TryC (ProgressC ANDTHENC RepeatC)

Repeat1C = ANDTHENC RepeatC

RepeatForC n apply n times.

FirstC s = 1 ORELSEC ... ORELSEC n (Fail if s = [℄, 1 if s = [1℄)

SomeC s = 1 ORTHENC ... ORTHENC n (Fail if s = [℄, 1 if s = [1℄)

AllC s = 1 ANDTHENC ... ANDTHENC n (IdC if s = [℄, 1 if s = [1℄)

IfC p = if p t then else FailC

SubIfC q apply to seleted subterms in left to right order.

apply to ith subterm if (q t i) is true.

SubC = SubIfC (\t i.true)

NthSubC n = SubIfC (\t i. i = n)

AddrC addr apply to addressed subterm

NthsC ns Walk t in preorder order, tentatively applying , but only

doing onversions on the suesses of numbered in ns.

Avoid walking into subterms of any onverted subterm.

NthC n = NthsC [n℄

HigherC = ORELSEC SubC (HigherC)

LowerC = SubC (LowerC) ORELSEC

SweepDnC = ORTHENC SubC (SweepDnC)

SweepUpC = SubC (SweepUpC) ORTHENC

TopC = HigherC (Repeat1C)

DepthC = SweepUpC (Repeat1C)

9.7.6 Applying Conversions

Rewrite (:onvn) (i:int) : tati

Apply onversion to lause i. The subgoal with the result of the onversion is always labelled

main. The rest have various labels that all fall into the aux subgoal label lass.

RW =

def

Rewrite

RWH =

def

RW (HigherC)

RWU =

def

RW (SweepUpC)

RWD =

def

RW (SweepDnC)

RWN n =

def

RW (NthC n)

RWAddr addr =

def

RW (AddrC addr)

RewriteType (:onvn) (i:int) : tati

102

Apply onversion to type of member or equality term in lause i. The subgoal with the

result of the onversion is always labelled main. The rest have various labels that all fall into

the aux subgoal label lass. The advantage of this tati over the usual Rewrite is that this

generates simpler well-formedness goals. In partiular, this tati generates no well-formedness

goals involving the equands of the equality or the element of the member term.

RWT =

def

RewriteType

apply onv (:onvn) (t:term) : term

apply onv evaluates a onversion with an empty environment. It is very useful for testing

onversions.

9.7.7 Lemma Support

The rewrite pakage must have aess to several kinds of lemmas in order to onstrut justi�ations

for rewrites. This setion desribes those lemmas.

Note that for order relations, one only needs lemmas for one diretion. For example, one doesn't

require both the lemma

` 8a; b; : a � b) b �) a �

and

` 8a; b; : a � b) b �) a �

If Nuprl �nds a lemma missing in the ourse of onstruting a rewrite justi�ation it prints out

an error message suggesting the kind and struture of the missing lemma. After entering it, you

need to evaluate the funtion

initialize rw lemma ahes : unit -> unit

on argument () in the ML Top Loop; for eÆieny reasons, the rewrite ode ahes information

about these lemmas and hasn't been set up yet to automatially update ahes after hanges to

the available lemmas in the library.

9.7.7.1 Funtionality Lemmas

Funtionality lemmas give ongruene and monotoniity properties of terms. They are required by

the SubC onversional to onstrut tati justi�ations for the rewrite of terms based on the tati

justi�ations for rewrites of the immediate subterms of those terms.

A funtionality lemma for a term with operator op should have the form

8z

1

:S

1

: : : z

k

:S

k

: 8x

1

; y

1

:T

1

; : : : ; x

n

; y

n

:T

n

: A

1

) : : :) A

m

) x

1

r

1

y

1

) : : :) x

n

r

n

y

n

) op(x

1

; : : : ;x

n

) R op(y

1

; :::; y

n

)

where k � 0 and m � 0. The 8's and A's an be intermixed, but the anteedents ontaining the r

i

must ome afterward and be in the same order as the subterms of op.

The SubC onversional �nds funtionality lemmas in the library by assuming that a naming

onvention has been followed. Spei�ally, the funtionality lemmas in the library for operator op

103

should be named opid funtionality[index℄ where opid is the opid of op and index is an optional

suÆx, used to distinguish lemmas when there is more than one for a given op.

Funtionality lemmas are not expliitly needed when the r

i

and r are all Nuprl's equality. In

this ase the funtionality information an be derived from the well-formedness lemma for op.

If op binds variables in its subterms, then those same variables should be bound by universal

quanti�ers wrapped around the appropriate r

i

anteedents. For example, the lemma for funtion-

ality of 9 with respet to the , relation is:

` 8A

1

; A

2

:U

i

8P

1

:A

1

! P

i

8P

2

:A

2

! P

i

A

1

= A

2

2 U

i

) (8x:A

1

P

1

[x℄ , P

2

[x℄)

) 9x:A

1

: P

1

[x℄ , 9x:A

2

: P

2

[x℄

When more than one funtionality lemma is reated for a given operator, they must be ordered

with the spei� r

1

: : : r

n

�rst. SubC searhes for funtionality lemmas in the order in whih they

appear in the library and if this reommended order is not followed then it might pik up the wrong

lemma.

9.7.7.2 Transitivity Lemmas

Transitivity lemmas give transitivity information for rewrite relations. They are used to onstrut

the tati justi�ation in the ANDTHENC onversional.

Transitivity lemmas should be of form:

8z

1

:S

1

: : : z

k

:S

k

: 8x

1

; x

2

; x

3

:T: A

1

) : : :) A

m

) x

1

r

a

x

2

) x

2

r

b

x

3

) x

1

r

x

3

where k � 0 and m � 0. For now there is a restrition that r

should be the weaker of r

a

and r

b

.

ANDTHENC �nds transitivity lemmas in the library by assuming that a naming onvention has

been followed. The lemmas must be named opid-of-r

transitivity index, where the index is

optional, and is only needed to distinguish lemmas if there is more than one for a given r

. A

transitivity lemma is not needed for equality.

9.7.7.3 Weakening Lemmas

Weakening lemmas should have form

8z

1

:S

1

: : : z

k

:S

k

: 8x

1

; x

2

:T: A

1

) : : :) A

m

) x

1

r

a

x

2

) x

1

r

b

x

2

where k � 0, m � 0 and r

b

is some weaker relation than r

a

.

Lemmas in the library must be named opid-of-r

b

weakening index, where the index is optional,

and is only needed to distinguish lemmas if there is more than one for a given r

b

.

Currently weakening lemmas are required for all reexive relations r

b

with r

a

being equality.

They extend the usefulness of the transitivity and funtionality lemmas.

104

9.7.7.4 Inversion Lemmas

Inversion lemmas should have form

8z

1

:S

1

: : : z

k

:S

k

: 8x

1

; x

2

:T: A

1

) : : :) A

m

) x

1

r x

2

) x

2

r x

1

where k � 0 and m � 0. Inversion lemmas in the library must be named opid-of-r inversion.

Inversion lemmas are required for equivalene relations, but not equality or order relations.

They are used by the Rev* atomi onversions, and in onjuntion with the weakening, transitivity,

and funtionality lemmas when these lemmas mix order and equivalene relations.

9.7.8 Environments

An environment is a list of propositions and delarations of variable types and that are being

assumed. The environment of the onlusion of a sequent is the list of hypotheses of the sequent.

The environment of a hypothesis is all the hypotheses to the left of it. We an also talk about loal

environments of subterms of sequent lauses. For example, in the sequent

x

1

:H

1

; : : : ; x

n

:H

n

` 8y:T: B ! C

the loal environment for subterm C of the onlusion is

x

1

:H

1

; : : : ; x

n

:H

n

; y:T; B

The rewrite onversionals keep trak of the loal environment eah onversion is being applied

in, and every onversion takes as its �rst argument an e of type env whih supplies this loal

information.

The environment information is used by onversions in three ways by the atomi lemma and

hypothesis onversions.

� Delarations in the environment are used to infer types whih help to omplete mathes. (See

Setion 9.1.7).

� Environments are used to form the subgoals that have to be disharged for onditional lemma

rewrites to go through. For example, if C in

x

1

:H

1

; : : : ; x

n

:H

n

` 8y:T: B ! C

is rewritten by a rewrite rule based on the lemma

` 8z:T: A

z

) t

z

= t

0

z

and the variable z in the lemma is bound to a term s by the math of C against t, then the

subgoal whih has to be proven for the rewrite rule to be valid is

x

1

:H

1

; : : : ; x

n

:H

n

; y:T;B; ` A

s

� The hypothesis onversions aess the hyp list via environment terms.

Currently the system must be told expliitly how the environment is extended when it desends

to the subterms of a term. Built in is knowledge of the 8, 9 and) terms. The system assumes

other terms do not modify the environment, unless otherwise told by the user. see the env.ml �le

for further details.

105

9.7.9 Relations

9.7.9.1 Introdution

The rewrite pakage supports rewriting with respet to both primitive and user-de�ned equivalene

relations. Some examples are:

� �, the omputational equality relation,

� � = � 2 �, the primitive equality relation of the type theory,

� (), if and only if,

� � = �mod�, equality on the integers, modulo a positive natural,

� =

q

, equality of rationals represented as pairs of integers,

� �, the permutation relation on lists.

The pakage also supports `rewriting' with respet to any relation that is transitive but not

neessarily symmetri or reexive. This needs a bit of explaining. Proofs involving transitive

relations and monotoniity properties of terms an be made very similar in struture to those

involving equivalene relations and ongruene properties.

For example, onsider the following proof step that ame up Forester's development of real

analysis in Nuprl [?℄.

i:N

+

j:N

+

f :N

+

! N

+

mono(f)

`

1=fi+

q

1=fj �

q

1=i +

q

1=j

BY RWH (RevLemmaC `monotone le`) 0

`

1=i+

q

1=j �

q

1=i+

q

1=j

Here, the de�nition mono(f) is:

mono(f) =

def

8a; b:N

+

: a < b) f a < f b

and the theorem monotone_le is:

` 8f :N

+

! N

+

: mono(f)) 8n:N

+

: n � f n

The tati RWH i tries to apply the onversion one to eah subterm of lause i of the sequent

and the onversion RevLemmaC name onverts lemma name into a right-to-left rewrite rule. Other

examples of monotone rewriting an be found in Setion ??.

106

It is interesting to note that logial impliation) an be treated a rewrite relation, sine it is

transitive. When it is, we have a generalization of forward and bakward haining.

For eah user-de�ned relation, the user provides the rewrite pakage with lemmas about tran-

sitivity, symmetry, reexivity and strength (a binary relation R over a type T is stronger than a

relation R

0

over T if for all a and b in T , the relation a R b implies that a R

0

b). These lemmas are

used by the pakage for the justi�ation of rewrites (see Setion 9.7.7).

The user also provides a delaration in an ML objet that identi�es relation families and extra

properties of relations. These delarations are desribed in the next setion.

9.7.9.2 Delaring Relations

The rewrite pakage treats rewrite relations as �rst-order terms: the two prinipal arguments of

relations are expeted to be supplied as subterms rather than by appliation. If a relation term also

takes additional parameters as subterms, these should always be positioned before the prinipal

argument subterms. For example, the t = t

0

2 T equality relation has T as a parameter and has

logial struture equal(T;t;t

0

).

Relations are most ommonly typed-valued, but boolean-valued relations are also aepted by

the rewrite pakage. When a boolean-valued relation is to be used in a ontext where a type-valued

relation is expeted, the relation should be wrapped in the assert abstration whih onverts

boolean-valued expressions to type-valued ones.

Equivalene relations should be delared by an invoation of

delare_equiv_rel

rnam : tok

stronger-rnam : tok

=

() : unit

This delares the term with opid rnam to be an equivalene relation, and the term with opid

stronger-rnam to be an immediately stronger equivalene relation. Commonly, stronger-rnam will

be `equal`. Most often, there will be only one suh delaration for eah rnam. However, multiple

delarations for a single rnam are sometimes needed and are quite aeptable.

Order relations are grouped into relation families. A family is a lattie of order and equivalene

relations of form:

� �

= n = n

< = >

where weaker relations are higher in the lattie, and relations within a family satisfy

a < b () b > a

a � b () b � a

a = b () a � b ^ b � a

a < b () a � b ^ :(b � a)

The onverse of both strit and non-strit order relations R should always be de�ned diretly

in terms of R. For example, the de�nition of the abstration rev implies is

P (Q =

def

Q) P

107

The pakage assumes that order relations an be inverted by folding and unfolding suh de�nitions.

Family should be delared using an invoation of

delare_rel_family

lt : term

le : term

eq : term

ge : term

gt : term

=

() : unit

Dummy terms (with struture dummy(), displaying as ?, and entered using dummy) should be used

as plaeholders when a member of a family is missing. A notational abbreviation has been de�ned

for suh invoations whih an be entered by the name relfam. It displays as

Relation Family

<: [lt℄

�: [le℄

�: [eq℄

�: [ge℄

>: [gt℄

Examples inlude for the standard order relations on the integers

Relation Family

<: i < j

�: i � j

�: i = j

�: i � j

>: i > j

and for the `divides' and `assoiate' relation in a theory of anellation monoids [?, ?℄

Relation Family

<: a p| b in g

�: a | b in g

�: a �{g} b

�: a |by b in g

>: ?

If there are no de�ned order relations assoiated with an equivalene relation, then there is no need

to inlude the equivalene relation in an order relation family. It is quite permissable (and not

infrequent) that several order relation families share the same equivalene relation.

The partial order of strengths of relations is taken to be the reexive transitive losure of the

relation de�ned by the M-shaped graphs for eah family and the equivalene relation delarations.

Additional relations between order relations an be noted by using

delare_order_rel_pair

stronger-rtm : term

weaker-rtm : term

108

So far these methods of desribing the partial order have been adequate, though the methods might

well need reorganisation in the future.

These relation delarations should be inserted in ML objets that are positioned after the

referred-to relations have been de�ned, but before they are used in any lemmas that might be

aessed by the rewrite pakage.

In Nuprl4.1, the relation delarations

add_equiv_rel_info (name:tok) (rels:tok list) ;;

add_order_rel_info (name:tok) (inverse-name:tok) (is-re:bool) (rels:tok list) ;;

were used. These are now obselete and should be replaed by the ones desribed above.

9.7.10 Justi�ations

There are two types of justi�ations.

Computational Justi�ations These indiate preise appliations of the forward and reverse

diret omputation rules. They are omparatively very fast and generate no well formedness

subgoals. The rewrite pakage uses these whenever possible.

Tati Justi�ations These are more generally appliable. Extensive use is made of lemmas, and

many well formedness subgoals are generated.

Conversions generating both types of justi�ation an be freely intermixed; the system takes are

of onverting omputational justi�ations to tati justi�ations when neessary.

9.7.11 Substitution

Nuprl's logi has a ouple of rules for arrying out simple kinds of substitutions. These rules are

aessible through the tatis desribed here. Oasionally these rules are useful; they an generate

fewer and easier-to-solve well-formedness goals than the rewrite pakage.

Subst (eq:term)

eq should be a proposition of form t1 = t2 2 T . The e�et of Subst is to replae all ourrenes

of t1 in lause by t2. Three subgoals are generated; a main subgoal with the substitution

arried out, a wf subgoal to prove funtionality of the lause, and an equality subgoal to prove

that t1 = t2 2 T .For example:

H

1

: : : H

n

` C

a

BY Subst

0

a = b 2 T

0

0

main H

1

: : : H

n

` C

b

wf H

1

: : : H

n

; z:T ` C

z

= C

z

2 U

�

equality H

1

: : : H

n

` a = b 2 T

where U

�

is the inferred universe for lause . Universe inferene an be overridden by supplying

an optional universe argument with the Using tatial.

HypSubst i

Runs the Subst tati using the equality proposition in hypothesis i. Generates a wf subgoal

and a main subgoal.

109

RevHypSubst i

As HypSubst, exept that equality hypothesis is used right-to-left rather than left-to-right.

SubstClause t

Replae lause with term t. Generates a main subgoal and an equality subgoal.

9.8 Type Inlusion

Inlusion i

The Inlusion tati solves goals of form

: : : ; i:x:T; : : : ` x 2 T

0

or

: : : ; i:t 2 T; : : : ` t 2 T

0

where either types T and T

0

are equivalent or T is a proper subtype of T

0

. The spei� kinds

of relations between T and T

0

that the Inlusion urrently handles are roughly:

� T and T

0

are the same one all soft abstrations are unfolded

� T and T

0

are both universe or prop terms and the level of T is always no greater than the

level of T

0

for any instantiation of level variables.

� T and T

0

are eah formed by using one or more subset types, and both have some ommon

superset type. In this ase Inlusion tries to show that the subset prediates (if any) of

T

0

are implied by the subset prediates (if any) of T together with other hypotheses.

� T and T

0

have the same outermost type onstrutor. In this ase, the inlusion goal is

redued to one or more inlusion goals involving the immediate subterms of T and T

0

.

Currently works for funtion, produt, union and list types.

� There is a lemma in the library stating that T is a subtype of T

0

.

Inlusion also solves similar goals where one or both of the membership terms are replaed

by equality terms.

For the inlusion reasoning involving subset types to work, you need to supply information

about abstrations involving subset types using the funtion add set inlusion info. See the

theory int 1 for several examples of the use of this funtion.

9.9 Misellaneous

Cases [t1;...;tn℄

110

Does n-way ase split. For example:

: : : ` C

BY Cases [t

1

; : : : ;t

n

℄

assertion: : : : ` t

1

_ : : : _ t

n

: : : t

1

` C

.

.

.

: : : t

n

` C

GenConl 't = v 2 T'

v should be a variable. Generalizes ourrenes of t as subterms of the onl to variable v. Adds

new hypotheses delaring v to be of type T and stating that t = v 2 T .

ApFunToHypEquands (x:var) (v

x

:term) (V

x

:term) (i:int)

If hypothesis i is of form a = b 2 T , then this tati applies the funtion �x:v

x

to the terms a

and b to give a new hypothesis in the subgoal labelled main of form v

a

= v

b

2 V

a

. Also reates

a ouple of aux subgoals. See �le inlusion-tatis.ml for details.

Fiat

If you about to give up hope on a theorem, don't despair. This tati is guaranteed to provide

satisfation.

2

9.10 Autotatis

The autotatis are used primarily for typeheking. Trivial

Does various steps of trivial reasoning, inluding.

� NthHyp

� NthDel

� Eq

� Contradition - Both P and :P our in hypothesis list.

� Conl is the term True or one of the hypotheses is either the term False or the term Void.

Auto

Repeatedly tries the following until no further progress is made.

� Trivial

� GenExRepD

� MemCD for member and EqCD on reexive equality onlusions. Only works on non-reursive

primitive terms.

� Arith

2

This tati uses Nuprl's beause rule. The use of this rule should be regarded as experimental. Despite muh

hard work, neither Stu nor Doug have yet sueeded in proving it valid aording to any of their semantis.

111

� Arithmeti equality reasoning, in ase onl is a = b 2 T where a and b arithmetially

simplify to same. (By arithmetially simplify, we mean simplify subterms whih involve

the basi arithmeti operators +;�; �; = and rem

3

.)

� If onl is a 2 T or a = b 2 T where T is subset of the integers, then open up T .

SIAuto

Like Auto but also tries using the SupInf tati.

Auto'

Like Auto but uses the SupInf' tati instead of the Arith tati.

Auto and its variants frequently enounter the same goals over and over again, so

9.11 Transformation Tatis

PrintTexFile (name:string)

name should be a �lename without extension. Two �les are reated. name.prl is a �le whih an

be viewed by an appropriate version of emas running with one of Nuprl's 8-bit fonts. name.tex

is a self-ontained �le suitable for input to L

a

T

E

X.

Mark (a:tok)

Mark stores the proof tree at and below the point in the proof where it is invoked in the proof

register named a.

Restore (a:tok)

Restore the proof stored in proof register a by a previous Mark.

Copy (a:tok)

Run all the tatis assoiated with the proof stored in proof register a. Copy is useful if you

want to opy a pattern of reasoning used in one part of a proof to another part. Copy an also

be used to opy from one proof to another.

Z

Stores the urrent proof in the ML variable pf. This is very useful when debugging tatis.

9.12 Construtive and Classial Reasoning

9.12.1 Construtive Reasoning

The onstrutivity of Nuprl's logi manifests itself in two main ways with the tatis:

1. For any proposition P , the goal P _ :P is not in general provable.

2. When applying the D tati to a hypothesis that has a set term outermost, the prediate part

of the set term beomes a hidden hypothesis. For example:

: : : i:x:fy:T jP

y

g; : : : ` : : :

BY Di

: : : i:x:T; [i+ 1℄:P

x

; : : : ` : : :

3

Currently simpli�ation involving = and rem isn't working

112

Here, the [℄ surrounding the hypothesis number i+1 indiate that this hypothesis is hidden. A

hidden hypothesis is not immediately usable though there are ways in whih it might beome

usable later in a proof.

Tatis to simplify dealing with these issues are desribed in the next two setions.

9.12.2 Deidability

Many useful instanes of P _:P are provable onstrutively and the ProveDeidable tati is set

up to onstrut these proofs in a systemati way. To disuss it, we �rst introdue the abstration:

deidable: De(P) =

def

P _ :P

whih an be found in the ore 2 theory. It turns out that the property De(P) an be inferred

for many P from knowing that De(Q) for the immediate subterms Q of P . ProveDeidable takes

advantage of this fat and attempts to prove goals of the form

: : : ` De(P)

by bakhaining with any lemmas in the Nuprl library that have names with pre�x deidable .

(Note the two undersores.) There are many examples of suh lemmas in the ore 2 theory.

ProveDeidable is usually invoked via the Deide tati:

Deide (Q:term)

Used to ase-split on whether proposition Q is true or false. Generates two main subgoals; one

with the new assumption Q and the other with the new assumption :Q. Deide also reates

a subgoal : : : ` De(Q) and immediately runs the ProveDeidable tati on this subgoal.

ProveDeidable generates only subgoals with labels in the aux lass. If ProveDeidable fails

then Deide fails too. To understand why, use the tati Assert to assert De(Q) and run

the ProveDeidable1 tati to try and prove this assertion. ProveDeidable1 will generate

subgoals with label deidable? to indiate those omponents of Q that it ouldn't prove were

deidable. Use ProveDeidable1 rather than ProveDeidable; ProveDeidable fails when it

sees suh subgoals.

9.12.3 Squash Stability and Hidden Hypotheses

A hidden hypothesis P in a sequent � an be unhidden if one of two onditions are met:

1. The proposition P is squash stable.

2. The onlusion of � is squash stable.

A proposition is squash stable if it is possible to �gure out what its omputational ontent is, given

that you know that some omputational ontent exists (in the lassial sense). The omputational

ontent of a proposition is some term that inhabits the proposition when it is onsidered as a type.

The squash stable prediate is de�ned in the ore 2 theory as follows:

sq stable: SqStable(P) =

def

#P) P

113

The proposition # P (read `squash P') is onsidered true exatly when P is true. However, P 's

omputational ontent when true an be arbitrary whereas # P 's omputational ontent when true

an only be the trivial onstant term that inhabits the unit type. (# P is de�ned as fx:UnitjPg

where x does not our free in P).

As with deidability, it turns out that the property SqStable(P) an be inferred for many P

from knowing that SqStable(Q) for the immediate subterms Q of P . It is also true that De(P))

SqStable(P) for any P . The tati ProveSqStable takes advantage of these fats and attempts to

prove goals of the form

: : : ` SqStable(P)

by bakhaining with any lemmas in the Nuprl library that have names with the pre�xes sq stable

or deidable (note the two undersores in eah ase). There are many examples of suh lemmas

in the ore 2 theory.

Sine ProveSqStable an be rather slow, it isn't alled by the D tati when D is applied to

a set type hypothesis fx:T jP

x

g. However, D does hek the sequent onlusion for trivial ways in

whih it might be squash stable.

The D tati does reognise property lemmas for abstrations that are wrapped around set types.

Property lemmas state that partiular set type prediates are squash stable. If D is applied to an

abstration wrapped around a set type and there is a property lemma for the abstration, then the

prediate of the set type is always added unhidden to the hypothesis list.

Consider some abstration A

x

where the x are variables that have been slotted in for the

immediate subterms of A. Say that A

x

unfolds to fy:T

x

jP

x;y

g. Then the property lemma for A

should have form

` 8x:T : 8z:A

x

: P

x;z

and should be named opid properties where opid is the opid of A. Examples of properties lemmas

an be found in the theory int 1. Property lemmas an often be ompletely proven using the tati

ProvePropertiesLemma.

Tatis related to unhiding are as follows:

UnhideSqStableHyp i

Hypothesis i should be a hidden hypothesis. This tati tries to prove the hidden hypothesis

squash stable using ProveSqStable.

UnhideAllHypsSineSqStableConl

This tati tries to prove the onlusion squash stable using ProveSqStable. If it sueeds in

this, all hidden hypotheses are unhidden.

Unhide

Tries to unhide hidden hypotheses, �rst by heking whether the onlusion is squash stable

and then, if this fails, by heking whether eah hidden hypothesis is squash stable.

AddProperties i

Hypothesis i should be delaration of form A or a proposition of form t 2 A or t = t

0

2 A where

in either ase A is an abstration with a properties lemma. AddProperties adds the prediate

part of the set type underlying A as a new hypothesis immediately after i. It does not hange

hypothesis i.

114

9.12.4 Classial Reasoning

To reason lassially, you need to have as an expliit hypothesis

8P :P

i

:P _ :P

It is best to have this hypothesis in the form of the xmiddle abstration:

xmiddle: XM

i

=

def

8P :P

i

:De(P)

The Deide tati reognizes whenever the xmiddle abstration ours as some hypothesis, and

in this ase is trivially able to justify deidability. Also, the D tati on set types, maybe with

abstrations wrapped around them, always yields an unhidden set prediate, whether or not there

is an abstration with a properties lemma.

If you want to prove a non-onstrutive theorem, it is simplest to add the xmiddle proposition

as a preondition of the theorem, so that the theorem is of form ` XM

i

) P .

There are two ommon ases when in proving a part of a onstrutive theorem, lassial rea-

soning beomes admissable. These ases, and a reommended method in eah ase for adding an

xmiddle hypothesis are as follows:

1. If the onlusion is the squashed exists term # 9x:T: P

x

and you are about to apply the tati

With t (D 0). Squashed exists is de�ned in ore 1 as:

sq exists: # 9x:T: P [x℄ =

def

fx:T jP [x℄g

First use the tati AddXM:

: : : ` # 9x:T: P

x

BY AddXM 1 THEN With t (D 0)

wf XMi : : : ` t 2 T

main XMi : : : ` P

t

wf XMi : : : x:T ` P

x

2 P

i

AddXM 1 alone adds the hypothesis XMi as a hidden hypothesis, so there are no soundness

problems here. XMi beomes unhidden in the �rst and third subgoals sine here the on-

lusion is reognized as being trivially squash stable. XMi beomes unhidden in the seond

subgoal sine from here on, any omputational ontent in the proof annot ontribute to the

omputational ontent of the original goal of the theorem.

2. If the onlusion is squash stable. Again �rst run the tati AddXM 1. If the onlusion is

obviously squash stable, then XMi is added unhidden. If the onlusion is not obviously

squash stable and XMi gets added hidden, you should then run the Unhide tati.

The AddXM tati assumes that the proposition # (8P :P

i

:P _:P) is true; that is, the orrespond-

ing type is inhabited. This is a very reasonable assumption to make, but it is not true aording

to the semantis given for Nuprl's type theory in S. Allen's thesis.

115

9.13 Further Information

Consult the ML �les. Start with load-ml.ml whih loads all the other ML �les.

116

Chapter 10

Theories

10.1 Theory Struture

The main diretories ontaining theories are listed in Setion 1.5. Eah theory diretory ontains

an ML �le theory-init.ml. This �le ontains ommands that tell Nuprl about the theories in the

theory diretory, inluding information about the dependenies of theories on one another. It also

should ontain omments that summarize the ontents of eah theory in the diretory.

Theory diretories should also ontain up-to-date listings of eah theory. Short listings are

named theory-name.prl and long listings ontaining printouts of proofs are named theory-name long.prl.

These listings use haraters from Nuprl's 8-bit harater set and so are best viewed using an editor

running with one of Nuprl's fonts. There are also self-ontained L

a

T

E

X versions of the listings in

�les with .tex rather than .prl �le-name extensions.

ML ommands for reating, loading, editing, dumping and printing theories are desribed in

Setion 3.4.3.

10.2 De�nitions

10.2.1 Struture

A de�nition in a Nuprl theory for a term with opid opid usually inludes the following objets in

the order in whih they are listed here:

� A display form objet, usually named opid df, speifying how instanes of the de�nition

should be displayed. The right-hand-side of eah lause in the display form de�nition shows

the abstration without any display forms. Its useful to look at this if you are onfused as to

the struture of a abstration.

� An abstration objet, usually named opid, that spei�es how the de�nition unfolds. You

indiate to the Unfold tati abstrations to unfold by giving the opids of the abstrations.

However, the Fold tati takes the names of the objets in whih the abstrations are de�ned.

When opid is used as the name of the abstration objet, the same name an be used for

referring to an abstration when folding and unfolding.

117

� A well-formedness lemma, usually named opid wf, that helps Nuprl type-hek the de�nition.

Oasionally there is more than one well-formedness lemma, in whih ase the objets are

distinguished by adding suÆes to opid wf.

Sometimes there are extra ML objets and lemmas assoiated with a de�nition. De�nitions

are not only used for the Nuprl objet language; they are also in nearly all the strutures that are

edited using the Nuprl editor. No well-formedness lemma is appliable in these ases.

De�nitions an be set up, by reating eah objet in turn and editing its ontents from srath.

This is a rather laborious proess. The following setions desribe various ML funtions that an

be evaluated in Nuprl's ML Top Loop to more rapidly set up new de�nitions.

Nuprl abstrations annot be reursive. However, reursive de�nitions an be introdued by

using the Y ombinator. See Setion 10.2.4 for details.

10.2.2 Adding Untyped De�nitions

The funtion

utdef

lhs : term

rhs : term

plae : string

=

() : unit

reates de�nitions without typing lemmas. lhs is the new term onstrutor and rhs is the what it

is de�ned as. lhs and rhs are used for the left-hand and right-hand sides of the abstration for the

new de�nition. plae is a library position as desribed in Chapter 7. lhs is invariably a new term,

so you usually will want to use the new term reation feature of the term editor to enter it (see

Setion 4.5.1). If the opid of the new de�nition is id, then utdef adds 2 new objets to the library

starting at position plae:

� a display objet named id df whih de�nes a default display form for the lhs term,

� an abstration objet named id. lhs and rhs are used for the left-hand and right-hand sides

of the abstration.

utdef has no e�et if an objet with name id already exists. Often after running utdef you will

want to ustomize the display form. For example you might add whitespae related formats to the

display form left-hand side.

10.2.3 Adding Typed Non-Reursive De�nitions

The funtion

def

tdef : term

plae : string

=

() : unit

118

reates de�nitions with typing lemmas. The term tdef should have struture

8x

1

:T

1

: : : x

k

:T

k

: A

1

) : : :) A

m

) lhs = rhs 2 V

where k � 0 and m � 0. The term lhs is the new term being de�ned and the term rhs is what

it is being de�ned as. All the free variables in lhs should be appropriately typed in the ontext

x

1

:T

1

: : : x

k

:T

k

. plae is a library position.

On evaluation of def, a display form objet opid df, an abstration opid, and a typing lemma

opid wf are reated. The typing lemma is onstruted from the tdef term. It has form:

8x

1

:T

1

: : : x

k

:T

k

: A

1

) : : :) A

m

) lhs 2 V

An attempt is made to prove it by unfolding the abstration and running the Auto tati. In most

ases, this attempt sueeds in ompletely proving the lemma.

Note that the so apply abstration should be used for the seond-order variables in the lhs and

rhs terms. def takes are of onverting these to seond-order variables for the abstration objet.

When doing proofs, the basi tatis for folding and unfolding de�nitions are the Fold and

Unfold tatis. See Chapter 9 for details.

Currently, the only kinds of parameter variables that an be used in typed de�nitions are level

expression variables. This is beause Nuprl doesn't urrently allow any other kinds of parameter

variables in lemma goals and in proofs. Hopefully this should be �xed soon.

An example invoation of def is:

M> def

>

d

8A,B:U. 8p:A � B. pr_swp{}(p) = <p.2, p.1> 2 B � A

e

> "-test_1_end" ;;

This reates the library objets

*D pr_swp_df

pr_swp(<p:p:*>)== pr_swp{}(<p>)

*A pr_swp pr_swp(p) == <p.2, p.1>

*T pr_swp_wf

8A,B:U. 8p:A � B. pr_swp(p) 2 B � A

10.2.4 Adding Reursive De�nitions

Nuprl's objet language ontains terms for doing reursion over types suh as lists and integers.

These terms an be awkward to use, and we reommend instead that all reursive de�nitions are

built using the Y-ombinator. The ML funtion redef greatly simpli�es onstruting general re-

ursive de�nitions using the Y-ombinator. redef also takes are of introduing a well-formedness

lemma for the de�nition. Its usage is:

redef

tdef : term

plae : string

=

() : unit

119

The term tdef should have struture

8x

1

:T

1

: : : x

j

:T

j

: 8y

1

:S

1

: : : y

k

:S

k

: A

1

) : : :) A

l

) lhs = rhs 2 V

where the term lhs has form

idfp

1

; : : : ; p

i

g(x

0

1

; : : : ;x

0

j

0

) y

1

y

2

: : : y

k

;

i; j; j

0

; k; l � 0, the variables x

0

n

are a subset of the variables variables x

n

, and none of the variables

y

n

are free in any of the anteedent propositions A

n

.

redef allows you to reate reursive de�nitions with both urried arguments y

1

: : : y

k

supplied

by appliation, and subterm arguments x

0

1

: : : x

0

j

0

. The parameters p

1

: : : p

i

are spei�ed as in

abstration de�nitions.

The rhs term should inlude at least one instane of the head of the appliation in lhs. That is,

a term of form

idfp

1

; : : : ; p

i

g(t

1

; : : : ; t

j

0

)

where the p

n

's are the same as in lhs. All the free variables in lhs should be appropriately typed

in the ontext x

1

:T

1

: : : x

j

:T

j

. plae is a library position.

On evaluation of redef, four objets are added to the library.

� A display objet named id df whih de�nes a default display form for the id term.

� an abstration objet named id whih de�nes the abstration

idfp

1

; : : : ; p

i

g(x

0

1

; : : : ;x

0

j

0

)

=

def

Y (�f x

0

1

: : : x

0

j

0

y

1

: : : y

k

: rhs [idfp

1

; : : : ; p

i

g(t

1

; : : : ; t

j

0

) 7! f t

1

: : : t

j

0

℄) x

0

1

: : : x

0

j

0

� An ML objet named id ml. This ontains an invoation of a ML funtion that updates ahes

that hold information onversions related to the de�nition. These onversions are desribed

below. This funtion invoation is given the display form:

lhs ==r rhs

and it serves to doument the reursive de�nition. For this reason, the abstration objets in

reursive de�nitions are usually made invisible in theory listings.

� A theorem objet named id wf for a well-formedness theorem. The goal of the theorem is

onstruted from the tdef term. It has form

8x

1

:T

1

: : : x

j

:T

j

: A

1

) : : :) A

m

) idfp

1

; : : : ; p

v

g(x

1

; : : : ;x

j

) 2 y

1

:S

1

! : : : y

k

:S

k

! V :

An initial tati is exeuted on the goal of this theorem to set up a subgoal that is usually

suitable for indution. You then need to go in and omplete the proof of this theorem yourself.

120

As with def, so apply abstration should be used for the seond-order variables in lhs and rhs.

redef takes are of onverting these to seond-order variables for the abstration objet.

The basi onversions assoiated with a reursive de�nition are ReUnfoldTopC and ReFoldTopC.

If the de�nition has arguments provided by appliation, then additional onversions ReEtaExpC

and ReEtaConC are de�ned to �=-expand and �-ontrat the de�nition. More information on

these and related onversions an be found in Setion 9.7.5.

An example invoation of redef from the ML Top Loop is:

M> redef

>

d

8S,T:U. 8f:S ! T. 8as:S List.

map{}(f) as

= ase as of

[℄ => [℄

a::as' => (f a)::(map{}(f) as')

esa

2 T List

e

> "-test_1_end" ;;

This reates the following library objets:

D map_df map(<f:f:>)== map{}(<f>)

*A map

map(f) ==

Y

(�map,as.

ase as of

[℄ => [℄

a::as' => (f a)::(map as')

esa)

*M map_ml

map(f) as

==r ase as of

[℄ => [℄

a::as' => (f a)::(map(f) as')

esa

#T map_wf

8S,T:U. 8f:S ! T.

map(f) 2 S List ! T List

10.2.5 Adding Set De�nitions

Often new types are de�ned as subsets of old types using Nuprl's set type. Usually, there are

standard extra objets assoiated with set de�nitions. The funtion setdef is a variant on def

that automatially reates default versions of these extra objets that are good enough for most

purposes. It's usage is idential to that of def.

The extra objets reated are:

� an ML objet id_ml_in. This tells Nuprl how to prove type-inlusion relationships between

the old and new types.

121

� a properties lemma id_properties. This helps in aessing the set prediate information. The

struture and use of properties lemmas is desribed in Setion 9.12.3.

The properties lemma is automatially proven providing the set prediate is squash stable. In

the event that you want to introdue a set de�nition with a prediate that isn't squash stable,

it is useful to use instead a squashed version of the prediate; squashed prediates are always

squash-stable.

In order to add these extra objets for existing de�nitions the funtion

add_in_objs : tok -> unit

an be used. Its argument should be the opid of the de�nition.

An example invoation of setdef is

M> setdef

>

d

8T:U. 8n:N.

ve{}(T; n) = {as:T List| ||as|| = n} 2 U

e

> "-test_1_end" ;;

and the objets reated by this invoation are:

*D ve_df

ve(<T:T:*>;<n:n:*>)== ve{}(<T>; <n>)

*A ve

ve(T;n) == {as:T List| ||as|| = n}

*T ve_wf 8T:U. 8n:N. ve(T;n) 2 U

*M ve_ml_in

add_set_inlusion_info

`ve` `list`

AbSetDForIn Auto ;;

*T ve_properties

8T:U. 8n:N. 8as:ve(T;n). ||as|| = n

Sometimes, the prediate in a set de�nition an have a number of parts and it is desirable to

have a property lemma for eah part. The funtion

add_seperate_property_lemmas : tok -> unit

an be used to add suh property lemmas. It assumes that ompound and basi attributes have

appropriately been added to the de�nitions of the abstrations used in the prediate.

10.3 Notational Abbreviations for ML

Nuprl abstrations an be used to provide notational abbreviations for ML. A ouple of urrent

abstrations for ML add ommon suÆes to tatis.

� (T ...) is an abbreviation for T THEN Auto. An editor ommand h-.it, given when at a

text ursor when editing ML, inserts this abbreviation and leaves a text ursor at the internal

slot for the argument T .

� Similarly, (T ...a) is an abbreviation for T THENA Auto, and the appropriate editor om-

mand is h-.ia.

122

10.4 Module Types

Support is provided for de�ning module types. These are essentially reord types, where the type

of eah �eld of an instane an depend on previous �elds of the instane. They are very useful

for de�ning ADT's (abstrat data types) and algebrai lasses. Module types are allowed to have

parameters. For example, an ADT for queues ould be reated that takes the type of queue elements

as a parameter. Module types are urrently implemented using Nuprl's � type.

An ML funtion reate_module helps with setting up new module type de�nitions, adding

projetion funtions, and updating the AbRedue tati to reognize appliations of the projetion

funtions.

The reate_module funtion should be used as follows:

1. Pik a name for your module; say modname.

2. Create an ML objet reate_modname to hold the reate_module invoation. The invoation

needs to be part of the library to ensure that the relevant omputation rules are added

eah time the theory ontaining the module de�nition is loaded. The funtion only reates

the de�nition objets themselves if they are initially absent. The invoation also serves to

doument the module. With the abstrations explained below, it presents a learer and more

suint aount of the module struture than do the de�nitions themselves that make up the

module.

3. It is most elegant to use a few abstrations to pretty up the invoation. Remember, when you

have a text ursor in a text sequene, a term slot an be opened up using h-ui, and when

you have a term ursor at an empty term slot, a text sequene an be inserted using h-;i.

The abstrations for modules urrently reside in the ml_1 theory.

The abstration holding the reate_module invoation has the editor alias lassdel. Enter

it in the ML objet by opening up a term slot in the objet's top level text sequene, and

typing the name lassdel. By keeping the top level of the ML objet a text sequene, you

are free for example to add ML omments preeding the reate_module invoation. Without

�elds �lled in, the lass delaration template should look like:

Class Delaration for: [example℄

Long Name: [string℄

Short Name: [string℄

Parameters:

[parms℄

Fields:

[fields℄

Universe: [uni℄

4. Enter modname for the Long Name and some abbreviation of this for the Short Name. The

short name is used as a pre�x for the names of the projetion funtions.

123

5. Initialize the [parms℄ and [fields℄ slots with empty text sequenes.

6. Open up a term slot in the Parameters list for eah parameter. Parameters are pairs of

variable names and types. They should be entered using another abstration with alias name

mlbd. This initially looks like

[var℄ : [type℄

where [var℄ is a text slot for the variable name, and [type℄ is a term slot for the orresponding

type of the variable. If there are no parameters, just leave the empty text sequene in this

slot.

7. Open up a term slot in the Fields list for eah �eld. As with parameters, you an use the mlbd

abstration for the �eldname and �eld type. Alternatively, you an use the mlbde abstration:

([example℄) [var℄ : [type℄

This has an extra term slot for an example of the projetion funtion for that �eld. Initially,

leave the term slot empty. Enter in the [var℄ slot the name of the �eld. The name of the

projetion funtion will be the name entered here with a suÆx of the short module name.

The type of a �eld an refer to onstant types, the inhabitants of earlier �elds or parameters.

Sine the mlbd or mlbde terms are embedded in a text sequene, you an insert linebreaks in

the sequene, by simply getting a text ursor in the sequene and typing
return

.

8. Fill in the [uni℄ slot with an appropriate universe term. This should be the lowest universe

that the module type inhabits. For example, if the module type itself involves no universes,

then this probably will be U

1

; if the module type involves universe terms U

i

, then this will

be U

i+1

, (ommonly abbreviated to U

0

).

Here is an example of a lass de�nition that has been instantiated aording to the proedure

given so far:

Class Delaration for: [example℄

Long Name: ation_set

Short Name: aset

Parameters:

T : U

Fields:

([example℄) ar : U

([example℄) at : T ! ar ! ar

Universe: U'

9. If you now hek this objet (use h-xih), the de�nitions for the module are reated in the

library. For the above example, the following de�nitions are reated:

124

*D ation_set_df

ation_set{<i:level>}(<T:T:*>)== ation_set{<i>:l}(<T>)

*A ation_set

ation_set{i}(T) == ar:U � (T ! ar ! ar)

*T ation_set_wf 8T:U. ation_set{i}(T) 2 U'

*D aset_ar_df <a:aset:E>.ar== aset_ar{}(<a>)

*A aset_ar a.ar == a.1

*T aset_ar_wf 8T:U. 8a:ation_set{i}(T). a.ar 2 U

*D aset_at_df <a:aset:E>.at== aset_at{}(<a>)

*A aset_at a.at == a.2

*T aset_at_wf

8T:U. 8a:ation_set{i}(T). a.at 2 T ! a.ar ! a.ar

10. If desired, edit the display forms for the module type and for the projetions. For example,

the display forms ould be hanged to:

*D ation_set_df

ASet{<i:level>}(<T:T:*>)== ation_set{<i>:l}(<T>)

ASet(<T:T:*>)== ation_set{i:l}(<T>)

D aset_ar_df |<a:aset:>|== aset_ar{}(<a>)

*D aset_at_df

Parens ::Pre(preop):: �<a:aset:E>== aset_at{}(<a>)

�== aset_at{}(<a>)

Here a ouple of abbreviated display forms are de�ned for the the module type, one of whih

hides the level expression in the ase that it is simply the level variable i. Standard notation

is hosen for the arrier, and the ation is denoted by a `�' harater. To avoid lutter, a

display form for the ation is de�ned that hides the instane of the ation_set module. This

an nearly always be determined from ontext.

11. Fill in the [example℄ slots in the module delaration. These serve purely to doument the

module, and are disarded when the system unfolds the lass delaration abstration into raw

ML ode. In the [example℄ slot on the �rst line, you should put an instane of the module

type, with the same parameter names as delared in the Parameters setion. You might also

insert a membership term or an mlbd term to indiate a prototypial element. For the above

example, you ould insert the term s 2 ASet(T) indiating that s is a prototypial element.

Fill in the example slots of the mlbd terms with examples of the relevant projetion funtions,

operating on the prototypial element delared in the uppermost example slot. In the example,

the terms |s| and �s ould be used.

With the given display form hanges, and example terms, the �nal version of the example

lass de�nition looks like:

125

Class Delaration for: s 2 ASet(T)

Long Name: ation_set

Short Name: aset

Parameters:

T : U

Fields:

(|s|) ar : U

(�s) at : T ! ar ! ar

Universe: U'

12. Exit the reate_modname objet.

Examples of lass de�nitions an be found in many of the algebra theories.

126

Appendix A

The Lisp Debugger

You an get thrown into the Lisp debugger in several ways; for example if Lisp is interrupted, if

a breakpoint was mistakenly left in the Nuprl ode or if you hit a bug. The partiular debugger

appearane and ommands given below are for Luid Common Lisp. Other Lisps should be similar.

The initial message put out by the debugger should tell you what aused it to be invoked. To

resume after an interrupt or breakpoint, enter:

:

return

To abort the urrent omputation and restart, enter:

:a

return

(nuprl)

return

If you get a rash, you an get more information on it as follows. The initial rash message

might look something like:

>>Error: The value of S, (TTREE 108 97 100 116 59 59), should be a STRUCTURE

SYSTEM:STRUCTURE-REF:

Required arg 0 (S): (TTREE 108 111 97 100 116 59 59)

Required arg 1 (I): 1

Required arg 2 (TYPE): TERM

:C 0: Use a new value

:A 1: Abort to Lisp Top Level

->

Here, the p-> q is the debugger prompt. Enter:

:b
return

Lisp prints a baktrae. For example:

127

-> :b

SYSTEM:STRUCTURE-REF <- OPERATOR-OF-TERM <- IDFORM-TERM-P <- (:INTERNAL

SOURCE-REDUCE VISIT) <- SOURCE-REDUCE <- TERM-TO-ML-ISTRING <-

PRL-SCANNER-INITIALIZE <- PRL-MLLOOP <- ML <- ML-MODE$ <- PROCESS-CMD

<- CMD-WAIT <- PRL-LOOP <- PRL <- EVAL <- SYSTEM:ENTER-TOP-LEVEL

->

Enter:

:n

return

2 or 3 times. For example:

tt -> :n

OPERATOR-OF-TERM:

Required arg 0 (TERM): (TTREE 108 111 97 100 116 59 59)

-> :n

IDFORM-TERM-P:

Required arg 0 (TERM): (TTREE 108 111 97 100 116 59 59)

->

This provides a bit more information on the last funtion alls. When you send in a bug report,

inlude the error message, baktrae and funtion alls you have obtained as above. Also, mention

briey what you were doing at the time of the rash.

To reover from a rash, enter

:a

return

at the debugger prompt. Lisp then prints a top level prompt. For example:

-> :a

>

Try restarting by entering

(nuprl)

return

If another rash follows immediately, the problem might be linked with the window system interfae.

Enter p:a

return

q to get bak to the top level, and then enter

(reset)

return

(nuprl)

return

On exeuting the (reset) funtion, all the Nuprl windows will lose and (nuprl) will open up an

initial ML-Top-Loop and library window. Any proofs you were just working on will not have been

lost. Use the view funtion to open them up again. However, you might have lost the ontents of

128

the last term-editor window you were working in.

If still the system rashes but you an exeute funtions in the ML Top Loop, try dumping

any theories you haven't previously saved, quit the Nuprl session, and start a new one (The quit

funtion is (quit). If you an't even get the ML Top Loop running, the bug is very serious. Your

only hoie is to quit the session, losing any work you've done and haven't saved, and start a new

session.

129

Bibliography

[Ble75℄ W. W. Bledsoe. A new method for proving ertain Presburger formulas. In 4th Interna-

tional Joint Conferene on Arti�ial Intelligene, pages 15{21, Tiblsi, 1975.

[For93℄ Max B. Forester. Formalizing onstrutive real analysis. Tehnial Report TR93-1382,

Computer Siene Dept., Cornell University, Ithaa, NY, 1993.

[Ja95℄ Paul B. Jakson. Enhaning the Nuprl Proof Development System and Applying it to

Computational Abstrat Algebra. PhD thesis, Cornell University, January 1995. Available

as Cornell Department of Computer Siene Tehnial Report TR95-1509, April 1995.

[Sho77℄ Robert Shostak. On the SUP-INF Method for Proving Presburger Formulas. JACM,

24(4):351{360, 1977.

130

