
A note on real quantifier elimination by virtual term
substitution of unbounded degree

Kristjan Liiva1, Grant Olney Passmore1,2, and Paul B. Jackson1

1LFCS, School of Informatics, University of Edinburgh
2Clare Hall, University of Cambridge

Abstract—We describe work in progress on constructing a
complete implementation of Weispfenning’s virtual term substi-
tution method for real closed field formulas of unbounded degree.
We build upon a recent high-performance library for computing
over non-Archimedean real closed fields using Thom’s Lemma.

I. INTRODUCTION

Weispfenning’s virtual term substitution (vts) approach to
real quantifier elimination is a compelling alternative to cylin-
drical algebraic decomposition, with many distinct advantages.
High-performance, widely-used implementations of vts exist
in tools such as Mathematica [6], Reduce/Redlog [1] and Z3
[3]. However, modulo various special cases, these implemen-
tations are all limited to the class of “essentially quadratic”
formulas, a vast restriction of the theory of real closed fields.

By exploiting Thom’s Lemma, it has long been known that
vts can in principle be uniformly lifted beyond the quadratic
case to formulas of unbounded degree. Unfortunately, this use
of Thom’s Lemma is rather intricate, and, to date, we know
of no implementation of the complete vts method.

In this note, we present our progress towards this goal.
By building upon a recent library for efficiently computing
over non-Archimedean real closed fields via a variant of
Thom encodings [4], we have completed an implementation
of unbounded vts for univariate formulas. Our hope is that
experimenting with this implementation will be instructive
for understanding the difficulties involved in general vts. We
describe this work and what remains in lifting it to the full
multivariate case.

II. PRELIMINARIES

We begin by recalling some basic real algebra. Let K be
a computable, finite-degree ordered field extension of Q, and
let K̃ be its real closure.

(Sign assignment). Given a set of polynomials G ⊂ K[x],
a sign assignment σ is a mapping σ : G → {1, 0,−1}. Sign
assignments may be represented by sets of atomic formulas,
e.g., {g1 7→ −1, g2 7→ 0, g3 7→ 1} by {g1 < 0, g2 = 0,−g3 <
0}.

(Sturm sequence). A Sturm sequence [s1, s2, . . . , sk] for
f, g ∈ K[x] is defined inductively as s1 = f , s2 = g,
si = −rem(si−2, si−1), s.t. rem(sk−1, sk) = 0. We use
sturm(f, g) to denote this Sturm sequence. Given a sequence
S, we use sv(S, a) for the number of sign changes (ignoring

zeros) in the sequence when each polynomial is evaluated at
a. We use sv(S, a, b) for sv(S, a)− sv(S, b).

(Tarski query). Given f, g ∈ K[x], we define

TaQ(g, f) =
∑

x∈R,f(x)=0

sign(g(x)),

where sign(α) is −1, 0 or 1 for α negative, zero or pos-
itive respectively. By the Sturm-Tarski theorem we have
that TaQ(g, f) = sv(S,−∞) − sv(S,+∞), where S =
sturm(f, f ′g).

(Sign determination). Given a polynomial f and a set of
polynomials G = {g1, . . . , gn}, we can calculate the list of
sign conditions realized by G on the roots of f by using
Tarski queries with either [2, Algorithm 10.9. Naive Sign
Determination] or more efficiently with [2, Algorithm 10.11.
Sign Determination]. We can do that by first computing the
number of distinct roots of f that satisfy a sign assignment σ.
We denote this quantity by #(σ, f).

III. VIRTUAL TERM SUBSTITUTION

Let us describe the basic idea of Weispfenning’s method1.
Consider

∃xϕ(x, y1, . . . , yn)

where ϕ is a ∧, ∨-combination of atomic formulas (fi �i 0),
s.t. fi ∈ K[x, y1 . . . , yn], �i ∈ {<,≤,=, 6=} and {1 ≤ i ≤
m}. Then, vts relies upon the following observations [7]:
• When y1, . . . , yn are fixed, the set S = {x ∈ K̃ | ϕ(x)}

is a finite disjoint union of intervals.
• The endpoints of these intervals are either roots of

polynomials appearing in ϕ or ±∞. The type of interval
(closed, half-open or open) depends upon the relation
appearing with the polynomial contributing the root.

• In order to test non-emptiness of S, one needs to evaluate
ϕ upon at least one sample point from each interval.

• By suitably extending the language of terms, this test can
be expressed2 as a finite disjunction of formulas ϕ[t/x],

1The vts method [7] is classically presented with polynomials drawn from
Q[x] and all roots represented residing in R. However, given the more general
class of real closed fields supported by the field arithmetic library upon which
we build [4], our implementation is of a more general version. We present
vts in this general setting, using K and K̃ instead of Q and R.

2Let α be a root of fi, then t is of form α if τi ∈ {≤,=}, α + ε if
τi ∈ {<, 6=}. t = −∞ is substituted without any connection to any atomic
formulas and only once.

where t ∈ {α, α + ε,−∞}, α ∈ Zer(fi) for some fi
appearing in ϕ, and ε an infinitesimal. Here, Zer(fi)
consists of extended terms representing the set of roots
of fi. We call the set of such t’s in the extended term
language test terms for ϕ.

• When fi contains some yj , this set of roots need not
be a fixed subset of K̃, but can be represented para-
metrically in an extended term language, modulo cer-
tain non-degeneracy assumptions. For instance, under
the non-degeneracy assumption that y22 − 4y1y3 ≥ 0,
the set Zer(y1x2 + y2x + y3) can be represented as

{−y2 ±
2
√
y22−4y1y3
2y2

}. In addition to obtaining extended
terms representing roots, one must also obtain extended
terms representing sample points drawn from regions
containing no roots. Infinitesimals and infinities are used
for this in the obvious way. Indeed, extending the term
language with a square-root operator 2

√, an infinitesimal
ε, and −∞ forms the basis of the vts method in the
quadratic case.

• Finally, once test terms have been suitably substituted
for x, simplification can be performed upon the resulting
formulas to eliminate all occurrences of extended terms.
Moreover, the QE process can be designed so that the
non-degeneracy assumptions become encoded in the re-
sulting formulas [7]. The result is a quantifier-free for-
mula in the language of ordered rings over K[y1, . . . , yn]
equivalent to ∃xϕ(x, ~y). For instance, in the quadratic
case, this simplification step removes all occurrences of
2
√, ε, and −∞, and the overall QE process conjoins e.g.
the non-negativity of the discriminant as appropriate.

The key difficulties of vts lie in:
1) Devising a method to unambiguously represent all real3

roots of polynomials p ∈ K[x] in an extended term lan-
guage. Recall that for Galois-theoretic reasons, radicals
will not in general suffice for polynomials of degree
5 and higher. A general representation working for all
polynomials can be derived from Thom’s Lemma.

2) Making precise the method of substitution and simplifi-
cation ϕ[t/x] when t involves extended terms, e.g., in-
finity, radicals, expressions with infinitesimals, and other
extended operators.

Let us first address (2) and the simplifications involving
infinitesimals and −∞. Following [7], we can rewrite substi-
tutions on atomic formulas to formulas either with no extended
terms or only extended terms involving exact roots.

First note4 that for any positive infinitesimal ε and for all

0 6= f(x) =
n∑
i=0

aix
i ∈ K[x], α ∈ K:

1) f(α+ ε) 6= 0,
2) f(α) 6= 0⇒ f(α) · f(α+ ε) > 0,
3) 0 = f(α) = . . . = f (k−1)(α) 6= f (k)(α)⇒

f (k)(α) · f(α+ ε) > 0.

3Here, real means an element of the real closure K̃.
4We’ll assume that if K contains other infinitesimals than ε, then ε is

infinitely smaller than any of them.

Defining ν as

ν(f) =

{
f < 0 if deg(f) = 0,
f < 0 ∨ (f = 0 ∧ ν(f ′)) if deg(f) > 0,

For all g =
n∑
i=0

bix
i ∈ K[x], we get

(g = 0)[α+ ε/x] ⇔
n∧
i=0

bi = 0,

(g < 0)[α+ ε/x] ⇔ ν(g)[α/x],

(g ≤ 0)[α+ ε/x] ⇔ (g < 0)[α+ ε/x] ∨ (g = 0)[α+ ε/x],

(g 6= 0)[α+ ε/x] ⇔
n∨
i=0

bi 6= 0.

Keeping in mind that a polynomial f(x) is eventually
dominated by its leading term, and by defining µ as

µ(f) =

b0 < 0

if deg(f) = 0,

(−1)nbn < 0 ∨ (bn = 0 ∧ µ(
n−1∑
i=0

bix
i)

if deg(f) > 0.
we get

(g < 0)[−∞/x] ⇔
n∧
i=0

bi = 0,

(g = 0)[−∞/x] ⇔ µ(g)[α/x],

(g ≤ 0)[−∞/x] ⇔ (g < 0)[−∞/x] ∨ (g = 0)[−∞/x],

(g 6= 0)[−∞/x] ⇔
n∨
i=0

bi 6= 0.

The unaddressed difficulties — representing roots in an
extended term language and performing simplifications to
remove the extended terms once substituted — are closely
related.

In order to support polynomials of arbitrary degree, we use
Thom’s lemma:

(Thom’s lemma). Any real root α of f(x) ∈ K[x] is uniquely
determined by the sign of its derivatives f ′(α), . . . , fd−1(α),
where d = deg(f(x)). Such a representation of a root is called
a Thom encoding.

For a full QE procedure, we need:
1) A method for “finding” all roots of a (parametric) poly-

nomial and representing them using Thom encodings,
2) A simplification method for eliminating extended terms

from formulas.
Combining (1) and (2) we get in essence a specialized form

of the quantifier elimination problem. And although we could
use CAD or any other full QE procedure, we have reason to
be believe that by using the special structure of the problem
there is a more efficient way to solve it.

IV. UNIVARIATE VTS AS EXEMPLAR

To illustrate the machinery described thus far, we shall
develop vts of unbounded degree for the restricted case of
univariate formulas. That is, we shall present (1) and (2) for
univariate polynomials.

Let us postpone (1) until the next section. For now, we shall
assume that we have in hand a Thom encoding of each the
root of all polynomials appearing in ϕ.

As in [4], we are only using a smaller discriminating sign
assignment on derivatives of polynomial as long as there is
only one root satisfying that assignment. Denote this discrim-
inating sign assignment corresponding to root α as Discf,α
and denote Derf,α as a set of derivatives that are in Discf,α
(both of these are trivially computable given Thom encodings
of all the roots of a polynomial).

Let α be a root of f(x). By using the algorithm for sign
determination, we can determine #(Discf,α∪{g = 0}, f(x)),
#(Discf,α∪{g > 0}, f(x)) and #(Discf,α∪{g < 0}, f(x)).
From them we can determine � such that (g(α)� 0) holds in
the obvious way:

if #(Discf,α ∪ {g = 0}, f(x)) = 1 then g(α) = 0,

if #(Discf,α ∪ {g > 0}, f(x)) = 1 then g(α) > 0,

if #(Discf,α ∪ {g < 0}, f(x)) = 1 then g(α) < 0.

Since Disc(α) specifies a single root, then only one of the
above conditions is true. Therefore, we get:

(g < 0)[α/x] ⇔ #(Discf,α ∪ {g < 0}, f(x)) = 1

(g = 0)[α/x] ⇔ #(Discf,α ∪ {g = 0}, f(x)) = 1

(g ≤ 0)[α/x] ⇔ (g = 0)[α/x] ∨ (g < 0)[α/x]

(g 6= 0)[α/x] ⇔ #(Discf,α ∪ {g = 0}, f(x)) = 0

Putting everything above together and taking into account
the remark from [7] about when can intervals be closed, half-
open or open we can define a quantifier elimination procedure
for univariate polynomials:

(Quantifer elimination for univariate polynomials). Let us
partition the set {1 ≤ i ≤ m} into two disjoints sets
I1 = {i | 1 ≤ i ≤ m ∧ τi ∈ {≤,=}} and I2 = {i | 1 ≤
i ≤ m ∧ τi ∈ {<, 6=}}, then we can eliminate variable x in
the following manner:
∃xϕ(x) is equivalent to

∨
i∈I1

α∈Zer(fi(x))

(
ϕ[α/x]

)
∨

∨
i∈I2

α∈Zer(fi(x))

(
ϕ[α+ ε/x]

)
∨ ϕ[−∞/x]

where the substitutions ϕ[α/x], ϕ[α + ε/x] or ϕ[−∞/x] are
performed in the obvious way.

V. VTS USING INFINITESIMALS LIBRARY

In order to implement full VTS on formulas involving
arbitrary degree univariate polynomials over K, we need a
procedure for finding Thom encoding representations of roots
for arbitrary degree polynomials. We could either use [2,
Algorithm 10.14. Thom Encoding] or the library implemented
in [4] for this. We have chosen the library. The operations we
can use the library for are:

1) Finding roots of polynomials f ∈ K, where K may
involve computable transcendentals and infinitesimals.
Roots are given as triples involving the defining poly-
nomial, sign assignments on the set of derivatives (of
the defining polynomial), and an interval containing the
root. The triples guarantee that the defining polynomials
have a single root in the interval with the specified sign
assignment on derivatives.

2) Basic computations involving these roots.
3) Constructing f ∈ K̃[x], where K̃ is an RCF possibly

containing infinitesimals and transcendentals.
Assuming that formula ϕ contains polynomials in K̃[x], with
the help of the library we can therefore:

(i) Find the elements of test terms for formula ϕ as elements
in K̃(ε) (where ε is infinitely smaller than all infinitesi-
mals appearing in K̃) and compute the concrete value for
all substitutions f [t/x] (taking −∞ as − 1

ε), thus making
it trivial to check the satisfiability of ϕ.

(ii) Find the symbolic representation of the set of test terms
in an extended term language, where each test term is
either a root of some polynomial appearing ϕ (as per
Thom’s lemma roots are represented as sign assignments
on derivatives5), root + ε or −∞, all of these are viewed
as improper expressions and are going to be substituted
by proper ones (as described in Section III). Thus making
it again possible to check the satisfiability of ϕ.

In practice (i) is more efficient than (ii). It is also more
intuitive to understand and easier to implement. On the other
hand, (ii) generalizes to the multivariate case more easily,
which is why we have pursued it. The key difficulty lies in ob-
taining (a) an efficient sign determination algorithm involving
multivariate polynomials, and (b) a method of finding efficient
parametric Thom encodings for roots. The rest of the QE
process will remain the same as in the univariate case. Our
hope is that by developing an implementation of unbounded
degree vts for univariate formulas, we can learn how to best
approach the multivariate case.

5For univariate polynomials, it would be more efficient to represent roots
directly as they are represented in the infinitesimals library, combining
intervals and (truncated) Thom encodings. However, we are trying to only
utilize techniques that will lift directly to the multivariate case, and we are
still exploring how this more efficient representation can be best used in the
multivariate case. The main place where this would have an effect is in the sign
determination algorithm. As that could be modified to still return #(σ, p), the
difference is not fundamental - one would have to use sv(S, a, b) (where a and
b are the of the interval corresponding to the root) instead of sv(S,−∞,∞)
in Tarski Queries. The improvement in efficiency comes from the fact that
by using an interval to uniquely determine a root, one might be able to use
smaller collections of assignments on derivatives.

VI. EXAMPLES

In this section, we present a small set of examples using our
implementation of unbounded univariate vts. The implemen-
tation depends on the library presented in [4] and is written
in Python6.

We are going to present some short examples of the imple-
mentation. Our library encodes polynomials as lists where the
i-th element corresponds to i-th power (as in [4]). For example,
a0 + a1 · x+ a2 · x2 + a3 · x3 is encoded as

[a0, a1, a2, a3].

In order to check formulas we are going to use the function
internal_vts(le, lt, eq, ne) (located in the module
(uni_vts) which determines the satisfiability of formula con-
sisting of conjuncts of the type of atomic formulas previously
mentioned7. The function implements the (ii) part of the previ-
ous chapter ((i) is implemented by internal_ts in uni_ts

module). The parameters of the function (and internal_ts)
correspond to lists of polynomials that are less or equal to
zero (le), strictly less than zero (lt), equal to zero (eq) and
not equal to zero (ne).

In the following, we’ll check the satisfiability of atomic
formulas involving polynomials x − 2, (x − 1)(x − 2) and
x− 1. First we’ll define all of them.

f_1 = [-2, 1]
f_2 = [2, -3, 1]
f_3 = [-1, 1]

Then, we’ll check the satisfiability of the formula x− 2 <
0 ∧ (x− 1)(x− 2) = 0, which is True.

print internal_vts([], [f_1], [f_2], [])
>> True

And the satisfiability of the formula x−2 < 0∧(x−1)(x−
2) = 0 ∧ x− 1 6= 0, which is False.

print internal_vts([], [f_1], [f_2], [f_3])
>> False

We can demonstrate the use of infinitesimals8 by using the
previous example, but substituting ε1 for 1 and ε2 for 2.

First, we need to define the new polynomials x− ε2, (x−
ε1)(x− ε2) and x− ε1 and infinitesimals used in them (ε1 and
ε2)

eps_1 = z3rcf.MkInfinitesimal('eps_1')
eps_2 = z3rcf.MkInfinitesimal('eps_2')
h_1 = [-eps_2, 1]
h_2 = [eps_1 * eps_2, -(eps_1 + eps_2), 1]
h_3 = [-eps_1, 1]

Our first formula becomes x−ε2 < 0∧(x−ε1)(x−ε2) = 0.

6The code is available as Github repository - https://github.com/
grantpassmore/Real-Algebra-Playground/tree/master/vts. Then current version
of the code implements the simpler Naive Sign Algorithm

7This form is more restrictive than ∧, ∨-combination of atomic formulas,
but since we can transform any formula to its disjunctive normal form and then
decide the satisfiability of disjuncts using the function internal_vts,
we can still decide the satisfiability of any formula.

8Transcendental and algebraic elements are handled analogously.

print internal_vts([], [h_1], [h_2], [])
>> False

Inspecting the output of this call, we see that it is now
False, it might be useful to expand on this. The z3rcf library
construct infinitesimals such that the constructed infinitesimal
is infinitely smaller the all previously constructed one. There-
fore, ε2 < ε1. It is clear that x−ε2 < 0 will not contribute any
satisfying test terms, (x− ε1)(x− ε2) = 0 contributes two: ε1
and ε2. ε2 is obviously a dead end, and ε1 doesn’t suit either.

We can make this example more like the previous one by
switching polynomial (x− ε2) with (x− ε1).
print internal_vts([], [h_3], [h_2], [])
>> True

We now see that the output is True as expected.
Applying the substitution in the second formula we get x−

ε1 < 0 ∧ (x− ε1)(x− ε2) = 0 ∧ x− ε2 6= 0, the order of the
infinitesimals does not matter here and the output is False as
before.

print internal_vts([], [h_1], [h_2], [h_3])
>> False

For demonstrating that we are not bounded by degree9 we
are going to check the formula (x−1)(x−2)(x−3)(x−4) <
0 ∧ (x+ 2)(x+ 1)(x− 1)(x− 2) < 0.

g_1 = [24, -50, 35, -10, 1]
g_2 = [4, 0, -5, 0, 1]
print internal_vts([], [g_1, g_2], [], [])
>> True

It is easy to see that the formula is true if x ∈ (1, 2) We can
illustrate this a bit by showing that there is no solution if we
add either constraint x <= 1 or x >= 2:

g_3 = [-1, 1]
g_4 = [2, -1]
print internal_vts([g_3], [g_1, g_2], [], [])
>> False
print internal_vts([g_4], [g_1, g_2], [], [])
>> False

By adding either constraint x < 1 + ε or x > 2 − ε, we can
show that there is a solution ε-close to those bounds.

eps = z3rcf.MkInfinitesimal('eps')
g_5 = [-1 - eps, 1]
g_6 = [-2 + eps, -1]
print internal_vts([], [g_5, g_1, g_2], [], [])
>> True
print internal_vts([], [g_6, g_1, g_2], [], [])
>> True

9We do not factor the polynomials, so none of them are viewed as
“essentially quadratic.”

https://github.com/grantpassmore/Real-Algebra-Playground/tree/master/vts
https://github.com/grantpassmore/Real-Algebra-Playground/tree/master/vts

REFERENCES

[1] Th. Sturm A. Dolzmann. Redlog-computer algebra meets computer logic.
Number MIP-9603. 1996.

[2] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic
Geometry. Springer-Verlag, 2006.

[3] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver.
In Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340. Springer Berlin Heidelberg, 2008.

[4] Leonardo de Moura and Grant Olney Passmore. Computation in real
closed infinitesimal and transcendental extensions of the rationals. In
Conference on Automated Deduction (CADE), 2013.

[5] Rüdiger Loos and Volker Weispfenning. Applying linear quantifier
elimination, 1993.

[6] Wolfram Research. Mathematica 9.0, 2014.
[7] V. Weispfenning. Quantifier elimination for real algebra - the quadratic

case and beyond. AAECC, 8:85–101, 1993.
[8] Volker Weispfenning. Quantifier elimination for real algebra - the cubic

case, 1994.

	Introduction
	Preliminaries
	Virtual Term Substitution
	Univariate VTS as Exemplar
	VTS using infinitesimals library
	EXAMPLES
	References

