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1 Introduction

Constructive type theories (CTTs) are advocated as a foundation for math-
ematics which replaces classical logic and set theory. Significant work has
gone into building interactive theorem-proving systems based on CTTs [dB80,
C+86, Jac95, AGNvS94, LP92, CCF+95] and it seems desirable to involve
the projects currently around such systems in any future QED venture.
However, mathematics based on CTTs is rather different from the usual
classical mathematics taught in schools and universities. QED must sup-
port this classical mathematics if it is to have any success. How then is
cooperation possible?

2 CTT-based mathematics

All CTT-based mathematics has a computational reading. For example, a
theorem of form:

∀x ∈ A.∃y ∈ B.Px,y

can be read as saying that given any x in set A, there is a method of comput-

ing a y in set B satisfying the predicate Px,y. Further, a CTT proof of such a
theorem precisely specifies one such method. In general, theorems in CTT-
based mathematics can be considered as specifications for programs and
proofs as guides for the automatic construction of programs. This program
synthesis paradigm has been one of the major factors stimulating recent
interest in CTTs.
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CTT-based mathematics so far has been largely modelled on the school
of constructive mathematics first developed by Bishop [BB85, MRR88]. A
feature of the Bishop school that increases its acceptability to classical math-
ematicians is that every theorem also has a reading as a classical theorem.
This is not the case with other schools of constructive mathematics.

CTT-based mathematics has a finer grain than classical mathematics.
Many distinctions are made that offer alternative computational readings.
These distinctions are at a very basic level: for example, different read-
ings are frequently be given for equivalence and subtype relations. It is a
challenge to decide which alternatives to adopt and to keep the number of
alternatives considered to a reasonable size.

Formalization forces definite choices to be made on alternatives where in
the texts the need for a decision is glossed over or delayed. It also frequently
turns out that functions need extra arguments that provide computational
information. A formal development must include these arguments, though
they also are often glossed over in the texts.

Current CTTs are somewhat awkward. In nearly all, the notion of type

is not nearly as versatile as that of set in set theories. For example, equal-
ity of types is usually not extensional and a principle of comprehension is
usually lacking. Also, many CTTs are regarded as being too complex to be
acceptable as foundational theories.

Examples of formalization of mathematics in CTTs include the interme-
diate value theorem and some basic abstract algebra [For93, Jac95].

For the above reasons, formalizing Bishop-style mathematics in CTTs
seems to be a significantly slower and more uncertain process than formal-
izing classical mathematics.

3 Opportunities for Cooperation

3.1 Libraries

Sharing of libraries on elementary concrete topics such as integers and fi-
nite sequences (lists) might be possible since there CTT-based and classical
mathematics are similar. However, sharing of libraries on more abstract
topics would be much more problematic.

Importing of classical developments into a CTT setting would be all but
impossible because all the essential distinctions would be missing.

Importing a CTT-based development into a classical setting is possible,
though the classical mathematician is likely to consider all the extra distinc-
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tions as irrelevant clutter. More pragmatically, the need to import might
not be there, since the quantity and sophistication of formalized classical
mathematics is likely to be much greater than that of CTT-based mathe-
matics, both for reasons given in the previous section and simply because
the corpus of formalizable classical mathematics is far far larger.

3.2 Systems Development

Opportunities are brightest here. There are many engineering challenges
common to any system intended for helping to develop mathematics. For
example, in the areas of user interfaces, mathematical databases, and auto-
mated reasoning.

3.3 Classical Mathematicians using CTT-based Systems

It has been shown consistent to extend CTTs with oracles in order to create
classical type theories [How91]. A CTT-based system with such an extended
CTT could be used by a classical mathematician to develop classical math-
ematics, though work is still needed to demonstrate that the extended type
theory would have a versatility approaching that of set theory.

3.4 Constructive Type Theorists using Classical Systems

It might be possible to persuade the architects of CTT-based systems to
consider seeking in a classical system some of the advantages they attribute
to CTTs.

For example, type theories are claimed to provide a more structured lan-
guage than set theory for mathematics, closer to that used in normal math-
ematical practice. However the Mizar project [Rud92] has demonstrated
how such advantages can be gained by layering a type system on top of a
classical set theoretic foundation.

Another advantage claimed is that CTTs provide a natural environment
for program verification and synthesis, since CTTs have a built-in program-
ming language and a program synthesis paradigm. However, the built-in
languages are rather simple purely-functional languages. CTTs have no ad-
vantages when it comes to dealing with more sophisticated languages with
imperative, concurrent or parallel features. Analogous synthesis paradigms
can be explored in a classical setting if for example programs are repre-
sented syntactically and logic variables are used to stand in for program
sections that remain to be synthesized. With such an approach both the
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programming language and the synthesis mechanism would be more open
to exploration since neither would be be hard wired.

4 Conclusions

• No, the fundamental tension between constructive type theorists and
classical mathematicians is not resolvable: the mathematics that each
are interested in is just too different.

• Yes, many aspects of the tension between constructive type theorists
and classical mathematicians are resolvable: in particular, there do
seem to be a number of opportunities for productive collaboration,
especially in the engineering of interactive theorem-proving systems.

5 Discussion

Here I’ve reconstituted a few of the comments made at the end of the talk
from some rather sketchy notes that I took down. Hopefully no one’s views
are misrepresented. The comments are being checked with their ascribed
authors at the moment.

• (Holmes) “One of the major features of CTTs is the role of proof
objects”. In proof theory, these proof objects can be more compact
and convenient to work with than proof trees.

• (Kapur) “Present day constructivist often cite 19th century mathe-
matics as being in their tradition, but this mathematics also fits in
perfectly well with classical mathematics”. Kapur also emphasized
the size of the CTT community and expressed the need to have them
involved in any QED venture.

• (Trybulec) “Too much of the QED manifesto was devoted to construc-
tive concerns. There is a koine on which nearly all mathematicians
agree. The QED project should try to take the simplest possible ap-
proach. The problems are hard enough as it is”.

• (McCarthy) “Hilbert complained about being driven out of Cantor’s
paradise. Well, set theories like ZF allow us to be driven out the
minimal amount”.
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• (Trybulec) “A development of Heyting Algebras was carried out in
the classical system Mizar”. Trybulec showed this to a colleague who
thought the development contained a new result.
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