
Total-Correctness Refinement for Sequential

Reactive Systems⋆

Paul B. Jackson ⋆⋆

Division of Informatics
University of Edinburgh
Edinburgh EH9 3JZ, UK

pbj@dcs.ed.ac.uk

Abstract. We introduce a coinductively-defined refinement relation on
sequential non-deterministic reactive systems that guarantees total cor-
rectness. It allows the more refined system to both have less non-determinism
in its outputs and to accept more inputs than the less refined system.
Data reification in VDM is a special case of this refinement.

Systems are considered at what we have called fine and medium levels
of granularity. At the fine-grain level, a system’s internal computational
steps are described. The fine-grain level abstracts to a medium-grain
level where only input/output and termination behaviour is described.
The refinement relation applies to medium grain systems.

The main technical result of the paper is the proof that refinement is re-
spected by contexts constructed from fine grain systems. In other words,
we show that refinement is a precongruence.

The development has been mechanized in PVS to support its use in case
studies.

1 Introduction

Refinement. Refinement is a fundamental verification methodology and has a
strong conceptual appeal. It takes a black-box view of systems, characterizing
them by their observable interface behaviour.

Let A be an abstract system, C a concrete system, and assume that it has
been shown that A refines to C, written A ⊑ C. A good definition of ⊑ and
theory of refinement then provide a guarantee that we can substitute C for A in
any environment with no observable consequences.

Formally one way to give evidence for substitutivity is to show a precongru-

ence property:

⊢ A ⊑ C ⇒ E [A] ⊑ E [C]

⋆ c© Springer-Verlag. In proceedings of TPHOLs 2000, 13th International Conference
on Theorem Proving in Higher Order Logics, J. Harrison and M. Aagaard editors,
volume 1869 of Lecture Notes in Computer Science, pages 320-337. Springer-Verlag,
August 2000.

⋆⋆ Also affiliated with the Institute for System Level Integration, Livingston, UK

1



2 Paul B. Jackson

of ⊑ for a class of contexts or environments E .
This paper introduces a new definition of a refines-to relation for sequen-

tial non-deterministic systems that addresses weaknesses of previously proposed
relations. The main technical result is to prove this refines-to relation to be a
precongruence for a general class of environments.

Inclusion-Based Refinement. Many common definitions of a refinement relation
involve inclusion. For example refinement might assert that a step transition
relation of the concrete system is included in that of the abstract system, or
that every trace of the concrete system is also a trace of the abstract system, a
trace being a sequence of observable states or input/output values. Such defini-
tions have several problems, as we explain in the next two subsections. We use
trace inclusion as an example, but our remarks apply to other inclusion-based
definitions too.

Contravariance of Inputs. A consequence of a trace-inclusion definition is that,
if there is some step of behaviour in the concrete trace corresponding to the
environment passing the system some input, there must be a similar step in the
abstract trace. This is intuitively the wrong way round and allows a bad concrete
system to inadvertently constrain environment behaviour and falsely appear to
be correct. A variety of approaches have tried to deal with this. For example,
the notion of receptivity is introduced [5].

Total Correctness. We consider it important that a refinement relation capture
total correctness. Without totality, it is much harder to argue that a concrete
system could replace an abstract system with no observable consequences.

Trace inclusion is a partial correctness rather than total correctness notion.
It requires that when the concrete system makes some step of behaviour passing
output to the environment, the abstract system must make some matching step.
However it doesn’t ever require that the concrete system make any output step
in the first place.

As explained in [4], one adaptation for total correctness is to introduce an
extra value ⊥ into the state spaces of systems. If a system originally is not
guaranteed to make an output step from some given state, a transition to ⊥
is added, along with a transition to every other state. There is therefore no
possibility for a system to be blocked from making a step, all systems are total.
Furthermore, on starting from a ⊥ state, a system must non-deterministically be
able to transition to every possible state (including ⊥ again). With this setup,
trace inclusion requires that, whenever the abstract system is capable of making
only controlled steps (i.e. not to a ⊥ state), the concrete system also can only
make controlled steps, and so inclusion now enforces total correctness.

The Proposed Refines-to Relation. We propose a refines-to relation that directly
captures the desirable contravariant relationship between inputs of abstract and
concrete systems, and that ensures total correctness without the complications
of adding extra ⊥ states. We define refines-to coinductively. See Sec. 4 for details.



Total-Correctness Refinement 3

Fine and Medium Grain Systems. We focus our attention on non-deterministic
sequential systems that alternately accept an input value from some environment
and return an output value back to the environment. We assume systems can
modify some internal state and that this state is preserved between returning an
output value and accepting some next input.

We use an automata-based fine-grain model for describing system imple-
mentations. See Sec. 5. This model represents atomic computation steps and
can exhibit phenomena such as divergence and deadlock. Fine grain systems
abstract to a medium-grain level where just the input/output and termination
behaviour of systems is captured. The medium grain level is also appropriate
for directly creating system specifications. See Sec. 3 for the medium grain sys-
tem definition. This medium grain formalism uses precondition and transition
relations and is very similar to the way systems are described in VDM [10], for
example.

Refines-to is defined only on medium grain systems. It is independent of how
we characterise systems at the fine grain. For example, for the fine grain model
we could have used instead a structured operational semantics that captures
total correctness. One advantage of an automata-based approach to fine grain
systems is that the characterisation of when systems terminate is direct and
obviously correct.

When showing that refines-to is a precongruence, we use a variation on fine-
grain systems to construct the general class of environments that we show pre-
congruence with respect to. See Sec. 6 for the definition of the variation and
Sec. 7 for the precongruence proof.

Evaluating Goodness of Refines-to. A precongruence property is generally de-
sirable for any refinement relation, but isn’t sufficient by itself to justify the
relation’s definition. To take an extreme example, an always true refinement re-
lation is indeed a precongruence, it but provides no substitutivity guarantees at
all. We also must look at the environment beyond the boundaries of the system
we model formally, and consider the expectations this environment has.

Sometimes, for example in the process algebra community, these expectations
are formalized by developing a theory of testing [6] and showing (at least) that
any more refined system passes all tests that a more abstract system passes. The
hope is that it is more straightforward to agree that a testing theory adequately
captures the expectations of an external environment than to agree that the
refinement relation does.

We haven’t developed a testing theory, and instead simply discuss the expec-
tations we might reasonably have of sequential reactive systems. We do observe
that the total-correctness proof obligations adopted in VDM for showing that
one sequential program is a data reification of another are a consequence of
our definition of refines-to. Also, it would be easy to derive the similar VDM
obligations for showing an implementation meets a specification.



4 Paul B. Jackson

Use of a Theorem Proving System. We see all of the Pvs [13] formalization work
described in this paper as being necessary support material for case studies in
verifying actual systems.

It’s worth mentioning too that we also found the use of Pvs a significant help
in clarifying what definitions were necessary, how lemmas should be phrased, and
how proofs should go. At the same time, we found the main proofs sufficiently
intricate and the weight in the formal notation sufficiently high that in many
cases it was necessary to be sketching proofs on paper before or at the same time
as attempting the Pvs proofs.

An Illustrative Example. We show in Sec. 8 a specification of an abstract data
type of sets as a medium grain system, and an implementation as a fine grain
system.

2 Related Work

The use of coinduction to define refinement relations has been made popular by
the process algebra community [12].

Jacobs in [9] characterises classes in object-oriented languages as coalgebraic
categories, and uses a coinductive notion of refinement to specify correctness of
implementations. His approach is more general than ours in that he allows for
changes in the system interface in going from abstract to concrete. However,
he takes a simpler view of systems: he models them using total functions so
non-determinacy is not possible, and he doesn’t take account of any input pre-
conditions that might need to be satisfied for termination. We imagine it would
be possible to adapt these extra features that we consider into his framework.
This work is also being implemented in Pvs.

We originally considered a coinductive definition of a refinement relation that
allows contravariance on inputs after seeing Abramsky discuss such a relation [1].
The relation he considers is on labelled transition systems with input and output
labels on the transitions. He also has a game-theoretic version that applies to
prefix-closed sequences of input/output behaviour. One limitation of his relation
is that it captures partial, not total correctness.

A formalism for concurrent systems that allows contravariance on inputs and
prevents restriction of environment behaviour by the system is that of alternat-
ing refinement relations [3]. This work also uses coinductive characterisation of
refinement. To tackle concurrency issues, its definition is more elaborate than
ours. For example, the nesting depth of alternations of quantifiers is four, com-
pared to 2 in our case. In the reactive modules [2] formalism being pursued by a
subset of the authors of [3], a notion of temporal abstraction is defined, much like
our map from fine to medium grain systems, that can hide internal computation
steps of system components.

In the literature on refinement of sequential programs (see [4] for a recent
comprehensive survey), our approach is closest to that taken in VDM [10]. Our



Total-Correctness Refinement 5

medium grain systems exactly correspond to the precondition and VDM post
condition1 style specifications.

Early work of Milner [11] looks at denotational semantics for transducers

which are effectively the same as our medium grain systems. To our knowledge,
Milner never proposed a coinductive definition of refinement for transducers,
though he deployed coinductive definitions heavily in his concurrency theory
work on labelled transition systems. There the distinction between inputs and
outputs is erased at the level much of the semantics work is carried out, so the
opportunity we take to treat them differently is lost.

3 Medium Grain Systems

A medium grain system is a full description of the behaviour of a non-deterministic
sequential reactive system from an input/output and termination point of view.
The intent is that both system specifications and implementations can be phrased
as medium grain systems.

The type Med gs of medium grain systems , parameterized by types I and O

of input and output values and type Q of internal states, is defined as a subtype
of a record type:

Med gs[Q,I,O] : TYPE
.
=

{s : 〈 pre ⊆ Q × I,

trans ⊆ Q × I × O × Q 〉
|

∀p,i. s.pre(p,i) ⇒ ∃q,o. s.trans(p,i,o,q) }.

The notation ‘fieldname ⊆ Type’ abbreviates ‘fieldname : P(Type)’ where
P is the powerset (set of subsets) operator. Subsets of a type T are represented
as functions of type T → bool, so membership of an element x in a subset s

is expressed as function application s(x), a notation in keeping with the corre-
spondence between subsets and predicates.

The field trans specifies what transitions the system can make. The relation
trans(p,i,o,q) indicates that, starting from state p and presented with input
value i, it is possible for the internal computations of the system to eventually
terminate in state q and for the system to return output value o. Because of
non-determinism there might be more than one q and o for given p and i. The
field pre specifies a precondition. The relation pre(p,i) indicates that starting
from state p and presented with input i, the internal computations of the system
are guaranteed to terminate in some state from which output is generated. In
general it is not equivalent to ∃q,o. trans(p,i,o,q) but stronger. Even if a
system can reach q and output o from a given state p and input i, because of
non-determinism, it might also deadlock or go into a divergent computation.

1 relations on inputs and outputs, rather than just relations on outputs as in Hoare
style specifications



6 Paul B. Jackson

It would be convenient to include the type parameter Q as an initial field of
the record type in the definition of Med gs. However this is not possible in the
Pvs specification language.

To fully describe in Pvs a medium grain system, we sometimes augment the
presentation of the system as an element of Med gs by identifying some element
of Q as the system’s initial state.

We imagine interactions between an environment and a medium grain system
as a continuing dialogue: if the thread of control is with the environment, the
environment can choose to provide the system with some input. The system then
processes this input and possibly eventually generates some output. Control then
passes back to the environment which is free is choose some further input for
the system.

For some purposes, we make the assumption that the environment has no
ability to access or modify the internal system state. The environment might
only know that the system initially started off in some well-characterized state.

We imagine that a medium grain system being used as a specification will ex-
hibit a range of possible behaviour on a given input that is only dependent on the
initial state and the observed input/output behaviour inbetween. We consider
a system with this property to be coarse grain. Coarse grainness is a desirable
property for specifications. Coarse grainness corresponds to determinacy in the
CCS process calculus [12]. We haven’t yet made any use of coarse grainness in
our work.

4 Definition of Refinement

Our definition of what it means for one system to be a refinement of another is
in the style of the coinductive definition of bisimulation [12].

Fix on an abstract medium grain system sa and a concrete medium grain
system sc with distinct internal states Qa and Qc and both over input type I

and output type O: in Pvs, they have respective types Med gs[Qa,I,O] and
Med gs[Qc,I,O].

A relation R ⊆ Qa × Qc is a refinement relation from sa to sc iff it satisfies

(1)R(pa,pc) ⇒
∀i. sa.pre(pa,i) ⇒

sc.pre(pc,i)

∧ ∀qc, o. sc.trans(pc,i,o,qc) ⇒
∃qa. sa.trans(pa,i,o,qa) ∧ R(qa,qc)

for any states pa and pc.
System sa in initial state inita refines to system sc in initial state initc,

written

refines_to(sa,sc)(inita,initc),

iff there exists a refinement relation R such that R(inita,initc). The relation
refines to(sa,sc) is easily shown itself to be a refinement relation, and so by



Total-Correctness Refinement 7

this definition it is the greatest refinement relation, adopting the usual ordering
of relations by inclusion.

We realise the definition of refines to in Pvs as the greatest fixed point
of the appropriate functional. Pvs doesn’t provide direct support for such coin-
ductive definitions. However, we easily prove a lattice-theoretic version of the
Tarski-Knaster fixed-point theorem and specialise it for the creation of coinduc-
tive definitions over the lattice of subsets of a type.

Trivially we show that refines to is a preorder, that is, it is reflexive and
transitive.

Why is this definition plausible? Assume we have found a refinement relation
R, system sa is in some state pa, system sc is in some state pc, and R(pa,pc)

holds. We then know for a start that

(2)∀i. sa.pre(pa,i) ⇒ sc.pre(pc,i).

This is very reasonable: system sc is guaranteed to converge to an output on
every input that sa converges on. System sc might converge also on other inputs
too, but that doesn’t matter here.

We also know

(3)∀i, qc, o. sa.pre(pa,i) ∧ sc.trans(pc,i,o,qc) ⇒
∃qa : sa.trans(pa,i,o,qa) ∧ R(qa,qc).

Any output that the concrete system generates on an abstractly acceptable input
is also an abstractly acceptable output. The concrete system’s output behaviour
is always what we might expect. The concrete system might exhibit less non-
determinism, completely in line with the approach in specification of introducing
non-determinism, not because that non-determinism is expected in any one im-
plementation, but in order to permit flexibility in implementation. However (2)
guarantees that there always is some output that the concrete system gener-
ates. Importantly too from (3) we know R(qa,qc) holds, so we also expect all
subsequent I/O behaviour of the concrete system to be in accordance with the
abstract system behaviour.

We make the assumption above that an environment would never want to
supply a system with input when there is not a firm expectation that the system
will eventually generate some output given that input. We are not trying to
define a notion of refinement that is to be used when thinking about the fault
tolerance of systems or about systems that have divergent computations in the
normal course of events.

Having said that, this definition of refinement should also be applicable if
only partial correctness were of interest. There is nothing intrinsic in the defi-
nition itself that refers to total correctness. However for partial correctness one
would want to discard the subtyping condition we have used in the definition of
the Med gs type that requires at least one output value to exist whenever the
precondition is satisfied.

A common approach to establishing a refinement relationship between an
abstract and concrete system involves introducing a function rmap of type Qc



8 Paul B. Jackson

→ Qa (sometimes known as a refinement mapping, abstraction map or retrieve

function) and an invariant on concrete states c inv ⊆ Qc. The function rmap

and predicate c inv define a refinement relation:

R(pa,pc) : bool
.
= c inv(pc) ∧ pa = rmap(pc).

Specialising (1), a predicate stating that rmap and c inv form a refinement
relation is

refmap_step(sa,sc,c_inv,rmap) : bool
.
=

∀pc,i.
c_inv(pc) ∧ sa.pre(rmap(pc),i) ⇒
sc.pre(pc,i)

∧ ∀qc, o. sc.trans(pc,i,o,qc) ⇒
sa.trans(rmap(pc),i,o,rmap(qc)) ∧ c_inv(qc),

and the coinduction principle that goes with refines to specialises to the the-
orem refines to ind with refmap a:

⊢ c_inv(initc) ∧ inita = rmap(initc)

∧ refmap_step(sa,sc,c_inv,rmap)

⇒
refines_to(sa,sc)(inita,initc).

We observe that the antecedents of this theorem are exactly a strict subset of
the proof obligations in VDM [10] for establishing a data reification relationship
between an abstract data type and its implementation when there is also an
invariant on the concrete type.

The extra proof obligation in [10] concerns adequacy. In our notation:

∀qa. ∃ qc. c_inv(qc) ∧ qa = rmap(qc).

This is usually desirable because it says that every abstract value has at least
one concrete representation. However it is not necessary for showing

refines_to(sa,sc)(inita,initc).

If it so happens that in the abstract system sa starting from state inita we
cannot access every abstract state by some sequence of input values, then ade-
quacy needn’t hold for the inaccessible states. This is unlikely to happen if the
abstract system is an initial specification, but it could reasonably happen if it is
a system at some intermediate level of refinement.

We also observe that if the preconditions sa.pre and sc.pre in refmap step

are always true, the theorem refines to ind with refmap a reduces to the in-
duction principle commonly used when refinement is defined as trace inclusion.



Total-Correctness Refinement 9

5 Fine Grain Systems

5.1 Definition of Fine Grain System

A fine grain system is a system description that allows the presentation of the in-
dividual computation steps that a system can perform. It is a suitable formalism
for describing system implementations: see Sec. 8 where an example is given of
describing the procedures in an imperative implementation of an abstract data
type as a fine grain system.

We build on the definition of a fine grain system when defining later the
contexts or environments that some medium grain system may be operating in.
See Sec. 6 and Sec. 7.

We define a type Fin gs of fine grain systems as

Fin gs[Q,I,O] : TYPE
.
=

{s : 〈 run ⊆ Q,

input : (Q × I) → Q,

step ⊆ Q × Q,

output : Q → O,

wbehaved ⊆ Q 〉
|

∀p,q. s.step(p,q) ⇒ s.run(p) }

with parameters Q, I, and O as in the definition of the Med gs type in Sec. 3.

Initially a fine grain system is in some state for which run is false. When
an input value is presented to a fine grain system, the system uses input to
transition to a new state. The system then uses step to repeatedly make non-
deterministic internal transitions. As specified by the subtyping predicate, steps
can only be taken from states that satisfy run. The system halts and uses output
to generate an output value if and when it reaches a state for which run is false.

A system can deadlock, reach a state p for which run is true, but ¬∃q.
step(p,q). Deadlock might seem an unusual feature to have in a model of a
sequential system, but it is a natural phenomenon for guarded transition sys-
tems to exhibit. Deadlock is one appropriate behaviour for handling exceptional
situations without extra machinery in the formalism. And checks for its absence
can reveal bugs in system descriptions.

A system can also diverge, perform steps ad-infinitum without ever reaching
a state in which run is false.

Once halted, a system is then ready to be reactivated by a further input.
The predicate wbehaved identifies those states from which any step by step is
guaranteed to be well-behaved. A step might not be well-behaved if it involves
interacting with a subsystem.

As with medium grain systems, to fully specify a fine grain system we often
also identify some element of Q as the system’s initial state.



10 Paul B. Jackson

5.2 Abstraction from Fine to Medium Grain

To form the input/output medium-grain view of a fine grain system s with type
Fin gs[Q,I,O], we use the fine to medium grain map:

map_fm(s) : Med gs[Q,I,O]
.
=

〈 pre := mgs_pre(s),

trans := mgs_trans(s)

〉,

where

mgs_pre(s)(p,i) : bool
.
=

progressive?(s)(s.input(p,i))

∧ ¬inf_chain(s.step)(s.input(p,i))

mgs_trans(s)(p,i,o,q) : bool
.
=

star(s.step)(s.input(p,i),q)

∧ ¬s.run(q)

∧ o = s.output(q)

at_progressive?(s)(q) : bool
.
=

s.run(q) ⇒ s.wbehaved(q) ∧ ∃r. s.step(q,r)

progressive?(s)(q) : bool
.
=

∀r. star(s.step)(q,r) ⇒ at_progressive?(s)(r).

Here we draw on an auxiliary development of properties of finite and infinite
sequences of values where adjacent values are related by a binary relation R. The
relation star(R) is the reflexive transitive closure of R. The predicate instance
inf chain(R)(x) indicates that there exists an infinite chain of R-linked values
starting from x. If star(s.step)(q,r), then by the subtype property of fine
grain systems, every state on any path from q up to but excluding r is a run

state. A state is progressive? if every run state accessible by stepping through
only run states is both well behaved and not deadlocked. The predicate name
at progressive? is an abbreviation for ‘atomically progressive?’. The predicate
mgs pre identifies exactly those inputs of the fine grain system for which no
divergence is possible and it is guaranteed that the system will eventually reach
a halting state. It might be difficult when reasoning with actual systems to
work with this definition of mgs pre, and simpler to use instead some predicate
known to be stronger than that given here. The predicate mgs trans specifies
what outputs the fine grain system might generate for each input.

With the typing of the map fm definition, the Pvs type checker automatically
generates a TCC (type correctness condition) that requires us to check that the
subtype predicate in the Med gs definition is satisfied.



Total-Correctness Refinement 11

6 Parameterized Fine Grain Systems

6.1 Definition of Parameterized Fine Grain System

A parameterized fine grain system is an adaptation of a fine grain system that
can feed inputs to and receive outputs from a medium grain subsystem. The
use of it in this paper is as a general description of contexts that medium grain
systems might operate in. The type of parameterized fine grain systems is:

Prm fin gs[Q,I,O,Ix,Ox] : TYPE
.
=

{s : 〈 run ⊆ Q,

input : (Q × I) → Q,

output : Q → O,

i_step ⊆ Q × Q,

x_en ⊆ Q,

x_input : x_en → Ix,

x_output : (Q × Ox) → Q 〉
|

∀p. s.x_en(p) ∨ (∃q. s.i_step(p,q)) ⇒ s.run(p) },

where the type parameters for Prm fin gs are Q for internal states, I for values
input from the environment, O for values output to environment, Ix for values
fed to the medium grain subsystem, and Ox for values received back from the
subsystem. The fields run, input and output are as for a fine grain system. The
relation i step is for internal steps, and the predicate x en, function x input

and function x output are for the interface to the subsystem. Their use will
become clear in the next subsection.

6.2 Instantiation of Parameterized Fine Grain System

Here we show how to combine a parameterized fine grain system s with a medium
grain system x to create an unparameterized fine grain system. There are several
options as to how the internal state spaces of s and x are related. In general
they might share some state and also each have some distinct private state. Our
immediate interest is in the situation where the only interaction can be via x’s
input/output interface, so we choose to keep the state spaces distinct. Let Q

be the state space of s and Qx the state space of x. The type of states for the
combined system is Q × Qx.

Let the type parameters I, O, Ix, and Ox be defined as in Sec. 6.1. The
parameterised fine grain system s then has type Prm fin gs[Q,I,O,Ix,Ox] and
the medium grain system x has type Med gs[Qx,Ix,Ox]. The map instantiating
s with subsystem x has definition:

m_ipfd(s, x) : Fin gs[(Q × Qx),I,O]
.
=

〈 run := λ(q,qx). s.run(q),

input := m_ipfd_input(s,x),

step := m_ipfd_step(s,x),



12 Paul B. Jackson

output := λ(q,qx). s.output(q),

wbehaved := m_ipfd_wbehaved(s,x) 〉,

where

m_ipfd_step(s, x)(ppx,qqx) : bool
.
=

let (p,px) = ppx, (q,qx) = qqx in

s.i_step(p,q) ∧ px = qx

∨ s.x_en(p) ∧ ∃ox. x.trans(px, s.x_input(p), ox, qx)

∧ q = s.x_output(p,ox)

m_ipfd_input(s, x)(qqx,i) : Q × Qx
.
=

let (q,qx) = qqx in s.input(q,i), qx

m_ipfd_wbehaved(s, x)(q,qx) : bool
.
=

s.x_en(q) ⇒ x.pre(qx, s.x_input(q)).

Here ‘m ipfd’ stands for ‘map instantiating parameterised fine grain system keep-
ing states distinct’. In the definition of m ipfd step, we see how x en is used to
identify when calls to the subsystem are enabled. In most sensible systems, we
expect that it will never be possible to take an i step when x en is true, but
we haven’t found a need yet to specify this requirement. The function x input

is used to feed inputs to the subsystem, and function x output processes the
resulting outputs from the subsystem.

When a system is modelled as the parameterized fine grain system s, we
assume that the granularity of i steps is chosen sufficiently finely that, within
the system behaviour modelled by a single i step, there is no possibility for
divergence or deadlock. Therefore, in defining m ipfd wbehaved, we need only
consider that bad behaviour of m ipfd step can result if x is called when x.pre

is false.
The map mm map combines m ipfd with the fine to medium grain map defined

previously:

mm_map (s : Prm fin gs[Q,I,O,Ix,Ox])(x : Med gs[Qx,Ix,Ox])

: Med gs[(Q × Qx),I,O]
.
= map_fm(m_ipfd(s, x)).

7 Refinement is Precongruence

Let ps be a parameterized fine grain system of type Prm fin gs[Q,I,O,Ix,Ox]

with initial state q, let sa be an abstract medium grain subsystem of type
Prm fin gs[Qa,Ix,Ox] with initial state qa, and let sc be a more concrete
medium grain subsystem of type Prm fin gs[Qc,Ix,Ox] with initial state qc.
The lemma precong lemma:

⊢ refines_to(sa,sc)(qa,qc) ⇒
refines_to(mm_map(ps)(sa), mm_map(ps)(sc))((q,qa),(q,qc))



Total-Correctness Refinement 13

states that the refines to relation is a precongruence.
The proof is by coinduction, using the ‘refines to candidate’:

rt_cand(sa,sc)(qqa,qqc) : bool
.
=

qqa.1 = qqc.1 and refines_to(sa,sc)(qqa.2,qqc.2)

to instantiate the coinduction lemma. Key foundational lemmas in the proof are

(4)⊢ rt_cand(sa, sc)(qqa, qqc)

∧ at_progressive?(m_ipfd(ps,sa))(qqa)

∧ m_ipfd(ps, sc).step(qqc, rrc)

⇒
∃rra. m_ipfd(ps, sa).step(qqa, rra)

∧ rt_cand(sa, sc)(rra, rrc)

⊢ rt_cand(sa,sc)(qqa,qqc)

∧ at_progressive?(m_ipfd(ps,sa))(qqa)

⇒
at_progressive?(m_ipfd(ps,sc))(qqc).

Key intermediary lemmas are

⊢ rt_cand(sa,sc)(qqa,qqc)

∧ progressive?(m_ipfd(ps,sa))(qqa)

∧ ¬inf_chain(m_ipfd(ps,sa).step)(qqa)

⇒
¬inf_chain(m_ipfd(ps,sc).step)(qqc),

proven by coinduction on inf chain(m ipfd(ps,sa).step), and

⊢ rt_cand(sa, sc)(qqa, qqc)

∧ progressive?(m_ipfd(ps,sa))(qqa)

∧ star(m_ipfd(ps, sc).step)(qqc, rrc)

⇒
∃rra. star(m_ipfd(ps, sa).step)(qqa, rra)

∧ rt_cand(sa, sc)(rra, rrc),

proven by induction on star(m ipfd(ps, sc).step) using an inductive char-
acterisation of star(R) with R steps successively added on the left, and use of
lemma (4) above.

8 Example Specification

We give here an example of a specification of an ADT (abstract data type) of
finite sets as a medium grain system, and an implementation as a fine grain
system. We show the correctness statement for the implementation in terms of
our refines-to relation.



14 Paul B. Jackson

8.1 Sets Specification

We consider the ADT to be parameterised by a type T of elements, to have
operators:

bool empty () test if empty

void insert(T) insert a possibly new element

void remove (T) remove an existing element

T choose () choose an element

bool member (T) test if an element is in the set

and to have a constructor null for the empty set.
We introduce datatypes for the input and outputs of both fine and medium

grain systems.

IType [T:TYPE+] : DATATYPE

BEGIN

i_empty : i_empty?

i_insert(i_insert_arg : T) : i_insert?

i_remove(i_remove_arg : T) : i_remove?

i_choose : i_choose?

i_member(i_member_arg : T) : i_member?

END IType

OType [T:TYPE+] : DATATYPE

BEGIN

o_empty(o_empty_val : bool) : o_empty?

o_insert : o_insert?

o_remove : o_remove?

o_choose(o_choose_val : T) : o_choose?

o_member(o_member_val : bool) : o_member?

END OType

Such datatype statements in Pvs declare constructors, recognisers, and field
selectors, and introduce various auxiliary definitions and property axioms.

The medium grain system for sets is:

a_sys : Med gs[AState,IType,OType]
.
=

〈 pre := a_pre, trans := a_trans 〉,

where

AState : TYPE
.
= P(T)

a_trans(p,ip,op,q) : bool
.
=

cases ip of

i_empty : q = p ∧ op = o_empty(empty?(p)),

i_insert(x) : q = add(x,p) ∧ op = o_insert,

i_remove(x) : member(x,p) ∧



Total-Correctness Refinement 15

q = remove(x,p) ∧ op = o_remove,

i_choose : nonempty?(p) ∧
q = p ∧ op = o_choose(choose(p)),

i_member(x) : q = p ∧ op = o_member(member(x,p))

endcases

a_pre(p,ip) : bool
.
=

cases ip of

i_empty : true,

i_insert(x) : true,

i_remove(x) : member(x,p),

i_choose : nonempty?(p),

i_member(x) : true

endcases.

An initial state for the empty set is:

a_null : AState
.
= emptyset[T].

Here we have employed definitions such as member, remove and emptyset from
Pvs’s standard sets-as-predicates library.

Note that we only specify that the remove operation be well behaved and
terminate if it happens that that element we are trying to remove is indeed
initially contained in the set.

We introduce a non-deterministic choose operation to pick some element
from a set. It is defined in terms of the choose function on sets, which in turn
makes use of the Hilbert epsilon operator in Pvs’s type theory. No requirement
is placed on the behaviour of choose if the set is empty.

8.2 Sets Implementation

We base our implementation on lists. We will require these lists to not contain
duplicates when we come to proving the correctness statement we show in the
next subsection.

The type of states is:

CFState : TYPE
.
=

〈 pc : nat,

sys_input : IType,

set : list[T],

tvar : T,

tsvar : list[T],

bvar : bool 〉

When executing an operation, we keep the input value to the fine grain system
stored in the field sys input. This field not only holds the input value (if any)
of the operation, but also indicates which operation is currently executing. We
use the predicate:



16 Paul B. Jackson

at_proc(p : pred[IType])(u) : bool
.
= p(u.sys_input)

to indicate which procedure we are currently in.
The field pc is the program counter, field set holds the list representation of

the set, and fields tvar, tsvar, and bvar are temporary variables intended for
use within operations.

The system definition is:

cf_sys : Fin gs[CFState,IType,OType]
.
=

〈 run := cf_run,

input := cf_input,

step := cf_step,

output := cf_output,

wbehaved := λu. true 〉.

The system is in a run state when the pc is non-zero:

cf_run(u) : bool
.
= u.pc > 0.

Operations always start with a pc of 1:

cf_input(u,ip) : CFState
.
= u with [sys_input := ip, pc := 1].

The step relation is composed from step relations for each operation:

cf_step(u,v) : bool
.
=

cases u.sys_input of

i_empty : cf_empty_step(u,v),

i_insert(x) : cf_insert_step(u,v),

i_remove(x) : cf_remove_step(u,v),

i_choose : cf_choose_step(u,v),

i_member(x) : cf_member_step(u,v)

endcases.

Examples of step relations for operations are:

cf_remove_step(u,v) : bool
.
=

cf_remove_step_1(u,v)

∨ cf_remove_step_2(u,v)

∨ cf_remove_step_3(u,v)

∨ cf_remove_step_4(u,v)

∨ cf_remove_step_5(u,v)

cf_remove_step_2(u,v) : bool
.
=

at_pc(2)(u) ∧ cons?(u.set) ∧ v = u with [pc := 3]

cf_remove_step_4(u,v) : bool
.
=

at_pc(3)(u)

∧ cons?(u.set)



Total-Correctness Refinement 17

∧ car(u.set) = i_remove_arg(u.sys_input)

∧ v = u with [pc := 2, set := cdr(u.set)]

cf_choose_step(u,v) : bool
.
=

at_pc(1)(u)

∧ cons?(u.set)

∧ v = u with [pc := 0, tvar := car(u.set)]

Note how we implement choose by simply returning the head element of the
list.

Selector functions on Pvs datatype are partial functions, only total on the
relevant subtype of the datatype. For example, above, remove step 2 is the only
way of reaching at pc(3), but to make remove step 4 type check in Pvs, we
have to again check the cons?ness of u.set. We could regard the possibility of
deadlock that this repeated check implies as a way of modelling the exception
that might be raised in actual code if we reached step 4 and u.set were not a
cons.

The output function is:

cf_output(u) : OType
.
=

cases u.sys_input of

i_empty : o_empty(null?(u.set)),

i_insert(x) : o_insert,

i_remove(x) : o_remove,

i_choose : o_choose(u.tvar),

i_member(x) : o_member(u.bvar)

endcases.

The correctness of the output function relies on the preservation of the sys input

field from when an operation is started.

The initial state of the implementation is:

cf_null : CFState
.
=

〈 pc := 0,

sys_input := i_empty,

set := null[T],

tvar := ǫx. true,

tsvar := null[T],

bvar := false 〉.

The only important values here are for pc and set. The other values are just
placeholders.

8.3 Correctness Statement

We construct a medium grain black-box abstraction of this system as follows:



18 Paul B. Jackson

CMState : TYPE
.
= CFState,

cm_sys : Med gs[CMState,IType,OType]
.
= map_fm(cf_sys),

cm_null : CMState
.
= cf_null.

The theorem that our implementation is a correct implementation of the sets
specification is then:

⊢ refines_to(a_sys, cm_sys)(a_null, cm_null).

9 Conclusions

We have introduced a refinement relation refines-to that can be used in cor-
rectness specifications for a very general class of programs. For example it is
applicable to abstract data types, modules and classes in imperative and object
oriented languages. The relation’s merits include

– it captures total correctness requirements,
– it has a simple intuitive operational reading,
– it captures expectations about the covariant nature of outputs and the con-

travariant nature of inputs under refinement,
– it is a precongruence with respect to a general class of environments,
– standard proof obligations used for refinement in VDM can be derived from

it.

While its use should make specifications significantly clearer than they might
otherwise be, it doesn’t make verification tasks any easier.

We are currently exploring the use of refines-to in specifying and verifying
garbage collection algorithms. A refinement approach is appealing because it
allows the use of black-box abstract data types for both the specification and
implementation of garbage-collected heap memory. In previous work of ours in
this area [8], we specified correctness using linear temporal logic assertions that
had to refer to internal details of the garbage collection algorithm.

References

[1] Samson Abramsky. A note on reactive refinement. Personal Communication, May
19th 1999.

[2] Rajeev Alur and Thomas Henzinger. Reactive modules. Formal methods in System
Design, 15:7–48, 1999.

[3] Rajeev Alur, Thomas A. Henzinger, Orna Kupfermann, and Moshe Y. Vardi.
Alternating refinement relations. In CONCUR ’98, LNCS. Springer Verlag, 1998.

[4] Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-oriented
proof methods and their comparison. Number 47 in Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 1998.

[5] David L. Dill. Hierarchical Verification of Speed Independent Asynchonous Cir-
cuits. MIT, 1988.

[6] Matthew Hennessey. A theory of Testing. MIT, 1989.



Total-Correctness Refinement 19

[7] Ulrich Hensel and Bart Jacobs. Coalgebraic theories of sequences in PVS. Journal
of Logic and Computation, 9(4):463–500, 1999.

[8] Paul B. Jackson. Verifying a garbage collection algorithm. In Jim Grundy and
Malcolm Newey, editors, 11th International Conference on Theorem Proving in
Higher-Order Logics: TPHOLs’98, volume 1479 of Lecture Notes in Computer
Science, pages 225–244. Springer-Verlag, September 1998.

[9] Bart Jacobs. Behaviour-refinement of coalgebraic specifications with coinductive
correctness proofs. In Proceedings of TAPSOFT/FASE 1997, LNCS. Springer
Verlag, 1997.

[10] C. B. Jones. Program Specification and Verification in VDM. Prentice Hall, 2nd
edition, 1990.

[11] R. Milner. Processes: a mathematical model of computing agents. In Logic collo-
quium ’73, pages 157–173. North Holland, 1975.

[12] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[13] S. Owre, J.M. Rushby, and N. Shankar. PVS: A prototype verification system.

In D. Kapur, editor, 11th Conference on Automated Deduction, volume 607 of
Lecture Notes in Artificial Intelligence, pages 748–752. Springer-Verlag, 1992. See
http://www.csl.sri.com/pvs.html for up-to-date information on PVS.


