
Nuprl and its Use in Circuit Design

1

Paul B. Jackson

2

Department of Computer Science, Upson Hall, Cornell University, Ithaca NY 14853, USA.

jackson@cs.cornell.edu

Abstract

Nuprl is an interactive theorem proving system in the LCF tradition. It has a higher

order logic and a very expressive type theory; the type theory includes dependent function

types (� types), dependent product types (� types) and set types. Nuprl also has a

well developed X-Windows user interface and allows for the use of clear and concise

notations, close to ones used in print. Proofs are objects which can be viewed, and serve

as readable explanations of theorems. Tactics provide a high-level extendible toolkit for

proof development, while the soundness of the system relies only a �xed set of rules.

We give an overview of the Nuprl system, focusing in particular on the advantages

that the type theory brings to formal methods for circuit design. We also discuss ongoing

projects in verifying oating-point circuits, verifying the correctness of hardware synthesis

systems, and synthesizing circuits by exploiting the constructivity of Nuprl's logic.

Keyword Codes: F.4.1; B.6.2; I.2.3

Keywords: Mathematical Logic; Logic Design, Reliability and Testing; Deduction and

Theorem Proving.

1 Introduction

Nuprl [12] is a system designed for developing general mathematical theories. It is based

on a higher order logic and has a very expressive type theory, similar to Martin-L�of type

theory [23]. It provides an integrated environment for many kinds of reasoning including

rewriting, forward and backward chaining, and arithmetic reasoning. It has an X-windows

interface for entering de�nitions and interactively guiding proofs of theorems. Compre-

hension of proofs is aided by permitting concise notations for terms and by maintaining

the full structure of proofs.

1

This paper appears in the proceedings of the IFIP TC10/WG10.2 International Conference on The-

orem Provers in Circuit Design, which are edited by V. Stavridou, T.F. Melham, and R.T. Boute, and

published by North-Holland. The conference was held in Nijmegen, The Netherlands, 22-24 June 1992.

The paper accompanies a tutorial given by the author at the conference.

2

Supported by NASA GSRP fellowship NGT-50786

Nuprl can support formal methods for digital systems design in several ways. The

techniques explored by the HOL group [16] for verifying circuits can be duplicated and

improved on in ways which are discussed in this paper. Current projects include producing

a reusable toolkit for verifying oating-point circuits, exploiting special features of Nuprl's

logic to synthesize circuits and building a formally-veri�ed hardware synthesis system.

This would allow circuit designers to exploit the bene�ts of formal techniques without

having to become intimately familiar with the techniques themselves.

One of the goals of this paper is to persuade the reader of the usefulness of a type

theory such as Nuprl's over a simpler type theory such as HOL's [15]. Nuprl's dependent

type constructors are described in some detail, and many examples of their use are given.

Type checking emerges as playing an even more important organizational role than it

does in most programming languages.

Nuprl's logic is constructive [9], its logic lacks a couple of the axioms of classical logic

in their full generality. However, this hasn't restricted our reasoning about hardware, and

we discuss its possible advantages.

Nuprl borrows the idea of tactics from the Edinburgh LCF project. Tactics are a special

class of functions which organize proof development strategies. The class of tactics is open

ended; as the need arises one can design more and more sophisticated tactics. However,

tactics reduce every chain of reasoning to a �xed set of rules and previously proven lemmas,

so the soundness of every proof ultimately rests on just the the soundness of the rules,

not the tactics.

1.1 Background

The Nuprl project at Cornell grew out of work on various program veri�cation and syn-

thesis systems using specialized logics [11] [8]. These specialized logics were found to be

rather cumbersome and a conclusion was drawn that it would be advantageous to work

in as expressive logic as possible, one which could serve as a foundation for mathematics.

Nuprl's architects were attracted to Martin L�of type theory because it had been pro-

posed as a foundational logic and because it held a promise of being a logic in which one

could automatically synthesize programs directly from proofs of their speci�cations.

The idea of tactics, and the higher order functional language ML to support them, come

from the Edinburgh LCF project [17]. Tactics are widely used in other theorem provers

such as HOL, Isabelle [24], Coq [13] and VERITAS

+

[18].

1.2 Terminology

We use the word term throughout this paper to include Nuprl's programming-language

constructs, types and propositions. These terms are considered to make up Nuprl's object

language. They are sometimes divided into two classes; primitive terms and abstractions.

Primitive terms are those which are dealt with directly by Nuprl's type theory. Abstrac-

tions are terms de�ned in terms of other abstractions and/or primitive terms.

We write t 2 T to mean that the term t can have type T . We also might say that t is a

well formed member of type T or simply that t is well formed if T is understood. We are

using term here in the general sense. In Nuprl, both types and propositions have types.

1.3 Organization of Paper

Section 2 deals with Nuprl's logic and type theory in some detail. Section 3 talks about

how the logic is mechanized and in particular about the various kinds of tactics. Section

4 describes the X-Windows interface. Section 5 discusses learning to use Nuprl and user

support. Section 6 gives many examples of the advantages of using Nuprl's type theory

for hardware veri�cation. Section 7 lists various hardware related projects, and Section 8

summarizes the main issues discussed in the paper. Section 9 gives a few practical details

about the system.

2 The Nuprl Logic

Nuprl has a higher order logic. Logical propositions are constructed from the connectives

^ (and), _ (or), ! (implies) and : (not), the quanti�ers 8 (for all) and 9 (there

exists), and atomic propositions. Examples of atomic propositions are equality over any

type and order relations such as < and � on the integers and on the rationals. Nuprl has

a three place equality relation, written t

1

= t

2

2 T . The relation is true when t

1

and t

2

are equal members of the type T .

The logic is higher order because one can quantify over higher order objects such as

functions. Examples will be seen throughout this paper of higher order quanti�cation.

In the rest of this section we try to give a avor of the logic and explain Nuprl's type

theory.

2.1 Sequents, Rules and Proofs

Nuprl's rules are formulated in a sequent calculus. A sequent in Nuprl consists of a list of

0 or more hypotheses H

1

; : : : ; H

n

and a conclusion C. It is usually written as:

H

1

; : : : ; H

n

` C:

The ` symbol is often called a turnstile. Each hypothesis H

i

is either a proposition P

or a declarationx :T declaring variable x to be of type T . The conclusion is a proposition.

A declaration x :T as hypothesis H

i

binds free occurrences of x in hypotheses H

i+1

: : :H

n

and in C. For this reason, the order of the hypotheses is important. One can't arbitrarily

permute hypotheses. Sequents are always closed; they contain no free variables. We will

occasionally refer collectively to the hypotheses and conclusion of a sequent as clauses.

A sequent is true if one can prove the conclusion C under the hypotheses H

1

; : : : ; H

n

.

Sequents are used to formulate the rules of Nuprl's logic and type theory.

A rule has the general form

A

1

: : : A

n

C

where A

i

and C are sequents and n � 0. The A

i

are the antecedents of the rule and C is

the consequent. Such a rule can be read top down as saying that if all the A

i

are true,

then C is true. The rule can also be read bottom-up as saying that in order to prove C is

true, it is su�cient to prove that all the A

i

are true.

Nuprl's logic is similar to Gentzen's LJ system [27]. Nearly all the logic rules, when

read top-down, tell us how to introduce a logical connective or quanti�er in a hypothesis

or the conclusion. When read bottom-up they explain how to break down or decompose

the connective. We will refer to such rules in what follows as decomposition rules, because

it turns out that we always use these rules in a bottom-up fashion. A slightly simpli�ed

version of the rule for decomposing) in the conclusion is:

�; A ` B

� ` A) B

Another rule, the hypothesis rule states that

�; A; � ` A

Here A and B stand for arbitrary propositions, and � and � stand for arbitrary (maybe

empty) lists of hypotheses.

A proof of some proposition P in Nuprl's logic is usually constructed by starting with

the sequent ` P . One then applies rules bottom-up, building the proof tree upwards.

Since most of the rules when viewed bottom-up decompose a connective, propositions

generally get simpler as one moves from the root of the tree out along the branches.

Branches of a proof tree terminate with such rules as the hypothesis rule above.

In practice in Nuprl, one never invokes the rules directly. As is explained in section 3.3,

one can easily automatically apply many | maybe hundreds | of rules at a time.

This style of theorem proving bears a close resemblance to the tableau method for

proving theorems [26], which is commonly taught in logic courses, and which students

usually �nd the simplest to use.

2.2 Type Theory

A type theory de�nes kinds of objects that one can talk about. Common types in program-

ming languages are integers, strings and arrays. Type theories di�er in how expressive

they are, and what kinds of distinctions they make. Nuprl's type theory is more expressive

than the type theories of most programming languages, or of the HOL proof system. We

give several examples of uses of Nuprl's type theory in section 6.

In Nuprl, terms are considered to be intrinsically untyped, terms in and of themselves

don't have a type. Type membership, 2, should be thought of as a two place relation on

these untyped terms. If it so happens for two terms a and b, that 2 (a; b) is true, or using

in�x notation, that a 2 b is true, then we say that a has type b. It is usual in Nuprl for

terms to have more than one type.

The main built-in types of Nuprl's type theory are as follows.

� Integer

The type Int contains the integers. Built-in operations on integers include +; �; �; �

and mod.

� Atom

The type Atom contains alphanumeric strings. For example "abc".

� List

For any type A, the type A List contains lists of items of type A.

� Union

The union of any types A and B, is written as A+ B. The idea of a union type is

that an element of A+B is either an element of A or an element of B and that we

can always tell which. This type is sometimes called a disjoint union to emphasize

that we can always determine which side of a union an element of a union type comes

from. Another name for the union type is the sum type. The rules for formation of

members of a union type are:

� ` a 2 A

� ` inl(a) 2 A+B

� ` b 2 B

� ` inr(b) 2 A+B

The rules show the tags inl() and inr() which we put round the elements of the

types A and B to show which side of the union the elements come from.

� Dependent Product

Suppose we wanted to de�ne the disjoint union type of n types T

1

; T

2

; : : : ; T

n

.

We could write it as T

1

+ T

2

+ � � � + T

n

. A typical element of this type would

be an element t

i

from the ith type T

i

tagged in some way to indicate that it came

from the ith type of the union. One way to describe this tagged element is as a

pair < i; t

i

> . The type of the second component of such pairs has a type which

depends on the �rst component of the pair. The type of the second component of

the pair < i; t

i

> is T

i

. We call the type of this pair a dependent product type and

write it as i :f1 : : :ng � T

i

.

Dependent product types are also known as �-types and the notation in this case

is � i : f1 : : : ng: T

i

. This notation reminds us that dependent product types are

generalized sum types.

The general rule for forming pairs in a dependent product

� ` a 2 A � ` b 2 B

a

� ` < a; b > 2 x :A � B

x

It assumes that we have an arbitrary index type A, and that we have a family of

types B

x

indexed by x of type A. The rule says that if we can prove that a 2 A

under some set of assumptions �, and we can also prove under the assumptions �

that b is in the particular type B

a

, then we can prove that < a; b > is a well formed

member of type x :A�B

x

.

When it happens that the type of the second component of pairs does not depend on

the �rst component, the dependent product type becomes equivalent to the normal

product type and we use the notation A�B. Sometimes for emphasis, we call this

special case of the dependent product type, an independent product type.

� Dependent Function

Suppose we want to de�ne the product type of n types T

1

; T

2

; : : : ; T

n

. We could

write it as T

1

� T

2

� � � � � T

n

. A typical element of this type would be a tuple

< t

1

; t

2

; : : : ; t

n

> where t

i

2 T

i

. One way of describing this tuple is as a function

which when given some index i between 1 and n, returns the term t

i

. This function

has a result type which depends on the argument to the function. For an argument

i, the type of the result is T

i

. We call the type of this function a dependent function

type and write it as i :f1 : : : ng ! T

i

.

Dependent function types are also known as �-types and the notation in this case

is � i : f1 : : : ng: T

i

. This notation reminds us that dependent function types are

good for constructing generalized products.

We describe the general rule for forming � terms in the dependent function type.

(Lambda notation provides a convenient way of describing functions. For example,

�x:x+1 is a function for adding 1 to its argument. It has the function type Int!

Int.)

� x :A ` b 2 B

x

� ` �x:b 2 y :A! B

y

The rule assumes that we have an arbitrary index type A, and that we have a family

of types B

x

indexed by x of type A. The rule says that if we can prove that b 2 B

x

for any value of x of type A, then we can prove that the function �x:b is a well

formed member of the dependent function type y :A! B

y

.

When it happens that the result type of a lambda function does not depend on the

argument to the function, the dependent function type becomes equivalent to the

normal function type and we use the notation A! B. Sometimes for emphasis, we

call this special case of the dependent function type, an independent function type.

� Set

The set type is similar to the dependent product type. We describe it by the rule:

� ` a 2 A � ` P

a

� ` a 2 fx :AjP

x

g

Here P

x

is some arbitrary predicate on the variable x.

� Recursive

The Nuprl type theory allows one to construct a variety of recursive types, such as

trees, for example.

� Type Universe

There is an in�nite ascending hierarchy U

1

; U

2

; U

3

; : : : of type universes. All

types which don't mention a universe term are elements of the �rst universe U

1

.

Type universes in Nuprl can, for many purposes, be treated just like other types,

and so can appear in type expressions. The second universe U

2

contains all those

types which are elements of U

1

and also those types which mention U

1

. The higher

universe levels are de�ned similarly.

� Proposition Universe

Proposition universes Prop

1

; P rop

2

; P rop

3

; : : : are very similar to type universes

except their elements are propositions.

It should be noted that since type universes and proposition universes are types, types

and propositions can be considered to be data. They can be put into pairs, and functions

can be de�ned which take propositions and types as arguments, and return propositions

and types as results.

2.3 Type Checking

Most theorem provers in use type-check terms automatically. The rules which govern the

type-checking are kept separate from the rules of the logic and sometimes are not even

mentioned explicitly. This automatic type-checking occurs at a few well-de�ned points in

the theorem-proving process, often only at the start, and otherwise one always assumes

that terms are well formed and have the correct types.

The type theory of Nuprl is expressive enough to admit formally undecidable type-

checking problems. (To say that a problem is undecidable is to say that there is no way

in every situation to �nd the problem's solution in a �nite amount of time.) Fortunately,

undecidable checking problems rarely come up in practice in Nuprl. However, because of

this theoretical undecidability, all of Nuprl's type checking rules are explicitly-stated and

logic rules include extra well-formedness antecedents.

Consider the Nuprl rule for decomposition of 8 in the conclusion:

�; x :A ` B � ` A 2 U

i

� ` 8x :A: B

The left antecedent �; x : A ` B is as one might expect. The right antecedent

� ` A 2 U

i

is a well-formedness antecedent. It demands that one prove A to be a well

formed type under the assumptions in �.

Nuprl's rules are arranged so that whenever a proof of some proposition P is completed,

a proof of the well formedness of P will have been completed as well.

Nuprl has a tactic for proving well-formedness antecedents automatically. This tactic

is described in section 3.3.6.

2.4 Encoding Higher Order Logic in Type Theory

Up to this point, we have made a clear distinction between Nuprl's higher-order logic,

and Nuprl's type theory. This distinction is also clear when one uses the Nuprl system.

The truth of the matter is that none of the rules of Nuprl's logic deal with propositions.

They are all type theoretic. All the higher-order logic term constructors are abstractions,

non primitive de�nitions.

Martin-L�of's type theory, on which Nuprl's is based, was specially designed to encode

a higher-order logic. The encoding is as follows:

? =

def

V oid

A ^B =

def

A�B

A _B =

def

A+B

A) B =

def

A! B

8x :A: B

x

=

def

x :A! B

x

(� x :A: B

x

)

9x :A: B

x

=

def

x :A�B

x

(� x :A: B

x

)

Prop

i

=

def

U

i

V oid is the empty type. ? is falsity. :A is de�ned as A)?. As one can see, the encoding

is very direct.

To seek the truth of some logical proposition P using type theory, one translates P into

an equivalent type T and asks whether there exists a term of type T . One then uses the

rules of type theory to try to answer this question. Some view the fact that one can do

this at all as purely accidental. Others point out that mathematicians of the Intuitionistic

or Constructive school [9] have been developing related ideas since the early years of this

century. This equivalence between logic and type theory is known as the Curry-Howard

isomorphism.

2.5 Proofs as Programs

Interest in studying the Curry-Howard isomorphism stems from the fact that from the

proof of the existence of a term t of type T , one can actually construct t. This term

is called the extract of the proof. Often t or part of t will be a function, and one can

view the proposition P as a speci�cation of the behavior of t. Thus type theory o�ers

an intriguing possibility for the automatic production of correct programs directly from

their speci�cations.

The chief problem with producing programs this way is that proof procedures have to

be sensitive to the e�ciencies of the computations implicit in them. If conventional proof

techniques are used, extremely ine�cient programs can result.

2.6 Constructivity

Nuprl's higher order logic is constructive in contrast with, for example, HOL's, which is

classical. The di�erence is that in Nuprl's logic the axiom of the excluded middle,

` 8P :U

i

:P _ :P

and the axiom of choice (an element can be chosen from each of an in�nite collection of

non-empty sets) are not true in their full generality. A classical higher order logic can be

encoded inside Nuprl's constructive logic. However, we haven't yet found this necessary

for our work in hardware veri�cation. All the instances of these axioms which have come

up and which we anticipate coming up are true in Nuprl's constructive logic.

2.7 Semantics

One can go a long way with Nuprl's logic with a reasonably straightforward idea of what

the types mean and how the rules work. However, it is not easy to make these intuitive

ideas precise. Several semantics have been proposed for Nuprl's type theory. The most

fully elaborated is Allen's set-theoretic model [2]. Nearly all of the rules have been shown

to be correct with respect to this model. However, this model is rather complex and it is

a non-trivial task to verify the soundness of new extensions to the logic.

2.8 Discussion

Nuprl's type theory does have a few problems, aside from the complex semantics men-

tioned in the previous section. There are some technical di�culties with type membership

propositions that prevent one from always being able to summarize certain patterns of

inference as lemmas rather than large tactics. For example induction schemes over ar-

bitrary well-founded orders. It also would be nice to �nd a systematic way to avoid the

duplication of well-formedness subgoals which frequently occurs. We partially deal with

this problem now by reusing well-formedness proofs so proofs become directed acyclic

graphs rather than trees.

The particular Nuprl rules and types were chosen for pragmatic reasons. An easy to

use and e�cient logic was desired. The designers didn't strive to de�ne as Spartan a logic

as possible as happens when logicians design logic. For example the integers with the

basic arithmetic operations are built in, rather than being derived from Peano's axioms

or the equivalent. For this reason and because we need to have explicit rules to check

types, Nuprl's logic has a relatively large number of rules. (On the order of one hundred

and twenty.)

3 Mechanization of Logic

3.1 Abstractions

Abstractions are Nuprl's version of de�nitions.

We call the process of expanding a de�nition unfolding. The reverse process is folding.

For example, the abstraction for negation in Nuprl's logic reads:

: P == P => False

Abstractions can be made for terms which have binding structure. For example, exis-

tential quanti�cation is de�ned in terms of the dependent product type:

9 x:A. B[x] == x:A � B[x]

3.2 Proofs

One major di�erence between Nuprl and the other LCF style theorem-provers is that in

Nuprl the tree structure of proofs is maintained as proofs are developed. A node of a

proof tree contains the sequent at that stage of the proof as well as a record of the tactic

invoked on that node to expand the proof tree. In contrast, in the other systems, only

the fringe of the proof tree is maintained; to make a transcript of the tactics used in a

proof legible, one must carefully structure and annotate the transcript by hand. Nuprl's

proof trees serve as readable explanations of a proof, and simplify backtracking and trying

alternative proof development strategies.

Note that the proof tree that a user sees is not a proof tree at the level of the basic

Nuprl rules. Rather, the children of a node are the unproven leaves of the proof tree left

over after the run of a tactic at that node.

We are investigating ways of partially expanding sections of a proof, so that if one

doesn't understand why a tactic has behaved some way, one can discover the sequence of

slightly more primitive tactics that the tactic invoked in a simple way. Currently, we can

expand part of a proof down to the primitive rule level, but this expansion is usually far

too much.

Proof trees can be large data-structures. When we save a proof, we only store its main

goal and a transcript of the tactics required to build it. When a user asks to view a proof,

it is regenerated from the transcript.

3.3 Tactics

Tacticsmake up a very high-level language in which to write decision procedures and proof

development heuristics. This language consists of a set of higher order functions. Nuprl

has two kinds of tactics; re�nement tactics and transformation tactics. The di�erence is

that transformation tactics are usually run on internal nodes of proof trees, and re�nement

tactics are run on incomplete leaf nodes of proof trees. (By incomplete, we mean that a

rule with no antecedents has not been applied to that node.) Unless otherwise speci�ed,

we will only be concerned with re�nement tactics from here on.

A Tactic can be thought of conceptually as a function which takes an incomplete leaf

node as an argument, grows the proof tree by one or more rules, and then returns as a

result a list of the incomplete leaf nodes which are at the fringe of the growth achieved

by the tactic. We often call the node of the proof tree that a tactic is run on the current

goal, and the fringe of nodes that the tactic returns the subgoals generated by the tactic.

Tactics are combined using tacticals. For example, if T1 and T2 are tactics, then T1

THEN T2 is also a tactic which runs T1 and then runs T2 on each of the subgoals produced

by T1. T1 ORELSE T2 runs T1 and if T1 fails, it tries T2 instead.

Tactics are written in ML, a functional programming language speci�cally developed

for tactic writing [17]. The tactic language is an elegant demonstration of the virtues of

higher-order functional programming.

All tactics in the current collection attach labels to the subgoals they produce. A label

describes the kind of a subgoal or what tactic produced it. Labels help users sort out where

subgoals come from. There are also tacticals which discriminate on labels. For instance

we nearly always want to run our type checking tactic on well formedness goals produced

by other tactics. Before we had these tacticals, we made extensive use of a tactical called

THENL. T THENL [T1;...;Tn] applies T and then T1 : : : Tn to the n subgoals of T. It

requires the user to �gure out the order in which subgoals of T come out, an unrewarding

and tedious task. Labels increase the robustness of tactics by making their behavior easier

to understand and hence more predictable.

We also are exploring analogous ways to index into the hypothesis list, such that tactic

transcripts of proofs can be replayed successfully, even when extra hypotheses are added

or the order of hypotheses is altered. Such changes, for example, are needed when one

gets half way through a proof of some theorem, and suddenly realizes that one needs an

extra assumption to be stated in the theorem for the theorem to be true.

One of the chief virtues of tactics is that they provide a systematic way of interact-

ing with Nuprl at a variety of levels of abstraction; Some tactics invoke maybe one or

two primitive rules. Others can result in the invocation of hundreds or thousands of

rules. They partition automatic theorem proving strategies into well-de�ned, predictable

modules, that one can use selectively.

The main classes of tactics in Nuprl are as follows:

3.3.1 Decomposition

The simplest of these tactics invoke single decomposition rules for type and logic con-

structors. Others invoke well formedness checking rules. We try to write tactics which

group rules with similar functions, to reduce the number of tactic names the user need

remember. Another example of tactics in this class are instantiation tactics for universally

quanti�ed hypotheses and lemmas.

3.3.2 Induction

There are tactics for induction over the integer and lists types as well as induction over

various subtypes of the integers. We are working on providing induction lemmas for more

complicated induction schemes, such as induction over well founded orders.

3.3.3 Forward and Backward Chaining

These tactics work with hypotheses and lemmas constructed mainly out of 8 quanti�ers,

^'s and)'s. Such formulae behave as derived rules of inference, often at a high level.

Backward chaining is similar to resolution in Prolog. The di�erence in Nuprl is that

matching rather than uni�cation is used, and one has much more control over the search

procedure. The basic step of backward chaining involves matching the conclusion propo-

sition against the consequent of the derived rule. This results in the production of a series

of subgoals | one for each antecedent of the derived rule | which one in turn tries to

backchain with.

A forward chaining step involves the matching of hypothesis propositions against the

antecedents of derived rules. It results in the consequent of the rule being added as a new

hypothesis.

3.3.4 Decision Procedures

Nuprl has decision procedure tactics for equality and arithmetic reasoning. These tactics

act as interfaces between the user and the basic rules which invoke the procedures coded

in Lisp.

The arithmetic decision procedure tactic Arith works over the integers and subsets of

the integers. It handles equality reasoning and some simple inequality reasoning.

Arith cannot handle arbitrary integer linear programming problems. These come up

frequently when one type-checks types parameterized by integers. For this reason, we are

implementing the Sup-Inf method for linear programming problems over the integers and

the rationals [10]. We hope to verify this implementation using our work on reection.

See section 3.4 for details.

3.3.5 Rewriting

Term rewriting is a very useful technique for theorem proving. Some systems base all

their reasoning on rewriting [14]

Nuprl has a term rewriting package using conversions [25]. Conversions form a very

high-level modular language for building rewriting strategies. The style of this language

is similar to that of the tactic language. Simple conversions are combined into more

sophisticated ones using conversionals. Conversions provide a lot of control over the

rewrite process. They can be used both to carry out single rewrite steps on particular

subterms and to simplify expressions into normal forms using complete sets of rewrite

rules.

The package supports rewriting with respect to user-de�ned equivalences and order

relations as well as the , (if and only if) and = relations of Nuprl's logic. An example

of an order relation is � over the integers. Order relations are common when one is

dealing with process algebras or program re�nement logics. Also, when) is treated as

an order relation on propositions, rewriting turns out to be a generalized form of forward

and backward chaining. Conversions can be derived from lemmas or hypotheses. There

are also conversions for folding and unfolding abstractions, and for evaluating functions.

Conditional conversions are supported. The user has control over how the system

decides when a conditional conversion applies.

Conversions automate the generation of justi�cations for rewrites, proofs that the

rewrites are valid. In general Nuprl's type theory doesn't allow one to replace a subterm

by an equal subterm without such a proof. However, proofs don't have to be generated

when folding and unfolding abstractions, and when evaluating functions.

3.3.6 Type Checking

As mentioned previously, the Nuprl logic has explicit type-checking rules, and type-

checking is performed by a tactic.

Nuprl's type checking tactic is always run after other tactics which generate well-

formedness subgoals. It proves these subgoals automatically so the user never sees them

in the normal run of events.

The type checking tactic checks a term's well-formedness working from the top down

(the outermost term constructor inwards). Sometimes it needs to guess types to supply

as arguments to rules, and a bottom-up type inference program in ML takes care of this.

We have found this scheme to work well in practice.

The user supplies one or more typing lemmas for most abstractions. The type checking

tactic and type inference routines make use of these lemmas. These lemmas make clear

the intended use of abstractions. Often they can't be proved automatically; a little user

guidance is required. It is not unusual to have to use some kind of induction to prove a

well-formedness lemma.

The type checking tactic often needs to recognize when one type is a subtype of another

type, and we provide systematic ways for the user to indicate those inclusion relationships

on which Nuprl should act.

3.3.7 Transformation

The main transformation tactics are for reasoning by analogy. They take a transcript of

the tactics from some branch of a proof tree, and apply those same tactics to some other

branch. The labelling techniques discussed above are improving the robustness of these

tactics. We also use a transformation tactic for pretty-printing proof trees.

3.4 Reection

One drawback of the tactic style of reasoning is that it is often very ine�cient for tactics

to have to construct proof justi�cations using primitive inference rules and preproven

lemmas. A user is going to be understandably irritated when an inference procedure

takes minutes or hours when it would take seconds if hard coded.

One ad-hoc partial solution used in the current version of Nuprl has been to code a few

critical inference procedures as lisp or ML programs rather than as tactics. Our con�dence

in the soundness of inferences in Nuprl, is based not only on our con�dence in rules

which work by matching and substitution but also on our con�dence in these inference

procedures. Another ad-hoc solution we use is to provide two modes of operation for some

tactics, one fast and unsafe, another slow and safe. A user interactively develops proofs

in the fast and unsafe mode, and then replays the proofs overnight in the slow and safe

mode. For this solution to work, one has to ensure that both versions of a tactic always

have the same behavior. This solution works well with rewriting, where the process of

calculating the e�ect of a rewrite is separate from, and often much faster than, the process

of proving the rewrite valid.

To improve this situation, we are actively pursuing work in an area called Reection.

We are building as a Nuprl theory a complete model of the Nuprl logic [19] [3]. When

the model is complete, we will verify the correctness of inference procedures, written

in Nuprl's object language, which manipulate the data-structures of the model. These

veri�ed inference procedures will then be invoked using a specially designed reection

rule. Reection promises the speed of hard coded inference procedures, combined with

the reliability of the tactic style of reasoning, without the di�culties of maintaining two

compatible versions of tactics.

3.5 Library

Nuprl has a library mechanism for organizing theories. A library is a linear list of various

kinds of objects. An object in a library can only depend on earlier objects in the same

library. Most objects in the library are what we call text/term objects. These objects

are edited using the text/term editor as described in section 4.5. Objects in this class

include rule objects for holding statements of Nuprl's rules, and abstraction objects holding

abstraction de�nitions. Theorem objects are more complex. They hold statements of

theorems and the proof trees justifying the theorems. Work is under way at Cornell to

move to a more sophisticated library structure based on a partial rather than a linear

ordering of objects.

4 The User Interface

4.1 Introduction

Nuprl has an X-Windows interface. The primary windows are the command window and

the library display window. Instances of two other kinds of windows are created from the

command window as and when needed. A proof editor is used for developing proofs of

theorems and viewing the tree structure of proofs, and a text/term editor window is used

for entering and viewing library objects such as abstractions, rule de�nitions and display

forms. Text/term editor windows are also invoked from within the proof editor in order

to enter theorem statements and tactics. Examples of most of the kinds of windows are

given in the following sections.

The mouse can be used to both move between windows and to move within a window.

Within a proof editor window the mouse can be used to walk the proof tree and invoke

term/text editor windows.

4.2 Term Display

In Nuprl the user can control the form in which a term is displayed. The display-form

of a term is independent of its logical structure and so users are free to customize the

display of terms to their taste. To this end, the library includes display form objects for

each and every kind of term constructor. Display form objects say what text to use to

represent a term and where to insert the text representing the subterms. Examples are

given in �gure 1.

A precedence can also be speci�ed for each term constructor. The precedence informa-

tion controls the adding of parentheses to make the display forms of terms unambiguous.

A pretty-printing routine adds line breaks and indentation to terms to further improve

readability. Display forms for Nuprl's X-Windows interface use a single size ASCII font

extended with assorted graphics characters. Display forms for library and proof listings

can use display forms de�ned in L

a

T

E

X. We plan to extend the X-Windows interface in

order to cope with L

a

T

E

X display forms in the near future.

Library (File: ./lib/test/basics1.lisp) @ turing2

*D true df True ;;

*A true True == 0 2 Int ;;

*D false df False ;;

*A false False == Void ;;

*D and df <prop> ^ <prop> ;;

*A and P ^ Q == P � Q ;;

*D or df <prop> _ <prop> ;;

*A or P _ Q == P + Q ;;

*D implies df <prop> => <prop> ;;

*A implies P => Q == P ! Q ;;

*D rev implies df <prop> <= <prop> ;;

*A rev implies P <= Q == Q => P ;;

*D not df :<prop> ;;

*A not :A == A => False ;;

*D iff df <prop> <=> <prop> ;;

*A iff P <=> Q == (P => Q) ^ (P <= Q) ;;

*D exists df 9<var>:<type>. <prop> ;;

*A exists 9x:A. B[x] == x:A � B[x] ;;

*D all df 8<var>:<type>. <prop> ;;

*A all 8x:A. B[x] == x:A ! B[x] ;;

*C THEOREMS A couple of theorems from propositional and predicate calcul

*T prop1 8A:Prop1. 8B:Prop1. :A _ :B => :(A ^ B)

*T pred1 8T:U1. 8A:T ! Prop1. 8B:Prop1. (8x:T. A[x] => B) <=> (9

Figure 1: The Library Display Window

4.3 Library Display

The library display shows a section of the library with a one-line summary for each object.

An example is shown in �gure 1. Each line shows from left to right a status (* means the

object is complete), a kind (A is for abstraction, C is for comment, D is for display form

and T is for theorem), a name and the beginning of a description. One can view an object

by name to see its full description.

4.4 Command Window

The command window is for terminal-style interaction with Nuprl. Command line editing

features are provided. The window is also used for error messages such as a notice that

an attempt to use some tactic has failed. The chief modes of operation of the command

window are the command mode for managing the library and calling up library objects,

the ML mode for exploring Nuprl's data-structures and developing tactics, and the Eval

mode for evaluating programs written in Nuprl's object language.

4.5 Text/Term Editor

Text/term objects are conceptually like small text �les, except that some characters are

replaced by Nuprl terms. Terms are usually not entered as text strings which are parsed,

but rather using editor for tree structures. When entering terms, one calls up display

form templates for term constructors by name. Several examples of these display form

EDIT THM pred1 @ turing2

* top

>> 8T:U1. 8A:T ! Prop1. 8B:Prop1. (8x:T. A[x] => B) <=> (9x:T. A[x]) => B

BY RepeatM (D 0) THENA Auto

1* 1. T: U1

2. A: T ! Prop1

3. B: Prop1

4. 8x:T. A[x] => B

5. 9x:T. A[x]

>> B

2* 1. T: U1

2. A: T ! Prop1

3. B: Prop1

4. (9x:T. A[x]) => B

5. x: T

6. A[x]

>> B

Figure 2: The Proof Editor Window

templates can be seen in �gure 1. The lines with display form templates start with *D.

When the subterm slot of a term not instantiated, the display form generator �lls the slot

position with a label de�ned in the display form object for the term. The <prop> and

<var> are examples of these labels. They serve to remind one what belongs in each slot.

4.6 Proof Editor

The proof editor is used when developing and viewing proofs. An example of the proof

editor window is shown in �g 2. This is the root node of the proof of the theorem pred1

in the library display. top indicates the nodes position in the proof tree. The * by top

indicates that the proof tree from this point down to the its leaves is complete. On the

next line is the sequent associated with this node | the statement of the theorem being

proved. The >> is Nuprl's version of the sequent turnstile. BY RepeatM (D 0) THENA

Auto was the tactic typed in for the �rst step of the proof. D 0 means decompose the

conclusion term. RepeatM (D 0) means keep trying to decompose the conclusion of the

main subgoals. (Don't try decomposing auxiliary type checking subgoals.) THENA Auto is

a directive for the type checking tactic Auto to run on these auxiliary subgoals. Main and

auxiliary subgoals are more reliably distinguished using labels as discussed in section 3.3,

rather than using the form of the propositions or types in subgoals. Auto takes care of all

the well formedness checking so that we end up with just two subgoals. The numbers in

each subgoal enumerate the hypotheses of the subgoal sequents.

5 Learning to Use Nuprl/ User Support

In order to begin using Nuprl, it helps if one is familiar with predicate logic. That is, one

should have at least a passing acquaintance with propositions, quanti�ers, rules, sequents

and proofs. It also helps to be familiar with the ideas of types found in programming

languages such as Pascal, Ada, and in particular, SML.

The �rst things one must learn are the basics of getting around the system: how to

get Nuprl started and load a basic library, and how to use the di�erent editors. Proving

theorems from propositional and predicate calculus is probably the �rst thing to try. In

order to do this, one need only use a couple of variants on the decomposition tactic, and

the type checking tactic.

Ideally, from this stage on, one should work through a graded series of exercises which

introduce the user to the various kinds of tactics, the possibilities for combining tactics

to make new, more powerful tactics, and the di�erent types in Nuprl's type theory. One

should also start looking at di�erent theories built in Nuprl as case studies.

Such a tutorial does not, however, presently exist. There are a number of libraries that

one can browse, but none are that polished. Documentation exists for parts of the system,

but it is not comprehensive, and some is outdated. We are working on improving this

situation.

Nuprl has several key features which make it easy to learn; a sophisticated X-Windows

interface, clear and concise notation for terms, proofs which are readable, and the struc-

tured set of proof development strategies encoded in the tactics.

Nuprl is a large system, but very few users need to be familiar with its Lisp implemen-

tation; The ML language provides a very e�ective intermediate level of abstraction for

interaction with the system. All the major data structures are accessible from ML.

Type theory does have its subtleties, but by and large, users can work with fairly simple

intuitive ideas about what type theory is.

Nuprl has been used at a few sites other than Cornell. Most notably a course on

theorem proving, taught to undergraduates at the University of Leeds, used Nuprl for

some practicals.

6 Examples of Types

Every example in this section shows the advantages of a type theory with dependent

product and subset types. Although none of the examples here explicitly mention the use

of dependent function types, we are �nding roles for them as generalized product types

and for creating record types.

6.1 Subset Types

The set type is useful for constructing subsets of existing types. The commonest subsets

we use are subsets of the integers. For example:

N =

def

fi : Intj0 � ig

N

+

=

def

fi : Intj0 < ig

Bool =

def

fi : Intji = 0 _ i = 1g

6.2 Parameterized Types

The set type is also useful for constructing parameterized types. For example:

fi : : : jg =

def

fk : Intji � k � jg

is a type parameterized by the integers i and j.

6.3 Total Functions

All functions in the Nuprl type A ! B must be total on the domain A. In other words,

for any argument in A they must terminate and return a value in B. Consider modelling

an array of elements of some type T with lower bound min and upper bound max as a

function f . In Nuprl we could give f the type

fmin : : : maxg ! T

If we didn't have subset types, we might have to give f type

Int! T

and we would have to de�ne f to return values in type T for array indices below min and

above max. To avoid the risk of inadvertently applying such an array to an out of bound

index, we would have to have explicit bounds checking preconditions in all our theorems

which use arrays.

This problem comes up in HOL which has total functions but no subset types.

6.4 Polymorphic Types

Consider the function �

1

, the function for selecting the �rst element of a pair. In Nuprl

we would write for it the typing lemma

3

` 8A;B :U

i

: 8p : (A�B): �

1

(p) 2 A

�

1

is a polymorphic function because it operates over pairs of any product type in a

uniform way. General purpose utility functions in theorem proving are often polymorphic.

3

Here is an example of implicit quanti�cation over all universe levels i. This is a new feature of the

Nuprl system.

6.5 Rationals

A typical rational number is commonly represented as a fraction of two integers, n=d,

where d 6= 0.

In type theory, one can model rationals as pairs < n; d >, and one can de�ne the type

of rationals as:

Q =

def

Int� fi :Intji 6= 0g

If one had to use to the type Int�Int, one would have to carry around explicitly extra

predicates stating that the denominator of every rational is non zero.

Equality of rationals is not the equality of pairs. The pairs < 1; 1 > and < 2; 2 > are

not equal as pairs, but are equal as rationals.

We can de�ne an equality over the rationals, written =

q

as:

x =

q

y =

def

x

n

� y

d

= y

n

� x

d

2 Int

Here x and y are pairs, x

n

is the �rst component of the pair x and x

d

is the second

component.

Nuprl's term rewriting tactics supports rewriting with respect to such user de�ned

equalities. We have to deal with rational arithmetic in our work on verifying oating-

point circuits which is discussed more in section 7.1.

6.6 Bit-vector De�nitions

When modelling bit-vectors in a type theory, one might start with a single type, call it

BVec, for bit-vectors of any length.

For the purposes of this discussion, let us assume that one wants to use a two value

logic and that one makes the de�nition

BVec =

def

N! Bool;

We model a bit-vector as a function from the naturals to the booleans. This is a model

which has been used in the HOL system.

The value of the ith bit of a bit-vector v of type BVec is obtained by applying the

function v to i.

BVec is only a partial model for bit-vectors. A bit-vector v 2 BVec is de�ned for all

natural numbers, whereas in practice bit-vector have �xed �nite lengths. This length has

to be implicitly understood in theorems which use this type. One can add to all one's

theorems explicit bounds checking predicates for every index to a bit-vector, but this is

clumsy and unnecessarily complicates theorems and their proofs.

With the ability to parameterize types, one can try the de�nition

BVec(n) =

def

f0 : : : n� 1g ! Bool;

This type transfers the responsibility of array bounds checking to the type checker.

As we discuss later, there are decision procedures for the inequalities which result from

bounds checking, so type checking can be done automatically. With this type, theorems

need not be cluttered with explicit bounds checking predicates, and one would normally

never even see bounds checking subgoals.

This type still doesn't quite capture one's intuitive notion of what a bit-vector is. For

example, the following theorem is provable:

` 8m;n : N: 8v : BVec(n +m): v 2 BVec(n)

This is so because v(i) is de�ned for 0 � i � n + m � 1, hence is also de�ned

for 0 � i � n� 1, and so is in BVec(n).

This is disconcerting because one likes to think of bit-vectors having de�nite lengths.

One also likes to thinks of a bit-vector's length being an intrinsic part of its de�nition.

There is no way of looking at an object of type BVec(n) and telling its length. One might

de�ne functions on bit-vectors which need their length and one doesn't want to have to

pass the bit-vector length as an extra argument. (For example consider a function for

appending two bit-vectors.)

A solution is to use a dependent product type for BVec:

BVec =

def

n :N� (f0 : : : n � 1g ! Bool):

An element< n; f > of this BVec type has the properties we expect. It's length is n and

we can only �nd bit values by applying f to some index i for i which are in range, i which

satisfy 0 � i � n � 1. However this type still is not one wants. It contains bit-vectors

of all lengths, not just one speci�c length. We use a subset type to construct a type of

bit-vectors parameterized by the length n:

BVec(n) =

def

fv :BVecjn = jvj 2 Ng

Here the length function j : j on bit-vectors is de�ned as the function which selects the

�rst component of a pair.

An example of the use of BVec(n) is the following typing lemma for a relation modelling

the implementation of a parametrized n�n bit multiplier with inputs u and v and output

w.

` 8n :N: 8u; v :BVec(n): 8w :BVec(2 � n): IntMultImp(n)(u; v; w) 2 Prop

1

With such a typing lemma, an instance of IntMultImp(n)(u; v;w) will type check prop-

erly if and only if the bit-vectors u, v and w have the correct lengths. Type checking

takes on the role of design rule checking, checking that a circuit has been put together

properly.

6.7 Circuit Speci�cations as Types, and Parameterized Cir-

cuits

Assume we have relation Imp which models the implementation of a circuit with some

set of inputs i of type I and outputs o of type O. Say Imp has type (I � O) -> Prop1.

Assume also we have a relation Spec also of type (I � O) -> Prop1 which speci�es the

intended behavior of the circuit. The statement of correctness for the circuit might have

form:

` 8 i:I. 8 o:O. Imp(i,o) => Spec(i,o)

This statement is only a partial statement of correctness. It assumes that Imp has

been constructed properly. The theorem is trivially true if Imp(i,o) is false for all i and

o. To remedy this problem, we might want to include in the statement of correctness

a condition about the circuit having de�ned outputs for all inputs. Such an extra well

formedness kind of proof obligation is not just useful for checking that the design of the

circuit is well formed, but also good for checking that the relational model of the circuit

has been constructed properly. We write the theorem of correctness abstractly using a

relation ImpMeetsSpec on the Imp and Spec relations:

` ImpMeetsSpec(I,O,Imp,Spec)

We can de�ne the type of all circuit relations which implement Spec as:

SpecType(I,O,Spec) =

def

fimp:(I � O) -> Prop1|ImpMeetsSpec(I,O,imp,Spec)g

and we can rephrase the theorem of correctness of the implementation Imp as a type

checking problem:

` Imp 2 SpecType(I,O,Spec)

This reformulation comes into its own when we are verifying a hierarchically designed

circuit in which we wish to parameterize modules by submodules. Assume that we are

designing a circuit with input type I' and output type O' which must satisfy some spec

Spec'. That is we need an implementation Imp' which satis�es the theorem:

` ImpMeetsSpec(I',O',Imp',Spec')

or equivalently:

` Imp' 2 SpecType(I',O',Spec')

We notice that the design of Imp' requires a submodule which meets the Spec we talked

about �rst. We want to write Imp' as a parameterized circuit:

Imp' =

def

ParImp'(X)

where X is some arbitrary implementation which satis�es Spec. For the time being, we

don't want to say anything more about this submodule. We can prove the correctness of

ParImp' by proving the following lemma:

` 8 imp:SpecType(I,O,Spec). ParImp'(imp) 2 SpecType(I',O',Spec')

When we do get round to designing a particular implementation Imp for Spec, the

statement of correctness for the instantiated circuit Imp' = ParImp'(Imp) is simply:

` ParImp'(Imp) 2 SpecType(I',O',Spec')

We have shown in this example how the use of subset types to create such sharply

de�ned types such as SpecType allows a compact and precise presentation of proofs of

circuit correctness. Without subset types, the same presentation would not be nearly as

concise.

6.8 Abstract Data Types

An abstract data type is speci�ed by giving the type a name, and describing the valid

set of functions over it. All that is said about the functions is that they satisfy some

predicates. Abstract data types are useful in veri�cation tasks. They allow one to focus

on important properties and ignore irrelevant detail. Consider for example monoids. A

monoid is a type M with an identity e 2 M and a binary function o 2 (M �M)!M

where:

8x; y; z :M: (x o y) o z = x o (y o z)

8x :M: x o e = x = e o x

Monoids are common algebraic objects. For instance consider the integers with 0 for

e and + for o, or boolean logic with T for e and ^ for o. It's worth recognizing such

algebraic structures when theorem proving, because then one can prove general theorems

about them and use the theorems again and again in special cases.

In Nuprl's type theory one could de�ne a monoid as the type:

M =

def

f< M; e; o > : (M

0

:U

1

� M

0

� ((M

0

�M

0

)!M

0

)) j

8x; y; z :M: (x o y) o z = x o (y o z) 2 M

8x :M: (x o e = x 2 M) ^ (x = e o x 2 M)g

Here we have actually used a generalization of the set type where we can talk of subsets

of tuple types. Such a generalization is easy to de�ne. Using this type, the proposition

that the integers under addition form a monoid is simply:

` < Int; 0;+ > 2 M

7 Hardware Related Projects

7.1 Floating-Point Circuit Veri�cation

We take here the approach of the HOL group [16] of modelling circuits as relations.

This approach is sketched at the start of section 6.7. Basin and DelVecchio veri�ed a

combinational circuit which was part of a oating-point adder [7]. The circuit consisted

of shifting and multiplexing structures.

The author is currently working on verifying that oating-point circuit designs meet

their speci�cations [21]. This work involvesmuch reasoning with parameterized bit-vectors

as well as with integer and rational numbers. The IEEE oating-point standard [20]

is being formalized within Nuprl's type theory in an abstract way, similar to that of

Barrett [4]. The aim of this work is to produce a reusable toolkit of de�nitions, theorems

and tactics that can be used on practical oating-point designs.

7.2 Circuit Synthesis by Extraction

As discussed in section 2.5, theorems in Nuprl's logic can be viewed as speci�cations of

programs. The programs themselves are implicit in the proofs of the theorems and can

be extracted out of the proofs. Basin has been using Nuprl to see whether one could

adapt this idea so that one could extract circuit designs from proofs of theorems which

specify the circuits [5]. He has succeeded in extracting such combinational circuits as

barrel shifters and look-ahead carry adders, and is looking into extracting more complex

combinational circuits and timed circuits.

7.3 Veri�cation of Hardware Synthesis Systems

This work started with Basin, Brown and Leeser synthesizing combinational circuits from

their speci�cations by using specially tailored rewrite rules [6]. More recently Aagaard

veri�ed an implementation of the weak division method for simplifying combinational

circuits [1]. Weak division is widely used in commercial logic synthesis systems. Aagaard's

work is part of a larger project to build a complete formally-veri�ed hardware synthesis

system [22].

If formally veri�ed synthesis systems become widely used, then far more designers will

bene�t from formal methods than just those who use formal methods themselves. There

is also no reason why the application of formal methods should be restricted to synthesis

systems. One should also be able to verify simulators, timing veri�ers, routers and design

rule checkers.

8 Discussion / Conclusion

As can be seen in the examples in section 6, type checking can be a powerful organizational

paradigm for formal methods. We have shown how type checking neatly partitions o�

tedious reasoning tasks, such as array bounds checking, so that such tasks can easily be

taken of by automated decision procedures. It is also elegant how complete correctness

properties of circuits can be phrased concisely as type checking problems.

We have also shown how the expressive type theory enables one to construct precise

and natural models of objects one wishes to reason about.

The use of Nuprl's type theory does entail that well-formedness reasoning has to be

done using tactics rather than decision procedures. However, well-formedness checking is

still automated and well-formedness subgoals are rarely seen explicitly in proofs. With

advances in type theory and our work in reection, we hope to improve the e�ciency of

well-formedness checking.

We believe that the Nuprl system has several key features which make make it easy to

learn and easy to use; a sophisticated X-Windows interface, clear and concise notation for

terms, proofs which are readable, and a structured set of proof development strategies.

We realize the need for better user support in terms of tutorial and reference documen-

tation. We also hope in the next year to be able to hold a two or three day workshop for

people interested in using Nuprl for formal methods.

9 Practical Details

The Nuprl system consists of approximately 60,000 lines of Common Lisp. Nuprl's tactics

and their support functions in ML make up an additional 15,000 lines. Nuprl interacts

with X-Windows using the CLX package. We describe in this paper V4.0 of the Nuprl

system. This is the current experimental version; we hope to release it sometime in the

summer of 1992. The current release version is V3.2.

Nuprl should work on most work-stations running Common Lisp and X-Windows. We

currently use it on Sun SparcStation 1 and 2's running Lucid Common Lisp.

Nuprl is in the public domain. Requests for the system or for information can be sent

to maxwell@cs.cornell.edu.

10 Acknowledgements

Over the past ten years, over a dozen people have been involved in various ways with

Nuprl at Cornell, and the project is indebted to the pioneering work done in LCF and in

earlier program veri�cation projects at Cornell.

The hardware related ideas discussed in this paper are the product of joint research

between Cornell's Computer Science and Electrical Engineering departments, to apply

Nuprl to circuit design.

The author wishes to thank Bob Constable, Jim Caldwell, Miriam Leeser, and Elizabeth

Ezra for their comments and encouragement.

References

[1] Mark Aagaard and Miriam Leeser. The implementation and proof of a boolean

simpli�cation system. Technical Report EE{CEG{90{2, Cornell School of Electrical

Engineering, March 1990. In theOxford Workshop on Designing Correct Circuits,

September, 1990.

[2] Stuart F. Allen. A non-type theoretic de�nition of Martin-L�of's types. In Proceedings

of the Second Annual Symposium on Logic in Computer Science, pages 215{221.

IEEE, 1987.

[3] Stuart F. Allen, Robert L. Constable, Douglas J. Howe, and William B. Aitken. The

semantics of reected proof. In Proceedings of the Fifth Annual Symposium on Logic

and Computer Science, pages 95{107. IEEE Computer Society, June 1990.

[4] Geo� Barrett. Formal methods applied to a oating-point number system. IEEE

Transactions on Software Engineering, 15(5):611{621, 1989.

[5] David A. Basin. Extracting circuits from constructive proofs. In International Work-

shop on Formal Methods in VLSI Design. ACM, 1991.

[6] David A. Basin, Geo�rey M. Brown, and Miriam E. Leeser. Formally veri�ed syn-

thesis of combinational CMOS circuits. In L. J. M. Claesen, editor, Formal VLSI

Speci�cation and Synthesis, pages 197{206. North-Holland, 1990.

[7] David A. Basin and Peter Del Vecchio. Veri�cation of combinational logic in Nuprl.

In M. E. Leeser and G. M. Brown, editors, Hardware Speci�cation, Veri�cation, and

Synthesis: Mathematical Aspects, pages 333{357. Springer Verlag, 1990. LNCS 408.

[8] Joseph L. Bates. A logic for correct program development. Technical Report 79-388,

Cornell University, Ithaca, NY, August 1979.

[9] Michael J. Beeson. Foundations of Constructive Mathematics. Springer-Verlag, 1985.

[10] W. W. Bledsoe. A new method for proving certain Presburger formulas. In 4th

International Joint Conference on Arti�cial Intelligence, pages 15{21, Tiblsi, 1975.

[11] Robert L. Constable, Scott D. Johnson, and Carl D. Eichenlaub. Introduction to

the PL/CV2 Programming Logic, volume 135 of Lecture Notes in Computer Science.

Springer-Verlag, New York, 1982.

[12] Robert L. Constable, et al. Implementing Mathematics with the Nuprl Proof Devel-

opment System. Prentice-Hall, Englewood Cli�s, New Jersey, 1986.

[13] Thierry Coquand and G�erard Huet. Constructions: A higher order proof system

for mechanizing mathematics. In B. Buchberger, editor, EUROCAL '85: European

Conference on Computer Algebra, pages 151{184. Springer-Verlag, 1985.

[14] Kokichi Futatsugi, Joseph Goguen, Jean-Pierre Jouannaud, and Jos�e Meseguer. Prin-

ciples of OBJ2. In Conference Record of the Twelfth Annual ACM Symposium on

Principles of Programming Languages, pages 52{66, 1985.

[15] M. J. C. Gordon. HOL: A machine oriented formulation of higher order logic. Tech-

nical Report 68, Cambridge University Computer Laboratory, 1985.

[16] M. J. C. Gordon. Why higher-order logic is a good formalism for specifying and

verifying hardware. In G.J. Milne and P.A. Subrahmanyam, editors, Formal Aspects

of VLSI Design. North{Holland, 1986.

[17] Michael J. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF: A

Mechanized Logic of Computation, volume 78 of Lecture Notes in Computer Science.

Springer-Verlag, 1979.

[18] F. K. Hanna and N. Daeche. Speci�cation and veri�cation of digital systems using

higher-order predicate logic. IEE Proceedings E: Computers and Digital Techniques,

133(5):242{254, September 1986.

[19] Douglas J. Howe. Automating Reasoning in an Implementation of Constructive Type

Theory. PhD thesis, Cornell University, 1988.

[20] IEEE standard for binary oating-point arithmetic. New York ANSI/IEEE Std.

754{1985, August 1985.

[21] Paul B. Jackson. Developing a toolkit for oating-point hardware in the nuprl proof

development system. In Proceedings of the Advanced Research Workshop on Correct

Hardware Design Methodologies. Elsevier, 1991.

[22] Miriam Leeser et al. BEDROC: The Cornell hardware synthesis project. Technical

Report EE-CEG-90-6, Cornell School of Electrical Engineering, June 1990.

[23] Per Martin-L�of. Constructive mathematics and computer programming. In Sixth

International Congress for Logic, Methodology, and Philosophy of Science, pages

153{175, Amsterdam, 1982. North Holland.

[24] L. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor, Logic

and Computer Science, pages 361{385. Academic Press, 1990.

[25] Lawrence C. Paulson. A higher-order implementation of rewriting. Science of Com-

puter Programming, 3:119{149, 1983.

[26] Raymond Smullyan. First Order Logic. Springer-Verlag, 1968.

[27] M. E. Szabo, editor. The Collected Works of Gerhard Gentzen. North Holland, 1969.

