
Verifying a Garbage Collection Algorithm�yzPaul B. JacksonDepartment of Computer ScienceUniversity of EdinburghEdinburgh EH9 3JZ, UKpbj@dcs.ed.ac.ukhttp://www.dcs.ed.ac.uk/home/pbjJune 8, 1998AbstractWe present a case study in using the PVS interactive theorem proverto formally model and verify properties of a tricolour garbage collectionalgorithm. We model the algorithm using state transition systems andverify safety and liveness properties in linear temporal logic. We set up twosystems, each of which models the algorithm itself, object allocation, andthe behaviour of user programs. The models di�er in how concretely theymodel the heap. We verify the properties of the more abstract system, andthen, once a re�nement relation is exhibited between the systems, we showthe more concrete system to have corresponding properties.We discuss the linear temporal logic framework we set up, commentingin particular on how we handle fairness and how we use a `leads-to-via'predicate to reason about the propagation of properties that are stable inspeci�ed regions of system state spaces. We also describe strategies (tactics)we wrote to improve the quality of interaction and increase the degree ofautomation.1 IntroductionThis case study is part of larger project at the University of Edinburgh to developand assess formal models and veri�cation techniques for garbage collection al-gorithms. This project is being carried out in consultation with the memory man-agement group of the software house Harlequin1 which, amongst other things,� c Springer-VerlagyTo appear in: Jim Grundy and Malcolm Newey editors, proceedings of 11th InternationalConference on Theorem Proving in Higher Order Logics, TPHOLs'98. Lecture Notes in Com-puter Science, Springer-Verlag. September 1998. From September onwards, full bibliographicdetails should be available from my homepage.zThis work was supported by the UK Engineering and Physical Sciences Research Councilunder grant GR/J85509 and, while the author was a Visiting Fellow in the Computer ScienceLaboratory of SRI International in Menlo Park, California USA, by the US National ScienceFoundation under contract CCR-9509931.1http://www.harlequin.com/ 1

produces compilers for Lisp, ML and Dylan. One of the primary goals of ourproject is to demonstrate that formal techniques can have a positive impact onthis group's software development process.In this case study, we treat a garbage collector as a component of a reactivesystem that also includes a heap object allocator and an abstraction of the userprogram. We use state transition system models and linear temporal logic forproviding a speci�cation and veri�cation framework. Similar approaches havebeen successfully used in previous work on mechanically verifying garbage col-lectors (see Sec. 10). We introduce two systems at di�erent levels of abstractionthat we show to be related by a re�nement relation. The more abstract systemis simpler to verify, and the more concrete system is a more faithful model of anactual memory management system.We chose to look at an algorithm that is relatively straightforward to analyse,so that we could quickly gain experience with the styles of proofs needed forreasoning about garbage collectors in linear temporal logic. In future work wewill be studying the veri�cation of successively more complicated algorithms.Much of the literature on verifying garbage collection algorithms has focussedon abstract concurrent algorithms that have particularly subtle behaviours be-cause of the �ne-grain of the concurrency. Our interest at the moment is primar-ily in sequential algorithms, since few algorithms in use today are truly concur-rent. At an abstract level, sequential garbage collection algorithms have simplerbehaviours, but there are still plenty of challenges to be faced in verifying them,especially when considering implementation details. The techniques we are usingfor reactive systems are designed for reasoning with concurrency, and it wouldbe easy to adapt our work to both concurrent and distributed settings.We carry out our formalization using the Pvs theorem prover [ORS92]. ThePvs speci�cation language is a classical higher-order logic with subtyping byarbitrary predicates. Proofs are carried out interactively by users repeatedly ap-plying strategies, Pvs's version of tactics. Pvs has strategies for such operationsas case splitting, expanding de�nitions, instantiating quanti�ers, rewriting andsimplifying. It also has strategies which invoke decision procedures that integratecongruence closure with linear arithmetic.To accurately model garbage collection algorithms, we want to consider ar-bitrarily large and complex heap data structures. There is no obvious way to ab-stract these structures to produce �nite state models suitable for model checking.Work so far in model checking garbage collection algorithms has had to use small�xed values (4 heap objects, for example) for heap parameters [Bru97, Hav96].However, Pvs has interfaces to several model checkers, and we hope in future tolook at using model checking to assist in parts of our interactive proofs.The rest of this paper is organized as follows: we present our formalizationof linear temporal logic in Sec. 2 and then Sections 3, 4, and 5 describe the moreabstract model we set up and show the safety and liveness proofs we carried out.Sec. 6 introduces our more concrete model, Sec. 7 summarises our framework forreasoning about re�nement, and Sec. 8 covers the proof of re�nement and thetransfer of properties from the more abstract model to the more concrete. Sec. 9discusses issues raised by the case study that are not covered elsewhere and acomparison with related work is made in Sec. 10. Finally we give our conclusionsin Sec. 11. 2

We present de�nitions and lemmas in syntax that is very close to the actualsyntax of Pvs. The main change is that we replace certain keywords, operatorsand identi�ers with non-ASCII logical and mathematical symbols.2 Linear Temporal LogicIn Sec. 2.1 we de�ne a notion of transition system and introduce a shallowembedding of linear temporal logic operators into the Pvs speci�cation language.We then go on in Sec. 2.2 and Sec. 2.3 to describe the most important ruleswe used in our proofs. Our approach is most similar to that of Manna andPnueli [MP91a, MP91b]. Much is standard, but, as far as we know, the emphasisin Sec. 2.3 on the use of leads-to-via constructs for reasoning about liveness isnovel. See also Sec. 9.1 and Sec. 9.2 for a discussion of some more subtle issueswe had to address in order to produce an embedding that was practically usefuland well-suited to our particular needs.2.1 BasicsWe consider a transition system to be characterized by a type State of states, atype TxLab of labels for transition kinds, a collection of binary relations on statestx, indexed by labels in TxLab, a set of initial states init, and a subset fair ofTxLab being those transitions on which a fairness requirement is imposed.Pvs doesn't permit us to form tuples or records including types, so insteadwe de�ne the record typeTxSys : TYPE = [# tx : [TxLab!pred[[State,State]]],init : pred[State],fair : set[TxLab] #]for the non-type components of transition systems that is implicitly paramet-erized by types State and TxLab. The notations [S!T] and[S,T] are forfunction and product types respectively. pred[T] and set[T] are both de�ni-tions for the type [T!bool]. Square brackets in Pvs syntax are used both forthe syntax of type constructors and for explicitly specifying instantiating expres-sions for parameters. De�nitions and lemmas in Pvs are grouped into modulescalled theories which can take parameters. De�nitions of types and constantsin Pvs are parameterised by the parameters of the theory they are de�ned in.When those types and constants are used, the parameters can either be left im-plicit for the Pvs type checker to infer or can be explicitly supplied, as with,for example, set[TxLab] above. All the constants de�ned below are implicitlyparameterised by a type State of some transition system, and most are alsoimplicitly parameterized by a type TxLab and an element of type TxSys.State formulas are predicates on states. The type of state formulas isSFmla : TYPE = pred[State]Let A,B,C,D,E and I be state formulas. Temporal formulas are predicates onpairs of form (�,i) where � is a sequence of states and i a natural numberindicating a distinguished position in �.3

TFmla : TYPE = pred[[sequence[State],nat]]Here sequence[T] is a de�nition for [nat!T]. This characterization of tem-poral formulas permits the de�nition of past-looking temporal operators. Let Pand Q be temporal formulas. The function tfm de�ned bytfm(A)(�,i) : bool = A(�(i))coerces a state formula to a temporal formula. We declare tfm to be a Pvsconversion. The Pvs type checker automatically inserts conversions as necessary,so we usually omit explicit mention of tfm.The2 (for every future time) and3 (at some future time) temporal operatorsare de�ned as2 (P)(�,i) : bool = 8(j : {i...}) : P(�,j)3 (P)(�,i) : bool = 8(j : {i...}) : P(�,j)and an until operator is de�ned asU(P,Q)(�,i) : bool =9(j : {i...}) : Q(�,j) ^ 8 (k : {i..j-1}) : P(�,k)The integer subrange types {i...} and {i..j-1} are de�nitions from standardtheories in Pvs that are always loaded. We lift Pvs's quanti�ers and logicalconnectives pointwise to the SFmla and TFmla types, and overload identi�ers.For example:P � Q � �(�,i) : P(�,i) � Q(�,i)The lifted quanti�ers take lambda terms as arguments. For presentation pur-poses, we suppress the lambda symbol: we present 8(�n : P) as 8n : P, forexample. We abbreviate 2 (P � Q) by P) Q.Let sys be some element of the TxSys type. We de�ne several binary relationsbased on sys.step(s,t) : bool = 9a : tx(sys)(a)(s,t)possible_step : pred[[State,State]] = refl_cl(step)fair_step(s,t) : bool = 9a : fair(sys)(a) ^ tx(sys)(a)(s,t)Here a is of type TxLab, and refl cl is a reexive closure operator. Pvs usespre�x function application notation rather than the common post�x `dot' nota-tion for record projection operators (tx(sys) rather than sys.tx, for example).A run is an in�nite sequence of states generated by following transitions ofsys from some initial state.run : TFmla = tfm(init(sys)) ^ 2 taken(possible_step)wheretaken(tx)(�,i) : bool = tx(�(i),�(i+1))We allow for the system to take idling transitions; these simplify proving re-�nement relations between systems and also free us from needing to separatelyconsider �nite runs. A computation is a run in which fairness conditions areobeyed. 4

computation : TFmla = run ^ fairseqHere we havefairseq : TFmla =2 : 2 (tfm(enabled(fair_step)) ^ : taken(fair_step))enabled(tx)(s) : bool = 9t : tx(s,t)A computation is a run in which it is never the case that a fair step is alwaysenabled but never taken. See Sec. 9.1 for a discussion of our choice of whatconstitutes a fair run.A temporal formula is temporally valid if it holds for all sequences of states.Frequently, we are concerned only with whether a formula holds for all compu-tations of a given transition system. In this case we say a temporal formula istemporally program valid. A state formula is state program valid if it holds in allstates of all computations of some system.tv(P) : bool = 8� : P(�,0)tpv(P) : bool = tv(computation � P)spv(A) : bool = tpv(2 (tfm(A)))2.2 Safety ReasoningWe say a state formula is invariant if it is true in all accessible states. Sincethe fairness conditions we consider constrain only in�nite runs, not �nite initialsegments of runs, a state formula is invariant just when it is state program valid.We say a state formula is inductive if it is invariant and, furthermore, its validitycan be established by induction on the transition relation of the system. Theinduction rule we establish isind_rule_1 : LEMMA(8 (s: (init(sys))) : I(s)) ^ leadsto(step)(I,I)� spv(I)whereleadsto(T)(A, B): bool = 8s,t : A(s) ^ T(s, t) � B(t)and (init(sys)) is an abbreviation for the type {s:State | init(sys)(s)}.As with any shallow embedding of a logic, we express rules of linear temporallogic as lemmas.Inductive invariants I are commonly conjunctions I1 ^ : : : ^ In of invari-ant formulas Ij that are not themselves inductive. Conveniently, we can divideproofs of the induction rule premise leadsto(step)(I,I) into separate proofsof leadsto(step)(I,Ij) for each j. Initial conjectures of invariants being in-ductive are often false and one needs to go through several iterations of addingconjuncts until one �nds an invariant that is indeed inductive. As in the safetyproofs that Havelund carried out [Hav96], we carefully set up de�nitions so thatnew conjuncts can be added to a conjectured inductive invariant without havingto modify any existing proofs of conjuncts being preserved by step.5

2.3 Liveness ReasoningTemporal formulas of form A) (B U C) are ubiquitous in our liveness proofs.Such a formula can be read as \if the system is in a state satisfying A, it willremain in states satisfying B until eventually a state satisfying C is reached".More concisely, the formula can be read as \A leads to C via B", and we referto such a formula as a leads-to-via formula. We usually omit the parentheses inleads-to-via formulas, since the operator U binds more tightly than).Leads-to-via properties for states related by a single transition are establishedusing the ruleone_step_leadsto : LEMMA(8s : A(s) � enabled(fair_step)(s))^ leadsto(step)(A, B)� tpv(A) A U B)We have numerous rules for chaining together the ows of control described byleads-to-via formulas. For example,leadsto_tx_l_or : LEMMAtv((A) B U C) ^ (C) D U E)� ((A _ C)) (B _ D) U E))A particularly useful rule is the following induction rule used for proving termin-ation of transition loops:wf_leadsto_rule : LEMMAtv((8t : (A ^ �s : �(s) = t)) B U ((A ^ �s : �(s) < t) _ C))� (A) B U C))Here < is some well-founded order relation (always the usual < ordering on nat-urals in our case), and � is a rank function mapping states to the type thewell-founded order relation is over.We prefer working with leads-to-via formulas rather than the more commonbut less informative leads-to formulas of form A) 3 B which is equivalent to A) True U B. The reason is that they allow us to factor reasoning about ow ofcontrol and about how certain properties remain unchanged in speci�ed regionsof the system. The relevant rule is:leadsto_stable_augmentation: LEMMAstable?(D, B)� tpv((A) B U C) � ((A ^ D)) B U (C ^ D)))wherestable?(D,B) : bool = leadsto(step)(D ^ B,D)If we know that control state A always leads to control state C via control statesspeci�ed by B, and a property of data D is stable in region B and established incontrol state A, then we can conclude that property D will still hold when we reachcontrol state C. We haven't seen this factorization bene�t of leads-to-via formulaspointed out in the literature (in [OL82, MP91b] or [CM88], for example).6

3 More Abstract Transition System ModelWe describe in this section a model of a stop-and-collect, non-copyng algorithm.We assume a single thread of control (no concurrency). We use the tricolourmarking scheme �rst introduced for a concurrent algorithm [DLM+78]. Theextra complication of the tricolour marking scheme might seem unnecessary forour immediate needs. However the scheme is useful for incremental collectorsworking in a sequential single-process setting, and we intend to look at suchcollectors in the near future. The scheme can also be viewed as an abstraction ofmost copying algorithms. See [JL96] for further details on this marking schemeand on garbage collection algorithms in general.The idea behind most garbage collection algorithms in use is to �rst markall heap objects accessible from certain root objects. Then objects not markedare considered garbage and can be collected. With tricolour marking, the rootsstart o� marked grey and the rest of the heap is white. Marking proceeds bygreying the white children of grey objects and blackening objects which have nowhite children. (We consider an object A to be the child of an object B if some�eld of B contains a pointer to A.) Marking is complete when there are no greyobjects left. In the setting we consider here, where there is no interleaving ofmarking and user program activity, it is easy to see that the garbage objects arejust those that are left white.The model is parameterized by a �nite non-empty type Node of heap nodes.One node rt is distinguished as being the root node of the heap. We think ofnodes as representing objects in the heap.We model pointers between objects using a directed graph. We consider anedge from node m to n as indicating that there are one or more pointers betweenthe objects m and n.Heap : TYPE = pred[[Node,Node]]We are assuming here that the heap memory is divided up into object-sizedchunks rather than being a continuous sequence of addresses and are not con-sidering such issues as fragmentation. Each object is either i) free (available forallocation) or ii) allocated and marked with a certain colour. There is no needto record colours for free objects.Color : TYPE = ffree, black, grey, whitegMarking : TYPE = [Node!Color]Our linear temporal logic framework assumes that the control state of a systemis simply one component of the complete state. We use four control statesControl : TYPE = fmutate, alloc1, alloc2, tracegand the type of system states is de�ned asState : TYPE = [# heap: Heap,marking : Marking,control : Control #]7

Table 1: Transitions for More Abstract ModelName From To Descriptionmutator transitions:add edge mutate mutate Pick nodes m and n reachable from theroot and add an edge from m to n if oneisn't there already.remove edge mutate mutate Pick nodes m and n reachable from theroot and remove any edge from m to n.allocator transitions:alloc call mutate alloc1 Always enabled.alloc ok alloc1 alloc2 Enabled if at least one free node.alloc sat alloc2 mutate Pick free node n, remove any out edges ofn, add edge from root to n and make nblack.collector transitions:gc init alloc1 trace Make root grey and every black nodewhite.trace node trace trace Pick grey node n, grey any white childrenof n and make n black.gc end trace alloc2 If no grey nodes, free every white node.In what follows, variables d and e are of type State.We de�ne eight kinds of transitions divided into three categories. They aredescribed informally in Tab. 1. The `From' column indicates the control state inwhich each transition is enabled and the `To' column the value that the controlstate is changed to if each transition is taken.The mutator transitions provide an abstract model of the user program, theallocator transitions model the allocation procedure of the memory managementsystem and the collector transitions the garbage collection procedure. We havethe collector invoked from the allocation routine, since this is the most commonpractice. For generality's sake, we don't insist that collection wait for the heapto be exhausted. We place the fairness requirement on the last �ve of the trans-itions, since these are internal to the memory manager and are not consideredto be initiated by the user program.Formally, each transition is de�ned as a binary relation on states. For ex-ample, the formal de�nition for the gc init step isgc_init(d,e) : bool =at(alloc1)(d) ANDe = d WITH [(control) := trace,(marking) := init_marking_for_gc(marking(d))]whereinit_marking_for_gc(s : Marking) : Marking =�n : IF n = rt THEN greyELSIF black?(s(n)) THEN white8

ELSE s(n) ENDIFThe WITH construct is convenient syntax for the non-destructive update of �eldsof records and points in the domains of functions. In this case, the control andmarking �elds of the record d are being updated.We consider the initial state of the system to be one in which control is inthe mutate state, the root is black, the rest of the nodes are free and there areno edges between nodes.4 Proof of Safety of More Abstract ModelThe safety property we prove is that the garbage collection algorithm only col-lects unreachable objects in the heap. Formally, we assert that all white nodesare unreachable whenever the next transition might be the collector transitiongc end which frees all white nodes.safety : SFmla =enabled(gc_end) � 8n : white(n) � : reachable(n)safety_lemma : LEMMA spv(safety)wherereachable?(d)(m) : bool = star(heap(d))(rt,m)reachable(m)(d) : bool = reachable?(d)(m)white(m)(d) : bool = white?(marking(d)(m))and star is reexive transitive closure.We prove safety lemma using the induction rule ind rule 1 introduced inSec. 2.2. The invariant safety is not inductive, so we show it to be true as a con-sequence of the stronger invariant inv that is inductive. inv is the conjunctionof the properties:1. the root node is grey or black,2. there is no edge from a black node to a white node3. there is no edge from a non-free node to a free node4. no node is coloured grey when control is not in the trace state.The proofs showing that this conjunction is inductive draw on a couple of aux-iliary lemmas:reachable_not_free : LEMMAinv(d) ^ reachable?(d)(n) � : free?(marking(d)(n))reachable_black_if_no_greys : LEMMAinv(d) ^ reachable?(d)(n) ^ : (9m : grey?(marking(d)(m)))� black?(marking(d)(n))The proofs of these auxiliary lemmas involve applying general properties of star.In particular, the induction lemma 9

narrowing_of_change : LEMMAstar(R)(x,y) ^ P(x) ^ : P(y) � 9u,v : R(u,v) ^ P(u) ^ : P(v)is helpful.The proof of inv being inductive splits naturally into 32 cases, one for eachchoice of conjunct and transition. The grind strategy automatically solves 25of these. grind combines all the strategies mentioned in Sec. 1 and is often usedto completely prove simpler goals and subgoals. Of these 25 cases, 10 are verystraightforward because the selected conjunct refers only to parts of the stateunchanged by the selected transition. grind solves these by rewriting with thestate change equation contained in the transition de�nition and simplifying theresulting expressions. The other 15 automatic cases are more interesting. grindgenerates case splits, some based on update expressions, and guesses instanti-ations of quanti�ers. The Pvs simpli�er knows of the distinctness of elementsof the Color and Control datatypes and uses congruence closure to simplifyequalities involving expressions of type Color and Control to true or false. Theremaining 7 cases involve an average of about 7 steps of manual proof guidance(excluding work involved in proving the auxiliary lemmas).5 Proof of Liveness of More Abstract ModelThe liveness condition we prove is that garbage nodes always eventually becomefree. The formal statement isliveness : TFmla =allocs_keep_coming� 8m : (at(mutate) ^ garbage(m))) 3 free(m)garbage_eventually_freed_a : LEMMA tpv(liveness)whereallocs_keep_coming : TFmla =at(mutate)) at(mutate) U at(alloc1)free(m)(s) : bool = free?(marking(s)(m))garbage(m) : SFmla = : free(m) ^ : reachable(m)and m is of type Node.The allocs keep coming precondition expresses the need to assume that theuser program allocates new storage with su�cient regularity. If the user programdoesn't keep calling the allocator, then there is no guarantee that garbage col-lection will ever take place. The restriction that we only consider garbage whenin the mutate state is a minor one. It simpli�es the proofs. With a little morework we could relax it.The main stages of the proof are as follows. The �rst two have to do withow of control. They establish that if we start in the mutate state, we eventuallycall the collector, and then eventually complete tracing of the reachable objectsin the heap. 10

mutate_to_trace : LEMMAtpv(allocs_keep_coming� (at(mutate)) at((:alloc1,alloc2,mutate:)) U at(trace)))eventually_no_greys_in_trace : LEMMAtpv((at(trace) AND exist_greys)) (at(trace) ^ exist_greys)U (at(trace) ^ : exist_greys))whereexist_greys(d) : bool = 9m : grey?(marking(d)(m))Each of these lemmas is proved using the wf leadsto rule introduced in Sec. 2.3.In the �rst lemma, the rank of the state is the number of free nodes, in the second,the number of non-black nodes.We note that, if making a transition starting in any state except one in whichgc end is enabled, garbage always remains garbage.garbage_stable : LEMMAstable?(garbage(m), at((:alloc1,alloc2,mutate:))_ (at(trace) ^ exist_greys))Using the leadsto stable augmentation lemma discussed in Sec. 2.3 andthe above lemmas about ow of control and stability of garbage, we deduce that,if we start at a point in a trace where we are in a mutate state and node m isgarbage, we will always eventually reach a state in which the gc end transitionis enabled and m is still garbage.We prove an additional invariantgarbage_in_trace_is_white : LEMMAspv(garbage(m) ^ at(trace) � white(m))and a characterization of the e�ect of the gc end transitionfreeing_of_whites: LEMMAleadsto(step)(at(trace) ^ : exist_greys ^ white(m),free(m))from which we easily derive tpv(liveness).6 More Concrete Transition System ModelThis model is close in spirit to some that we at Edinburgh discussed with thememory management group at Harlequin when learning about the systems thatthey develop. The main di�erence between it and the more abstract model is thathere we consider the edges between heap nodes as being labelled with elementsof a type Label. Multiple edges are allowed between two given nodes, providingthey have distinct labels. We model the heap by a function of typeHeap : TYPE = [Node,Label!Lift[Node]]11

where [S,T!U] is an abbreviation for the type [[S,T]!U] and Lift[T]is a Pvs datatype with elements bot and lift(t), t being an element of typeT . The labels on edges from the root node rt can be thought of as the namesof heap roots, for example, the names of CPU registers or static variables orthe addresses of stack locations. The labels on edges from a non-root node canbe thought of as the names or addresses of pointer-containing �elds of the heapobject represented by the node. If the value of the heap function on node m andlabel r is lift(n), then we consider there to be a pointer labelled r from m ton; if the value is bot, we consider the pointer r from m to be null.The control and marking components of the state have the same de�nitionsas in the more abstract model. In particular, every node has one of the four samecolours. We add a new component label arg of type Label which we explainbelow.Tab. 2 shows the transitions. The read, write, drop, and del transitionsreplace the add edge and remove edge transitions of the more abstract model,and the gc init, trace node, gc end and alloc ok transitions have virtuallythe same de�nitions. We think of the read transition as the reading into CPUregister s of the pointer in the �eld u of the object pointed to by CPU registerr. We think of the write transition as the writing of a pointer to the object ninto �eld u of object m. The conditions under which read, write, drop, anddel are enabled are perhaps more restrictive than might be desired. If we wereto relax them, we would need to add a transition in the more abstract modelthat simultaneously adds and remove edges. This would involve a little extrawork, but would be straightforward. We think of the label arg component ofthe state as holding the address on the stack for the return value of an allocationfunction: the the alloc call transition sets this address and the alloc sattransition sets the value to a fresh object.As an example, the transition relation for the read transition is formalizedas 9r,u,s : read(r,u,s)(d,e), whereread(r,u,s)(d,e) : bool =at(mutate)(d) ^ val?(d(r)) ^ val?(d(val(d(r)),u)) ^ bot?(d(s))^ e = d WITH [(heap)(rt,s) := d(val(d(r)),u)]Conversions are used here to abbreviate expressions: when conversions are in-serted, d(n,u) becomes heap(d)(n,u) and d(r) becomes heap(d)(rt,u).7 Framework for Re�nementWe consider a transition system B to be a re�nement of a system A whenwe can exhibit an abstraction mapping � (sometimes called a re�nement map-ping [Lam94]) mapping states of B to states of A, that when applied to anycomputation of B yields a computation of A. In a theory parameterized bysystems A and B, we make the de�nitionrefinement?(�) : bool =8�b : b.computation(�b,0) � a.computation(map(�,�b),0)where � has type [StateB!StateA] and �b has type sequence[StateB].12

Table 2: Transitions for More Concrete ModelName From To Descriptionmutator transitions:read mutate mutate If there are heap pointers rt r! m, m u! nand rt s! ; (pointer s from root is null),then update the heap so that rt s! n.write mutate mutate If there are heap pointers rt r! m, rt s! nand m s! ;, then update the heap so thatm s! n.drop mutate mutate If there is a pointer rt r! m, then make itnull.del mutate mutate If there are pointers rt r! m and m u! n,then null the pointer u.allocator transitions:alloc call mutate alloc1 If rt r! ;, then store the label r in a com-ponent of the state called label arg.alloc ok alloc1 alloc2 Enabled if at least one free node.alloc sat alloc2 mutate If there is some free node n, then null allpointers out of n, add a pointer rt r! nwhere r is the value of label arg andmake n black.collector transitions:gc init alloc1 trace Make root grey and every black nodewhite.trace node trace trace Pick grey node n, grey any white childrenof n and make n black.gc end trace alloc2 If no grey nodes, free every white node.Identi�ers in Pvs can take pre�xes that specify which theory they are fromand how the parameters to that theory are instantiated. Local abbreviationscan be introduced for these pre�xes. The pre�xes a. and b. in this sectionspecify parameters appropriate for systems A and B. Later on, we use pre�xabbreviations to distinguish between identi�ers with the same name but fromdi�erent theories. To improve readability, we use pre�xes more than is strictlynecessary: Pvs's type checker can often resolve ambiguities when pre�xes areleft out. For simplicity, we deviate slightly here from exact Pvs syntax in thatwe use the same pre�x for identi�ers from closely-related theories.Because we consider computations rather than runs in the de�nition of refine-ment?, system B can inherit all temporally program valid properties proven ofsystem A.tpv_refinement : LEMMArefinement?(�) ^ a.tpv(PA) � b.tpv(treify(�,PA))13

spv_refinement : LEMMArefinement?(�) ^ a.spv(AA) � b.spv(sreify(�,AA))where PA and AA are, respectively, temporal and state formulas of system A, andthe rei�cation functions have de�nitions:sreify(�,AA) : SFmla[StateB] = �sb : AA(�(sb))treify(�,PA) : TFmla[StateB] = ��b,i : PA(map(�,�b),i)We establish that an abstraction mapping � characterizes a re�nement intwo stages:1. we show that � maps runs of B to runs of A by showing that � is asimulation:simulation?(�) : bool =(8sb : b.init(tsb)(sb) � a.init(tsa)(�(sb)))^ (8sb,tb : b.accessible?(sb) ^ b.step(sb,tb)� a.possible_step(�(sb),�(tb)))2. we show that the abstraction of every computation of B satis�es the `fairsequence' property of A (see the de�nition of fairseq in Sec. 2.1). Asimple case when this is true is when(a) a fair step of A being enabled implies that a fair step of B is enabled,and(b) if a fair step is taken between two adjacent states in a run of system B,then a fair step can also be taken in system A between the abstractionsof these states.These conditions are ful�lled by re�nements such as the one we consider inSec. 8, where the re�nement involves a change of data representation, butno signi�cant change of control structure.Our de�nition of re�nement is similar to that of Chou [Cho93]. In particular,Chou identi�es the same simple case of when a simulation is a re�nement.8 Veri�cation of More Concrete ModelLet us refer to the more abstract transition system model introduced in Sec. 3 assys1 and the more concrete in Sec. 6 as sys2. We show that sys2 is a re�nementof sys1, considering a sys1 that has the same type Node and same node rtas sys2. We de�ne an abstraction mapping rmap that forgets the label argcomponent of the sys2 state, and is the identity function on the control andmarking components. A heap component h2 of the sys2 state is mapped to thesys1 heap edge?(h2) whereedge?(h)(m,n) : bool = 9u : h(m,u) = lift(n)Showing that rmap de�nes a simulation relation between sys2 and sys1 isstraightforward. At one point we need to exploit the fact that the simulationonly quanti�es over all accessible states of the concrete system, not all states.The relevant lemma is 14

alloc_sat_simulation_a : LEMMAsys2.accessible?(d2) ^ sys2.alloc_sat(d2,e2)� sys1.alloc_sat(rmap(d2),rmap(e2))We need the accessible? precondition to know that, when alloc sat is en-abled, the pointer from rt named by the value of label arg is null. If it isn't,the sys2 alloc sat operation might also remove an edge from root in the heapgraph, a behaviour that isn't simulated by the sys1 alloc sat operation. Toestablish that this pointer is null when alloc sat is enabled, we prove by in-duction the stronger invariant that this pointer is null whenever control is notin the mutate state.Establishing the relationships between the fair steps being taken and enabledis also straightforward. For the relationship between the fair steps being taken,we can reuse the speci�c facts about transitions simulating each other such asthe one cited above.We therefore havermap_is_refinement : LEMMA refinement?(rmap)and consequentlysys2_safety_a : LEMMA sys2.spv(sreify(rmap, sys1.safety))sys2_liveness_a : LEMMA sys2.tpv(treify(rmap, sys1.liveness))These formulations of the safety and liveness results for sys2 are not satisfactorybecause they refer to the sys1 characterizations. We therefore apply lemmas suchastreify_until : LEMMAtreify(�, PA U QA) = treify(�,PA) U treify(�,QA)to push the rei�cation operators down the de�nitions of sys1.safety and sys1-.liveness, and lemmas about rei�cation of atomic predicates to arrive atsys2_safety_b : LEMMA sys2.spv(sys2.safety)sys2_liveness_b : LEMMA sys2.tpv(sys2.liveness)where the de�nitions of safety and liveness are similar to those for sys1, butonly refer to components of the state and transitions of sys2.9 Discussion9.1 FairnessWe discuss here our choice of fairness condition introduced in Sec. 2.1.Since our primary interest for the moment is in sequential rather than con-current algorithms, we don't need fairness conditions to account for a schedulerbeing fair to di�erent processes. Rather, the only need for fairness conditionsis to rule out runs where the system idles inde�nitely with control at some in-ternal point of a memory management procedure and with some transition ofthat procedure enabled. 15

The fairness condition we use is often called weak fairness [Lam94] or justice [MP91b].More precisely, using terminology fromManna and Pnueli's book [MP91b, pp132{134], the condition we use is process justice. Manna and Pnueli use for their owntransition systems a di�erent weak fairness condition they call transition justice.In our notation, this istj_fairseq : TFmla =8(a:TxLab): 2 : 2 (enabled(tx(sys)(a)) ^ : taken(tx(sys)(a)))Manna and Pnueli give an example of a run of a system that exhibits livelockand is transition just but not process just. They argue that a more detailedimplementation of this system would also exhibit livelock and so, if process justicewere to be adopted, this system would erroneously be shown to be livelock free.However, there are also scenarios in which a run that exhibits livelock canbe process just, but not transition just. For example, consider a system withtwo states S and T and two fair transitions S ! S and S ! T belonging to oneprocess that are always enabled in state S. A run in which the system alwaysstays in state S is process just, but not transition just for the transition S ! T .Manna and Pnueli in [MP91b] miss this point because they claim that processjustice is a more restrictive than transition justice.A key feature of this example is the single-step looping transition S ! S.Such transitions are not uncommon in the sequential models we consider inwhich multiple program steps are represented by single transitions (considertrace node in Sec. 3). It also seems that scenarios like the one that Manna andPnueli cite rely on their being more than one process. We therefore prefer to useprocess justice rather than transition justice.9.2 Working with Temporal Logic JudgementsOne problem with linear temporal logic is the failure of equivalence of implicationat the temporal logic level and the metalogic level (Pvs's boolean logic level): theassertion tv(P � Q) is strictly stronger than the assertion tv(P) � tv(Q). We�nd that we get strong enough rules only if we link the premises and conclusionsat the temporal level rather than the boolean level. For example, the lemma:weak_leadsto_tx : LEMMAtv(A) B U C) ^ tv(C) D U E)� tv(A) (B _ D) U E)is true, but not useful. Instead, we need:leadsto_tx : LEMMAtv((A) B U C) ^ (C) D U E)� (A) (B _ D) U E))It is awkward to directly use standard strategies to apply rules phrased in thisway. The solution we adopt is to preprocess such lemmas by unfolding thesemantic de�nitions for tv, ^ and � in the top-level temporal structure. Thisexposes boolean-level structure that standard strategies can work with. We alsoapply similar preprocessing to goals such as garbage eventually freed a in16

Sec. 5. For convenience, we integrate this preprocessing into other strategies wehave for applying lemmas and breaking down goals.This solution might seem unaesthetic and ad-hoc, but it is similar in practiceto an approach being explored for TLA [Lam94] by Merz [Mer]. There, thejudgement w j= P of a temporal formula P being true at world w is introduced.A world corresponds in our case to a pair (�,i) of a state sequence � anda position i and the judgement to the application P(�,i). The di�erence isthat in Merz's approach the type of worlds is not concretely speci�ed. Moregenerally, proof systems for temporal and modal logics that use such judgementsare increasingly attracting interest in both the computer science and the logiccommunities. See Gabbay's book on labelled deduction systems [Gab96], forexample.9.3 PVS StrategiesWe found the automation provided by Pvs's strategies to be of signi�cant help.In Sec. 4 we give a brief analysis of which kinds of automation are used wherein a few of the safety proofs.In the course of the work, we added several extra strategies to those that aresupplied by default. Some are general purpose and involve simply sequencingexisting strategies, providing alternative default arguments, or providing slightlydi�erent functionality. Others are speci�c to our formulation of transition sys-tems and to this particular model. Most of these others are for expanding certainsets of de�nitions. A few combine de�nition expansion with application of par-ticular lemmas, carrying out case splits, and simplifying.We found the strategy collection for the current version of Pvs2 to be weakestwhen it comes to quanti�er instantiation. Quanti�er instantiation is handledby the inst? strategy. inst? searches for instantiations by matching parts ofquanti�ed formula bodies against expressions found in the formulas of the currentgoal sequent. Unfortunately, it often guesses unhelpful instantiations. The grindstrategy calls on inst?, and inst? is the most common cause of grind failingto completely prove a goal. Pvs users consequently often run grind twice, �rstwith inst? disabled. This improves matters a bit, but there's still a signi�cantproblem. The Pvs developers at SRI are well aware of this problem and areexperimenting with tracking the polarities of formulas involved in matches toincrease the likelihood that inst? guesses useful instantiations.In the course of our work on the case study described in this paper, wehave been experimenting with our own variations on inst?. We have done thispartly to improve grind's behaviour, but also to improve inst?'s usefulnesswhen used for single or multiple step chaining. For example, we modi�ed inst?to seek instantiations from matching multiple parts of quanti�ed formula bodies.This is important for applying transitivity lemmas, since Pvs doesn't have logicvariables.There is certainly much further to go in this direction. For example, theIsabelle and HOL communities have found model elimination tactics of greatuse. Such tactics e�ectively do multiple step of chaining in constrained ways.2V2.1, released April 1997 17

10 Comparison with Related WorkThe tricolour algorithm we use for this case study was �rst put forward as aconcurrent algorithm [DLM+78]. Ben-Ari considered this algorithm to be oneof most di�cult concurrent algorithms ever studied and proposed a two colouralgorithm with similar properties, but with what he considered to be a signi-�cantly simpler proofs of safety and liveness [BA84]. Later pencil-and-paperproofs pointed out aws with Ben-Ari's proofs, but these too contained aws,and there were no fully correct proofs until Russino� did a mechanical formal-ization in NQTHM [Rus94]. More recently, Havelund redid the formalizationof the safety proof in Pvs [Hav96], and Havelund and Shankar [HS96] looked athow the safety proof could be better organised using re�nement techniques.The models in all the work cited above abstract away the notion of objectsbeing free. Object allocation is not modelled as a separate activity from themutator updating the heap and object collection is modelled as some operationthat makes the object accessible from root. E�ectively, free list management islumped in with the mutator. This abstraction improves the tractability of theproofs but results in models where the collector has the pathological behaviourof marking `free' objects during the tracing phase. There is a loss in clarity hereof the connection between the models and any real implementation of them. Incontrast, we have set up more concrete models that do have free objects and thatare close in spirit to abstract descriptions of garbage collection systems used bysoftware engineers at Harlequin.In two other ways our models are more abstract than those of the two col-our and tricolour concurrent algorithms. Firstly our models are signi�cantlymore non-deterministic: we leave open many details of the memory manage-ment algorithm that are unimportant for reasoning about its correctness, forexample, the order in which the collectors considers nodes for greying and black-ing. Secondly, since we don't have to model interleavings of atomic operationsof di�erent processes, we can create abstract models with single transitions thatrepresent many atomic operations (consider for instance the trace node trans-ition described in Sec. 3).Having to model atomic operations doesn't always place a ceiling on howabstract a transition system one can consider. For example, Havelund andShankar in [HS96] started with an abstract initial system with just two trans-itions. However, their approach is tailored for safety reasoning; there is no wayin their approach that liveness properties can be inherited down the chain ofre�nements of models.Gonthier formally veri�ed the safety of a much more detailed concurrentgarbage collection algorithm that was used in an experimental concurrent versionof Caml-light [Gon96]. The state-transition system model involved 63 transitionsand the safety proof 46 invariants. Gonthier argued many subtleties in thealgorithm only came to light because of the realistic detail included in the model.Gonthier used the TLP system, a Larch-based theorem prover for TLA. The TLPscript for the proof was 22,000 lines long. Few would want to repeat Gonthier'sachievement without much better proof automation.
18

11 ConclusionsWe successfully veri�ed safety and liveness properties of a tricolour garbage col-lection algorithm that is close in spirit to abstract descriptions of garbage collec-tion systems used by software engineers at Harlequin. We found it necessary anduseful to adapt the presentations of transition systems and linear temporal logicwe found in the literature. Most notably, we chose a slightly di�erent notionof fairness and we had to develop a calculus for liveness reasoning based on are�nement of the common `leadsto' operator.We found Pvs to be a suitable and e�ective tool for carrying out this formal-ization. We appreciated the automation provided by its decision procedures andsupplied strategies, and were able to develop both general purpose and domainspeci�c strategies that signi�cantly simpli�ed proofs.We plan in the future on tackling successively more complicated garbagecollection algorithms. For example, we intend to look at incremental read-barriercollectors and generational collectors.12 AcknowledgementsThe models presented in Sec. 3 and Sec. 6 are closely related to models that weredeveloped in collaboration with, most notably, Healf Goguen and Rod Burstallat Edinburgh and Richard Brooksby, formerly at Harlequin.The author wishes to thank Shmuel Katz and N. Shankar for their adviceon linear temporal logic and Stephen Bevan, Rod Burstall, Healf Goguen, Cli�Jones, Pekka Pirinen, Gavin Matthews, Brian Monahan and the anonymousreferees for their helpful comments on earlier drafts of this paper.References[AH96] Rajeev Alur and Thomas A. Henzinger, editors. Computer AidedVeri�cation : 8th International Conference, volume 1102 of LectureNotes in Computer Science. Springer, July 1996.[BA84] Mordechai Ben-Ari. Algorithms for on-the-y garbage collec-tion. ACM Transactions on Programming Languages and Systems,6(3):333{344, July 1984.[Bru97] Glenn Bruns. Distributed Systems Analysis with CCS. Prentice HallEurope, 1997.[Cho93] Ching-Tsun Chou. Predicates, temporal logic, and simulations. InJe�rey J. Joyce and Carl-Johan H. Seger, editors, Higher Order LogicTheorem Proving and Its Applications: 6th International Workshop,HUG '93., volume 780 of Lecture Notes in Computer Science, pages310{323. Springer-Verlag, August 1993.[CM88] K. Mani Chandy and Jayadev Misra. Parallel Program Design: AFoundation. Addison Wesley, 1988.19

[DLM+78] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten,and E. F. M. Ste�ens. On-the-y garbage collection: An exercise incooperation. Communications of the ACM, 21(11):966{975, Novem-ber 1978.[Gab96] Dov M. Gabbay. Labelled deductive systems, volume 1 of Oxford LogicGuides. Oxford University Press (Imprint: Clarendon Press), 1996.[Gon96] Georges Gonthier. Verifying the safety of a practical concurrentgarbage collector. In Alur and Henzinger [AH96].[Hav96] Klaus Havelund. Mechanical veri�cation of a garbage collector. Avail-able from http://www.cs.auc.dk/~havelund/, May 1996.[HS96] Klaus Havelund and Natarajan Shankar. A mechanized re�nementproof for a garbage collector. Available from http://www.cs.auc.dk/~havelund/, December 1996.[JL96] Richard Jones and Rafael Lins. Garbage Collection: Algorithms forAutomatic Dynamic memory Management. JohnWiley & Sons, 1996.[Lam94] Leslie Lamport. The temporal logic of actions. ACM Transactionson Programming Languages and Systems, 16(3):872{923, May 1994.[Mer] Stephan Merz. Yet another encoding of TLA in Isabelle.Available from http://www4.informatik.tu-muenchen.de/~merz/isabelle/. The encoding described by this note accompanies theIsabelle98 release.[MP91a] Zohar Manna and Amir Pnueli. Completing the temporal picture.Theoretical Computer Science, 83:97{130, 1991.[MP91b] Zohar Manna and Amir Pnueli. Temporal Logic of Reactive and Con-current Systems: Speci�cation. Springer, 1991.[OL82] Susan Owicki and Leslie Lamport. Proving liveness properties ofconcurrent programs. ACM Transactions on Programming Languagesand Systems, 4(3):455{495, July 1982.[ORS92] S. Owre, J.M. Rushby, and N. Shankar. PVS: A prototype veri�cationsystem. In D. Kapur, editor, 11th Conference on Automated Deduc-tion, volume 607 of Lecture Notes in Arti�cial Intelligence, pages 748{752. Springer-Verlag, 1992. See http://www.csl.sri.com/pvs.htmlfor up-to-date information on PVS.[Rus94] David M. Russino�. A mechanically veri�ed garbage collector.Formal Aspects of Computing, 6:359{390, 1994.
20

