Verifying a Garbage Collection Algorithm"‘]Li

Paul B. Jackson

Department of Computer Science
University of Edinburgh
Edinburgh EH9 3JZ, UK

pbj@dcs.ed.ac.uk
http://www.dcs.ed.ac.uk/home/pbj

June 8, 1998

Abstract

We present a case study in using the PVS interactive theorem prover
to formally model and verify properties of a tricolour garbage collection
algorithm. We model the algorithm using state transition systems and
verify safety and liveness properties in linear temporal logic. We set up two
systems, each of which models the algorithm itself, object allocation, and
the behaviour of user programs. The models differ in how concretely they
model the heap. We verify the properties of the more abstract system, and
then, once a refinement relation is exhibited between the systems, we show
the more concrete system to have corresponding properties.

We discuss the linear temporal logic framework we set up, commenting
in particular on how we handle fairness and how we use a ‘leads-to-via’
predicate to reason about the propagation of properties that are stable in
specified regions of system state spaces. We also describe strategies (tactics)
we wrote to improve the quality of interaction and increase the degree of
automation.

1 Introduction

This case study is part of larger project at the University of Edinburgh to develop
and assess formal models and verification techniques for garbage collection al-
gorithms. This project is being carried out in consultation with the memory man-
agement group of the software house Harlequin' which, amongst other things,

*(© Springer-Verlag

"To appear in: Jim Grundy and Malcolm Newey editors, proceedings of 11th International
Conference on Theorem Proving in Higher Order Logics, TPHOLs’98. Lecture Notes in Com-
puter Science, Springer-Verlag. September 1998. From September onwards, full bibliographic
details should be available from my homepage.

!This work was supported by the UK Engineering and Physical Sciences Research Council
under grant GR/J85509 and, while the author was a Visiting Fellow in the Computer Science
Laboratory of SRI International in Menlo Park, California USA, by the US National Science
Foundation under contract CCR-9509931.

"http://www.harlequin.com/

produces compilers for Lisp, ML and Dylan. One of the primary goals of our
project is to demonstrate that formal techniques can have a positive impact on
this group’s software development process.

In this case study, we treat a garbage collector as a component of a reactive
system that also includes a heap object allocator and an abstraction of the user
program. We use state transition system models and linear temporal logic for
providing a specification and verification framework. Similar approaches have
been successfully used in previous work on mechanically verifying garbage col-
lectors (see Sec. 10). We introduce two systems at different levels of abstraction
that we show to be related by a refinement relation. The more abstract system
is simpler to verify, and the more concrete system is a more faithful model of an
actual memory management system.

We chose to look at an algorithm that is relatively straightforward to analyse,
so that we could quickly gain experience with the styles of proofs needed for
reasoning about garbage collectors in linear temporal logic. In future work we
will be studying the verification of successively more complicated algorithms.

Much of the literature on verifying garbage collection algorithms has focussed
on abstract concurrent algorithms that have particularly subtle behaviours be-
cause of the fine-grain of the concurrency. Our interest at the moment is primar-
ily in sequential algorithms, since few algorithms in use today are truly concur-
rent. At an abstract level, sequential garbage collection algorithms have simpler
behaviours, but there are still plenty of challenges to be faced in verifying them,
especially when considering implementation details. The techniques we are using
for reactive systems are designed for reasoning with concurrency, and it would
be easy to adapt our work to both concurrent and distributed settings.

We carry out our formalization using the Pvs theorem prover [ORS92]. The
Pvs specification language is a classical higher-order logic with subtyping by
arbitrary predicates. Proofs are carried out interactively by users repeatedly ap-
plying strategies, Pvs’s version of tactics. Pvs has strategies for such operations
as case splitting, expanding definitions, instantiating quantifiers, rewriting and
simplifying. It also has strategies which invoke decision procedures that integrate
congruence closure with linear arithmetic.

To accurately model garbage collection algorithms, we want to consider ar-
bitrarily large and complex heap data structures. There is no obvious way to ab-
stract these structures to produce finite state models suitable for model checking.
Work so far in model checking garbage collection algorithms has had to use small
fixed values (4 heap objects, for example) for heap parameters [Bru97, Hav96).
However, Pvs has interfaces to several model checkers, and we hope in future to
look at using model checking to assist in parts of our interactive proofs.

The rest of this paper is organized as follows: we present our formalization
of linear temporal logic in Sec. 2 and then Sections 3, 4, and 5 describe the more
abstract model we set up and show the safety and liveness proofs we carried out.
Sec. 6 introduces our more concrete model, Sec. 7 summarises our framework for
reasoning about refinement, and Sec. 8 covers the proof of refinement and the
transfer of properties from the more abstract model to the more concrete. Sec. 9
discusses issues raised by the case study that are not covered elsewhere and a
comparison with related work is made in Sec. 10. Finally we give our conclusions
in Sec. 11.

We present definitions and lemmas in syntax that is very close to the actual
syntax of Pvs. The main change is that we replace certain keywords, operators
and identifiers with non-ASCII logical and mathematical symbols.

2 Linear Temporal Logic

In Sec. 2.1 we define a notion of transition system and introduce a shallow
embedding of linear temporal logic operators into the Pvs specification language.
We then go on in Sec. 2.2 and Sec. 2.3 to describe the most important rules
we used in our proofs. Our approach is most similar to that of Manna and
Pnueli [MP91a, MP91b]. Much is standard, but, as far as we know, the emphasis
in Sec. 2.3 on the use of leads-to-via constructs for reasoning about liveness is
novel. See also Sec. 9.1 and Sec. 9.2 for a discussion of some more subtle issues
we had to address in order to produce an embedding that was practically useful
and well-suited to our particular needs.

2.1 Basics

We consider a transition system to be characterized by a type State of states, a
type TxLab of labels for transition kinds, a collection of binary relations on states
tx, indexed by labels in TxLab, a set of initial states init, and a subset fair of
TxLab being those transitions on which a fairness requirement is imposed.

Pvs doesn’t permit us to form tuples or records including types, so instead
we define the record type

TxSys : TYPE = [# tx : [TxLab—pred[[State,State]l],
init : pred[Statel,
fair : set[TxLab] #]

for the non-type components of transition systems that is implicitly paramet-
erized by types State and TxLab. The notations [S—T7] and[S,T] are for
function and product types respectively. pred[T] and set[T] are both defini-
tions for the type [T—bool]. Square brackets in Pvs syntax are used both for
the syntax of type constructors and for explicitly specifying instantiating expres-
sions for parameters. Definitions and lemmas in Pvs are grouped into modules
called theories which can take parameters. Definitions of types and constants
in Pvs are parameterised by the parameters of the theory they are defined in.
When those types and constants are used, the parameters can either be left im-
plicit for the Pvs type checker to infer or can be explicitly supplied, as with,
for example, set [TxLab] above. All the constants defined below are implicitly
parameterised by a type State of some transition system, and most are also
implicitly parameterized by a type TxLab and an element of type TxSys.

State formulas are predicates on states. The type of state formulas is

SFmla : TYPE = pred[Statel

Let A,B,C,D,E and I be state formulas. Temporal formulas are predicates on
pairs of form (o,i) where o is a sequence of states and i a natural number
indicating a distinguished position in o

TFmla : TYPE = pred[[sequence[State],nat]]

Here sequence[77] is a definition for [nat—77]. This characterization of tem-
poral formulas permits the definition of past-looking temporal operators. Let P
and Q be temporal formulas. The function tfm defined by

tfm(A) (o,1) : bool = A(o (1))

coerces a state formula to a temporal formula. We declare tfm to be a Pvs
conversion. The Pvs type checker automatically inserts conversions as necessary,
so we usually omit explicit mention of tfm.

The O (for every future time) and < (at some future time) temporal operators
are defined as

a (P)(e,i) : bool
O (P)(0,1) : bool

V@G« {i...}) : P(o,))
V(G : {i...}) : P(o,])

and an until operator is defined as

UP,QY(o,i) : bool =
3G {i...1) : Qo,j) AV (k : {i..j-1}) : P(o,k)

The integer subrange types {i...} and {i..j-1} are definitions from standard
theories in Pvs that are always loaded. We lift Pvs’s quantifiers and logical
connectives pointwise to the SFmla and TFmla types, and overload identifiers.
For example:

PDO>Q = X(o,i) : P(o,i) D Q(o,1)

The lifted quantifiers take lambda terms as arguments. For presentation pur-
poses, we suppress the lambda symbol: we present V(An : P) asVn : P, for
example. We abbreviate O (P D Q) by P = Q.

Let sys be some element of the TxSys type. We define several binary relations
based on sys.

step(s,t) : bool = Ja : tx(sys)(a)(s,t)
possible_step : pred[[State,State]] = refl_cl(step)
fair_step(s,t) : bool = Ja : fair(sys)(a) A tx(sys)(a)(s,t)

Here a is of type TxLab, and refl_cl is a reflexive closure operator. PVs uses
prefix function application notation rather than the common postfix ‘dot’ nota-
tion for record projection operators (tx(sys) rather than sys.tx, for example).

A run is an infinite sequence of states generated by following transitions of
sys from some initial state.

run : TFmla = tfm(init(sys)) A 0O taken(possible_step)
where
taken(tx) (o,1) : bool = tx(o(i),o0(i+l))

We allow for the system to take idling transitions; these simplify proving re-
finement relations between systems and also free us from needing to separately
consider finite runs. A computation is a run in which fairness conditions are
obeyed.

computation : TFmla = run A fairseq
Here we have

fairseq : TFmla =
O — 0O (tfm(enabled(fair_step)) A — taken(fair_step))

enabled(tx)(s) : bool = Jt : tx(s,t)

A computation is a run in which it is never the case that a fair step is always
enabled but never taken. See Sec. 9.1 for a discussion of our choice of what
constitutes a fair run.

A temporal formula is temporally valid if it holds for all sequences of states.
Frequently, we are concerned only with whether a formula holds for all compu-
tations of a given transition system. In this case we say a temporal formula is
temporally program valid. A state formula is state program wvalid if it holds in all
states of all computations of some system.

tv(P) : bool = Vo : P(0,0)
tpv(P) : bool = tv(computation D P)
spv(A) : bool = tpv(O (tfm(A)))

2.2 Safety Reasoning

We say a state formula is invariant if it is true in all accessible states. Since
the fairness conditions we consider constrain only infinite runs, not finite initial
segments of runs, a state formula is invariant just when it is state program valid.
We say a state formula is inductive if it is invariant and, furthermore, its validity
can be established by induction on the transition relation of the system. The
induction rule we establish is

ind_rule_1 : LEMMA
(V (s: (init(sys))) : I(s)) A 1leadsto(step)(I,I)
D spv(I)

where
leadsto(T) (A, B): bool = Vs,t : A(s) A T(s, t) DO B(%t)

and (init(sys)) is an abbreviation for the type {s:State | init(sys)(s)}.
As with any shallow embedding of a logic, we express rules of linear temporal
logic as lemmas.

Inductive invariants I are commonly conjunctions Iy A ... A I, of invari-
ant formulas I; that are not themselves inductive. Conveniently, we can divide
proofs of the induction rule premise leadsto(step) (I,I) into separate proofs
of leadsto(step) (I,I;) for each j. Initial conjectures of invariants being in-
ductive are often false and one needs to go through several iterations of adding
conjuncts until one finds an invariant that is indeed inductive. As in the safety
proofs that Havelund carried out [Hav96], we carefully set up definitions so that
new conjuncts can be added to a conjectured inductive invariant without having
to modify any existing proofs of conjuncts being preserved by step.

2.3 Liveness Reasoning

Temporal formulas of form A = (B U C) are ubiquitous in our liveness proofs.
Such a formula can be read as “if the system is in a state satisfying A, it will
remain in states satisfying B until eventually a state satisfying C is reached”.
More concisely, the formula can be read as “A leads to C via B”, and we refer
to such a formula as a leads-to-via formula. We usually omit the parentheses in
leads-to-via formulas, since the operator U binds more tightly than =-.

Leads-to-via properties for states related by a single transition are established
using the rule

one_step_leadsto : LEMMA
(Vs : A(s) D enabled(fair_step) (s))
A leadsto(step) (A, B)
D tpv(A = A U B)

We have numerous rules for chaining together the flows of control described by
leads-to-via formulas. For example,

leadsto_tx_1_or : LEMMA
tv((A=BUC) AN (C=DUE)
D (AVC = 3BVDUE)

A particularly useful rule is the following induction rule used for proving termin-
ation of transition loops:

wf_leadsto_rule : LEMMA
tv((Vt : (A A AXs : p(s) =¢t)
= BU ((AAXs : p(s) <t) V)
D (A=BUCOC)

Here < is some well-founded order relation (always the usual < ordering on nat-
urals in our case), and p is a rank function mapping states to the type the
well-founded order relation is over.

We prefer working with leads-to-via formulas rather than the more common
but less informative leads-to formulas of form A = < B which is equivalent to A
= True U B. The reason is that they allow us to factor reasoning about flow of
control and about how certain properties remain unchanged in specified regions
of the system. The relevant rule is:

leadsto_stable_augmentation: LEMMA
stable?(D, B)
Dtpv((A=>BUC D ((AAD) =BU (CAD))

where
stable?(D,B) : bool = leadsto(step)(D A B,D)

If we know that control state A always leads to control state C via control states
specified by B, and a property of data D is stable in region B and established in
control state A, then we can conclude that property D will still hold when we reach
control state C. We haven’t seen this factorization benefit of leads-to-via formulas
pointed out in the literature (in [OL82, MP91b] or [CM88], for example).

3 More Abstract Transition System Model

We describe in this section a model of a stop-and-collect, non-copyng algorithm.
We assume a single thread of control (no concurrency). We use the tricolour
marking scheme first introduced for a concurrent algorithm [DLM*78]. The
extra complication of the tricolour marking scheme might seem unnecessary for
our immediate needs. However the scheme is useful for incremental collectors
working in a sequential single-process setting, and we intend to look at such
collectors in the near future. The scheme can also be viewed as an abstraction of
most copying algorithms. See [JL96] for further details on this marking scheme
and on garbage collection algorithms in general.

The idea behind most garbage collection algorithms in use is to first mark
all heap objects accessible from certain root objects. Then objects not marked
are considered garbage and can be collected. With tricolour marking, the roots
start off marked grey and the rest of the heap is white. Marking proceeds by
greying the white children of grey objects and blackening objects which have no
white children. (We consider an object A to be the child of an object B if some
field of B contains a pointer to A.) Marking is complete when there are no grey
objects left. In the setting we consider here, where there is no interleaving of
marking and user program activity, it is easy to see that the garbage objects are
just those that are left white.

The model is parameterized by a finite non-empty type Node of heap nodes.
One node rt is distinguished as being the root node of the heap. We think of
nodes as representing objects in the heap.

We model pointers between objects using a directed graph. We consider an
edge from node m to n as indicating that there are one or more pointers between
the objects m and n.

Heap : TYPE = pred[[Node,Node]]

We are assuming here that the heap memory is divided up into object-sized
chunks rather than being a continuous sequence of addresses and are not con-
sidering such issues as fragmentation. Each object is either i) free (available for
allocation) or ii) allocated and marked with a certain colour. There is no need
to record colours for free objects.

Color : TYPE = {free, black, grey, white}
Marking : TYPE = [Node—Color]

Our linear temporal logic framework assumes that the control state of a system
is simply one component of the complete state. We use four control states

Control : TYPE = {mutate, allocl, alloc2, trace}
and the type of system states is defined as

State : TYPE = [# heap: Heap,
marking : Marking,
control : Control #]

Table 1: Transitions for More Abstract Model

Name From To Description

mutator transitions:

add_edge mutate mutate Pick nodes m and n reachable from the
root and add an edge from m to n if one
isn’t there already.

remove_edge mutate mutate Pick nodes m and n reachable from the
root and remove any edge from m to n.

allocator transitions:

alloc_call mutate allocl Always enabled.

alloc_ok allocl alloc2 Enabled if at least one free node.

alloc_sat alloc2 mutate Pick free node n, remove any out edges of
n, add edge from root to n and make n

black.

collector transitions:

gc_init allocl trace Make root grey and every black node
white.

tracenode trace trace Pick grey node n, grey any white children
of n and make n black.
gc_end trace alloc2 If no grey nodes, free every white node.

In what follows, variables d and e are of type State.

We define eight kinds of transitions divided into three categories. They are
described informally in Tab. 1. The ‘From’ column indicates the control state in
which each transition is enabled and the ‘To’ column the value that the control
state is changed to if each transition is taken.

The mutator transitions provide an abstract model of the user program, the
allocator transitions model the allocation procedure of the memory management
system and the collector transitions the garbage collection procedure. We have
the collector invoked from the allocation routine, since this is the most common
practice. For generality’s sake, we don’t insist that collection wait for the heap
to be exhausted. We place the fairness requirement on the last five of the trans-
itions, since these are internal to the memory manager and are not considered
to be initiated by the user program.

Formally, each transition is defined as a binary relation on states. For ex-
ample, the formal definition for the gc_init step is

gc_init(d,e) : bool =
at(alloc1l)(d) AND
e = d WITH [(control) := trace,
(marking) init_marking_for_gc(marking(d))]

where

init_marking for_gc(s : Marking) : Marking =
An : IF n = rt THEN grey
ELSIF black?(s(n)) THEN white

ELSE s(n) ENDIF

The WITH construct is convenient syntax for the non-destructive update of fields
of records and points in the domains of functions. In this case, the control and
marking fields of the record d are being updated.

We consider the initial state of the system to be one in which control is in
the mutate state, the root is black, the rest of the nodes are free and there are
no edges between nodes.

4 Proof of Safety of More Abstract Model

The safety property we prove is that the garbage collection algorithm only col-
lects unreachable objects in the heap. Formally, we assert that all white nodes
are unreachable whenever the next transition might be the collector transition
gc_end which frees all white nodes.

safety : SFmla =

enabled(gc_end) D Vn : white(n) D —reachable(n)
safety_lemma : LEMMA spv(safety)
where

reachable?(d) (m) : bool = star(heap(d)) (rt,m)
reachable(m) (d) : bool = reachable?(d) (m)
white(m) (d) : bool = white?(marking(d) (m))

and star is reflexive transitive closure.

We prove safety_lemma using the induction rule ind_rule_1 introduced in
Sec. 2.2. The invariant safety is not inductive, so we show it to be true as a con-
sequence of the stronger invariant inv that is inductive. inv is the conjunction
of the properties:

1. the root node is grey or black,

2. there is no edge from a black node to a white node

3. there is no edge from a non-free node to a free node

4. no node is coloured grey when control is not in the trace state.

The proofs showing that this conjunction is inductive draw on a couple of aux-
iliary lemmas:

reachable_not_free : LEMMA
inv(d) A reachable?(d) (n) D — free?(marking(d) (n))

reachable_black_if_no_greys : LEMMA
inv(d) A reachable?(d)(n) A — (dm : grey?(marking(d) (m)))
D black?(marking(d) (n))

The proofs of these auxiliary lemmas involve applying general properties of star.
In particular, the induction lemma

narrowing_of_change : LEMMA
star(R) (x,y) A P(x) A = P(y) D Fu,v : R(u,v) A P(uw) A —=P(v)

is helpful.

The proof of inv being inductive splits naturally into 32 cases, one for each
choice of conjunct and transition. The grind strategy automatically solves 25
of these. grind combines all the strategies mentioned in Sec. 1 and is often used
to completely prove simpler goals and subgoals. Of these 25 cases, 10 are very
straightforward because the selected conjunct refers only to parts of the state
unchanged by the selected transition. grind solves these by rewriting with the
state change equation contained in the transition definition and simplifying the
resulting expressions. The other 15 automatic cases are more interesting. grind
generates case splits, some based on update expressions, and guesses instanti-
ations of quantifiers. The Pvs simplifier knows of the distinctness of elements
of the Color and Control datatypes and uses congruence closure to simplify
equalities involving expressions of type Color and Control to true or false. The
remaining 7 cases involve an average of about 7 steps of manual proof guidance
(excluding work involved in proving the auxiliary lemmas).

5 Proof of Liveness of More Abstract Model

The liveness condition we prove is that garbage nodes always eventually become
free. The formal statement is

liveness : TFmla =
allocs_keep_coming
D Vm : (at(mutate) A garbage(m)) = < free(m)

garbage_eventually_freed_a : LEMMA tpv(liveness)
where

allocs_keep_coming : TFmla =

at (mutate) = at(mutate) U at(allocl)
free(m) (s) : bool = free?(marking(s) (m))
garbage(m) : SFmla = — free(m) A —reachable(m)

and m is of type Node.

The allocs_keep_coming precondition expresses the need to assume that the
user program allocates new storage with sufficient regularity. If the user program
doesn’t keep calling the allocator, then there is no guarantee that garbage col-
lection will ever take place. The restriction that we only consider garbage when
in the mutate state is a minor one. It simplifies the proofs. With a little more
work we could relax it.

The main stages of the proof are as follows. The first two have to do with
flow of control. They establish that if we start in the mutate state, we eventually
call the collector, and then eventually complete tracing of the reachable objects
in the heap.

10

mutate_to_trace : LEMMA
tpv(allocs_keep_coming
D (at(mutate) = at((:allocl,alloc2,mutate:)) U at(trace)))

eventually_no_greys_in_trace : LEMMA
tpv((at(trace) AND exist_greys)
= (at(trace) A exist_greys)
U (at(trace) A —exist_greys))

where
exist_greys(d) : bool = dm : grey?(marking(d) (m))

Each of these lemmas is proved using the wf_leadsto_rule introduced in Sec. 2.3.
In the first lemma, the rank of the state is the number of free nodes, in the second,
the number of non-black nodes.

We note that, if making a transition starting in any state except one in which
gc_end is enabled, garbage always remains garbage.

garbage_stable : LEMMA
stable?(garbage(m), at((:allocl,alloc2,mutate:))
V (at(trace) A exist_greys))

Using the leadsto_stable_augmentation lemma discussed in Sec. 2.3 and
the above lemmas about flow of control and stability of garbage, we deduce that,
if we start at a point in a trace where we are in a mutate state and node m is
garbage, we will always eventually reach a state in which the gc_end transition
is enabled and m is still garbage.

We prove an additional invariant

garbage_in_trace_is_white : LEMMA
spv(garbage(m) A at(trace) D white(m))

and a characterization of the effect of the gc_end transition

freeing_of_whites: LEMMA
leadsto(step) (at(trace) A —exist_greys A white(m)
,free(m))

from which we easily derive tpv(liveness).

6 More Concrete Transition System Model

This model is close in spirit to some that we at Edinburgh discussed with the
memory management group at Harlequin when learning about the systems that
they develop. The main difference between it and the more abstract model is that
here we consider the edges between heap nodes as being labelled with elements
of a type Label. Multiple edges are allowed between two given nodes, providing
they have distinct labels. We model the heap by a function of type

Heap : TYPE = [Node,Label—Lift[Node]l]

11

where [S,T—U] is an abbreviation for the type [[S,7T]1—U] and Lift[T]
is a Pvs datatype with elements bot and 1ift (¢), ¢ being an element of type
T. The labels on edges from the root node rt can be thought of as the names
of heap roots, for example, the names of CPU registers or static variables or
the addresses of stack locations. The labels on edges from a non-root node can
be thought of as the names or addresses of pointer-containing fields of the heap
object represented by the node. If the value of the heap function on node m and
label r is 1ift (n), then we consider there to be a pointer labelled r from m to
n; if the value is bot, we consider the pointer r from m to be null.

The control and marking components of the state have the same definitions
as in the more abstract model. In particular, every node has one of the four same
colours. We add a new component label_arg of type Label which we explain
below.

Tab. 2 shows the transitions. The read, write, drop, and del transitions
replace the add_edge and remove_edge transitions of the more abstract model,
and the gc_init, tracenode, gc_end and alloc_ok transitions have virtually
the same definitions. We think of the read transition as the reading into CPU
register s of the pointer in the field u of the object pointed to by CPU register
r. We think of the write transition as the writing of a pointer to the object n
into field u of object m. The conditions under which read, write, drop, and
del are enabled are perhaps more restrictive than might be desired. If we were
to relax them, we would need to add a transition in the more abstract model
that simultaneously adds and remove edges. This would involve a little extra
work, but would be straightforward. We think of the label_arg component of
the state as holding the address on the stack for the return value of an allocation
function: the the alloc_call transition sets this address and the alloc_sat
transition sets the value to a fresh object.

As an example, the transition relation for the read transition is formalized
as dr,u,s : read(r,u,s)(d,e), where

read(r,u,s) (d,e) : bool =
at (mutate) (d) A val?(d(r)) A val?(d(val(d(r)),u)) A bot?(d(s))
A e = d WITH [(heap) (rt,s) := d(val(d(r)),u)]

Conversions are used here to abbreviate expressions: when conversions are in-
serted, d(n,u) becomes heap(d) (n,u) and d(r) becomes heap(d) (rt,u).

7 Framework for Refinement

We consider a transition system B to be a refinement of a system A when
we can exhibit an abstraction mapping ¢ (sometimes called a refinement map-
ping [Lam94]) mapping states of B to states of A, that when applied to any
computation of B yields a computation of A. In a theory parameterized by
systems A and B, we make the definition

refinement?(¢) : bool =
Vob : b.computation(ob,0) D a.computation(map(¢,ob),0)

where ¢ has type [StateB—StateA] and ob has type sequence[StateB].

12

Table 2: Transitions for More Concrete Model

Name From To Description

mutator transitions:
read mutate mutate If there are heap pointers rt — m, m — n
S . .
and rt = () (pointer s from root is null),
then update the heap so that rt = n.

write mutate mutate If there are heap pointersrt — m, rt — n
and m = (), then update the heap so that
m > n.

drop mutate mutate If there is a pointer rt — m, then make it
null.

del mutate mutate If there are pointers rt — m and m — n,

then null the pointer w.
allocator transitions:
alloc_call mutate allocl Ifrt - (), then store the label r in a com-
ponent of the state called label_arg.
alloc_ok allocl alloc2 Enabled if at least one free node.
alloc_sat alloc2 mutate If there is some free node n, then null all
pointers out of n, add a pointer rt — n
where r is the value of label_arg and
make n black.

collector transitions:

gc_init allocl trace Make root grey and every black node
white.

trace node trace trace Pick grey node n, grey any white children
of n and make n black.

gc_end trace alloc2 If no grey nodes, free every white node.

Identifiers in Pvs can take prefixes that specify which theory they are from
and how the parameters to that theory are instantiated. Local abbreviations
can be introduced for these prefixes. The prefixes a. and b. in this section
specify parameters appropriate for systems A and B. Later on, we use prefix
abbreviations to distinguish between identifiers with the same name but from
different theories. To improve readability, we use prefixes more than is strictly
necessary: PVvs’s type checker can often resolve ambiguities when prefixes are
left out. For simplicity, we deviate slightly here from exact Pvs syntax in that
we use the same prefix for identifiers from closely-related theories.

Because we consider computations rather than runs in the definition of refine-
ment?, system B can inherit all temporally program valid properties proven of
system A.

tpv_refinement : LEMMA
refinement?(¢) A a.tpv(PA) D b.tpv(treify(¢,PA))

13

spv_refinement : LEMMA
refinement?(¢) A a.spv(AA) D b.spv(sreify(¢,AA))

where PA and AA are, respectively, temporal and state formulas of system A, and
the reification functions have definitions:

Asb : AA(¢(sb))
Aob,i : PA(map(¢,ob),1)

sreify(¢,AA) : SFmla[StateB]
treify(¢,PA) : TFmla[StateB]

We establish that an abstraction mapping ¢ characterizes a refinement in
two stages:

1. we show that ¢ maps runs of B to runs of A by showing that ¢ is a
simulation:

simulation?(¢) : bool =
(Vsb : b.init(tsb)(sb) D a.init(tsa)(¢p(sb)))
A (Vsb,tb : b.accessible?(sb) A b.step(sb,tb)
D a.possible_step(¢(sb),¢p(tb)))

2. we show that the abstraction of every computation of B satisfies the ‘fair
sequence’ property of A (see the definition of fairseq in Sec. 2.1). A
simple case when this is true is when

(a) a fair step of A being enabled implies that a fair step of B is enabled,
and

(b) if a fair step is taken between two adjacent states in a run of system B,
then a fair step can also be taken in system A between the abstractions
of these states.

These conditions are fulfilled by refinements such as the one we consider in
Sec. 8, where the refinement involves a change of data representation, but
no significant change of control structure.

Our definition of refinement is similar to that of Chou [Cho93]. In particular,
Chou identifies the same simple case of when a simulation is a refinement.

8 Verification of More Concrete Model

Let us refer to the more abstract transition system model introduced in Sec. 3 as
sys1 and the more concrete in Sec. 6 as sys2. We show that sys2 is a refinement
of sys1, considering a sysl that has the same type Node and same node rt
as sys2. We define an abstraction mapping rmap that forgets the label_arg
component of the sys2 state, and is the identity function on the control and
marking components. A heap component h2 of the sys2 state is mapped to the
sysl heap edge? (h2) where

edge?(h) (m,n) : bool = Fu : h(m,u) = lift(n)

Showing that rmap defines a simulation relation between sys2 and sys1 is
straightforward. At one point we need to exploit the fact that the simulation
only quantifies over all accessible states of the concrete system, not all states.
The relevant lemma is

14

alloc_sat_simulation_a : LEMMA
sys2.accessible?(d2) A sys2.alloc_sat(d2,e2)
D sysl.alloc_sat(rmap(d2) ,rmap(e2))

We need the accessible? precondition to know that, when alloc_sat is en-
abled, the pointer from rt named by the value of label_arg is null. If it isn’t,
the sys2 alloc_sat operation might also remove an edge from root in the heap
graph, a behaviour that isn’t simulated by the sys1 alloc_sat operation. To
establish that this pointer is null when alloc_sat is enabled, we prove by in-
duction the stronger invariant that this pointer is null whenever control is not
in the mutate state.

Establishing the relationships between the fair steps being taken and enabled
is also straightforward. For the relationship between the fair steps being taken,
we can reuse the specific facts about transitions simulating each other such as
the one cited above.

We therefore have

rmap_is_refinement : LEMMA refinement?(rmap)
and consequently

sys2_safety_a : LEMMA sys2.spv(sreify(rmap, sysl.safety))
sys2_liveness_a : LEMMA sys2.tpv(treify(rmap, sysl.liveness))

These formulations of the safety and liveness results for sys2 are not satisfactory
because they refer to the sys1 characterizations. We therefore apply lemmas such
as

treify_until : LEMMA
treify(¢p, PA U QA) = treify(¢,PA) U treify(¢,QA)

to push the reification operators down the definitions of sys1.safety and sysi-
.liveness, and lemmas about reification of atomic predicates to arrive at

sys2_safety_b : LEMMA sys2.spv(sys2.safety)
sys2_liveness_b : LEMMA sys2.tpv(sys2.liveness)

where the definitions of safety and liveness are similar to those for sys1, but
only refer to components of the state and transitions of sys2.

9 Discussion

9.1 Fairness

We discuss here our choice of fairness condition introduced in Sec. 2.1.

Since our primary interest for the moment is in sequential rather than con-
current algorithms, we don’t need fairness conditions to account for a scheduler
being fair to different processes. Rather, the only need for fairness conditions
is to rule out runs where the system idles indefinitely with control at some in-
ternal point of a memory management procedure and with some transition of
that procedure enabled.

15

The fairness condition we use is often called weak fairness [Lam94] or justice [MP91b].
More precisely, using terminology from Manna and Pnueli’s book [MP91b, pp132—
134], the condition we use is process justice. Manna and Pnueli use for their own
transition systems a different weak fairness condition they call transition justice.
In our notation, this is

tj_fairseq : TFmla =
V(a:TxLab): O — O (enabled(tx(sys)(a)) A — taken(tx(sys)(a)))

Manna and Pnueli give an example of a run of a system that exhibits livelock
and is transition just but not process just. They argue that a more detailed
implementation of this system would also exhibit livelock and so, if process justice
were to be adopted, this system would erroneously be shown to be livelock free.

However, there are also scenarios in which a run that exhibits livelock can
be process just, but not transition just. For example, consider a system with
two states S and T' and two fair transitions S — S and S — T belonging to one
process that are always enabled in state S. A run in which the system always
stays in state S is process just, but not transition just for the transition S — T.
Manna and Pnueli in [MP91b] miss this point because they claim that process
justice is a more restrictive than transition justice.

A key feature of this example is the single-step looping transition S — S.
Such transitions are not uncommon in the sequential models we consider in
which multiple program steps are represented by single transitions (consider
tracenode in Sec. 3). It also seems that scenarios like the one that Manna and
Pnueli cite rely on their being more than one process. We therefore prefer to use
process justice rather than transition justice.

9.2 Working with Temporal Logic Judgements

One problem with linear temporal logic is the failure of equivalence of implication
at the temporal logic level and the metalogic level (Pvs’s boolean logic level): the
assertion tv(P D Q) is strictly stronger than the assertion tv(P) D tv(Q). We
find that we get strong enough rules only if we link the premises and conclusions
at the temporal level rather than the boolean level. For example, the lemma:

weak_leadsto_tx : LEMMA
tv(A =BUC) A tv(C=DUE
D tv(A = (BV D UE)

is true, but not useful. Instead, we need:

leadsto_tx : LEMMA
tv((A=BUC) A (C=DUE)
D (A= (BVD UE))

It is awkward to directly use standard strategies to apply rules phrased in this
way. The solution we adopt is to preprocess such lemmas by unfolding the
semantic definitions for tv, A and D in the top-level temporal structure. This
exposes boolean-level structure that standard strategies can work with. We also
apply similar preprocessing to goals such as garbage_eventually freed.a in

16

Sec. 5. For convenience, we integrate this preprocessing into other strategies we
have for applying lemmas and breaking down goals.

This solution might seem unaesthetic and ad-hoc, but it is similar in practice
to an approach being explored for TLA [Lam94] by Merz [Mer]. There, the
judgement w = P of a temporal formula P being true at world w is introduced.
A world corresponds in our case to a pair (o,i) of a state sequence o and
a position i and the judgement to the application P(o,i). The difference is
that in Merz’s approach the type of worlds is not concretely specified. More
generally, proof systems for temporal and modal logics that use such judgements
are increasingly attracting interest in both the computer science and the logic
communities. See Gabbay’s book on labelled deduction systems [Gab96], for
example.

9.3 PYVS Strategies

We found the automation provided by Pvs’s strategies to be of significant help.
In Sec. 4 we give a brief analysis of which kinds of automation are used where
in a few of the safety proofs.

In the course of the work, we added several extra strategies to those that are
supplied by default. Some are general purpose and involve simply sequencing
existing strategies, providing alternative default arguments, or providing slightly
different functionality. Others are specific to our formulation of transition sys-
tems and to this particular model. Most of these others are for expanding certain
sets of definitions. A few combine definition expansion with application of par-
ticular lemmas, carrying out case splits, and simplifying.

We found the strategy collection for the current version of Pvs? to be weakest
when it comes to quantifier instantiation. Quantifier instantiation is handled
by the inst? strategy. inst? searches for instantiations by matching parts of
quantified formula bodies against expressions found in the formulas of the current
goal sequent. Unfortunately, it often guesses unhelpful instantiations. The grind
strategy calls on inst?, and inst? is the most common cause of grind failing
to completely prove a goal. PVs users consequently often run grind twice, first
with inst? disabled. This improves matters a bit, but there’s still a significant
problem. The Pvs developers at SRI are well aware of this problem and are
experimenting with tracking the polarities of formulas involved in matches to
increase the likelihood that inst? guesses useful instantiations.

In the course of our work on the case study described in this paper, we
have been experimenting with our own variations on inst?. We have done this
partly to improve grind’s behaviour, but also to improve inst?’s usefulness
when used for single or multiple step chaining. For example, we modified inst?
to seek instantiations from matching multiple parts of quantified formula bodies.
This is important for applying transitivity lemmas, since Pvs doesn’t have logic
variables.

There is certainly much further to go in this direction. For example, the
Isabelle and HOL communities have found model elimination tactics of great
use. Such tactics effectively do multiple step of chaining in constrained ways.

2v2.1, released April 1997

17

10 Comparison with Related Work

The tricolour algorithm we use for this case study was first put forward as a
concurrent algorithm [DLM™78]. Ben-Ari considered this algorithm to be one
of most difficult concurrent algorithms ever studied and proposed a two colour
algorithm with similar properties, but with what he considered to be a signi-
ficantly simpler proofs of safety and liveness [BA84|. Later pencil-and-paper
proofs pointed out flaws with Ben-Ari’s proofs, but these too contained flaws,
and there were no fully correct proofs until Russinoff did a mechanical formal-
ization in NQTHM [Rus94]. More recently, Havelund redid the formalization
of the safety proof in Pvs [Hav96], and Havelund and Shankar [HS96] looked at
how the safety proof could be better organised using refinement techniques.

The models in all the work cited above abstract away the notion of objects
being free. Object allocation is not modelled as a separate activity from the
mutator updating the heap and object collection is modelled as some operation
that makes the object accessible from root. Effectively, free list management is
lumped in with the mutator. This abstraction improves the tractability of the
proofs but results in models where the collector has the pathological behaviour
of marking ‘free’ objects during the tracing phase. There is a loss in clarity here
of the connection between the models and any real implementation of them. In
contrast, we have set up more concrete models that do have free objects and that
are close in spirit to abstract descriptions of garbage collection systems used by
software engineers at Harlequin.

In two other ways our models are more abstract than those of the two col-
our and tricolour concurrent algorithms. Firstly our models are significantly
more non-deterministic: we leave open many details of the memory manage-
ment algorithm that are unimportant for reasoning about its correctness, for
example, the order in which the collectors considers nodes for greying and black-
ing. Secondly, since we don’t have to model interleavings of atomic operations
of different processes, we can create abstract models with single transitions that
represent many atomic operations (consider for instance the trace node trans-
ition described in Sec. 3).

Having to model atomic operations doesn’t always place a ceiling on how
abstract a transition system one can consider. For example, Havelund and
Shankar in [HS96] started with an abstract initial system with just two trans-
itions. However, their approach is tailored for safety reasoning; there is no way
in their approach that liveness properties can be inherited down the chain of
refinements of models.

Gonthier formally verified the safety of a much more detailed concurrent
garbage collection algorithm that was used in an experimental concurrent version
of Caml-light [Gon96]. The state-transition system model involved 63 transitions
and the safety proof 46 invariants. Gonthier argued many subtleties in the
algorithm only came to light because of the realistic detail included in the model.
Gonthier used the TLP system, a Larch-based theorem prover for TLA. The TLP
script for the proof was 22,000 lines long. Few would want to repeat Gonthier’s
achievement without much better proof automation.

18

11 Conclusions

We successfully verified safety and liveness properties of a tricolour garbage col-
lection algorithm that is close in spirit to abstract descriptions of garbage collec-
tion systems used by software engineers at Harlequin. We found it necessary and
useful to adapt the presentations of transition systems and linear temporal logic
we found in the literature. Most notably, we chose a slightly different notion
of fairness and we had to develop a calculus for liveness reasoning based on a
refinement of the common ‘leadsto’ operator.

We found PvS to be a suitable and effective tool for carrying out this formal-
ization. We appreciated the automation provided by its decision procedures and
supplied strategies, and were able to develop both general purpose and domain
specific strategies that significantly simplified proofs.

We plan in the future on tackling successively more complicated garbage
collection algorithms. For example, we intend to look at incremental read-barrier
collectors and generational collectors.

12 Acknowledgements

The models presented in Sec. 3 and Sec. 6 are closely related to models that were
developed in collaboration with, most notably, Healf Goguen and Rod Burstall
at Edinburgh and Richard Brooksby, formerly at Harlequin.

The author wishes to thank Shmuel Katz and N. Shankar for their advice
on linear temporal logic and Stephen Bevan, Rod Burstall, Healf Goguen, Cliff
Jones, Pekka Pirinen, Gavin Matthews, Brian Monahan and the anonymous
referees for their helpful comments on earlier drafts of this paper.

References

[AH96] Rajeev Alur and Thomas A. Henzinger, editors. Computer Aided
Verification : 8th International Conference, volume 1102 of Lecture
Notes in Computer Science. Springer, July 1996.

[BA84] Mordechai Ben-Ari. Algorithms for on-the-fly garbage collec-
tion. ACM Transactions on Programming Languages and Systems,
6(3):333-344, July 1984.

[Bru97] Glenn Bruns. Distributed Systems Analysis with CCS. Prentice Hall
Europe, 1997.

[Cho93] Ching-Tsun Chou. Predicates, temporal logic, and simulations. In
Jeffrey J. Joyce and Carl-Johan H. Seger, editors, Higher Order Logic
Theorem Proving and Its Applications: 6th International Workshop,
HUG ’93., volume 780 of Lecture Notes in Computer Science, pages
310-323. Springer-Verlag, August 1993.

[CM88] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A
Foundation. Addison Wesley, 1988.

19

[DLM* 78] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten,

[Gab96]

[Gon96]

[Hav96]

[HS96]

[JL96]

[Lam94]

[Mer]

[MP91a]

[MP91b]

[OL82]

[ORS92]

[Rus94]

and E. F. M. Steffens. On-the-fly garbage collection: An exercise in
cooperation. Communications of the ACM, 21(11):966-975, Novem-
ber 1978.

Dov M. Gabbay. Labelled deductive systems, volume 1 of Oxford Logic
Guides. Oxford University Press (Imprint: Clarendon Press), 1996.

Georges Gonthier. Verifying the safety of a practical concurrent
garbage collector. In Alur and Henzinger [AH96].

Klaus Havelund. Mechanical verification of a garbage collector. Avail-
able from http://www.cs.auc.dk/ havelund/, May 1996.

Klaus Havelund and Natarajan Shankar. A mechanized refinement
proof for a garbage collector. Available from http://www.cs.auc.
dk/~havelund/, December 1996.

Richard Jones and Rafael Lins. Garbage Collection: Algorithms for
Automatic Dynamic memory Management. John Wiley & Sons, 1996.

Leslie Lamport. The temporal logic of actions. ACM Transactions
on Programming Languages and Systems, 16(3):872-923, May 1994.

Stephan Merz. Yet another encoding of TLA in Isabelle.
Available from http://www4.informatik.tu-muenchen.de/ merz/
isabelle/. The encoding described by this note accompanies the
Isabelle98 release.

Zohar Manna and Amir Pnueli. Completing the temporal picture.
Theoretical Computer Science, 83:97-130, 1991.

Zohar Manna and Amir Pnueli. Temporal Logic of Reactive and Con-
current Systems: Specification. Springer, 1991.

Susan Owicki and Leslie Lamport. Proving liveness properties of
concurrent programs. ACM Transactions on Programming Languages
and Systems, 4(3):455-495, July 1982.

S. Owre, J.M. Rushby, and N. Shankar. PVS: A prototype verification
system. In D. Kapur, editor, 11th Conference on Automated Deduc-
tion, volume 607 of Lecture Notes in Artificial Intelligence, pages 748—
752. Springer-Verlag, 1992. See http://www.csl.sri.com/pvs.html
for up-to-date information on PVS.

David M. Russinoff. A mechanically verified garbage collector.
Formal Aspects of Computing, 6:359-390, 1994.

20

