Expressive Typing and Abstract Theories
in Nuprl and PVS

Paul Jackson
U. of Edinburgh

TPHOLS
26th August '96



NOTES:

e Assume some familiarity with HOL-like sys-
tem, but not necessarily PVS or Nuprl.

e Issues orthogonal to constructivity. No need
to know about constructive type theory or
propositions-as-types encoding of logic.

e Will try to include references to other sys-
tems where appropriate (e.g. Coq, IMPS,
Mizar).

0-1



I: Expressive Typing

e Examples of types in Nuprl and PVS, but
not in e.g. HOL.

e Description and evaluation of type-checking
procedures in
— Nuprl

— PVS



Subtypes and Parametric Types

e Examples:

N = {i:Z]i> 0}
{j-k} = {i:Z]j<i<k}
INj(4,B) = {f:i(A— B)

Ve,y: A. fe = fy =z =y}

e Use for function domain types:

Array(T,n) = {i:N|i<n}—>T

e Provide information on function ranges (ex-
amples to come)



NOTES:

e subtyping for quantifiers is a notational con-
venience. For function domains is signific-
ant advance in expressiveness.

2-1



Dependent-Product Types

r:A X By (Xx:A. By)

(a, b) € x:A X By

if a € A and b € B,.

Type of subtraction function on N:

(i.:Nx{j:N|j<i}) >N



Dependent-Function Types

x:A— By (MNx:A. Bz)

f € x:A— By

if for all a € A we have (f a) € B,.

Type of mod function:

N—m:{i:N|i:#=0} > {i:N|i <m}



Types for Full Specifications

Type of square root function:

z:{z:R|z>0} = {y:R|y >0Ay? =z}



Type Universes as Types

e Permit definition of functions that take types
as arguments and return types as results.

e Consider function r for programming lan-
guage semantics that maps elements of:

Datatype Typ = Int | Bool
| Fun of Typ x Typ
| Prod of Typ x Typ

to corresponding types in theorem prover.
T needs universe type as range.

e Consider typing the C printf function.

e Very useful for defining classes algebraic of
algebraic structures ...



NOTES:

e Up till now all types feature in both PVS
and Nuprl.

e Only Nuprl has universe types.

6-1



Conditional Well-formedness

e Total types for usually-partial datatype de-
structors:

hd € {z:T List|z #nil} > T
tl € {z:T List|x #%nil} — T List

e Problem EXxpression:
rZnilAhd x =k

Similar issue with
— P = Q,
— PVvQ

— if P then t else f



Conditional Well-formedness

e If-then-else Example:

fib(n :nat) = if n < 2 then 1 else
fib(n — 1) 4 fib(n — 2)

e Redundant predicates?

int?(x) = israt(x) A isint(x)

e Pathological Liberalness?

False A (Az.x)



Type checking with expressive types

e Non-parameterized Subtypes: N, Z C R
(IMPS, Mizar, Isabelle)

e Integer parameters:
Consider n-element array f of type

Array(T,n) = {i:N|i<n}—>T

and lookup f e with e linear? e non-linear?

e Non-uniqgueness of Maximal Supertypes
(5, A\i:{0..5}.4) has maximal supertypes

N x ({0..5} — {0..5})

and

i : N x ({0..4} — {0..3})



Type checking In Nuprl

e All by refinement-style proof.

o Hl,...,HnFC

Mmeans

“if hypotheses Hq,...,H, are both
well-formed and true, then conclu-
sion C is also well-formed and true.”

10



NOTES:

e Emphasize that no type-checking done out-
side of proof.

e Type-checking proofs are spread throughout
the course of any proof; they aren't all
done at start.

10-1



Nuprl rules generating type-checking sub-
goals

e Rules with a well-formedness premise:

MAFB fr-AelP
A= B

,z:T+HB fr~=TeU
=YVx:T. B

e Checking newly-introduced terms:

I, By F C FrtaeT
r, Ve:T. By - C

No checking necessary for cut:

M- A M AFC
re-c

11



Nuprl rules for doing type-checking

e Type Well-formedness:

FrFACU M z:AFBcU
rF(x:A—B)eU

e EXpression Well-formedness:

[Fac A (-be B
+{a, b) € AXB

[, x:AFa € By [, y:AFBy €U
F-(Az.a) € y:A— By

12



Checking function applications in Nuprl

Consider goal ' = (f a) € B. Procedure is
roughly:

1. Infer a type z: A — B, for f.

2. Now know that can probably prove

(f a) € B,
Create subgoal

r-B,CB

3. Create subgoals

fFac A F-fexA— B,

13



Notes on Nuprl procedure for proving ap-
plications

e Proof of B/, C B can involve reasoning about
subtype predicates

e Alternate actions possible if B, C B un-
provable:

— Alternative typings of f can be tried

— B might be arithmetic subtype. If so,
linear arithmetic decision procedure at-
tempts proof of (f a) € B.

14



Comments on automation of type-checking
iIn Nuprl

e Linear arithmetic decision procedure essen-
tial when using arithmetic subtypes.

e Found it very useful to infer arithmetic prop-
erties of integer-valued functions. E.g. list
length function.

e Performance often very poor. Caching and
subsumption checking helpful.

15



Type checking in PVS
— based around type inference function

e On type, returns TYPE if type well-formed.

e On term, returns its type if term well-formed.

e 7 also returns list of Type Correctness Con-
ditions (TCCs) which need to be proven.

e T CCs appear as extra lemmas in PVS the-
ories and as extra subgoals in proofs.

e Checking done whenever type, expressions
and formulas are introduced, so all formu-
las in sequents are guaranteed well-formed.

16



Auxiliary functions on PVS types
e 1. finds maximal types
e m. finds predicate part of a type

For any type T

T = {o:p(T)|~(T)(x)}

An example:

T = N> (i:Nx{j:Z|j<i})

then
uw(T) = N— (Z x7Z)
7(T) = AN :(N— (Z x7Z)). Vz:N.

T (f ) >0 A
mo(f x) < w1 (f =)

17



Definition of PVS type inference function
-

(M (a1, a2)) 7(M(a1) x 7(M)(a2)

T(MAx:A. a) = x:A— B where
7(I")(A) = TYPE A
B =7,z : VAR A)(a)

Ba, where
(M) (f) =x:A — By,
T(M(a) = A,
u(A), u(A)
Compatible at a
M+ 7(A)(a)

T(M)(f a)

Compatibility testing also creates proof oblig-
ations.
18



Comments on type-checking in PVS

e Maintains seperation of type system and
expression language.

e Higher performance than Nuprl, especially
when not dealing with theories that gener-
ate many TCCs.

e Better, faster decision procedures to help
out with solving TCCs. E.g. Shostak’s
integrated congruence-closure, linear arith-
metic procedure. This also handles some
basic non-linear arithmetic.

19



Property lemmas (judgements) in PVS

Given

0O : real

expt : [real,nat->reall
max : [m:real, n'rea1—>

{p: real | p >=m AND p >= n}]
the user supplies property lemmas such as:
0O HAS_TYPE nat

expt HAS_TYPE [rational, nat -> rationall]
expt HAS_TYPE [posint, nat -> posint]

max HAS_TYPE [i:int, j'int ->

{k: int | i<=k AND j<=k}]
max HAS_TYPE [i.nat,J.nat ->

{k: nat | i<=k AND j<=k}]

posrat SUBTYPE_OF nzrat

20



Other typing-related issues in both PVS
and Nuprl

e Argument synthesis

e Coercions

e Contravariant function subtyping

21



Argument synthesis

e In PVS can write

map f a

e PVS infers type parameters S and T from
types of £ and a

map[S,T] f a

e Something similar happens in Nuprl and
many other systems

22



Coercions and function domain subtyping
e In
b
> fi
1=aqa
ideally have f € {a..b} = T
e But then
b c—1 b
o fi=> fi+ D fi
1=—a 1=—a 1=c
requires additional typings

felac—1y T, fec{cbl =T

23



Evaluation of expressive typing

e Specifications significantly more accurate
and concise

e Higher level of reasoning

e Performance a concern

e Need fast powerful
— linear (4 non-linear?) arithmetic
— congruence reasoning
— property inference

— proof obligation subsumption

e If used with care, large developments very
feasible

24



II: Abstract Theories

e Examples, Uses

o PVS

e Nuprl

e Issues

25



Introduction to abstract theories

Informally, an abstract theory consists of

o types T’

e operators (possibly nullary) F over the types
in T.

e predicates that the operators F' can be as-
sumed to satisfy

An abstract theory is instantiated when in-
stances are provided for the types and oper-
ators that satisfy the predicates

26



Examples of abstract theories

A monoid is a tuple (M, o ,e) where

e M is a type,

e o is a binary operator of type C2 — C and
e 1S a distinguished element of M,

e o S associative and e is a left and right
identity for o.

Other examples are linear orders and stacks.

27



Example instances of abstract theories

Semigroup :
Monoid :
AbelianMonoid :

Group :
Field :

28



Example theorems over abstract theories
Theorems about iteration:

e On semigroup / monoid

k k

1=J 1=7+1
e ONn abelian monoid

I—in-I—Z:U?;: Z x;

1€EA 1€8 1€AWB

e ON ring

k k
a X sz = ZCLX:UZ'

1=] 1=

29



Uses of abstract theories

e General theorem-proving support (view as
enriched polymorphism)

e Program specification and refinement

e Mathematics (Algebra, Analysis, Topology,
Category Theory)

30



An abstract theory as a PVS theory

monoids1[T : TYPE, o:[T,T->T], e:T] : THEORY

BEGIN

ASSUMING

x,y,2 : VAR T

assoc : ASSUMPTION (x o y) o z =

x o (y o z)

lident : ASSUMPTION e o x = X

rident : ASSUMPTION x o e =X
ENDASSUMING

END monoidsli

31



A development in PVS monoids theory
i,j : VAR int
f : VAR [int->T]
h £(1) o ... o £(j)
itop(i,j) (f): RECURSIVE T =

IF i > j THEN e
ELSE f(i) o itop(i+1,j) (f) ENDIF

MEASURE LAMBDA (i,j)(f) : max(1+j-i,0)

itop_unroll_hi : LEMMA
i <= j IMPLIES
itop(i,j) (f) = itop(i,j-1)(£f) o £(j)

32



Importing and instantiating PVS theories

monoids2 : THEORY
BEGIN

intplusmon : THEORY = monoidsi[int,+,0]
i,j: VAR int
f : VAR int->int

sum(i, j) (f) = intplusmon.itop(i,j) (f)

n: VAR nat
sum_squares : LEMMA
6 * sum(O,n) (LAMBDA (i): i * i) =
n *x (n+1) * (2 *n + 1)

END monoids?2

33



Abstract theories in Nuprl

All instances of a theory are collected into a
type:

MonSig == T:U x op: (T—>T—T) x T

|lm| == m.1
*m == m.2.1
em == m.2.2

Assoc(T;op) ==
Vx,y,z:T. x op (y op 2z) = (X op y) op 2z

Ident(T;op;id) ==
Vx:T. x op id = x A id op x = X

Mon == { m:MonSig | Assoc(|ml|;*m)

A Ident(|m|;*m;em) }

Note essential use of type universe U.
34



Instances of monoids in Nuprl
<Li,4> == <L, AX,y.x + 7y, 0>
~ <Z,+> € Mon

rlxmn == <|r|, *r, 1r>
= Vr:Rng. rlxmn € Mon

35



Example abstract theorem in Nuprl

- Vg:Mon. Va,b:Z.
a<b
= (VE:{a..b"} — lgl. Vk:Z.
IIg a < j < b. E[j]
=TIga+k < j<b+ k. E[j - k])

36



When should algebraic classes be types?

If classes are not types

e Quantification over classes always outer-
most V

e Fixed finite number of class instances

If classes are types

e Arbitrary quantification and families of in-
stances OK

e Can define reason about functions and op-
erations on algebraic structures. E.g. free
constructions, refinement mappings

37



NOTES:

e Algebraic class = collection of instances of
an abstract theory

e not types approach OK for much theorem-
proving support

e Type universes complicate type theory. Get
non-canonical type expressions

e IMPS, EHDM, OBJ provide special sup-
port for refinement mappings without use
of classes. However support not as flexible
as when have classes

e classes essential for maths

37-1



Algebraic classes in PVS

monoids9[T : TYPE] : THEORY
BEGIN
MonTy : TYPE =
[#
c : set[T],
op: [(c), (c)->(c)],
id: (c)
#]
Mon?(m : MonTy) : bool =
associative? (op(m))
AND left_identity(op(m)) (id(m))
AND right_identity(op(m)) (id(m))

Mon : TYPE = (Mon?)

END monoids9

38



NOTES:

e Similar to approach Elsa Gunter tried in
HOL

e However, get function domains right in PVS

38-1



PVS development using monoid class type
m,n,p : VAR Mon
x,y : VAR T
HomTy(m,n) : TYPE = [(c(m)) -> (c(n))]
hom? (m,n) (f : HomTy(m,n)) : bool =
(FORALL (x,y:(c(m))) : f(op(m) (x,y))
= op(n) (£ (x),£(y)))
AND f(id(m)) = id(n)
Hom(m,n) : TYPE = (hom?(m,n))
hom_comp : LEMMA

FORALL (f:Hom(m,n)),(g:Hom(n,p)) :
hom? (m,p) (g o £)

39



Automatically instantiating abstract theor-
ies

Consider using the abstract theorem:

Vm :Mon. Vz,y, z,w:|m|.
(z om y) om (2 om w) = T om (y om 2) om w

to rewrite

(1+2)+(3B+4)

where + € Z — 7 — 7.

40



A simple matching function could yield bind-
iNgs

z— 1, y—2, 2—=3, w— 4

Om — +

Type matching could give |m| — Z, yielding the
binding

m — (Z, +, u)

for unknown u.
Knowing m must have type Mon, consultation
of a maths database could give the full binding

m — (Z, +, 0)

41



Issues in automatic instantiation

e database still needed to justify typing for
m, even if no unknowns.

e database might only have entry
(Z, +, 0, —) € AbGroup
Need to know that

AbGroup C* Mon

e Automation of inference with C* important

e Defining S C* T easiest when S,T have
named fields (Mizar, IMPS, Axiom).

42



C* with named fields (structural subtyping)

fields

properties

AbGroup

C:U
op : C2 = C
mv . C — C
id - C

Assoc(C, op)
Ident(C', op, id)
Inv(C,op,id, inv)
Comm/(C, op)

Mon
C:U

op : C2% = C
id : C

Assoc(C', op)
Ident(C', op, id)

43



Key issues in abstract theories

e theory interpretations
— special support / automation needed

— structure subtyping a first step

e Algebraic classes as types or theories?
— For mathematics
— For hardware/software verification

— For program specification refinement

44



