
Expressive Typing and Abstract Theories

in Nuprl and PVS

Paul Jackson

U. of Edinburgh

TPHOLs

26th August '96

NOTES:

� Assume some familiarity with HOL-like sys-

tem, but not necessarily PVS or Nuprl.

� Issues orthogonal to constructivity. No need

to know about constructive type theory or

propositions-as-types encoding of logic.

� will try to include references to other sys-

tems where appropriate (e.g. Coq, IMPS,

Mizar).

0-1

I: Expressive Typing

� Examples of types in Nuprl and PVS, but

not in e.g. HOL.

� Description and evaluation of type-checking

procedures in

{ Nuprl

{ PVS

1

Subtypes and Parametric Types

� Examples:

N = fi :Z j i � 0g

fj::kg = fi :Z j j � i � kg

Inj(A;B) = ff :(A! B)j

8x; y : A: fx = fy) x = yg

� Use for function domain types:

Array(T; n) = fi :N j i < ng ! T

� Provide information on function ranges (ex-

amples to come)

2

NOTES:

� subtyping for quanti�ers is a notational con-

venience. For function domains is signi�c-

ant advance in expressiveness.

2-1

Dependent-Product Types

x :A�B

x

(�x :A: B

x

)

ha; bi 2 x :A�B

x

if a 2 A and b 2 B

a

.

Type of subtraction function on N :

(i :N � fj :N j j � ig)! N

3

Dependent-Function Types

x :A! B

x

(�x :A: B

x

)

f 2 x :A! B

x

if for all a 2 A we have (f a) 2 B

a

.

Type of mod function:

N ! m :fi :N j i 6= 0g ! fi :N j i < mg

4

Types for Full Speci�cations

Type of square root function:

x :fz :R j z � 0g ! fy :R j y � 0 ^ y

2

= xg

5

Type Universes as Types

� Permit de�nition of functions that take types

as arguments and return types as results.

� Consider function � for programming lan-

guage semantics that maps elements of:

Datatype Typ = Int j Bool

j Fun of Typ� Typ

j Prod of Typ� Typ

to corresponding types in theorem prover.

� needs universe type as range.

� Consider typing the C printf function.

� Very useful for de�ning classes algebraic of

algebraic structures : : :

6

NOTES:

� Up till now all types feature in both PVS

and Nuprl.

� Only Nuprl has universe types.

6-1

Conditional Well-formedness

� Total types for usually-partial datatype de-

structors:

hd 2 fx :T List jx 6= nilg ! T

tl 2 fx :T List jx 6= nilg ! T List

� Problem Expression:

x 6= nil ^ hd x = k

Similar issue with

{ P) Q,

{ P _Q

{ if P then t else f

7

Conditional Well-formedness

� If-then-else Example:

fib(n : nat) = if n < 2 then 1 else

fib(n� 1) + fib(n� 2)

� Redundant predicates?

int?(x) = israt(x) ^ isint(x)

� Pathological Liberalness?

False ^ (�x:x)

8

Type checking with expressive types

� Non-parameterized Subtypes: N , Z � R

(IMPS, Mizar, Isabelle)

� Integer parameters:

Consider n-element array f of type

Array(T; n) = fi :N j i < ng ! T

and lookup f e with e linear? e non-linear?

� Non-uniqueness of Maximal Supertypes

h5; �i : f0::5g:ii has maximal supertypes

N � (f0::5g ! f0::5g)

and

i : N � (f0::ig ! f0::ig)

9

Type checking In Nuprl

� All by re�nement-style proof.

� H

1

; : : : ; H

n

` C

means

\if hypotheses H

1

; : : : ; H

n

are both

well-formed and true, then conclu-

sion C is also well-formed and true."

10

NOTES:

� Emphasize that no type-checking done out-

side of proof.

� Type-checking proofs are spread throughout

the course of any proof; they aren't all

done at start.

10-1

Nuprl rules generating type-checking sub-

goals

� Rules with a well-formedness premise:

�; A ` B � ` A 2 P

� ` A) B

�; x :T ` B � ` T 2 U

� ` 8x :T: B

� Checking newly-introduced terms:

�; B

a

` C � ` a 2 T

�; 8x :T: B

x

` C

No checking necessary for cut:

� ` A �; A ` C

� ` C

11

Nuprl rules for doing type-checking

� Type Well-formedness:

� ` A 2 U �; x :A ` B 2 U

� ` (x :A! B) 2 U

� Expression Well-formedness:

� ` a 2 A � ` b 2 B

� ` ha; bi 2 A�B

�; x :A ` a 2 B

x

�; y :A ` B

y

2 U

� ` (�x: a) 2 y :A! B

y

12

Checking function applications in Nuprl

Consider goal � ` (f a) 2 B. Procedure is

roughly:

1. Infer a type x :A! B

0

x

for f .

2. Now know that can probably prove

(f a) 2 B

0

a

Create subgoal

� ` B

0

a

� B

3. Create subgoals

� ` a 2 A � ` f 2 x :A! B

0

x

13

Notes on Nuprl procedure for proving ap-

plications

� Proof of B

0

a

� B can involve reasoning about

subtype predicates

� Alternate actions possible if B

0

a

� B un-

provable:

{ Alternative typings of f can be tried

{ B might be arithmetic subtype. If so,

linear arithmetic decision procedure at-

tempts proof of (f a) 2 B.

14

Comments on automation of type-checking

in Nuprl

� Linear arithmetic decision procedure essen-

tial when using arithmetic subtypes.

� Found it very useful to infer arithmetic prop-

erties of integer-valued functions. E.g. list

length function.

� Performance often very poor. Caching and

subsumption checking helpful.

15

Type checking in PVS

| based around type inference function �

� On type, returns TYPE if type well-formed.

� On term, returns its type if term well-formed.

� � also returns list of Type Correctness Con-

ditions (TCCs) which need to be proven.

� TCCs appear as extra lemmas in PVS the-

ories and as extra subgoals in proofs.

� Checking done whenever type, expressions

and formulas are introduced, so all formu-

las in sequents are guaranteed well-formed.

16

Auxiliary functions on PVS types

� �: �nds maximal types

� �: �nds predicate part of a type

For any type T :

T � fx :�(T) j�(T)(x)g

An example:

T

:

= N ! (i : N � fj :Z j j � ig)

then

�(T) = N ! (Z � Z)

�(T) = �f :(N ! (Z � Z)): 8x :N :

�

1

(f x) � 0 ^

�

2

(f x) � �

1

(f x)

17

De�nition of PVS type inference function

�

�(�)(ha

1

; a

2

i) = �(�)(a

1

)� �(�)(a

2

)

�(�)(�x :A: a) = x :A! B where

�(�)(A) = TYPE ^

B = �(�; x : VAR A)(a)

�(�)(f a) = B

a

; where

�(�)(f) = x :A! B

x

;

�(�)(a) = A

0

;

�(A); �(A

0

)

Compatible at a

� ` �(A)(a)

Compatibility testing also creates proof oblig-

ations.

18

Comments on type-checking in PVS

� Maintains seperation of type system and

expression language.

� Higher performance than Nuprl, especially

when not dealing with theories that gener-

ate many TCCs.

� Better, faster decision procedures to help

out with solving TCCs. E.g. Shostak's

integrated congruence-closure, linear arith-

metic procedure. This also handles some

basic non-linear arithmetic.

19

Property lemmas (judgements) in PVS

Given

0 : real

expt : [real,nat->real]

max : [m:real,n:real->

fp: real | p >= m AND p >= ng]

the user supplies property lemmas such as:

0 HAS_TYPE nat

expt HAS_TYPE [rational, nat -> rational]

expt HAS_TYPE [posint, nat -> posint]

max HAS_TYPE [i:int,j:int ->

fk: int | i<=k AND j<=kg]

max HAS_TYPE [i:nat,j:nat ->

fk: nat | i<=k AND j<=kg]

posrat SUBTYPE_OF nzrat

20

Other typing-related issues in both PVS

and Nuprl

� Argument synthesis

� Coercions

� Contravariant function subtyping

21

Argument synthesis

� In PVS can write

map f a

� PVS infers type parameters S and T from

types of f and a

map[S,T] f a

� Something similar happens in Nuprl and

many other systems

22

Coercions and function domain subtyping

� In

b

X

i=a

f

i

ideally have f 2 fa::bg ! T

� But then

b

X

i=a

f

i

=

c�1

X

i=a

f

i

+

b

X

i=c

f

i

requires additional typings

f 2 fa::c� 1g ! T; f 2 fc::bg ! T

23

Evaluation of expressive typing

� Speci�cations signi�cantly more accurate

and concise

� Higher level of reasoning

� Performance a concern

� Need fast powerful

{ linear (+ non-linear?) arithmetic

{ congruence reasoning

{ property inference

{ proof obligation subsumption

� If used with care, large developments very

feasible

24

II: Abstract Theories

� Examples, Uses

� PVS

� Nuprl

� Issues

25

Introduction to abstract theories

Informally, an abstract theory consists of

� types T

� operators (possibly nullary) F over the types

in T .

� predicates that the operators F can be as-

sumed to satisfy

An abstract theory is instantiated when in-

stances are provided for the types and oper-

ators that satisfy the predicates

26

Examples of abstract theories

A monoid is a tuple hM; � ; ei where

� M is a type,

� � is a binary operator of type C

2

! C and

e is a distinguished element of M ,

� � is associative and e is a left and right

identity for �.

Other examples are linear orders and stacks.

27

Example instances of abstract theories

Semigroup : hR ; mini

Monoid : hT List; append; nili

AbelianMonoid : hB ; ^; >i

hN ; max ;0i

hT Set; [; ;i

Group : hT Bij; �; id; invi

Field : hR ;+;�;0;�;1i

28

Example theorems over abstract theories

Theorems about iteration:

� on semigroup / monoid

`

k

X

i=j

x

i

= x

j

+

k

X

i=j+1

x

i

� on abelian monoid

`

X

i2A

x

i

+

X

i2B

x

i

=

X

i2A]B

x

i

� on ring

a�

k

X

i=j

x

i

=

k

X

i=j

a� x

i

29

Uses of abstract theories

� General theorem-proving support (view as

enriched polymorphism)

� Program speci�cation and re�nement

� Mathematics (Algebra, Analysis, Topology,

Category Theory)

30

An abstract theory as a PVS theory

monoids1[T : TYPE, o:[T,T->T], e:T] : THEORY

BEGIN

ASSUMING

x,y,z : VAR T

assoc : ASSUMPTION (x o y) o z =

x o (y o z)

lident : ASSUMPTION e o x = x

rident : ASSUMPTION x o e = x

ENDASSUMING

...

END monoids1

31

A development in PVS monoids theory

i,j : VAR int

f : VAR [int->T]

% f(i) o ... o f(j)

itop(i,j)(f): RECURSIVE T =

IF i > j THEN e

ELSE f(i) o itop(i+1,j)(f) ENDIF

MEASURE LAMBDA (i,j)(f) : max(1+j-i,0)

itop_unroll_hi : LEMMA

i <= j IMPLIES

itop(i,j)(f) = itop(i,j-1)(f) o f(j)

32

Importing and instantiating PVS theories

monoids2 : THEORY

BEGIN

intplusmon : THEORY = monoids1[int,+,0]

i,j: VAR int

f : VAR int->int

sum(i,j)(f) = intplusmon.itop(i,j)(f)

n: VAR nat

sum_squares : LEMMA

6 * sum(0,n)(LAMBDA (i): i * i) =

n * (n+1) * (2 * n + 1)

END monoids2

33

Abstract theories in Nuprl

All instances of a theory are collected into a

type:

MonSig == T:U x op:(T!T!T) x T

|m| == m.1

*m == m.2.1

em == m.2.2

Assoc(T;op) ==

8x,y,z:T. x op (y op z) = (x op y) op z

Ident(T;op;id) ==

8x:T. x op id = x ^ id op x = x

Mon == f m:MonSig | Assoc(|m|;*m)

^ Ident(|m|;*m;em) g

Note essential use of type universe U .

34

Instances of monoids in Nuprl

<Z,+> == <Z, �x,y.x + y, 0>

` <Z,+> 2 Mon

r#xmn == <|r|, *r, 1r>

` 8r:Rng. r#xmn 2 Mon

35

Example abstract theorem in Nuprl

` 8g:Mon. 8a,b:Z.

a � b

) (8E:fa..b

�

g ! |g|. 8k:Z.

�g a � j < b. E[j]

= �g a + k � j < b + k. E[j - k])

b�1

Y

j=a

E

j

=

b+k�1

Y

j=a+k

E

j�k

36

When should algebraic classes be types?

If classes are not types

� Quanti�cation over classes always outer-

most 8

� Fixed �nite number of class instances

If classes are types

� Arbitrary quanti�cation and families of in-

stances OK

� Can de�ne reason about functions and op-

erations on algebraic structures. E.g. free

constructions, re�nement mappings

37

NOTES:

� Algebraic class

:

= collection of instances of

an abstract theory

� not types approach OK for much theorem-

proving support

� Type universes complicate type theory. Get

non-canonical type expressions

� IMPS, EHDM, OBJ provide special sup-

port for re�nement mappings without use

of classes. However support not as exible

as when have classes

� classes essential for maths

37-1

Algebraic classes in PVS

monoids9[T : TYPE] : THEORY

BEGIN

MonTy : TYPE =

[#

c : set[T],

op:[(c),(c)->(c)],

id:(c)

#]

Mon?(m : MonTy) : bool =

associative?(op(m))

AND left_identity(op(m))(id(m))

AND right_identity(op(m))(id(m))

Mon : TYPE = (Mon?)

...

END monoids9

38

NOTES:

� Similar to approach Elsa Gunter tried in

HOL

� However, get function domains right in PVS

38-1

PVS development using monoid class type

m,n,p : VAR Mon

x,y : VAR T

HomTy(m,n) : TYPE = [(c(m)) -> (c(n))]

hom?(m,n)(f : HomTy(m,n)) : bool =

(FORALL (x,y:(c(m))) : f(op(m)(x,y))

= op(n)(f(x),f(y)))

AND f(id(m)) = id(n)

Hom(m,n) : TYPE = (hom?(m,n))

hom_comp : LEMMA

FORALL (f:Hom(m,n)),(g:Hom(n,p)) :

hom?(m,p)(g o f)

39

Automatically instantiating abstract theor-

ies

Consider using the abstract theorem:

8m :Mon: 8x; y; z; w : jmj:

(x �

m

y) �

m

(z �

m

w) = x �

m

(y �

m

z) �

m

w

to rewrite

(1 + 2) + (3 + 4)

where + 2 Z ! Z ! Z.

40

A simple matching function could yield bind-

ings

x 7! 1; y 7! 2; z 7! 3; w 7! 4

�

m

7!+

Type matching could give jmj 7! Z, yielding the

binding

m 7! hZ; +; ui

for unknown u.

Knowing m must have type Mon, consultation

of a maths database could give the full binding

m 7! hZ; +; 0i

41

Issues in automatic instantiation

� database still needed to justify typing for

m, even if no unknowns.

� database might only have entry

hZ; +; 0; �i 2 AbGroup

Need to know that

AbGroup �

�

Mon

� Automation of inference with �

�

important

� De�ning S �

�

T easiest when S; T have

named �elds (Mizar, IMPS, Axiom).

42

�

�

with named �elds (structural subtyping)

AbGroup Mon

�elds C : U C : U

op : C

2

! C op : C

2

! C

inv : C ! C id : C

id : C

properties Assoc(C ; op) Assoc(C ; op)

Ident(C ; op; id) Ident(C ; op; id)

Inv(C ; op; id ; inv)

Comm(C ; op)

43

Key issues in abstract theories

� theory interpretations

{ special support / automation needed

{ structure subtyping a �rst step

� Algebraic classes as types or theories?

{ For mathematics

{ For hardware/software veri�cation

{ For program speci�cation re�nement

44

