manuscript No.
(will be inserted by the editor)

Proving SPARK Verification Conditions with SMT solvers

Paul B. Jackson - Grant Olney Passmore

Received: date / Accepted: date

Abstract We have constructed a tool for usinga® (SAT Modulo Theories) solvers to
discharge verification conditions (VCs) from programs teritin the $ARK language. The
tool can drive any solver supporting thew®-LiB standard input language and has API
interfaces for some solvers.

SPARK is a subset of Ada used primarily in high-integrity systemshe aerospace,
defence, rail and security industries. Formal verificatiddrSPARK programs is supported
by tools produced by the UK company Praxis High Integrityt8yss.

We report in this paper on our experience in provirRp8K VCs using the popular st
solvers G/c3, Yices, Z3 and Simplify. We find that thevS solvers can prove virtually all
the VCs that are discharged by Praxis’s prover, and somstinae. Average run-times of
the fastest BT solvers are observed to be roughly-2x that of the Praxis prover.

Significant work is sometimes needed in translating VCs &nform suitable for input
to the ST solvers. A major part of the paper is devoted to a detailedgration of the
translations we implement.

Keywords SMT solver- SAT modulo theories solverAda - SPARK

1 Introduction

A common approach to formal program verification involvesetiing assertions to posi-
tions in the procedures and functions of the program. Thesertions are predicates on
the program state that are desired to be true whenever theofl@entrol of passes them.
For each assertion, one can generagefication conditiongVCsfor short), predicate logic
formulas that, if proven, guarantee that the assertionahbitbys be satisfied when reached.

Part of this article appeared in preliminary form in AFM "0I0]

Paul B. Jackson
School of Informatics, University of Edinburgh, UK
E-mail: Paul.Jackson@ed.ac.uk

Grant Olney Passmore
School of Informatics, University of Edinburgh, UK
E-mail: g.o.passmore@sms.ed.ac.uk

Usually VCs for an assertion are generated under the assmipiat immediately prior
assertions on the control flow path were satisfied. Whilefigation conditions use mathe-
matical analogs of program data types such as arrays, ieaadlenumerated types, they are
otherwise free of program syntax. A consequence is thatgosofor verification conditions
need no knowledge of the semantics of the programming layjeggbhayond these mathemati-
cal data types. All relevant semantic information on howgpamnming language statements
execute is captured in the VC generation process.

SMT (SAT Modulo Theories) solvers combine recent advances in tgdesifor solving
propositional satisfiability (8r) problems [17] with the ability to handle first-order thezsi
using approaches derived from Nelson and Oppen’s work operating decision proce-
dures [15]. The core solvers work on quantifier free problgoos many also can instantiate
quantifiers using heuristics developed for the nar-Based prover Simplify [7]. Common
theories that 871 solvers handle include linear arithmetic over the integard rationals,
equality, uninterpreted functions, and datatypes suchrags bitvectors and records. Such
theories are common in VCs, sa$ solvers are well suited to automatically proving them.

The experiments we report on here use three popwar $lvers: G/c3 [1], Yices [8]
and Z3 [13]. All these solvers featured in recent annuat-SCoMP competitions comparing
SMT solvers in categories which included handling quantifier instaitia We also include
Simplify in our evaluation because it is highly regarded ,adebpite its age (the latest public
release was in 2002), it is still competitive with current Ssolvers. Simplify was used in
the Esc/Modula-3 tool and continues to be the default tool for uséhwie Esc/Java?2 tool.
And we include Praxis’s automatic prover, which is the usaal that S’ARK] users employ
to discharge verification conditions.

One advantage thatv solvers have over Praxis's prover is their ability to progeluc
counterexample witnesses to VCs that are not valid. Thesetemrexamples can be of great
help to SPARK program developers and verifiers: they can point out scesduighlighting
program bugs or indicate what extra assertions such as tvapiants need to be provided.
They also can reduce wasted time spent in attempting tcaictigely prove false VCs.

Tackling SPARK programs rather than say Java or C programs is appealing doua
ple of reasons. Firstly, there is a community ¢fARK users who have a need for strong
assurances of program correctness and who are alreadypgvfiiimal specifications and
using formal analysis tools. This community is a receptiudience for our work and we
have already received strong encouragement from Praxien8, SARK is semantically
relatively simple and well defined. This eases the challergeachieving higher levels of
VC proof automation.

This paper makes several contributions.

— It reports on an important project bridging between devetsf S4T solvers and soft-
ware developers who have a strong need for improved automafiVC proof.

— It gives an analysis of how currentvS solvers perform on industrially-relevant exam-
ples.

— It gives a detailed presentation of the process of tramglafiCs into forms suitable for
passing to the 8T solvers. While some of the translation steps by themselrewall
known and straightforward, several, especially thosetirgjato translating out finite
types are less so. We see value in presenting the detailsmf, #xplaining options and
subtleties, and how the steps interact. This presentataidact as a guide to others
needing to construct similar translations fanSsolvers.

1 http://www.smtcomp.org/

The longer-term goals of the the work reported here are taongthe level of automa-
tion of SPARK VC verification and to extend the range of properties thatmaautomatically
verified. Often there is a requirement that all VCs assodiatih a program are checked
by some means. When automatic VC proof fails, users then toaxesort to using an in-
teractive theorem prover or checking the VCs by hand. Bo#isé¢halternate activities are
highly skilled and very time consuming. Increasing the lef@utomation reduces the cost
of complete VC checking, and makes complete checking adfdedby a wider range of
SPARK users.

These concerns over the cost of handling non-automatipatlyen VCs also impact the
range of program properties that VCs are used to checkeARR users try to check richer
properties, the number of non-automatically-proved V@saeases and so does verification
cost. Most $ARK users settle for verifying little more than the absence oftime excep-
tions caused by arithmetic overflow, divide by zero, or afpayinds violations. They also
learn programming idioms that lead to automatically préeajwals. Even then, the number
of non-automatically-proved VCs is usually significant.

Section 2 compares our VC translation approach to that ofrgtiopular VC-based
program verification systems. Section 3 gives more backgt@mn S ARK. Section 4 gives
an overview of our VC translation tool. The translation isgented in detail.in Sections 5
to 14. Readers interested in the experiments may choosepdhelse sections. Case study
programs are summarised in Section 15 and Sections 16, 1Z&pdesent and discuss
our experiments on the VCs from these programs. Current andef work is covered in
Section 19 and conclusions are in Section 20.

Since we use BT solvers as automatic theorem provers, we refer to them lestblaers
andprovers

2 Related Work

Examples of tools that useM3 solvers to prove VCs generated from source code anno-
tated with assertions includesE/Java?2 [2], the Spec# static program verifier [5], and Why,
Krakatoa & Caduceus [9].

Esc/Java2 generates VCs for Java programs. The standard V@dgags that of the
Simplify prover, though experimental translations inte tBut-LiB format and into the
input language of the PVS theorem prcvare also available. While PVS has a rich type
system, the PVS translation translates to an embeddingeoSimplify language, and so
makes relatively little use of these types.

Spect# originally generated VCs in the Simplify languageréntly it proves VCs using
the Z3 prover, though it is not known whether it continues ¢e the Simplify language as
the interface language.

The Why tool provides a VC generator for the Why intermediatesl programming
language (Why PL) and can translate these VCs into the iapgulages of both\&r solvers
and interactive theorem provers [9]. The Krakatoa tool glates annotated Java in Why
PL, and Caduceus and its successor Frama-C translate tethGtanto Why PL. The VC
language is a simply-typed polymorphic language withobttypes.

Both Esc/Java2 and Spec# also translate into a simple intermeldiagéabstract progam-
ming language before generating VCs. In the case of Speetg th an alternate front end

2 http://pvs.csl.sri.com

for C and an alternate VC generator that outputs in the inpotax of the Isabelle/HOL
interactive theorem provér

In all the above cases, extensive axiomatisations of theeedanguage data types and
memory models has been carried out by the time VCs are gedelatthe case of the Sim-
plify language, the only interpreted type left is the integén the case of Why, there is also
a Boolean interpreted type, for example. Why does have aredbr allowing additional
types to be interpreted. As far as we understand, this feaursed mainly when translating
for VCs in interactive theorem prover languages. Nearlyttda8 axiomatisation appears to
happen at stages before the intermediate-level prograghfaimguage representations are
generated.

In contrast, with the VCs generated fop&K programs, mathematical analogs of most
of the SPARK level data-types survive in the VCs. That this is possibie isart due to the
simplicity of the SPARK data types, memory model and mode of passing data between pro
cedures: with BARK there are no reference types or pointer types, there is nardipally
allocated memory, and all data appears to be passed by vajp@cedure calls and returns.
This richer VC language then gives us more work to when tedimg down to a relatively
simple language like 87-L1B, where the only interpreted type we might make use of is the
integer type.

There are some similarities between our translation stegstaose employed in these
other systems before intermediate language generatioexample, our step for abstracting
term-level Boolean operations (see Section 11) are defiead those in Ecd/Java2. There
are also significant differences. For example, our undedétg is that the translations in
these other systems are more monolithic than ours, theyoateroken down into a series of
distinct steps. And we have not seen parts of the transktiothese other systems having
a direct analog to our data refinement step (see Sectionriff)ese other systems, any data
refinement is directly built into the introduced axioms.

3 The SPARK Language and Toolkit

The SPARK [3] subset of Ada was first defined in 1988 by Carré and Jesraouthamp-
ton University and is currently supported by Praxis. The Adbset was chosen to simplify
verification: it excludes features such as dynamic heapéedsata-structures that are hard
to reason about automaticallyp&RK adds in a language of program annotations allowing
programmers to express assertions and attached them toffmmiwol points in programs.
These annotations take the form of Ada comments moR8 programs are compilable by
standard Ada compilers.

SPARK inherits from Ada several less-common language featuegsthild useful spec-
ification information into programs. This information theloes not have to be explicitly
included in program annotations. One can specify subtyigpes which are subranges of
integer, floating-point and enumeration types. For exangsle can write:

subtype Index is Integer range 1 .. 10;

One can also definmodulartypes which have values.0.n— 1 for a given power of 2,
and require all arithmetic on these values to be molodular types not only affect how
Ada compilers treat arithmetic operations on those typesalso constrain integer values
that can be injected into the types.

3 http://www.cl.cam.ac.uk/research/hvg/Isabelle/

As with Ada, a $ARK program is divided into program units, each usually coroesp
ing to a single function or procedure. Figure 1 shows a pmguait for a procedure that
does integer division by repeated subtraction

package P is
procedure Divide(M, N : in Integer;
Q, R : out Integer);
—-# derives Q, R from M,N;
--# pre (M >= 0) and (N > 0);
-—# post (M =Q * N +R) and (R < N) and (R >= 0);
end P;

package body P is
procedure Divide(M, N : in Integer;
Q, R : out Integer)
is

begin
Q :=0;
R := M;
loop

--# assert (M = Q * N + R) and (R >= 0);
exit when R < Nj;

Q:=Q+1;

R :=R - Nj;
end loop;
end Divide;

end P;

Fig. 1 A SPARK program for integer division

The Examiner tool from Praxis generates VCs froma8k programs. It is often very
tedious for programmers to specify assertions using atinag so, for common cases,
the Examiner can add assertions automatically. For exantpban add type-safety side
conditions for each expression and statement that chedkéoabsence of run-time errors
such as array index out of bounds, arithmetic overflow, vioteof subtype constraints and
division by zero.

The Examiner reads in files for the annotated source code afgrgm and writes the
VCs for each program unit into 3 files:

— A declarationsfile declaring functions and constants and defining arragpnk and
enumeration types,

— arule file assigning values to constants and defining propertiesiattypes,

— averification condition goafile containing a list of verification goals. A goal consisfs o
a list of hypotheses and one or more conclusions. Conclssicnimplicitly conjuncted
rather than disjuncted as in some sequent calculi [11].

The language used in these files is known as.F

Figure 2 shows one of the 7 VC goals that the Examiner gergefatehe procedure
shown in Figure 1. This goal concerns preservation of thp lagariant assertion

assert (M =Q * N + R) and (R >= 0);

4 This example is drawn from theP&RK book [3]

at the start of the main program loop.
An excerpt of the accompanying declarations file is shownigife 3 and an excerpt of
the accompanying rule file in Figure 4.

For path(s) from assertion of line 17 to assertion of line 17:

procedure_divide_4.

Hi: m=q*xn+r .

H2: r >0 .

H3: m >= integer__first
H4: m <= integer__last
H5: n >= integer__first
H6: n <= integer__last
H7: m>= 0 .

H8: n>o0.

H9: r >= integer__first

H10: r <= integer__last
Hi1: not (r < n)

H12: q >= integer__first
H13: q <= integer__last

H14: q + 1 >= integer__first

H15: q + 1 <= integer__last

H16: r >= integer__first

H17: r <= integer__last

H18: r - n >= integer__first

H19: r - n <= integer__last
->

Ci: m=(+ 1) *n+ (r - n)

C2: r-n>0.

C3: m >= integer__first

C4: m <= integer__last

C5: n >= integer__first

C6: n <= integer__last

C7: m>= 0 .

C8: n>0.

Fig. 2 Example VC goal from integer division program

const integer__size : integer = pending;
const integer__last : integer = pending;
const integer__first : integer = pending;
var m : integer;
var n : integer;
var q : integer;
var r : integer;

Fig. 3 Example declarations for integer division program

A more typical VC considered in our experiments is shown ibrabiated form in Fig-
ure 5. This gives examples of operators on records (the fedkt®rsf1d msg_count and
f1d_initial) and arrays (the 1 dimensional array element select fumctiement (_,
[_.1)), arithmetic operators and relations, and quantifiees (a11).

divide_rules(4): integer__first may_be_replaced_by -2147483648.
divide_rules(5): integer__last may_be_replaced_by 2147483647.
divide_rules(6): integer__base__first may_be_replaced_by -2147483648.
divide_rules(7): integer__base__last may_be_replaced_by 2147483647.

Fig. 4 Example rules for integer division program

H3: subaddress_idx <= lru_subaddress_index__last

H6: for_all(i___2: word_index,
((i___2 >= word_index__first) and (
i___2 <= word_index__last))

=> (...))

Hi1: fld_msg_count(element(bc_to_rt, [dest])) >=
lru_subaddress_index__first

H29: fld_initial(element(bc_to_rt, [dest])) <=
lru_start_index__last
->

C1: fld_initial(element(bc_to_rt, [dest])) + (
subaddress_idx - 1) >= valid_msg_index__first
C2: fld_initial(element(bc_to_rt, [dest])) + (
subaddress_idx - 1) <= valid_msg_index__last
C3: subaddress_idx - 1 >= all_msg_index__base__first
C4: subaddress_idx - 1 <= all_msg_index__base__last

Fig. 5 A more typical VC

The Simplifier tool from Praxis can automatically prove mamyification goals. It is
called theSimplifierbecause it returns simplified goals in cases when it caniigtgtove
the goals generated by the Examiner. Users can then resart itteractive proof tool to
try to prove these remaining simplified goals. In practides fproof tool requires rather
specialised skills and is used much less frequently thaSitmglifier.

The Simplifier has been in development since at least far Badl®97 and drew on ear-
lier code for an interactive proof checker. Praxis contitm@nprove it. It employs a num-
ber of heuristics involving applying predicate logic ruleswriting, forward and backward
chaining, and applying special purpose arithmetic ruleswéler it does not incorporate
decision procedures for linear arithmetic or propositiaeasoning, for example.

As of 2009, Praxis’s BARK toolkit is freely available under a GNU Public Licenge
This release includes both source code and user-level daaation for the Examiner and
the Simplifier.

4 Architecture of VC Translator and Prover Driver
4.1 Overview

Our VcT (VC Translator) tool reads in the VC file triples output by tRexis VC gener-
ator tool, suitably translates the VCs for a selected prastepresent one of @3, Yices,

5 http://libre.adacore.com/libre/

Praxis Toolkit

VC Generator

Prover/Simplifier

Summariser

SPARK
Source Code

VC Files

Simplified VCs

|
1 VCT !
. Y y !
| N
| | Report Files
! Preprocessor |
|
|
I .
. |
| VCs in Standard Form)
|
e N
|
| Translator Enumerated Type Elim :
: Formula/Term Separation :
: Type Refinement |
|
: Array & Record Elim 1
|
| Boolean Term Elim |)
|
|
I Arith Simplification X :
|
|
I Arith Elim X |
|
| Defined & Abstract Type Elim : !
|
|
AN J : |
|
|
. Y : |
(e] ~N :
|
| Driver | CVC3 API Driver |
) |
|
|
|) | Yices API Driver !
| Driver |
| Top-Level / |
! i SMT-LiB [|
| File Interface |] |
| Driver !
1 Simplify Sl 1
) [~ |
AN J !
) |
____________________________ |
|
|
l
Report Files

Fig. 6 VCT Architecture

Z3 or Simplify, and runs the prover on each VC goal. Fig. 6 ftes an overview of the
architecture. The tool is divided up into three parts

1. A preprocessowhich parses the VC files and puts VCs into a standard intdona,
resolving various features particular to theiFlanguage.

2. Atranslatorwhich performs a variety of optional translation steps aaMCs in order
to prepare them for the different provers.

3. A driver which translates to the concrete syntax or syntax tree datetsres required
by the provers, orchestrates invocations of the proveis)@gs results.

These parts are described in more detail in the followingseations. We consider the pre-
processor first, and then the driver before the translasothe driver description motivates
the discussion of the translation.

Currently our tool consists of around 20,000 lines of C++eadcluding comments
and blank lines.

4.2 Preprocessor

Operations carried out by the preprocessor include:

— Eliminating special rule syntaxFbL rules give hints as to how they could be used
(e.g. that an equation should be used as a left to right Wwiithis special syntax was
eliminated, as none of the provers we considered had any iMagnalling it.

— Typing free variables in rules, closing ruteBbpL rules have untyped free variables,
implicitly universally quantified. The preprocessor irdfeypes for these variables from
their contexts and adds explicit quantifiers to close thesul

— Adding missing declarations of constarE®L has some built-in assumptions about the
definition of constants, for the lowest and highest valuemtieger and real subrange
types, for example.

— Reordering type declaration$/ost solver input languages require types to be declared
before use, but such an ordering is not requiredn F

— Resolving polymorphism and overloadirfgpr instance, BL uses the same symbols
for the order relations and successor functions on integdrenumerated types, for
arithmetic on the integers and reals, and for array elemglatson and element update
on differently typed arrays. After resolution, each fupatiand relation has a definite
concrete type.

4.3 Driver

There are various alternatives for interfacing witliSsolvers. We have experimented with
several of these, partly out of necessity, partly to undedtheir pros and cons. The alter-
natives we have explored so far are as follows.

— SMT-LIB file-level interface
The SvT-LiB format is the standard format used by the annuatr-SCompP competition
for comparing T solvers. The 81T-L 1B initiative defines severalub-logicsof its base
logic, each consisting of a background theory of axioms amdessyntactic restrictions
on allowable formulas. Each category of the competitiormigetted to some sub-logic,
and SvT solver developers design their solvers to accept one or ofdhese sub-logics.
We translate into the sub-logics

10

— AUFLIA: Closed linear formulas over the theory of integerays with free sort,
function and predicate symbols,
— AUFNIRA: Closed formulas with free function and predicayebols over a theory
of arrays of arrays of integer index and real value.

In each case we just use the support for integer arithmettb: e AUFLIA sub-logic
the support is for linear integer arithmetic, with the AURM sub-logic the support is
for possibly non-linear integer arithmetic. We do not cathg make use of the support
for arrays. this is support is rather limited: our currerdrtslation requires any support
for arrays to be over a range of index and element types. Evereslation work would
be needed to make do with just the available index and eletypes. While we have
a need for a theory of reals, the AUFNIRA sub-logic supri§ingrovides no proper
support for mixed integer real arithmetic: for example ihigssing a function injecting
the integers into the reals.
The SvT-LIB standard makes the traditional distinction in first-ordmgit between the
syntactic categories of formulas and terms. This is in @sttto the case with thedt
language where formulas are just terms of Boolean type.
Currently, Gvc3 and Z3 support AUFNIRA, and &3, Yices and Z3 and support AU-
FLIA.
Our SuT-L1B file-level interface writes 8T-L1B format files in either AUFLIA or
AUFNIRA, runs an appropriate prover in a sub-process, andsdack the results.

— Simplify file-level interface
This interface uses the language of the Simplify proversThanguage is essentially
single-sorted. All functions and relations have integguanent sorts, and all functions
have integer result sorts. Formulas are in a distinct syictaategory from terms. The
Simplify language is accepted by Simplify itself and by Z3.
Our Simplify interface shares much of its code with the1SL1B file-level interface.

— CvC3 APl interface
Cvc3 supports a rich native input language. We translaie &rrays, records, integers
and reals directly to the corresponding types in this inpumiguage. We use V&3’s
integer subrange type to realise translations for enureérgpes.
Cvc3requires a strict distinction between formulas and terfisoolean type. Boolean
terms are translated to the 1-bit bit-vector type.
The interface uses functions inv€3’s C++ API to build the term and formula expres-
sions

— Yices APl interface
Yices’s native input language is similar tov€3’s. The main difference is that Yices’s
language does not distinguish between formulas and terBsakan type.

We define a single API that is shared by all of the above intedaThis API includes
functions for initialising solvers, asserting formulag|lmg solvers, and checking results.
Our top-level driver module works above this API, sequegdime API function calls and
performing other tasks such as collecting timing informatand writing report files. The
top-level module writes both to a log file and a comma-sepdraalue file where it records
summaries of each solver invocation. This allow easy coispaibetween results from runs
with different options and solvers.

11

4.4 Translator

Each translation step performed by the translator opemte¥Cs in a standard internal
form. The main steps are:

— Enumerated Type Elimination
Replace uses of enumerated types with integer subrangs, tgpe provide alternate
definitions for functions and relations associated withreerated types.
We use this step with all our driver options. It is for sure deg when translating to
SmT-LiB or Simplify format, as neither supports enumerated typesesand @c3
do support enumerated types via their APIs, but these typemticome with an order
defined on them, and do not define successor and predecesstiofig, as needed by
FDL. We could introduce an order relation and the successor aatepessor functions
axiomatically, but currently do not do so.
See Section 6 for details.

— Formula/Term Separation
When we need distinct syntactic categories of formulas antg, we establish both
term-level and formula-level versions of the propositiologic operators. As needed,
we suitably resolve every occurrence of a function invajvBBoolean arguments or re-
turn value to be either at the formula or the term level, asdexessary, add in coercions
between Boolean terms and formulas. See Section 9 for gletail

— Type Refinement
Type refinement carries out refinement translations thaé e flavour of data-type
refinements considered in the program refinement literaitvitgen a type is refined, it
is considered as a subtype of some new base type, and allesvareemade for equality
on the unrefined type possibly not corresponding to equalityhe base type. Special
treatment is given to arrays and records to allow arrays endrds over base types to
be used to model arrays and records over the original uncefypes.
The primary use of type refinement is to eliminate finite typesh as integer subrange
types and the Boolean type. These types are not supportée [3atr-L 18 and Simplify
input file formats.
See Section 10 for details.

— Array and Record Elimination
We can eliminate redundant array and record operators amdxamatically charac-
terise array and record types. An example of a redundantipes a record construc-
tor. This is redundant if a default record constant and réeid update operators are
available. The axiomatic characterisations are usefulvthe targetted solver or solver
format does not provide explicit support for arrays and rdsoFor example, we use
axiomatic characterisations when translating for tivers.18 and Simplify formats.
See Section 7 for details on array elimination and Secticor 8€tails on record elimi-
nation.

— Boolean Term Elimination
Term-level Boolean operations can be made uninterpretédsoms can be introduced
characterising them. Also the Boolean type itself alondnlie true and false Boolean
constants can be made uninterpreted. These steps areeckdpyirthe ™T-L1B and
Simplify formats.
See Section 11 for details.

— Arithmetic Simplification
We simplify arithmetic expressions that are semanticalgdr into expressions that

12

are obviously syntactically linear. This improves what ves @rove with Yices which
rejects non-linear arithmetic expressions, and improliesquality of the VCs we can
generate in linear B1-L18 formats.
See Section 12 for details.

— Arithmetic Elimination
Options are provided for making uninterpreted varioushanietic operators that some
provers cannot handle. In some cases, axioms are addectmiag the operators.
See Section 13 for details.

— Defined Type and Abstract Type Elimination
To cope with the Simplify prover we need to be able to elimgret uninterpreted types
and defined types. See Section 14 for details.

In Table 1 we summarise which steps are used to at least saem &y each of the kinds
of drivers.

Translation step Yices APl CVC3 APl SMTLIB Simplify
Enumerated Type Elim . °
Formula/Term Separation .
Type Refinement
Array & Record Elim
Boolean Term Elim
Arith Simplification . °
Arith Elim °

Defined & Abstract Type Elim

Table 1 Translation steps used by different prover drivers

The usual order of applying the steps is as they are listedeabo

There are some dependencies between steps, so not alhgslare sensible. For exam-
ple, Type Refinement has some special treatment for terel-Bwoleans, so it must come
after they are introduced by Formula/Term Separation. 8aolTerm Elimination expects
to come after Type Refinement.

Some ordering alternatives yield different translatidfar.example, the Array and Record
Elimination is shown after Type Refinement, but it also cdagdpositioned before, in which
case the the axioms introduced would be different at the értleotranslation. In other
cases, the ordering is unimportant. For example, the aetiusteps could be carried out at
any stage with no change to the final result.

5 Introduction to Translator Steps

Each step of translation works onvarification Condition Unibr VC Unit, for short. AVC
Unit gathers together all the VCs associated withPars< program unit (usually a procedure
or a function), and is derived from one of the 3-file sets otljyuthe Praxis’'s VC generator
as described in Section 3. Each VC Unit extends this infaomatbout a particular set of
VCs with information about the theory these VCs are oversT&inelpful in tracking how
the translation steps change the background theory of thetii@nselves and in checking
that translations have correctly chosen and sequenced.

The elements making up a VC Unit include:

13

— ldentification of logic variant used
The variants are

— Strict First Order Logicor Strict FOLwhere formulas are a distinct syntactic cate-

gory from terms.

— Quasi First Order Logimr Quasi FOLwhere formulas are terms of Boolean type .
For simplicity, we present the rest of the VC Unit elementstfe Strict FOL vari-
ant. The changes for Quasi FOL are straightforward. For gannelation declarations
are not distinct from function declarations — they are justldrations of functions of
Boolean result type.

— Type-constant declarations and definitions
This introduces the set of type constant names that can likinisgpe expressions. It
includes constants for both interpreted types such as Hie aad integers, and uninter-
preted types. We writ& : Type to declare tha€ is a type-constant, ard: Type = T
to define type constaf as a definition for type expressidn
For convenience, we assume that there are sufficient typeitiais that every type in
a formula and every argument type to a type constructor orighé-hand side of a type
definition can be a declared or defined type. We do not allow tgnstructors at such
positions. A similar condition is enforced in thee/ &Rk subset of Ada and thett VC
language.

— Type constructors
Eachtype constructoconstructs a new type from 0 or more existing types and plyssib
other information. Examples include: enumerated typesyaypes, record types and
integer subrange types.
Taken together, the type-constants and the type constsugemerate the language of
types.
All the type constructors we consider have intended intggtions, usually parame-
terised by the interpretations of their components.

— Term signature
This declares constants and functions. We waiteT to declare that constanthas type
Tandf : (S,...,S)T to declare that functiorf has argument typeS,...,S, and
result typeT. We keep track of whether each has some intended interjoretaind, if
so, what that interpretation is.
We assume that there is no overloading or polymorphismyes@mnstant or function has
a unique type. To enforce this condition we create monomorpistances of naturally
polymorphic operators in L such as the functions for updating and accessing array
elements. We structure the constant and function idergtiiech that polymorphic base
names are easily extractable. This is needed when handiMfajoals to 34T solvers
that expect some polymorphic operators.
The term signature along with typed variables generateltigiage of terms.
We optionally allow into the language of terrifithen elseconstructors of formiTET (¢, a, b),
whereg is a formula andh andb are terms of typd . ITEt (¢, a,b) is equal toa when
@is true, ando wheng is false.

— Relation signature
The relation signature declares atomic relations. We wWRite (S, ...,S,) to declare
that relationr has argument typeS;, ..., S,. As with the term signature, we track any
intended interpretations and assume all relations are morghic. In particular, we cre-
ate a monomorphic instance of equality for each typel we need to express equality
at.

14

The relation signature, together with usual propositidogic operatorsA, V, -, <, =)
and typed existential and universal quantifiers:(T. ¢ and 3x: T. @), generate the
languagee of formulas.

Intended interpretations

We keep track of whether each declared type constant, tenstaat, function and re-
lation has an intended interpretation or is uninterpretedn entity is interpreted, then
we also keep track of the nature of that interpretation. Ugtiae interpretations are the
expected ones: the typet is interpeted as the integers. Occasionally, the intesicets
are not the ones immediately suggested by the entity naroeexemple, we sometimes
interpret the typéBool as the integers.

Rules

Rules are formulas. Commonly they introduce equality-tadefinitions of term con-
stants and function constants, and, more generally, peosidomatic characterisations
of types and associated terms. It is expected that ruledwagasatisfiable.

Goals

A goal is composed of a list of hypothesis formulas and a emich formula. A goal is
considered valid if it true in all interpretations satisfgithe rules and giving interpreted
types, constants, functions and relations their intendetpretations.

Following sections give details on how each of the transfatiteps introduced in Sec-

tion 4 transforms a VC Unit.

6 Enumerated Type Elimination

6.1 Enumerated Types inDE

A named enumerated tyde containing constanty, ..., k,_1 is introduced with the type
definition

E: Type = {ko,...,kn—1}

Associated withE are operators

posg : (E)Int
valg : (Int)E
succg : (E)E
predg : (E)E

and relations

<g: (E,E)Bool
<g: (E,E)Bool

We usually write the relations using infix notation.

These functions and relations are not primitive iDLF instead they are uninterpreted
and are characterised by axioms. Tgwag andvalg functions define an isomorphism be-
tween the typeS and the integer subrand®..n— 1} such thatposg (ki) = i. The axioms
characterise<g and <g so that the isomorphism is order preserving. Btiecg andpredg
functions are successor and predecessor functions. Fonpaasucce (ki) = ki1 when
i <n—1. The axioms leaveucce (ky—1) andpredg (kg) unconstrained.

15

6.2 Elimination by Translation to Integer Subranges
We change the type definition to
E:Type = {0..n—1} |

so the typenamé is just a name for the integer subrange ty{jde. n— 1}. We declare the
enumerated type constants as uninterpreted constantaddrakioms

kn =0

kno1=n-1

We remove all original axioms characterising the enumeragpe operators and relations,
replacing them with the axioms

VX 1 E.valg(X) =t X

VX 1 E. posg(X) =jnt X

VX :E.x<n—1 = succg(X) =t X+1
Vx:E.0<X = predg(X) = Xx—1

We replace all occurrences of thg and <g relations in rules and goals with the integer
relations< and<.

When we use integer subrange types, it is not the case thaharg types of functions
and relations always match expected types exactly. In géigre checking which such
subrange types can involve arbitary non-linear arithmeg&soning. In practice so far we
have found we can type check VC Units using just syntactickheare subtypes of the
expected types. Typechecking currently just uses the ciorel integer typing for+ and
—, the knowledge théf is a subtype ofnt, and the typingk..k} for integer literalk.

7 Array Elimination
7.1 Arrays in BbL
The SPARK FDL language has primitive dimensional arrays. A type definition of form
A:Type = Array(Sy,...,S,T)

introduces am dimensional array name@l with § theith index type and is the type of
elements. The index types are usually integers, integeaagbs or enumeration types. The
element type can be any type.

For simplicity, we consider here the 1 dimensional case

A: Type = Array(ST)

The generalisation to dimensional arrays is straightforward.
Associated with the array typkare

16

— Array constructorsof form
mk_arraya(to, [s1] :i=11,..., [s] i =t) fork>0

or of form
mk_arraya([s1] i=11,..., [&]:=t) fork>0

These constructors make an array witht indexs;. With the first form a default valuig
is provided. With the second, the assumption is that theegadii all indices are explicitly
set. Here we use extra syntactic sugar to improve readabilitthout this sugar the
function names would need further decoration so the coctstrsl of different arities
have different names.tt also allows for assigning a value to a range of indices. We
have not yet encountered examples of this, and do not suppett

— A selectfunctionselecta(a,s) for selecting the element of arrayat indexs.

— An updatefunctionupdatea(a,s,t) for updating the element of arrayat indexsto new
valuet.

7.2 Eliminating array constructors

We introduce a constant and operator

defaultpa : A
constp : (T)A

with a characterising axiom
Vt @ T. selecta(consta(t),t) =t t

The constructomk_arraya(to, [s1] i=t1,. . ., [S] :=1k) is replaced by the term, recursively
defined by

ap = consta(to)
a = updatep(@i_1,S,t) forO<i<k

The constructomk_arraya([s1] :=11,...,[sk] := 1) is replaced by the terray recursively
defined by

ag = defaulta

& = updatep(@j-1,S,t) forO<i<k

7.3 Eliminating interpreted arrays

We eliminate the need to have a standard interpretationifay #&/peA and functionselecta
andupdate, by introducing suitable axioms. Assume we havedéfaulta andconstp con-
stant and function introduced above. The axioms are

Va: A Vs: S Vt: T.selecta(updatep(a,s,t),s) =1t
Va: A Vs S :SVt:T.s#sS = selecta(updates(a,s,t),s) =t selecta(a,s)
Va,a : A. (Vs: S selecta(a,s) =7 selecta(d,s)) = a=ad

The first two of the axioms are often calleshd-writeaxioms, and the third is a statement of
array extensionalityThe extensionality axiom could also be stated wthrather than=-.

17

We choose the form withs> as the axiom for= is just a trivial statement of the functionality
of selecta in its first argument, of which provers all have built-in kneage. With these
axioms, we drop the type definitioh: Type = Array(S T), but retain a type declaration
for A, soAis now an uninterpreted type.

Some solvers are not able to use extensionality axioms Igxaststated here because
they cannot use the formuta= & as a pattern to match against in order to derive instantia-
tions. To this end, we provide the option of replacing eadleéity at an array type in rules
and goals with a new relaticsy, with trivial defining axiom

Va,d : A eqp(ad) & a=pd

These axioms only characterise the array type up to isonsrphi the index typeSis
finite. If Sis infinite, one model involveé denoting the subset of functions of tyBe— T
with all but finite number of values the same: the array opesadnly allow us to explicitly
construct such functions. Another model, non-isomorpaithts one, uses all functions of
typeS—T.

While arrays with integer rather than finite range indices @mmon at various stages
of translation, arrays always start off as having finite mtges in $ARK programs. We
expect any VCs involving cardinalities of array types toddéveir truth values maintained
by our translation steps, without us adding extra axioms ¢haure that abstract types for
arrays always have the expected cardinalities.

8 Record Elimination
8.1 Records in BL

A type definition
R: Type = Record(f1:Ty,...,fn:Th)
introduces a record type namBdwith fields f1, ..., fy of typesTy, ..., Ty respectively.
For simplicity, we consider here a record with two fields.
R: Type = Record(fst: S, snd: T)
The generalisation to records wittfields is straightforward.
Associated with the record tygeare
— arecord constructoiof form

mk_recordg(fst :=s, snd :=t)
As a prefix operator, we can write this ak_recordr(s,t) and declare it with
mk_recordr : (ST)R

though here we will continue using the more verbose syntax.
— recordfield selecbperators
select_fst : (R)S
select_snd : (R)T
— recordfield updateoperators

defaultr : R
update fst : (R SR
updatesnd : (R, T)R

For exampleupdate_fst(r,s) updates thést field of recordr with values.

18

8.2 Eliminating record constructors
We replace the record constructak_recordr(fst := s, snd :=t) with
update_sndr(update_fstg(defaultg,s),t)

wheredefaultr is a new uninterpreted constant of tyRe

8.3 Eliminating record updates

We can choose to keep record constructors and have the upglatations be derived. We
have the identities
update_fstg(r,s) = mk_recordr(fst := S,snd := select_sndr(r))

update_sndg(r,t) = mk_recordr(fst := select_fstr(r),snd :=t,)

There is the choice of either applying these identities itmiekte all occurrences of the
update operators, or making the update operators unietexgpand adding the identities as
axioms. If we eliminate update operators ofrafield record, we get a factarincrease in
size of each update expression, and the sub-expressierds replicatingn — 2 times. If
records have high numbers of fields, updates are nestedharelis no structure sharing
in expressions, this replication could result in a hugeease in expression size. For this
reason we currently introduce the identities as quantifiednas.

8.4 Eliminating interpreted records

We eliminate the need to have a standard interpretationefmord typeR and associated
operators by introducing suitable axioms. We implement approaches, depending on
whether constructors or updates are first eliminated.

If constructors have been eliminated, we use axioms

Vr : R Vs: S select_fstr(update_fstg(r,s)) =sS

Vr : R Vs: S select_sndr(update_fstg(r,s)) =T select_sndgr(r)
Vr @ RVt : T. select_fstr(update_sndg(r,t)) =g select_fstr(r)
Vr @ RVt : T. select_sndr(update_sndg(r,t)) =7 t

For a record type witlm fields, we need? such axioms.
If we choose to treat the record constructor as primitive @odhte operators as derived,
an alternative axiom set is
Vs : SVt : T. select_fstr(mk_recordr(fst :=S,snd :=t)) =5 S

Vs: S Wt : T.select_sndr(mk_recordr(fst :==S,snd :=t)) =7 t

For a record type withn fields, we needh such axioms. While this approach yields fewer
axioms, it is not clear which approach might give best prgesformance.

19

There are two equivalent ways of axiomatising record exteradity. The first
Vr i R VI’ 1 R select_fstr(r) =gselect_fstr(r’) A select_sndr(r) =t select_sndr(r’) =r =g 1’
only makes use of the select operators. The second
Vr : R mk_recordr(fst := select_fstr(r), snd := select_sndr(r)) =r r

relies on constructors not being eliminated. We implemeit lapproaches. As with arrays,
we have the option of introducing a defined relation for eyait record types in order

to make the first style of extensionality axiom easier todnsate. We suspect the that
most provers can make little use of the second axiom, unkessresort to instantiating

universally quantified hypotheses with any terms of the exirtype, which can be very

costly.

9 Separation of Formulas and Terms

The FoL language does not make the traditional first-order-loggtiniction between for-
mulas and terms: formulas inDE are terms of Boolean type. While some provers do not
make this distinction, some do, and so we implement a traoslatep that introduces it.

The translation is essentially in two phases

1. Resolve each occurrence of a logical connective, quantioolean-valued function, or
Boolean constant to either a formula or a term level version.

2. Add appropriate coercions between terms with Booleae gud formulas in order to
ensure well-formedness.

The scope for what resolutions are available depends ondéeeions used. We define a
coercionb2p from the Boolean typ®ool to propositions (formulas) as

b2p(X) = X =pool truep
and a coerciop2b the other way as

p2b(p) = ITEgool(p,truep,falsep)

Here,ITET(p,X,Y) (if-then-els¢ is equal to the ternt of type T when the formulgp is true
and is equal to the termof type T when the formulg is false, andrue, andfalse;, are the
Bool-typed constants for truth and falsity. Some provers angeréormats support aimE
construct, others do not. Even if it is not supported, it careliminated using, for example,
the identity

PITET(p.e1,&2)] & (PA@E])V (=pAglel])

whereg[-] is an atomic formula with a sub-term.’

We describe below how we carry out the resolutions if hixi is available and if both
are available.

We now describe each of the phases in some more detail.

20

9.1 Resolution into formulas and terms

Our implementation by default adopts two basic heuristics:

1. Use formula versions when possible, arguing that thishotg enable provers to run
more efficiently as they have special built-in support fanfala-level reasoning.

2. Avoid if possible introducing two versions, because tumplicates and slows provers
reasoning.

Let us distinguish betweefiormula contextandterm contextsA contextis a term with a
hole. A formula context is built from just formula constracs (propositional logic connnec-
tives and predicate logic quantifiers). A term context is ather.

Resolution of each kind of construct is as follows by default

— logical connectives(A, Vv, —, <, =) andlogical constants(true, false): If the con-
nective or constant is in a term context apb is not available, use a term version.
Otherwise use a formula version. We Ussuffixes to distinguish term versions of these
connectives and constants from the formula versions. Forele, we writeny, for the
term-level version of\.

— quantifiers (v, 3): No provers requiring term/formula separation suppormtéevel
quantifiers, so we always use formula versions.

— Bool-valued functions and Bool-valued uninterpreted constants If there is at least
one occurrence of the function or constant at the individessl, use a term level func-
tion or constant for all occurrences. Otherwise use a mlatir propositional variable
for all occurrences.

One exception is with relations for which provers have builsupport: equality and
order relations on integers. In this case, a term versiors&dwnly when essential,
when the occurrence is in a term context gi2d is not available. We expect to have
both term-level and formula-level versions of these relatiafter translation.

Another exception is with array and record select operatohen the array happens to
have aBool element type or the record field select function is f@wml-valued field. In
this case, we always use a term-level function to ensurénties# of array and record
operator typing is always uniform.

9.2 Insertion of coercions between formulas and terms

We insert ab2p coercion whenever Bool-typed term is at a position where a formula is
expected, and we insertp2b coercion whenever a formula is at a position wheigoal-
typed term is expected.

9.3 Options

It is not clear if the resolution heuristics described abskeuld alway be applied, and we
have options to enable other heuristics, such as alwaysrgesin-level versions or always
prefer formula level versions, whenever possible.

We also implement an option to initially convert equalit®@®r terms of typeBool into
if-and-only-if formulas. This is in line with the heuristio maximise the amount of structure
resolved to the formula level.

21

10 Finite Type Elimination by Type Refinement

We consider here a translation for eliminating finite typies,example, for replacing the
Boolean typeBool and an integer subrange type.. 9} with the integer typént, and a type

Array({0..9},Record(fst : {0..9}, snd : Bool))

with the type
Array(Int,Record(fst : Int, snd : Int))

These type changes are accompanied by changes to formdléseaaddition of axioms, in
order to ensure the validity of each goal in a VC unit is undegh We call this translation a
type refinemertranslation, as the translations of each type are are sitithe data-type re-
finements considered in the program refinement literatueefikst give a simplified account
of the translation, and later discuss more aspects of howadhslation is implemented.

The translation works simultaneously on all types in a VQ.Ufor each named typE,
we introduce

— atypeT ™, thebase typdor T
— aunary relatiorer on T, themembership predicatier T,
— abinary relation=r on T, theequivalence relatiofior T.

Usually applications of=t are infix, so we writex =7 y rather than=t (x,y). The intent
is that=r is an equivalence relation when restricted{to: T*| 1 (x)} , and there is a
1-1 correspondence between the equivalence classes ofstricted to{x : T*| et (x)}
and the elements of T. We place no requirementssgnwhen either argument does not
satisfyer. We say a membership predicate is trivial if €1 (x) is true for allx. We say an
equivalence relatior:t is trivial if =1 (x,y) is the same as= y for all x,y.

In our implementation, we have a new type declaration or difinfor T+ and new
relations forct and=t. Sometimes we have intended interpretationsTfor €t and=r.
Other timesT ™ might be a defined type, and we introduce axioms charaatgrisi and
=T.

10.1 Translation of theory elements

— Type constant declarationC : Type.
Replace by type constant declaraton : Type.
If Cis uninterpreted, we declare that is trivial, and allow the option of declaring that
€c trivial. See Section 14 for discussion of when this optiongeful.
If C has an intended interpretation, there might be type-spegifidifications to the
declaration or the interpretation. Currently, there argasl modifications for th@ool.
See Section 11. For the other interpreted type constantsReal), there are no changes.
— Type constant definitionC: Type = T.
The expected cases forare
— Array type
— Record type
— Integer subrange type
— Type constant

22

Enumerated types are not expected. For the first 3 casesheemppropriate section
below for changes to the definition and other theory elemdfisT a type constant,
replace the definition with type constant definition

ct=T*"

and add axioms
iTH ec(x) & et (X)

VXY :Tt.X=cy & x=t1YVY

Refinement of array and record types is not strictly necgskarthe SWT-LiB and
Simplify translation targets: these types can be elimuhdtefore type refinement. We
consider their refinement, as the1$ provers might be more efficient with elimination
of these types after refinement. We are also looking forwatdanslating for Z3's native
language and the Higher-Order-Logic languages of popuotaractive theorem provers.
All these languages have support for arrays and recordsyditgub-types.

Constant declarationc : T

Replace by constant declaration T+. If c is uninterpreted, add a subtyping axiom
et (c). If cis interpreted before refinement, a new interpretation s¢etbe specified.
Function declaration f : (S)T.

Replace by function declaratioh: (S")T™.

If the function is uninterpreted, add a subtyping axiom affignetionality axiom

VxSt es(x) = er (f(X)
X,y 1 St es(X) A €s(y) A x=sy = f(X) =t f(y)

An alternative to the above subtyping axiom is the strong@ma
vx: St.oer (f(x))

where thecs precondition is omitted. A model will still exist, providinwe are careful
in ensuring that all axioms constrainirfgare translated properly so they provide no
constraints on values dfon arguments not satisfyings. Using stronger axioms of this
kind should result in better prover performance, since s is required in producing
useful instantiations of them.

Itis generally not consistent to omit thg; preconditions in the functionality axiom.

If the function f is interpreted before refinement, a new interpretation s¢ete spec-
ified.

The generalisation fam-ary functions is straightforward.

Relation declarationr : (T).

Replace by relation declaration: (T™). If the relationr is uninterpreted, add a func-
tionality axiom

X,y : St €s(X) A €s(Y) A X=sYy = 1(X) < r(y)

If r is interpreted before refinement, a new interpretatiomatieds is needed.
The generalisation fan-ary relations is straightforward.

Formulas.

Formulavx : T. P(x) becomes/x : T*. €1 (x) = P(X).

Formuladx : T. P(x) becomesix : T*. &1 (X) A P(X).

Formulas =1t becomes =t t.

All other formulas are unchanged.

23

This translation of quantifiers is commonly referred torelstivisation It is used, for
example, in the translation from many-sorted to singléezbfirst-order logic.
If we are in strict first-order logic, we introduce both tetevel and formula-level ver-
sions ofs=r t, corresponding to the term and formula level versionsef t.

— Intended interpretations
The changes required are described in following sections.

In many cases, whear (x) is always true and whexn=t y is simplyx =1~ y, the added
axioms simplify, sometimes to the extent that they becomwmlagies and are unnecessary.

10.2 Translation of Array Types
We consider here translating a one dimensional array wiih tefinition
A:Type = Array(ST)

The generalisation to multi-dimensional arrays is strdaiwvard.

The translation of the index tyggand element typ& induces a translation of the array
type A. We consider that refinement of the element tfpmay introduce a non-trivial base
type T™, a non-trivial membership predicater and a non-trivial equivalence relatiany,
and refinement of the index tyf@may introduce a non-trivial base ty@ and a non-trivial
membership predicates. However, we assume thags is trivial. We need to do this to keep
updateoperators straightforwardly defined in possible latergtation stages that introduce
axiomatic characterisations of these operators. Thiséasanable assumption as e&cls
normally the integers, some subrange of the integers, onamerated type. If ever there
was some reason for wanting to relax this assumption, it dvoot be difficult to do so.

The refinement introduces a new array type definition

A" Type = Array(S",T™)

The functions and constants associated with afacquire new type declarations, as
described above.

defaultp : A"

constp @ (TH)AT

selectp @ (AT, SHTT
updatep @ (AT, ST THAT

After the translationdefaultp and consta remain uninterpreted, anglectp and updatep
now have interpretations as the select and update opefatdhe typeArray(S", T+). Also
as described above, the axiom fmsta is suitably relativised and new functionality and
subtyping axioms are introduced féxfaulta andconsta.

Now let us consider how to suitably defirmg, and=a, and, if needed, add axioms,
so that the use of the refined array type is essentially isphiorto the orginal type. We
ensure that new arrays store elements satisfyngat indices satisfyinges. We consider
two options for what happens at indices not satisfyirg either require that some default
element ofet always be stored, or place no constraints. How the traosisitare tailored
for each of these cases is as follows.

24

— Qut-of-bounds elements constrained
We use the definitions

ea(@ =Vs:S'. (es(s) = er (selecta(a,s)))
A (m E€s(S) = selecta(a,s) =t any_element,)
=a(a,d) =Vs: S". selecta(a,s) =t selecta(d,9)
whereany_element has declaration

any_element, @ TT

and no constraining axioms. In the event that is trivial, the definition of=p (a,&)
amounts to extensional array equality and so we can useathste

=a(a,d) = a=pr &

— Qut-of-bounds elements unconstrained
We use the definitions

ea(a) =Vs: S es(s) = &7 (selecta(a,s))
=a(a,@) =Vs: S'. €s5(s) = selecta(a,s) =t selecta(@,s)

10.3 Translation of Record Types
For simplicity we consider refining only two field records.
R: Type = Record(fst: S snd: T)

The generalisation to records with other numbers of fieldsraghtforward.
We have that

R* = Record(fst : St, snd : TT)
er(r) = eg(selectfst(r)) A et (select_snd(r))
=g (1,1I') = select_fst(r) =g select_fst(r’) Aselect_snd(r) =t select_snd(r’)

10.4 Relaxing integer subrange types to littetype
We refine an integer subrange constant definition

S: Type = {j,...,k} ,
wherej <k, using the definitions

St = Int
€s(x) =j<xAx<k

=s(X,y) = X=int Yy

25

10.5 Relaxing the Boolean type to the integer type

We implement two alternative translations that igeas a base type:
Bool™ = Int

The translations apply if initially th8ool type has an interpretation as some two element
type containing distinct interpretations of the constanis;, andfalsep, and the logical op-
erators all have their usual interpretations on this type.

With both alternatives, we interpretuey, as 1 andalsey, as 0, and require new interpre-
tations for the Boolean logical operators and Booleanea@ltelations that treat 1 as true
and all other integers as false, and that only have valueslO or

10.5.1 Booleans as subtype of integers
We consider th®ool type as a 2 element subset of the integer type. We use thetibefini

€Bool (X) =X=t OV X=t 1 (OI’OSXS 1)
X=Bool Y = X=Int ¥

wherex,y are of typelnt.

10.5.2 Booleans as quotient of integers

We consider th&ool type as being derived from two equivalence classes of indeggro-
duce

EBool (X) = True
X =Bool Y = b2p(X) < b2p(y)

10.6 Implementation details

— We do not invent new type names for the base typesinstead we just reuse the name
T.

— We track the trivialness of the membership predicateand equivalence relatiosr
for each typeT, and use this information to simplify and sometimes elirtérthe new
axioms introduced by the translation. For example, fumatity axioms for functions
are unneeded when the equivalence relations for all thexeggtitypes are trivial.

11 Boolean Type Elimination

We consider here eliminating the Boolean type and assaktiaterpreted constants, func-
tions and relations. We allow for the interpretation of theokan typeBool initially being
the integers as well as some two element domain.

26

11.1 Eliminating Boolean-valued functions and relations
We introduce the axioms

Vp : Bool. b2p(—pp) < —b2p(p)

Vp,q : Bool. b2p(pApQ) < b2p(p) Ab2p(q)
¥p,q : Bool. b2p(pVpa) < b2p(p)V b2p(q)
Vp,q @ Bool. b2p(pp) < b2p(p) < b2p(q)
VXY : T. b2p(term_eqr(X,y)) & X=T1Y

WX,y : TT. b2p(term_equivt (X,y)) & X=t1Y
Vi,] @ Int. b2p(term et (i,) < 1< j

VX : T.b2p(termr (X)) < r(X)

and remove the requirements that the functions and rekatiame intended interpretations.

Hereterm_eqt is the term-level version of formula-level equalityr, term_equivt is the

term-level version of the equivalence relatier introduced by type refinemertgrm_ley,,

is the term-level version ok over the integers, anekrm_r is the term-level version of

uninterpreted relation. These axioms are consistent with the initial explicit iptetations

of the functions, whetheBool is interpreted as the integers or some two element domain.
We introduce these axioms after type refinement rather tledord, as this avoids the

introduction of relativisation preconditions that mighdws provers. For example, if we were

to introduce the axiom fon, before type refinement and we requested refinement to refine

the typeBool to be a subtype of the integers, the axiom after refinementdime

Vp,q : Bool. €gool (P)A €Bool (@) = b2p(PAbd) < b2p(p) Ab2p(Q)

Also, if we eliminated the Boolean propositional logic ogiers before refinement, we
would also get refinement adding extra unnecessary sulghygpimms such as

Vp,q : Bool. €gool (PALQ)

or
Vp,q : Bool. €gool (P)A €EBool (@) = E€Bool (PALQ)

depending on whether generation of strong subtyping axivasschosen or not.

11.2 Eliminating coercions between formulas and terms

We substitute out occurrences of thep coercion from term-level Booleans to formulas
and thep2b coercion from formulas to term-level Booleans using thentdies mentioned
earlier:

b2p(X) = X =gool truep

p2b(p) = ITEgool(P, truep, falsey,)

27

11.3 Eliminating the Boolean type and constants

We implement two alternatives for when we remove intendéghpmetations of the Boolean
type Bool and the logical constantsue, andfalsey,.
If the Boolean typeBool has interpretation as the integers, we change the typerdecla
tion of Bool to a type definition
Bool : Type = Int

and add axioms
falsep =0t O

truep =|nt 1

If Bool is interpreted as some abstract two element type, we kegpesleclaration
Bool : Type

and add axioms
VP : Bool. p=pgool truep Vp P =Bool falsep

truep, # falsey,

The first axiom could be hard for automatic provers to useiefiity, so this may not be a
desirable option.

12 Arithmetic Simplification

We use various simplifications to turn arithmetic expressithat are semantically linear
into expressions that are obviously syntactically lin€ar. example, we

— eliminate constantsif there is some hypothesis that= k wherek is an integer literal,

— normalise arithmetic expressions involving multiplicetiand integer division by con-
stants.

— evaluate ground arithmetic expressions involving multgtion, exponentiation by non-
negative integers, integer division and the modulus famcti

Examples of the normalisation are replacifgx €) x (k' x €) with (kx k') x (ex €) and
replacing(k x e) div k' with (k div k') x ewhenk’ dividesk.

We also allow exponentiation by non-negative integers texygnded away, for when
solvers can handle non-linear arithmetic, but not expaagab.

13 Elimination of Arithmetic Types and Operators

Options we support include

— Replace natural number literals above some threshulith a new uninterpreted con-
stantsn; ...ng and add axioms$ < n; < ny... < ng asserting how these constants are
ordered.
This is an attempt to avoid arithmetic overflow in provershsas Simplify that use fixed
precision rather than bignum arithmetic. This approachsisduwith ESc/Java when it
uses the Simplify solver [12].

— Replace all integer and real multiplications that are nati@mlsly syntactically linear
by new uninterpreted functions. This forces non-lineathanetic expressions to look
linear, as required by several solvers.

28

— Make exponentiation of integer and real expressions bynmegative integers uninter-
preted.

— Make integer division and the modulus function uninterpdetAdd characterising ax-
ioms such as:

VX,y:Int. 0<y = 0<Xmody

VX,Y:Int. 0 <y = Xmody<y

VX Y:ilnt. 0< XA 0<y = yx (Xdivy) < X
YXY:iInt. 0<X A O<y = X—y < yx (Xdivy)
VX Y:ilnt. X<O0 A 0<y = X < yx(xdivy)
VX Y:Int. X<O0 A O<y = yx (Xdivy) < X+Vy

— Make real division uninterpreted.

— Make the real type and all functions involving reals unipteted.

— Make uninterpreted functions over integers expressirecedf bit-wise operations. Add
characterising axioms for these such as:

0<x A 0<y = 0<bitor(X,Yy)

VX y:Int. 0< X A 0<y = x<bitor(X,y)
VX, y:Int. 0<Xx A 0<y = y<bit_or(X,y)
VX y:lnt. 0<X A 0<y = bitor(Xy) < X+Vy

14 Uninterpreted Type and Defined Type Elimination

The prover Simplify does not support uninterpreted typeabtsipe definitions. Essentially it
assumes that all functions and relations are on the singl®kimtegers.

As observed by Bouillaguet et al. [6], if it is consistent fdt uninterpreted types to
have interpretations with the same cardinality, then itas mecessary to use a many-to-
single sort relativisation translation where a predicateefined carving out each of the
many sorts from a single sorted universe. Instead, it isister® to drop these predicates
and give all uninterpreted types the same interpretation.

We have not established that every uninterpreted typerikrR® VC units is free from
any axiomatic constraints that rule out the integers as ailplesmodel. There might be
constraints that only allow finite models of some unintetgietype. Types with natural
models with larger cardinality than the integers (e.g. tl type) are not an issue, as the
Downward Ldwenheim-Skolem theorem guarantees in thesescthat a countable model
also exists. We therefore refine every uninterpreted typeguen uninterpreted membership
predicate function (see Section 10.1) in order to ensureyewrinterpreted type can be
modelled by the integers.

We allow type definitions to be eliminated by expanding thiénitéons.

15 Case Study SPARK Programs

For our experiments we work with three readily availableragkes.

29

— Autopilot: the largest case study distributed with thea8&k book [3]. It is for an au-
topilot control system for controlling the altitude and Hewy of an aircraft.

— Simulator: a missile guidance system simulator written by Adrian ¢tilas part of his
PhD project. It is freely available on the webnder the GNU General Public Licence.

— Tokeneer the Tokeneer ID Station is a biometric software system fanaging access
to a secure area [4]. This case study was commissioned by $hiafional Security
Administration in order to evaluate Praxis’s ‘Correct byrStruction’ SPARK-based
high-integrity software development methodology. All thaterials from this case study
were made publically available on the web late 2608

Some brief statistics on each of these examples and thespomding verification conditions
are given in Table 2.

Table 2 Statistics on Case Studies

| Autopilot | Simulator | Tokeneer

Lines of code 1075 19259 30441
No. funcs & procs 17 330 286
No. annotations 17 37 194
No. VC goals 133 1806 1880

The lines-of-code estimates are rather generous, beinglysittne sum of the number
of lines in the Ada specification and body files for each exampheannotationscount
is the number of BARK precondition, postcondition and assertion annotationallitthe
Ada specification and body files. In the Autopilot and Simordaxamples, almost all the
annotations were assertions. In the Tokeneer example tiere roughly equal number of
the three kinds. The VC goal counts are for the goals outpuhbyExaminer, excluding
those goals the Examiner proves internally. The Examineviges no information about
these goals other than that it discharged them, so thetdésdoint in us considering them.

In all cases, most of the VCs are from exception freedom chawerted by the Ex-
aminer tool. The VCs from all examples involve enumeratgzbsy linear and non-linear
integer arithmetic, integer division and uninterpreteddiions. In addition, the Simulator
and Tokeneer examples includes VCs with records, arraystemchodulo operator.

16 Experimental Conditions

The provers tools we linked our interface tool to were:

— Cvc32.2,

— Yices 1.0.24,
- 732.3.1,

— Simplify 1.5.4.

We compared our results against those obtained with thedPaatomatic prover/simplifier
from the 8.1.1 GPL release of Praxis’s&RK toolkit. All experiments used a 2.67GHz Intel
Xeon X5550 4 core processor with 50GB of physical memory amahing Scientific Linux
5.

6 http://www.suslik.org/Simulator/index.html
7 http://www.adacore.com/tokeneer

30

As distributed, all the Tokeneer VCs are described as tharigh not all are necessarily
directly machine provable. The distributed VC goals falbi categories:

— (94.1%) those proved using Simplifier, Praxis’s automataer,
— (2.3%) those proved using Checker, Praxis’s interactiogm, and
— (3.6%) those deemed true by inspection.

The interactive proofs drew on auxiliary rule files that indéd definitions of specification
functions used in the B\RK program annotations. Whenever some of the VCs of a program
unit were proved using the Checker tool and the Checker mge®fuan auxiliary rule file,
we also read in that rule file when attempting proof of VCs at tmit. For a fair comparison,
we report in our results section below on the Praxis autanpaiver's performance running
with these auxiliary rule files. It seems the Tokeneer deyai® never tried this, perhaps
because the earlier version of the automatic prover theg disenot have this option.

We report here on experiments with 6 choices offSsolver and interface mode.

— CvC3/API

— Yices/API. Here we let Yices reject individual hypotheses and conehssthat it deems
non-linear. It does accept universally quantified hypatsesith non-linear multiplica-
tions, and does find useful linear instantiations of thegmtheses.

— Cvc3d/svT-LiB file interface, using the AUFNIRA $T-L1B sub-logic.

— Yices/3uT-L B file interface, using the AUFLIA S4T-L 1B sub-logic. Here we needed
to abstract all non-linear multiplications, including g®in quantified hypotheses, in
order to conform to the AUFLIA requirements.

— Z3/sSwvT-L 1B file interface, using the AUFNIRA ™ T-L 1B sub-logic.

— Simplify/Simplify file interface

Unless otherwise stated, all solvers were run with a 1 setiorebut, except for Yices with
the APl interface, since the Yices API we use provides notfanality for setting timeouts.
We refer to each of these setups of a prover with some interfaade as gest configuration
For convenience we also refer to running the Praxis provertast configuration.

17 Experimental Results

In this section we report our observations of the coveradained with each test configu-
ration and of the distribution of solver run-times on thefefiént problems. In Section 18
we give an analysis of these observations, and show examp\éSs that illustrate differ-
ences between solvers. Section 18 also includes remarksuodisess and robustness issues
encountered in the experiments.

Table 3 Coverage of VC goals (%)

Prover Cvc3 Yices Gvc3 Yices Z3 Simplify | Praxis
Interface API APl SmT-LIB SMT-LIB SMT-LIB file

Autopilot 96.2 95.5 96.2 91.7 98.5 96.2 97.0
Simulator 94.6 94.0 94.5 93.6 95.5 93.p 955
Tokeneer 96.6 97.0 95.3 95.7 97.0 86.4 95.0

The coverage obtained with each test configuration is sumsathin Table 3. The table
shows the percentage of VC goals from each case study thaianeed true with each
configuration.

31

Some of the Simplify runs halted on Simplify failing an imet runtime assertion check.
This happened on 2.3% of the Simulator goals, and 0.5% ofdkerleer goals.

Table 4 Average run time per goal (msec)

Prover Cvc3 Yices (6V/ex] Yices Z3 Simplify | Praxis
Interface API APl SmT-LiIB S™MT-LiB SwmT-LIB file

Autopilot | 111 (100) 18 (7) 91 (73) 32 (15) 42 (25) 34(17) 16
Simulator | 190 (173) 25(8) 171 (146) 51 (26) 74 (50) 69 (44) 33
Tokeneer | 358 (322) 53(18) 251 (206) 85 (40) 83(38) 415(370) 50

Table 4 shows the total run time for each test configuratioreach case study. The
unparenthesised times are normalised by being divideddgumber of goals in each case.
The parenthesised numbers are normalised estimates afrteespent in the actual prover
code rather than the & tool's code. In the case of Yices with the API interface, it is
estimated that, if there had been support to enforce a 1 ddgopout, the Tokeneer times
would have been 7sec shorter and there would have been ngeharthe Autopilot and
Simulator times.

Table 5 Run time distribution for Tokeneer case study goals (sec)

Prover Cvc3 Yices Gvc3 Yices Z3 Simplify
Interface API APl SmT-LIB SMT-LIB SMT-LIB file
30% 0.11 0.02 0.04 0.03 0.02 0.05
50% 0.25 0.03 0.06 0.03 0.03 0.28
70% 0.48 0.04 019 0.04 0.04 0.58
90% 0.66 0.05 0.71 0.05 0.06 1.01
95% 0.73 0.06 1.00 0.06 0.07 1.10
98% 0.81 0.07 >20.00 0.11 0.10 >20
99% 5.49 0.16 >20.00 4.05 >20.00 >20

Table 6 Run time distribution for Tokeneer case study goals (sedy(proven goals)

Prover Cvc3 Yices [eV/ek] Yices Z3 Simplify

Interface API APl SmMT-LIB SMT-LIB SMT-LIB file

30% 0.11 0.02 0.04 0.02 0.02 0.04
50% 0.25 0.03 0.05 0.03 0.03 0.29
70% 0.47 0.04 0.15 0.04 0.04 0.56
90% 0.65 0.05 0.62 0.05 0.05 0.98
95% 0.70 0.05 0.79 0.05 0.07 1.04
98% 0.76 0.07 0.99 0.06 0.08 1.13
99% 0.78 0.08 1.13 0.07 0.09 1.42
100% 0.85 0.27 12.34 0.26 0.82 12.65

The average run times for the provers are often heavily séewelong run times for
relatively few of the goals, especially as it is common foovars to time out rather than
terminate on goals they cannot prove. To give an indicatiomoa/ run times on goals are
distributed, we sorted the run times in each case, and shdahile 5 these goal run times at
a few percentiles. For example, the 50% line in the tablegyile median run times. We ran
the tests for this data with a timeout of 20sec rather 1semprave the quality of the data

32

on slower goals. Itis also interesting to look at the disttifin of run-times for just the goals
that each prover is able to prove. This makes it easy to sedihwwout thresholds affect the
coverage. This data is shown in Table 6. The entry for somectegiguration on the 50%
row shows that 50% of the final coverage for a 20sec timeout thiat configuration was
obtained with run-times of the indicated value or less.

Numbers are not given for the Praxis’s prover in these taldssts log files do not
provide a breakdown of its run time on individual goals.

18 Discussion of Results

18.1 Coverage

We discuss in this section the coverage results summarisibie 3 in the previous section,
considering each case study in turn.

Autopilot

The goals in this case study are all thought to be true, adégeid, with a timeout of of 10
seconds rather than 1 second, Z3 reports them all to be true.

The goals that failed to be proved under one or more test amafiign all involved
bounding properties of arithmetic formulas that includeteger division or the modulo
operator. For example, the goal

H1i: j>o0.
H2: j <= 100 .
H3: k>0 .
H4: j<=k.
H5: m <= 45 .
H6: m >0 .

->
Ci: (m * j) div k <= 45 .

was not provable in any of the test configurations, thougha gith the same hypotheses
and the similar conclusion

Cl: (m * j) div k >= -45 .

was proved with the Praxis and Z3 configurations. These amer goals presented in this
section are all abstracted and simplified to show the esgettiticture; common subexpres-
sions are abstracted to variables, irrelevant hypotheséscanclusions are removed, and
constants with literal values are often substituted out.

A slightly harder example of a bounds theorem that cannobhed just by considering
how the bounds on each argument to the division operatottafie bounds of its value is:

Hi: f>0.
H2: f <= 100 .
H3: v >0 .
H4: v <= 100 .
->
C1: (100 * f) div (f + v) <= 100 .

This was proved in the Z3 configuration and also in thecG-API configuration if we
raised the timeout to 20sec.

33

The coverage with Yices/API was lower because Yices/ARdateld most hypotheses
and conclusions with non-linear multiplication, whereaslinear multiplication was ac-
cepted in all other configurations except YicesSLi8. Usefully, Yices via its APl accepted
non-linear multiplication within universally quantified/potheses, and permitted linear in-
stantiations of these hypotheses. For example, in proving

Hi: f >= -1000 .
H2: f <= 1000 .
H3: t >= -1000 .
H4: t <= 1000 .
->
C1: (t - £) div 12 >= -180 .

for the case wheh— f is non negative, Yices can instantiate the hypothesis
VX Y:Iint. 0<X A 0O<y = X—y<yx (xdivy)
to derive the new linear hypothesis that
t—f—12<12x ((t— f)divl2)

from which the conclusion
(t— f)divi2> —180

follows. Unfortunately, should Yices find a non-linear estiation, it currently immediately
terminates rather than ignoring the instantiation.

One reason for the lower coverage with Yiceg/SL B is that then, with linearity re-
quired everywhere, the non-linear multiplication in qufied hypothesis such as above is
abstracted to an uninterpreted function. This makes sugipethesis much less useful.

Cvc3, Z3 and Simplify all accept non-linear multiplicationseeywhere in their input
formulas.

Simulator

While the VC goals here were richer than with the Autopiloseatudy in that they also
involved array and record expressions, the goals on whiokeps gave different results
again all involved arithmetic beyond linear arithmeticr Erample, Z3 and the Praxis prover
both proved the goal

Hi: s >0 .
H2: s <= 971 .
->
Cl: 43 + s * (37 + s *x (19 + 8)) >= 0 .
C2: 43 + s * (37 + s * (19 + s)) <= 214783647 .
and the goal
Hi: m = 971 .
H2 k0 =0 .
H3: k1 =2732 -1

C1i: el mod m * (e2 mod m) mod m >= kO .
C2: el mod m * (e2 mod m) mod m <= k1 .

The rounding of the coverage figures for Z3 and the Praxisegrbides the fact that the
Praxis prover discharages 1 more goal. This in essence is:

34

Hi: p>1.
H2: p <= 1000 .
H3: d >0
H4: d <= 92
H5: r >0 .
H6: r <= 100 .
->
C1: (942 + d * (d * d) div 2000) * r div 100 * p div 2 >= -1000000 .
C2: (942 + d * (d * d) div 2000) * r div 100 * p div 2 <= 1000000 .

To read the conclusions, note thaand integer divisiorliv have the same precedence and
are left associative. The conclusions follow by intervalhemetic and bounding properties
of div: one can compute that the left-hand-side expression indghelgsion is in the range
0...665672.

The remaining 3% of unproved goals are all false as far as weatla The author of the
Simulator case study code had neither the time nor the needstare that all goals for all
sub-programs were true.

Coverage is obviously sensitive to how timeout values arérsgease the timeout value
and often coverage increases too. However, there usuallyimseout value beyond which
no further coverage is obtained. For example, with Z3 themroiincrease in coverage with
a timeout of 20sec rather than 1sec, and botc&API and G/c3/SmT-LiBconverge on
proving the same 94.6% of goals at a 20sec timeout.

Tokeneer

The best coverage was obtained with the Yices/AP| and Z3garafiions. They succeeded
in proving all 94.1% of goals originally proven by the Pragi®ver, all 2.3% of goals that
were originally proven by the interactive Checker tool, adlas 0.6% of the 3.6% proven
by manual review. We have inspected the goals unproven tBs¥d>l and Z3, and in every
case it seems there are missing hypotheses, making thelseagadtiated false. Many of the
goals are missing hypotheses characterising specifichtiarions.

Praxis’s automatic prover was able to use the rules orilyinatroduced for the inter-
active prover to increase its coverage by 0.9%. All thesdsgoaewly proved were goals
originally proved using the interactive prover.

The goals that Yices and Z3 prove and Praxis’s automatiogpmonsses appear to mostly
involve straightforward linear arithmetic and Boolean seaing. The issue here is that
Praxis’s prover does not implement decision proceduredirfear arithmetic and Boolean
reasoning, rather it uses a set of finely-tuned heuristicqutares.

One slightly more interesting example of such a goal is

H2
H3
->
C1: f - (p-1) % 100 >= 101

=g

< (f - 1) div 100 + 1
<= f

The drop in Simplify’s coverage compared to that of Z3 is dua tombination of a low
timeout, Simplify halting on assertion failure, and theampleteness introduced by making
large constants symbolic. With a timeout of 20sec rathen thsec, Simplify’s coverage
increased from 86.4% to 94%. See Section 18.3 for more digmusf the latter 2 issues.

35

18.2 Run times

Average run times are shown in Table 4 and the distributiorunfimes for the Tokeneer
case study is shown in Tables 5 and 6. We make here some gmmaraks on these results.

It is important not to read too much into the numbersTSsolvers have many op-
tions for selecting alternative heuristics, problem tfanmsations and resource limits, all of
which can significantly affect performance. The numberg lzee for the default settings of
the solvers, which in some cases (e.g. Z3) involve the s@utsmatically choosing some
parameter settings based on the input problem. We have teot@ted to tune option set-
tings for the $ARK VCs. In very preliminary investigations, we have found isg#o get
factor of two changes in run times. Also, we have made no gitesm far to optimise our
tool to reduce the often significant contribution it makesh® overall run times.

Looking at the run-time distributions, W&3/API is an order of magnitude slower than
Yices/API, Yices/™T-LiB or Z3at most percentiles.

The Cvc3/SmT-LIB configuration is significantly faster than thes€3/API configura-
tion at lower percentiles, but slower at the highest. Thisasdoubt at least partly due to
the different nature of the translations in the two cases.ekample, with the API transla-
tion, Cvc3 can bring to bear specialised handling for the differepetyin goals. With the
SMT-L1B translation, there are many more quantified axioms intreduo characterise the
different types, and €c3 has to fall back on its default heuristics for instantigtihese
axioms. This might account for the better performance ah ligrcentiles with the API
translation.

Yices/API and Yices/8T-LIB run time distributions are similar, except at the highest
run times, maybe again because, with the API, each type cgivée individualised treat-
ment.

The performance of Simplify is impressive, especially gives age (the version used
dates from 2002) and that it does not employ the cose &lgorithms used in the N&T
solvers. Part of this performance edge must be due to the fuBred-precision integer
arithmetic rather than some multi-precision arithmetickze such agmpwhich is used
by Yices and @c3. We are not sure of why there is a slip in the comparative dpée
Simplify on the Tokeneer case study. Perhaps it is relateédediigher number of explicit
assertions in the Tokeneer code that then results in morpleanvCs.

Also too, we observe that Praxis’s prover has run times coatya to the best observed
with any of the other configurations.

We have carried some preliminary experiments to see whedtsfthe translation options
have on #1T-L1B and Simplify run times. So far we see at best relatively siciadinges in
the overall run times. For example, if we use the construstbect rather than the update-
select axiomatisation of records, Z3 runs about 10% falsterthere is little change Yices'’s
run time.

18.3 Soundness

The use of fixed-precision 32-bit arithmetic by Simplify titttle or no overflow checking
is rather alarming from a soundness point of view. For exam®implify will claim

(IMPLIES
(EQ x 2000000000)
(EQ (+ x x) (- 294967296)))

to be valid.

36

As mentioned earlier, when Simplify was used wited&Java, an attempt was made to
soften the impact of this soundness problem by replacingi@ger constants with magni-
tude above a threshold by symbolic constants. When we tiisdpproach with a threshold
of 100,000, the value suggested in thedtava paper [12], several examples of false goal
slices from the Simulator example were asserted to be vali@implify. One such slice in
essence was

Hi: lo >=0 .
H2: lo <= 65535 .
H3: hi >= 0 .
H4: hi <= 65535 .
H5: 100000 < k200000
->
Ci: lo + hi * 65536 <= k200000 .

wherek200000 is the symbolic constant replacing the integes000. These particular goals
became unproven with a slightly lower threshold of 50,000.

One indicator of when overflow is happening is when Simplifprs because of the
failure of a run-time assertion left enabled in its code.tA# reported errors in the Simplify
runs are due to failure of an assertion checking that anéntiegut to a function is positive.
We guess this is due to silent arithmetic overflow. Of couasighmetic overflow can easily
result in a positive integer, so this check only catches soveeflows.

We investigated how low a threshold was needed for elinmigathe errors with the
Simulator VCs and found all errors did not go away until weuget the threshold to 500.

To get a handle on the impact of using a threshold on prowghilie reran the Yices/API
test on the Simulator example using various thresholdsh 000,000 the fraction of goals
proven by Yices dropped to 90.8%, with 500 to 90.4% and withd?89.6%. Since Yices
rejects any additional hypotheses or conclusions whiclmae non-linear by the introduc-
tion of symbolic versions of integer constants, these tesoticate that under 2% of the
Simulator goal slices involve linear arithmetic problemghamultiplication by constants
greater than 20.

18.4 Robustness

Over the course of developing our prover interface tool, weehworked with several ver-
sions of different provers, and have found some versionseto generating segmentation
faults or running into failed assertions. This was particiyl a problem when interfacing to
the prover through its API, because every fault would briogvd our iteration through the
goals of a case study. We resorted to a tedious process aflieggoals to be excluded
from runs in a special file, with a new entry manually addechts file after each observed
crash. Fortunately prover developers are generally respemo bug reports.

One incentive for running provers in a subprocess is that#fieng program is insulated
from crashes of the subprocess.

19 Current and future work

One aim of this work is to get thePBRK user community engaged with the latest state-of-
the-art provers for their VCs. To this end, we have releasgd/@ T tool to Praxis for beta

37

testing and evaluation on examples #fa&k code larger and richer than the public domain
examples we have used here. And we plan a public release tdasoon.

Another aim is to provide VC challenge problems to the autech@aeasoning research
community. We provided the Tokeneer VCs in tha1SLiB format to the 2009 8T com-
petition, and hope that members of thea&k user community will in future use our tool to
generate further benchmarks.

Next steps in the development of oucVtool include:

Extending coverage of thedt VC language, especially including support for the reals
which are currently used for modeling floating-point nunsodiany $SARK users make
much use of floating-point arithmetic.

Exploring how to provide proof explanations that are corhpresible by software engi-
neers and that could be used in proof review processes.

Figuring out how best to present VC counterexamplesrork users.

Adding an alternate front-end preprocessor for VC Units mae vanilla standardised
syntax, so the T tool could easily be used with VCs generated from other laggs.

We are also working in several directions to improve autéomabptions. These in-
clude building translations to the input languages of papinteractive theorem provers,
and exploring integrating a variety of existing techniqdi@sproving problems involving
non-linear arithmetic [16]. Some of this work is in conjuinct with the Z3 development
team who have made significant improvements to Z3's noratficapabilities [14].

20 Conclusions

We have demonstrated that state-of-the-art Solvers such as Yices, Z3 an&/€3 are well
able to discharge verification conditions arising frorA&k programs. These solvers are
able to prove nearly the same VCs as Praxis’s prover. Oueafigtarly 4000 VCs considered,
we found 42 proved by solvers and not Praxis’s prover: thégigighted incompletenesses
in the heuristic proof strategy employed by Praxis’s prowany involved simple linear
arithmetic and propositional reasoning, We also found oBalischarged by Praxis’s prover
and not any BIT solver involving non-linear interval arithmetic calcutais. We observed
average run-times for the fastest of the solvers of roughh2k that of Praxis’s prover.

In this article we have described the architecture of oamtbol for translating VCs into
input formats of 7 solvers and for driving those solvers. The translation lvee a num-
ber of steps such as eliminating array and record types,rtaidiieg data type refinements,
and separating formulas and terms. There are a number ansptsubtleties and interac-
tions of these steps. We have given a detailed presentdtibese steps as a guide to others
who wish to implement similar translations, and to encoardigcussion of improvements
to such translations.

References

1. CVC3: an automatic theorem prover for Satisfiability Mimd@Theories (SMT). Homepage attp:
//www.cs.nyu.edu/acsys/cvc3/

2. ESC/Java2: Extended Static Checker for Java version 2vel®mment coordinated by KindSoft-
ware at University College Dublin. Homepagehatp: //secure.ucd.ie/products/opensource/
ESCJava2/

3. Barnes, J.: High Integrity Software: The SPARK approacsefety and security. Addison Wesley (2003)

38

»

10.

11.
. Leino, K.R.M., Saxe, J., Flanagan, C., Kiniry, J., et Bhe logics and calculi of ESC/Java2, revision

13.

14.

15.

16.

17.

Barnes, J., Chapman, R., Johnson, R., Widmaier, J., GdopeEverett, B.: Engineering the Tokeneer
enclave protection software. In: Secure Software Engingetst International Symposium (ISSSE).
IEEE (2006)

. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# progmaing system: An overview. In: Post work-

shop proceedings of CASSIS: Construction and Analysis &,S#ecure and Interoperable Smart de-
vices,Lecture Notes in Computer Scieneel. 3362. Springer (2004)

. Bouillaguet, C., Kuncak, V., Wies, T., Zee, K., Rinard,: Msing first-order theorem provers in the

Jahob data structure verification system. In: Verificatidlodel Checking, and Abstract Interpretation
(VMCAI), Lecture Notes in Computer Scieneel. 4349, pp. 74—88. Springer (2007)

. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorawwvpr for proof checking. Journal of the ACM

52(3), 365-473 (2005)

. Dutertre, B., de Moura, L.: The Yices SMT solver (2006).olTpaper athttp://yices.csl.sri.

com/tool-paper.pdf

. Filliatre, J.C., Marchég, C.: The Why/Krakatoa/Cadugelatform for deductive program verification. In:

W. Damm, H. Hermanns (eds.) Computer Aided Verificationhl18ternational Conference, CAV 2007,
LNCS vol. 4590, pp. 173-177. Springer (2007)

Jackson, P.B., Ellis, B.J., Sharp, K.: Using SMT solvergerify high-integrity programs. In: J. Rushby,
N. Shankar (eds.) Automated Formal Methods, 2nd Workshdgyl A7, pp. 60-68. ACM (2007).

Preprint available d@ittp://fm.csl.sri.com/AFM0O7/afm07-preprint.pdf

Kleene, S.C.: Introduction to Meta-Mathematics. Néitiiland (1952)

2060. Tech. rep., University College Dublin (2008). Avhlefrom the documentation section of the
ESC/Java2 web pages.

de Moura, L., Bjgrner, N.: Z3: An efficient SMT solver. [fools and Algorithms for the Construction
and Analysis of Systems, TACASNCS vol. 4963, pp. 337-340. Springer (2008)

de Moura, L., Passmore, G.O.: Superfluous S-polynonialstrategy-independent Groebner bases.
In: 11th International Symposium on Symbolic and Numerig@ithms for Scientific Computing
(SYNASC 2009. IEEE Computer Society (2009)

Nelson, G., Oppen, D.C.: Simplification by cooperatiegision procedures. ACM Trans. on program-
ming Languages and Systeh@), 245-257 (1979)

Passmore, G.O., Jackson, P.B.: Combined decisioniteefor the existential theory of the reals.
In: 16th Symposuim on the Integration of Symbolic COmpotatMechanised Reasoning (Calculemus
2009),Lecture Notes in Computer Scieneel. 5625. Springer (2009)

Zhang, L., Malik, S.: The quest for efficient boolean Sability solvers. In: CAV: Computer Aided
Verification, Lecture Notes in Computer Scieneel. 2404, pp. 17-36. Springer (2002)

