
Evaluation of Students' Modeling and

Programming Skills

Birgit Demuth, Sebastian Götz, Harry Sneed, and Uwe Schmidt

Technische Universität Dresden
Faculty of Computer Science

Abstract. In winter semester 2012/13 we started an empirical study
evaluating modeling and programming skills in a software project course.
We acquired comprehensive data on both modeling and programming ac-
tivities by means of source code metrics and a survey focused on modeling
of 34 successfully completed software projects. In this study we divided
student teams by their basic skills and interest in object-oriented software
development into groups of project teams and compare survey results as
well as source code metrics and the derived team productivity for each
group. In the conducted statistical evaluation we detect signi�cant dif-
ferences between these groups. This conclusion basically �rms up Robert
France's hypothesis that expert modelers are also good programmers.

1 Introduction

In almost every computer science program students have to learn object-oriented
(OO) techniques in software development. Besides programming in an object-
oriented (OO) language such as Java, object-oriented modeling topics constitute
an important subject matter in teaching. The issue is how to integrate mod-
eling into a software engineering curricula as discussed at software engineering
education conferences. So Robert France stressed that modeling should be de-
veloped alongside programming [1]. His hypothesis is that expert modelers are
good programmers.

Our teaching approach in software engineering courses includes modeling
with UML and programming with Java. In a �rst introductory course we in-
troduce undergraduate students to OO analysis and OO design including using
selected design patterns as well as to OO programming including UML2Java
transformation based on small applications. In the subsequent project course
students have to implement a middlesize application in a work-sharing soft-
ware development process. Although the topics of the courses have basically not
changed over the years we experimented with di�erent didactic approaches in
the introductory course. The underlying issue is how should modeling and pro-
gramming intertwine to educate both modelers and programmers. The idea of
our UMLbyExample approach [2] is that we already visualize Java code by UML
class, object and sequence diagrams at the beginning while in parallel teaching
the OO basics in Java. We could show that merging of modeling and program-
ming yields better results both in modeling and programming. In this respect, we



2

real projects simulated projects

passed students 13 (externals) 12 (internals)

failed students not intended 9 (failed)
Table 1. Team classi�cation with number of teams per group of student teams and
used term for the group.

demonstrated the validity of Robert France's hypothesis. However, our observa-
tions only included small exercise applications. Our intuitive observations in the
following software project course con�rm the hypothesis that programmers with
good modeling skills produce better quality programs than those with weaker
abstraction skills. More empirical studies are needed to investigate the quality
of larger programs according to the modeling skills of the programmers.

The remainder of this paper is structured as follows. In Sect. 2 we describe
our method to perform the empirical study, classify data used for our evaluation
and explain the data obtained of the 34 software projects. In Sect. 3 we present
the results of the evaluation of the collected objective and subjective data. The
threats of validity are discussed in Sect. 4. Finally we summarize in Sect. 5 our
lessons learned and give an outlook to further studies.

2 Method and Data Used for Evaluation

In winter semester 2012/13 we started an empirical study in our software project
course1. We obtained comprehensive data based on a survey and metrics of 34
successfully realized software projects. Each project team consisted of 5 to 6
students. Project teams were organized by members with similar basic skills in
modeling and programming based on exam results in the previous introductory
software engineering course. In our software project course about which we re-
ported in [3] we ensure an intensive supervision during the whole software life
cycle of the students' applications. In the subsequent evaluation of the realized
software projects, we divided the 34 teams into three groups under consideration
of their basic skills and their interest in software development (Table 1). Then we
analyzed the student modeler and programmer skills for each group. Basic skills
in OO software development were estimated by the students' achieved grades in
the exam of the introductory course. Generally we discriminate between passed
and failed students. Passed students passed the exam. Failed students failed the
exam in fact, but they failed the exam only marginally. That means they got
involved in the software engineering course (i.e., students, which almost passed
the exam, have been granted participation, too) but they had only a very ba-
sic knowledge. All other failed students were not permitted to take part in the
project course. Besides the classi�cation of the students by their basic skills in
OO software development we asked them if they were interested in real projects
in industry (i.e. to perform the course externally). We o�ered carefully selected

1 http://st.inf.tu-dresden.de/teaching/swp2012/



3

objective data subjective data

quantitative data source code metrics survey (T1,T2)
team productivity (TP)

qualitative data survey (PR) survey (DP, UML, MC)

Table 2. Classi�cation of the data used for our evaluation (cmp. Table 3).

project tasks of comparable complexity provided by regional software companies.
Students could apply for those projects. Typically students that are interested in
software development step up to the plate of a real task. However, only students
who passed the exam had the chance to take part in a real project. All other
passed students received a constructed task�a web shopping application [3]�and
therewith worked in simulated projects performed internally.

To test the hypothesis of Robert France, we performed (1) a guided online
survey with the teams of the project course and (2) analyzed the software ar-
tifacts provided by each group. That is we collected and examined qualitative
and quantitative data, both of which we further divided into subjective and ob-
jective data. Most of the survey's questions are qualitative, though there are
quantitative questions, too. For example, the teams were asked to estimate their
real e�ort per development phase in weeks. This information is in one sense sub-
jective because the data's accuracy obtained by the students is varying, but in
the other sense quantitative. Another question relates to the number of frame-
work packages used, where the answer was extracted by the students from their
code and, hence, is considered objective. In all other cases, the information gath-
ered by the survey can be characterized as subjective, whereas the information
gathered by examining the code is of objective nature. Table 2 summarizes this
classi�cation. The mapped questions are explained in detail in the following and
summarized in Table 3 and metrics in Sect. 2.1.

Each team �lled out an online survey at the end of the project course. To
improve the quality and expressiveness of the answers given by the teams, the
respective responsible tutor�who knows well about how the team performed
and, hence, is able to distinct correct from fake answers�guided the team in
completing the survey. As a consequence, we achieved a response rate of 100%.

Question Answer Scale Number of Options

(DP) Design Patterns Boolean 10

(UML) UML Application Boolean 7

(PR) Package Reuse Boolean 14

(MC) Model/Code Consistency Interval 1�10

(T1) Time Planned per Phase Integer Number of weeks

(T2) Real Time per Phase Integer Number of weeks
Table 3. Answer scale and number of options of relevant survey questions.



4

Metric Range

(COMPL) weighted average program complexity 0 ..1

(QUAL) weighted average program quality 0 ..1

(#OP) Number of Object Points integer

(#STMT) Number of Java statements integer

(#FP) Number of Function Points integer
Table 4. Used source code metrics

The survey comprised 76 questions in total, though only six are of interest
w.r.t. Robert France's hypothesis that are listed in Table 3 and explained in
detail in the following Sect. 2.1 and 2.2. The remaining questions are intended to
improve the overall quality and organization of the project course. For example,
by asking for the used development environment or whether the team considered
the lecture as helpful for the project course or not.

2.1 Objective data

For quantitative data (metrics) we analyzed the source code of every student
project using Harry Sneed's SoftAudit tool 2. We used Sneed's source code met-
rics [4] listed in Table 4 to compare groups of student projects.

A further relevant metric characterizing students' skills is their team produc-
tivity (TP). For this purpose we required that all students log their spent time
in hours for the project. Thus we could determine the total hours of a team
over the whole life cycle of its software project (#PH). The team productivity
is evaluated as geometric mean of three parameters each as a quantity metric
(#OP, #STMT, #FP) per hour as follows:

TP = 3
√
#OP/#PH ·#STMT/#PH ·#FP/#PH (1)

As qualitative data we considered and investigated the Reuse of Java packages
provided by the SalesPoint framework. The idea is that we adopt the habit of
reusing existing classes instead of inventing new ones. This requires you to know
where to look for reusable components (i.e. you must understand the scope and
structure of the class libraries you are using). Because of the diversity of used
frameworks in real projects, however, we only considered reuse in SalesPoint
applications. For each package provided by the Salespoint framework, every team
had to specify in the online survey whether they used the package or not.

2.2 Subjective Data

The following �ve questions providing subjective data have been examined.
(DP): We asked which design patterns have been used by a team. The options

to answer this question are a �xed amount of design patterns, which could be

2 http://www.anecon.com/



5

Group COMPL QUAL #OP #STMT #FP #PH TP

externals (bioshop) 0,49 0,62 5411 1411 356 1020 1,24

externals(rest) 0,53 0,57 1967 671 214 1005 0,38

internals 0,48 0,67 4208 1549 117 1020 1,6

failed 0,53 0,63 3440 1322 40 859 0,55
Table 5. Group metrics.

marked as �have been used� or �not used�. The considered design patterns were
singleton, template method, strategy, state, object adapter, class adapter, factory
method, iterator, composite and observer. We selected these patterns as answer
options, because only those had been taught in the introductory course.

(UML): We asked in which activities the students applied UML. We con-
sidered seven activities: brainstorming, analysis, design, implementation, test,
documentation and communication, where the application of UML could be an-
swered with either �yes� or �no�.

(MC): We asked for the students impression of model/code consistency. This
question, in contrast, did not provide Boolean options, but asked for an assess-
ment on a scale from 1 to 10, where 1 refers to a low degree of ful�llment and
10 to a high degree.

(T1, T2): We asked for the planned and real time spent per development
phase and did not provide any prede�ned options. Instead the number of weeks
spent per phase was meant to be provided as an answer. We intended to ask for
the time spent in addition to the originally planned e�ort, which can be derived
by interpreting both questions in parallel.

3 Evaluation of the Survey

In the following we present the results of the evaluation.

3.1 Evaluation of Objective Data

Here we list the estimated source code metrics, the team productivity as well as
the degree of the reuse of SalesPoint packages.

Metrics. Table 5 summarizes all considered source code metrics and the estima-
tion of the team productivity for each group of student projects (cf. Table 1).
In evaluating the data we noticed signi�cant di�erences within the real projects.
Three of the real projects implementing a health-food shop (bioshop) using the
SalesPoint framework, produce signi�cantly di�erent metrics than the rest of the
real projects (rest). Therefore we had to distinguish between the two groups of
real projects. The metrics were estimated for each student project. The group
metrics listed in Table 5 are estimated by the median of all projects of this group.

The bold printed data in Table 5 show the �best� groups relating to their
respective metrics. It could be assumed that externals achieve the best results.



6

externals internals failed

Design Patterns used (max: 10) 19.23 28.33 22.22

Framework packages reused (max: 14) 61.29 79.36

Application of UML per phase (max: 7) 45.24 48.36 44.44

Model/Code consistency (max: 10) 62.31 62.50 27.78
Table 6. Survey results by group in percent.

However, the internals achieved the lowest program complexity and the highest
program quality. According to ISO-9126 software engineering product quality
standard scores of more than 0.6 mean �good� quality 3. Therewith almost all
groups achieved good software quality. Internals also showed the highest team
productivity. Although the bioshop teams had the highest quantity metrics (at
least #OP and #FP) and used at least partly the SalesPoint framework as
the internals they could not achieve the same scores as the internal teams. The
explanation for this fact and the results of the rest teams is that they had
to deal with a real customer and therewith more strict test and maintenance
requirements. A further observation is that students in real projects had a higher
learning curve (represented by their induction value in Table 7). Failed students
showed that the software project course helped them to improve their modeling
and programming skills. For example they achieved a higher team productivity
than the rest teams. A reason for this fact is that in several failed teams students
left and had to be assigned their tasks in the project to the other students.

Reuse of Salespoint Framework Packages. The investigation of the amount of
framework packages reused by type of group was expected to show that passed
students reused more packages than failed students. The second row in Table 6
shows the average number of packages reused by type of group. For this analysis
real projects have been omitted, as these teams did not (or minimally) use the
Salespoint framework and, hence, the question was not applicable to these teams.
Surprisingly, the survey shows a signi�cantly higher degree of reuse for failed
teams, which reused ca. 80% of all provided packages, whereas passed teams
only reused ca. 60%. This might be due to the higher abilities of passed students,
which more often decided for an own, customized solution instead of reusing (i.e.,
extending) the provided standard solutions.

3.2 Evaluation of Subjective Data

In the following the results gathered by the survey (cf. Table 6) will be presented.

Application of Design Patterns. The �rst row of table 6 depicts the average
number of design patterns used per group. The teams with real tasks made the
least usage of design patterns. These teams applied less than 20% of the patterns

3 http://www.anecon.com/downloads/System_Assessment_-_Harry_Sneed_02.pdf



7

Induction Analysis Design Implement-
ation

Mainte-
nance

externals 0.462 0.269 0.192 1 0.846

internals 0 0.083 0.25 0.917 0.917

failed 0.111 0.333 0.222 1 1.222
Table 7. Average Error in Time Estimated per Phase by Group in Weeks.

taught in the introductory course. For internals, those teams, which passed the
exam, are clearly superior to those that failed (ca. 28% versus 22%).

Application of UML per Activity. The third row in Table 6 shows the number
of activities, where UML has been used in percent of all seven activities (cf.
Section 2.2). The expected result was that internals made the strongest usage
of UML, followed by externals and, �nally, by failed students. The collected
data con�rms our intuitive observation. Internals utilized UML more often than
externals, which is due to the increased induction and customer communication
e�orts of externals. Moreover, the survey reveals that internals are superior to
failed teams in terms of UML usage and, thus, supports our hypothesis.

Model/Code Consistency. The fourth row of Table 6 depicts the degree of consis-
tency of models and code for internals, externals and failed teams as perceived by
the students (i.e., these numbers do not rely on artifact analyses). We expected
the internals to be superior to the other groups, followed by externals and, �-
nally, failed teams. The reason for internals to outperform externals is the higher
complexity of real tasks in comparison to simulated tasks, which increases the
di�culty for external passed students to keep their models and code consistent.
As Table 6 shows, our expectations are con�rmed by the survey.

Di�erence Between Planned and Actual Time per Development Phase. The in-
vestigation of the di�erence between the planned and actual time required by
each team per team con�rms our intuitive observations, too. The results are
shown in Table 7. Externals spent, in comparison to internals and failed teams,
the most additional time in the induction phase. This is due to the additional
e�ort required to work with real world frameworks. Failed teams spent the most
additional time in the maintenance phase. This indicates a lower quality of their
code in the implementation phase, which con�rms our hypothesis.

4 Threats to Validity

The greatest threat to the validity is that the source code metrics of four real
tasks were not estimated. Three of these projects were written in Ruby for
which we had no software evaluation tool. The fourth project was indeed a
Java project, but it was developed in a model-driven way: large parts of the
code were generated. Furthermore, we excluded the web GUI code from our



8

evaluation. Our internal evaluation showed that around 50% of the project code
is GUI code (JSP, JSF and JS tags). Therefore it can be assumed that the
absolute team productivity is signi�cantly higher than the estimated one listed
in Table 5. Notably, all other teams used the same programming language (Java).
Using exam results as an indicator for expertise is another threat to validity, as
some students are more eligible to a continuous assessment and show much less
competency in exams than they actually have. Yet another threat to validity is
the e�ect of social interaction in project teams, which highly depends on the
personalities and, thus, is hard (if not impossible) to be taken into account.
Finally, the guidance in answering the online survey could have in�uenced the
answers given, due to social e�ects between the teams and the tutor.

5 Conclusion

We conducted an empirical study evaluating modeling and programming skills
in a software project course and evaluated comprehensive data capturing both
modeling and programming activities based both on a survey and source code
metrics of 34 successfully completed software projects. As a result of the sta-
tistical evaluation of the data, we detected signi�cant di�erences between stu-
dents of di�erent quali�cation in their basic skills and their interest (in terms
of their engagement in a real instead of a simulated task) in software develop-
ment. However, we could also show that our teaching approach leads in most
cases to �good� program quality including such model requirements as reuse of
frameworks, model/code consistency and use of design patterns. This conclusion
con�rms the hypothesis that expert modelers are also good programmers.

Furthermore we learned that the use of a common application framework
constructed for teaching purposes helps to improve the program quality. In the
next course we plan to supervise the software development process in a more
rigerous way and to evaluate the UML design metrics in addition to the Java
source code metrics. The use of the SoftAudit tool for conformance checking and
quality measurement allows tutors to guide the whole life cycle of the projects
in a more systematic manner.

References

1. Bézivin, J., France, R.B., Gogolla, M., Haugen, Ø., Taentzer, G., Varró, D.: Teaching
modeling: Why, when, what? In Ghosh, S., ed.: MoDELS Workshops. Volume 6002
of LNCS., Springer (2009) 55�62

2. Demuth, B.: How should teaching modeling and programming intertwine? In: Proc.
of the 8th Educators' Symposium, ACM (2012)

3. Zschaler, S., Demuth, B., Schmitz, L.: Salespoint: A java framework for teaching
object-oriented software development. Science of Computer Programming (2012)

4. Sneed, H.: Software in Zahlen. Carl Hanser Verlag München (2010)


