
More on Patterns

Perdita Stevens, University of Edinburgh

August 2010

Agenda

I Reinforcement of pitfalls of using design patterns

I Some more design patterns...

I Beyond design: architectural patterns, risk management
patterns etc.

I Pattern-writing and organisation-specific patterns

Pitfalls

Frequent conflict between:

I simple design

I “do the simplest thing that could possibly work”

I YAGNI - you ain’t gonna need it

and “future-proofing” your design using patterns.

No silver bullet

This is a genuinely difficult issue. Some rules of thumb are clear:

I Never introduce a pattern just because future changes in the
design may justify it. E.g. don’t use Strategy if there is only
one algorithm. Add it when the second or third one comes
along.

I Never use a pattern without documenting its use (IN THE
CODE): the next person to modify the software must
understand your intent.

I Never use a pattern you don’t fully understand!



Dependency inversion/injection

We mentioned this before but it’s important enough to revisit,
especially since it’s widely used in the Java web development world
which we’ll discuss this afternoon.

Let’s recall (from Intro to OO) the broad principle of Dependency
Inversion, and then look at concrete mechanisms for implementing
it, which Martin Fowler called the Dependency Injection pattern.

Then we’ll look at an alternative, the Service Locator pattern.

Dependency inversion (Robert C. Martin)

(Slightly confusing name for a very basic principle)

“A. High-level modules should not depend on low-level modules.
Both should depend on abstractions. B. Abstractions should not
depend upon details. Details should depend upon abstractions.”

High-level module depends upon an abstract interface capturing
what it needs from a low-level module.

Low-level module depends on that interace too, as it implements it.

Naive dependency management

(NB naive is not necessarily bad!!)

Source:http://martinfowler.com/articles/injection.html

Dependency injection pattern

Source:http://martinfowler.com/articles/injection.html

http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html


Service locator pattern

Source:http://martinfowler.com/articles/injection.html

Dependency Injection pattern

For more info see sources:

http://en.wikipedia.org/wiki/Dependency_injection

http://martinfowler.com/articles/injection.html

See also Java’s JSR-330, “at inject” which uses Java annotations
to specify injection.

http:
//jcp.org/aboutJava/communityprocess/final/jsr330

Note the trade-offs: dependencies are always present, but may be
checked at compile/build/run time.

- Run-time gives the ultimate in flexibility, but at the cost of less
code clarity and need to handle late errors.

- Compile-time the reverse: inflexible but clear and safe.

Model-View-Controller

MVC is an important pattern for user interfaces. Popularised in
Smalltalk; now appears in many of the Java frameworks we’ll
discuss this afternoon.

Problem: objects implementing business functionality easily get
intertwined with objects implementing UI features, hampering
maintenance and reuse, e.g., porting an application to a platform
with different UI needs.

Model-View-Controller 2

Model: objects encapsulating business functionality, independent of
the UI.

View: objects providing the view of the state of the model
appropriate for a user (e.g., web page design)

Controller: objects that take user input (e.g., navigation)

Dependencies:

I View depends on
I Model – gets data from it, usually using the Observer pattern
I Controller – it usually creates its Controller

I Controller depends on
I Model – invokes methods to change data as user requests
I View – invokes View methods to change display

I Model does not depend on either View or Controller: this is
the crucial point.

http://martinfowler.com/articles/injection.html
http://en.wikipedia.org/wiki/Dependency_injection
http://martinfowler.com/articles/injection.html
http://jcp.org/aboutJava/communityprocess/final/jsr330
http://jcp.org/aboutJava/communityprocess/final/jsr330


Architectural patterns

MVC was an example of an architectural pattern: it dealt in
components, rather than individual classes.

Others include:

I Layers

I Pipes and filters

I Blackboard

I Microkernel

NB as usual, the patterns record well-established knowledge.

Risk reduction patterns

Alastair Cockburn

e.g. Sacrifice One Person

When all members of a team keep being interrupted by peripheral
tasks: assign one team member to deal with all those tasks,
keeping the rest free.

Pro: allows rest of the team more flow time, may be more efficient
that everyone getting interrupted

Con: can be tough on that person; there may be an underlying
cause for the interruptions that should be addressed directly.

Write your own patterns

All organisations have knowledge of how to solve recurring
problems, taking into account organisation-specific constraints or
values.

It may be useful to record these in pattern form, e.g. if:

I new people need help in learning these solutions

I the knowledge needs to be made explicit, e.g. to identify
remaining issues

I there are often competing solutions in the same situation, so
that agreeing names for them might make discussion easier.

Ways in which patterns are useful

I To teach solutions (not actually the most important)

I As high-level vocabulary

I To practise general design skills

I As an authority to appeal to

I If a team or organisation writes its own patterns: to make
“how we do things” explicit.


